s/Tungsten Graphics/VMware/
[mesa.git] / src / mesa / drivers / dri / i965 / brw_context.h
1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keithw@vmware.com>
30 */
31
32
33 #ifndef BRWCONTEXT_INC
34 #define BRWCONTEXT_INC
35
36 #include <stdbool.h>
37 #include <string.h>
38 #include "main/imports.h"
39 #include "main/macros.h"
40 #include "main/mm.h"
41 #include "main/mtypes.h"
42 #include "brw_structs.h"
43
44 #ifdef __cplusplus
45 extern "C" {
46 /* Evil hack for using libdrm in a c++ compiler. */
47 #define virtual virt
48 #endif
49
50 #include <drm.h>
51 #include <intel_bufmgr.h>
52 #include <i915_drm.h>
53 #ifdef __cplusplus
54 #undef virtual
55 }
56 #endif
57
58 #ifdef __cplusplus
59 extern "C" {
60 #endif
61 #include "intel_debug.h"
62 #include "intel_screen.h"
63 #include "intel_tex_obj.h"
64
65 /* Glossary:
66 *
67 * URB - uniform resource buffer. A mid-sized buffer which is
68 * partitioned between the fixed function units and used for passing
69 * values (vertices, primitives, constants) between them.
70 *
71 * CURBE - constant URB entry. An urb region (entry) used to hold
72 * constant values which the fixed function units can be instructed to
73 * preload into the GRF when spawning a thread.
74 *
75 * VUE - vertex URB entry. An urb entry holding a vertex and usually
76 * a vertex header. The header contains control information and
77 * things like primitive type, Begin/end flags and clip codes.
78 *
79 * PUE - primitive URB entry. An urb entry produced by the setup (SF)
80 * unit holding rasterization and interpolation parameters.
81 *
82 * GRF - general register file. One of several register files
83 * addressable by programmed threads. The inputs (r0, payload, curbe,
84 * urb) of the thread are preloaded to this area before the thread is
85 * spawned. The registers are individually 8 dwords wide and suitable
86 * for general usage. Registers holding thread input values are not
87 * special and may be overwritten.
88 *
89 * MRF - message register file. Threads communicate (and terminate)
90 * by sending messages. Message parameters are placed in contiguous
91 * MRF registers. All program output is via these messages. URB
92 * entries are populated by sending a message to the shared URB
93 * function containing the new data, together with a control word,
94 * often an unmodified copy of R0.
95 *
96 * R0 - GRF register 0. Typically holds control information used when
97 * sending messages to other threads.
98 *
99 * EU or GEN4 EU: The name of the programmable subsystem of the
100 * i965 hardware. Threads are executed by the EU, the registers
101 * described above are part of the EU architecture.
102 *
103 * Fixed function units:
104 *
105 * CS - Command streamer. Notional first unit, little software
106 * interaction. Holds the URB entries used for constant data, ie the
107 * CURBEs.
108 *
109 * VF/VS - Vertex Fetch / Vertex Shader. The fixed function part of
110 * this unit is responsible for pulling vertices out of vertex buffers
111 * in vram and injecting them into the processing pipe as VUEs. If
112 * enabled, it first passes them to a VS thread which is a good place
113 * for the driver to implement any active vertex shader.
114 *
115 * GS - Geometry Shader. This corresponds to a new DX10 concept. If
116 * enabled, incoming strips etc are passed to GS threads in individual
117 * line/triangle/point units. The GS thread may perform arbitary
118 * computation and emit whatever primtives with whatever vertices it
119 * chooses. This makes GS an excellent place to implement GL's
120 * unfilled polygon modes, though of course it is capable of much
121 * more. Additionally, GS is used to translate away primitives not
122 * handled by latter units, including Quads and Lineloops.
123 *
124 * CS - Clipper. Mesa's clipping algorithms are imported to run on
125 * this unit. The fixed function part performs cliptesting against
126 * the 6 fixed clipplanes and makes descisions on whether or not the
127 * incoming primitive needs to be passed to a thread for clipping.
128 * User clip planes are handled via cooperation with the VS thread.
129 *
130 * SF - Strips Fans or Setup: Triangles are prepared for
131 * rasterization. Interpolation coefficients are calculated.
132 * Flatshading and two-side lighting usually performed here.
133 *
134 * WM - Windower. Interpolation of vertex attributes performed here.
135 * Fragment shader implemented here. SIMD aspects of EU taken full
136 * advantage of, as pixels are processed in blocks of 16.
137 *
138 * CC - Color Calculator. No EU threads associated with this unit.
139 * Handles blending and (presumably) depth and stencil testing.
140 */
141
142 #define BRW_MAX_CURBE (32*16)
143
144 struct brw_context;
145 struct brw_instruction;
146 struct brw_vs_prog_key;
147 struct brw_vec4_prog_key;
148 struct brw_wm_prog_key;
149 struct brw_wm_prog_data;
150
151 enum brw_state_id {
152 BRW_STATE_URB_FENCE,
153 BRW_STATE_FRAGMENT_PROGRAM,
154 BRW_STATE_GEOMETRY_PROGRAM,
155 BRW_STATE_VERTEX_PROGRAM,
156 BRW_STATE_CURBE_OFFSETS,
157 BRW_STATE_REDUCED_PRIMITIVE,
158 BRW_STATE_PRIMITIVE,
159 BRW_STATE_CONTEXT,
160 BRW_STATE_PSP,
161 BRW_STATE_SURFACES,
162 BRW_STATE_VS_BINDING_TABLE,
163 BRW_STATE_GS_BINDING_TABLE,
164 BRW_STATE_PS_BINDING_TABLE,
165 BRW_STATE_INDICES,
166 BRW_STATE_VERTICES,
167 BRW_STATE_BATCH,
168 BRW_STATE_INDEX_BUFFER,
169 BRW_STATE_VS_CONSTBUF,
170 BRW_STATE_GS_CONSTBUF,
171 BRW_STATE_PROGRAM_CACHE,
172 BRW_STATE_STATE_BASE_ADDRESS,
173 BRW_STATE_VUE_MAP_VS,
174 BRW_STATE_VUE_MAP_GEOM_OUT,
175 BRW_STATE_TRANSFORM_FEEDBACK,
176 BRW_STATE_RASTERIZER_DISCARD,
177 BRW_STATE_STATS_WM,
178 BRW_STATE_UNIFORM_BUFFER,
179 BRW_STATE_ATOMIC_BUFFER,
180 BRW_STATE_META_IN_PROGRESS,
181 BRW_STATE_INTERPOLATION_MAP,
182 BRW_STATE_PUSH_CONSTANT_ALLOCATION,
183 BRW_NUM_STATE_BITS
184 };
185
186 #define BRW_NEW_URB_FENCE (1 << BRW_STATE_URB_FENCE)
187 #define BRW_NEW_FRAGMENT_PROGRAM (1 << BRW_STATE_FRAGMENT_PROGRAM)
188 #define BRW_NEW_GEOMETRY_PROGRAM (1 << BRW_STATE_GEOMETRY_PROGRAM)
189 #define BRW_NEW_VERTEX_PROGRAM (1 << BRW_STATE_VERTEX_PROGRAM)
190 #define BRW_NEW_CURBE_OFFSETS (1 << BRW_STATE_CURBE_OFFSETS)
191 #define BRW_NEW_REDUCED_PRIMITIVE (1 << BRW_STATE_REDUCED_PRIMITIVE)
192 #define BRW_NEW_PRIMITIVE (1 << BRW_STATE_PRIMITIVE)
193 #define BRW_NEW_CONTEXT (1 << BRW_STATE_CONTEXT)
194 #define BRW_NEW_PSP (1 << BRW_STATE_PSP)
195 #define BRW_NEW_SURFACES (1 << BRW_STATE_SURFACES)
196 #define BRW_NEW_VS_BINDING_TABLE (1 << BRW_STATE_VS_BINDING_TABLE)
197 #define BRW_NEW_GS_BINDING_TABLE (1 << BRW_STATE_GS_BINDING_TABLE)
198 #define BRW_NEW_PS_BINDING_TABLE (1 << BRW_STATE_PS_BINDING_TABLE)
199 #define BRW_NEW_INDICES (1 << BRW_STATE_INDICES)
200 #define BRW_NEW_VERTICES (1 << BRW_STATE_VERTICES)
201 /**
202 * Used for any batch entry with a relocated pointer that will be used
203 * by any 3D rendering.
204 */
205 #define BRW_NEW_BATCH (1 << BRW_STATE_BATCH)
206 /** \see brw.state.depth_region */
207 #define BRW_NEW_INDEX_BUFFER (1 << BRW_STATE_INDEX_BUFFER)
208 #define BRW_NEW_VS_CONSTBUF (1 << BRW_STATE_VS_CONSTBUF)
209 #define BRW_NEW_GS_CONSTBUF (1 << BRW_STATE_GS_CONSTBUF)
210 #define BRW_NEW_PROGRAM_CACHE (1 << BRW_STATE_PROGRAM_CACHE)
211 #define BRW_NEW_STATE_BASE_ADDRESS (1 << BRW_STATE_STATE_BASE_ADDRESS)
212 #define BRW_NEW_VUE_MAP_VS (1 << BRW_STATE_VUE_MAP_VS)
213 #define BRW_NEW_VUE_MAP_GEOM_OUT (1 << BRW_STATE_VUE_MAP_GEOM_OUT)
214 #define BRW_NEW_TRANSFORM_FEEDBACK (1 << BRW_STATE_TRANSFORM_FEEDBACK)
215 #define BRW_NEW_RASTERIZER_DISCARD (1 << BRW_STATE_RASTERIZER_DISCARD)
216 #define BRW_NEW_STATS_WM (1 << BRW_STATE_STATS_WM)
217 #define BRW_NEW_UNIFORM_BUFFER (1 << BRW_STATE_UNIFORM_BUFFER)
218 #define BRW_NEW_ATOMIC_BUFFER (1 << BRW_STATE_ATOMIC_BUFFER)
219 #define BRW_NEW_META_IN_PROGRESS (1 << BRW_STATE_META_IN_PROGRESS)
220 #define BRW_NEW_INTERPOLATION_MAP (1 << BRW_STATE_INTERPOLATION_MAP)
221 #define BRW_NEW_PUSH_CONSTANT_ALLOCATION (1 << BRW_STATE_PUSH_CONSTANT_ALLOCATION)
222
223 struct brw_state_flags {
224 /** State update flags signalled by mesa internals */
225 GLuint mesa;
226 /**
227 * State update flags signalled as the result of brw_tracked_state updates
228 */
229 GLuint brw;
230 /** State update flags signalled by brw_state_cache.c searches */
231 GLuint cache;
232 };
233
234 #define AUB_TRACE_TYPE_MASK 0x0000ff00
235 #define AUB_TRACE_TYPE_NOTYPE (0 << 8)
236 #define AUB_TRACE_TYPE_BATCH (1 << 8)
237 #define AUB_TRACE_TYPE_VERTEX_BUFFER (5 << 8)
238 #define AUB_TRACE_TYPE_2D_MAP (6 << 8)
239 #define AUB_TRACE_TYPE_CUBE_MAP (7 << 8)
240 #define AUB_TRACE_TYPE_VOLUME_MAP (9 << 8)
241 #define AUB_TRACE_TYPE_1D_MAP (10 << 8)
242 #define AUB_TRACE_TYPE_CONSTANT_BUFFER (11 << 8)
243 #define AUB_TRACE_TYPE_CONSTANT_URB (12 << 8)
244 #define AUB_TRACE_TYPE_INDEX_BUFFER (13 << 8)
245 #define AUB_TRACE_TYPE_GENERAL (14 << 8)
246 #define AUB_TRACE_TYPE_SURFACE (15 << 8)
247
248 /**
249 * state_struct_type enum values are encoded with the top 16 bits representing
250 * the type to be delivered to the .aub file, and the bottom 16 bits
251 * representing the subtype. This macro performs the encoding.
252 */
253 #define ENCODE_SS_TYPE(type, subtype) (((type) << 16) | (subtype))
254
255 enum state_struct_type {
256 AUB_TRACE_VS_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 1),
257 AUB_TRACE_GS_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 2),
258 AUB_TRACE_CLIP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 3),
259 AUB_TRACE_SF_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 4),
260 AUB_TRACE_WM_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 5),
261 AUB_TRACE_CC_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 6),
262 AUB_TRACE_CLIP_VP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 7),
263 AUB_TRACE_SF_VP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 8),
264 AUB_TRACE_CC_VP_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x9),
265 AUB_TRACE_SAMPLER_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xa),
266 AUB_TRACE_KERNEL_INSTRUCTIONS = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xb),
267 AUB_TRACE_SCRATCH_SPACE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xc),
268 AUB_TRACE_SAMPLER_DEFAULT_COLOR = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0xd),
269
270 AUB_TRACE_SCISSOR_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x15),
271 AUB_TRACE_BLEND_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x16),
272 AUB_TRACE_DEPTH_STENCIL_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_GENERAL, 0x17),
273
274 AUB_TRACE_VERTEX_BUFFER = ENCODE_SS_TYPE(AUB_TRACE_TYPE_VERTEX_BUFFER, 0),
275 AUB_TRACE_BINDING_TABLE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_SURFACE, 0x100),
276 AUB_TRACE_SURFACE_STATE = ENCODE_SS_TYPE(AUB_TRACE_TYPE_SURFACE, 0x200),
277 AUB_TRACE_VS_CONSTANTS = ENCODE_SS_TYPE(AUB_TRACE_TYPE_CONSTANT_BUFFER, 0),
278 AUB_TRACE_WM_CONSTANTS = ENCODE_SS_TYPE(AUB_TRACE_TYPE_CONSTANT_BUFFER, 1),
279 };
280
281 /**
282 * Decode a state_struct_type value to determine the type that should be
283 * stored in the .aub file.
284 */
285 static inline uint32_t AUB_TRACE_TYPE(enum state_struct_type ss_type)
286 {
287 return (ss_type & 0xFFFF0000) >> 16;
288 }
289
290 /**
291 * Decode a state_struct_type value to determine the subtype that should be
292 * stored in the .aub file.
293 */
294 static inline uint32_t AUB_TRACE_SUBTYPE(enum state_struct_type ss_type)
295 {
296 return ss_type & 0xFFFF;
297 }
298
299 /** Subclass of Mesa vertex program */
300 struct brw_vertex_program {
301 struct gl_vertex_program program;
302 GLuint id;
303 };
304
305
306 /** Subclass of Mesa geometry program */
307 struct brw_geometry_program {
308 struct gl_geometry_program program;
309 unsigned id; /**< serial no. to identify geom progs, never re-used */
310 };
311
312
313 /** Subclass of Mesa fragment program */
314 struct brw_fragment_program {
315 struct gl_fragment_program program;
316 GLuint id; /**< serial no. to identify frag progs, never re-used */
317 };
318
319 struct brw_shader {
320 struct gl_shader base;
321
322 bool compiled_once;
323
324 /** Shader IR transformed for native compile, at link time. */
325 struct exec_list *ir;
326 };
327
328 /* Note: If adding fields that need anything besides a normal memcmp() for
329 * comparing them, be sure to go fix the the stage-specific
330 * prog_data_compare().
331 */
332 struct brw_stage_prog_data {
333 struct {
334 /** size of our binding table. */
335 uint32_t size_bytes;
336
337 /** @{
338 * surface indices for the various groups of surfaces
339 */
340 uint32_t pull_constants_start;
341 uint32_t texture_start;
342 uint32_t gather_texture_start;
343 uint32_t ubo_start;
344 uint32_t abo_start;
345 uint32_t shader_time_start;
346 /** @} */
347 } binding_table;
348 };
349
350 /* Data about a particular attempt to compile a program. Note that
351 * there can be many of these, each in a different GL state
352 * corresponding to a different brw_wm_prog_key struct, with different
353 * compiled programs.
354 *
355 * Note: brw_wm_prog_data_compare() must be updated when adding fields to this
356 * struct!
357 */
358 struct brw_wm_prog_data {
359 struct brw_stage_prog_data base;
360
361 GLuint curb_read_length;
362 GLuint num_varying_inputs;
363
364 GLuint first_curbe_grf;
365 GLuint first_curbe_grf_16;
366 GLuint reg_blocks;
367 GLuint reg_blocks_16;
368 GLuint total_scratch;
369
370 struct {
371 /** @{
372 * surface indices the WM-specific surfaces
373 */
374 uint32_t render_target_start;
375 /** @} */
376 } binding_table;
377
378 GLuint nr_params; /**< number of float params/constants */
379 GLuint nr_pull_params;
380 bool dual_src_blend;
381 bool uses_pos_offset;
382 bool uses_omask;
383 uint32_t prog_offset_16;
384
385 /**
386 * Mask of which interpolation modes are required by the fragment shader.
387 * Used in hardware setup on gen6+.
388 */
389 uint32_t barycentric_interp_modes;
390
391 /**
392 * Map from gl_varying_slot to the position within the FS setup data
393 * payload where the varying's attribute vertex deltas should be delivered.
394 * For varying slots that are not used by the FS, the value is -1.
395 */
396 int urb_setup[VARYING_SLOT_MAX];
397
398 /* Pointers to tracked values (only valid once
399 * _mesa_load_state_parameters has been called at runtime).
400 *
401 * These must be the last fields of the struct (see
402 * brw_wm_prog_data_compare()).
403 */
404 const float **param;
405 const float **pull_param;
406 };
407
408 /**
409 * Enum representing the i965-specific vertex results that don't correspond
410 * exactly to any element of gl_varying_slot. The values of this enum are
411 * assigned such that they don't conflict with gl_varying_slot.
412 */
413 typedef enum
414 {
415 BRW_VARYING_SLOT_NDC = VARYING_SLOT_MAX,
416 BRW_VARYING_SLOT_PAD,
417 /**
418 * Technically this is not a varying but just a placeholder that
419 * compile_sf_prog() inserts into its VUE map to cause the gl_PointCoord
420 * builtin variable to be compiled correctly. see compile_sf_prog() for
421 * more info.
422 */
423 BRW_VARYING_SLOT_PNTC,
424 BRW_VARYING_SLOT_COUNT
425 } brw_varying_slot;
426
427
428 /**
429 * Data structure recording the relationship between the gl_varying_slot enum
430 * and "slots" within the vertex URB entry (VUE). A "slot" is defined as a
431 * single octaword within the VUE (128 bits).
432 *
433 * Note that each BRW register contains 256 bits (2 octawords), so when
434 * accessing the VUE in URB_NOSWIZZLE mode, each register corresponds to two
435 * consecutive VUE slots. When accessing the VUE in URB_INTERLEAVED mode (as
436 * in a vertex shader), each register corresponds to a single VUE slot, since
437 * it contains data for two separate vertices.
438 */
439 struct brw_vue_map {
440 /**
441 * Bitfield representing all varying slots that are (a) stored in this VUE
442 * map, and (b) actually written by the shader. Does not include any of
443 * the additional varying slots defined in brw_varying_slot.
444 */
445 GLbitfield64 slots_valid;
446
447 /**
448 * Map from gl_varying_slot value to VUE slot. For gl_varying_slots that are
449 * not stored in a slot (because they are not written, or because
450 * additional processing is applied before storing them in the VUE), the
451 * value is -1.
452 */
453 signed char varying_to_slot[BRW_VARYING_SLOT_COUNT];
454
455 /**
456 * Map from VUE slot to gl_varying_slot value. For slots that do not
457 * directly correspond to a gl_varying_slot, the value comes from
458 * brw_varying_slot.
459 *
460 * For slots that are not in use, the value is BRW_VARYING_SLOT_COUNT (this
461 * simplifies code that uses the value stored in slot_to_varying to
462 * create a bit mask).
463 */
464 signed char slot_to_varying[BRW_VARYING_SLOT_COUNT];
465
466 /**
467 * Total number of VUE slots in use
468 */
469 int num_slots;
470 };
471
472 /**
473 * Convert a VUE slot number into a byte offset within the VUE.
474 */
475 static inline GLuint brw_vue_slot_to_offset(GLuint slot)
476 {
477 return 16*slot;
478 }
479
480 /**
481 * Convert a vertex output (brw_varying_slot) into a byte offset within the
482 * VUE.
483 */
484 static inline GLuint brw_varying_to_offset(struct brw_vue_map *vue_map,
485 GLuint varying)
486 {
487 return brw_vue_slot_to_offset(vue_map->varying_to_slot[varying]);
488 }
489
490 void brw_compute_vue_map(struct brw_context *brw, struct brw_vue_map *vue_map,
491 GLbitfield64 slots_valid);
492
493
494 /**
495 * Bitmask indicating which fragment shader inputs represent varyings (and
496 * hence have to be delivered to the fragment shader by the SF/SBE stage).
497 */
498 #define BRW_FS_VARYING_INPUT_MASK \
499 (BITFIELD64_RANGE(0, VARYING_SLOT_MAX) & \
500 ~VARYING_BIT_POS & ~VARYING_BIT_FACE)
501
502
503 /*
504 * Mapping of VUE map slots to interpolation modes.
505 */
506 struct interpolation_mode_map {
507 unsigned char mode[BRW_VARYING_SLOT_COUNT];
508 };
509
510 static inline bool brw_any_flat_varyings(struct interpolation_mode_map *map)
511 {
512 for (int i = 0; i < BRW_VARYING_SLOT_COUNT; i++)
513 if (map->mode[i] == INTERP_QUALIFIER_FLAT)
514 return true;
515
516 return false;
517 }
518
519 static inline bool brw_any_noperspective_varyings(struct interpolation_mode_map *map)
520 {
521 for (int i = 0; i < BRW_VARYING_SLOT_COUNT; i++)
522 if (map->mode[i] == INTERP_QUALIFIER_NOPERSPECTIVE)
523 return true;
524
525 return false;
526 }
527
528
529 struct brw_sf_prog_data {
530 GLuint urb_read_length;
531 GLuint total_grf;
532
533 /* Each vertex may have upto 12 attributes, 4 components each,
534 * except WPOS which requires only 2. (11*4 + 2) == 44 ==> 11
535 * rows.
536 *
537 * Actually we use 4 for each, so call it 12 rows.
538 */
539 GLuint urb_entry_size;
540 };
541
542
543 /**
544 * We always program SF to start reading at an offset of 1 (2 varying slots)
545 * from the start of the vertex URB entry. This causes it to skip:
546 * - VARYING_SLOT_PSIZ and BRW_VARYING_SLOT_NDC on gen4-5
547 * - VARYING_SLOT_PSIZ and VARYING_SLOT_POS on gen6+
548 */
549 #define BRW_SF_URB_ENTRY_READ_OFFSET 1
550
551
552 struct brw_clip_prog_data {
553 GLuint curb_read_length; /* user planes? */
554 GLuint clip_mode;
555 GLuint urb_read_length;
556 GLuint total_grf;
557 };
558
559 struct brw_ff_gs_prog_data {
560 GLuint urb_read_length;
561 GLuint total_grf;
562
563 /**
564 * Gen6 transform feedback: Amount by which the streaming vertex buffer
565 * indices should be incremented each time the GS is invoked.
566 */
567 unsigned svbi_postincrement_value;
568 };
569
570
571 /* Note: brw_vec4_prog_data_compare() must be updated when adding fields to
572 * this struct!
573 */
574 struct brw_vec4_prog_data {
575 struct brw_stage_prog_data base;
576 struct brw_vue_map vue_map;
577
578 /**
579 * Register where the thread expects to find input data from the URB
580 * (typically uniforms, followed by per-vertex inputs).
581 */
582 unsigned dispatch_grf_start_reg;
583
584 GLuint curb_read_length;
585 GLuint urb_read_length;
586 GLuint total_grf;
587 GLuint nr_params; /**< number of float params/constants */
588 GLuint nr_pull_params; /**< number of dwords referenced by pull_param[] */
589 GLuint total_scratch;
590
591 /* Used for calculating urb partitions. In the VS, this is the size of the
592 * URB entry used for both input and output to the thread. In the GS, this
593 * is the size of the URB entry used for output.
594 */
595 GLuint urb_entry_size;
596
597 /* These pointers must appear last. See brw_vec4_prog_data_compare(). */
598 const float **param;
599 const float **pull_param;
600 };
601
602
603 /* Note: brw_vs_prog_data_compare() must be updated when adding fields to this
604 * struct!
605 */
606 struct brw_vs_prog_data {
607 struct brw_vec4_prog_data base;
608
609 GLbitfield64 inputs_read;
610
611 bool uses_vertexid;
612 };
613
614
615 /* Note: brw_gs_prog_data_compare() must be updated when adding fields to
616 * this struct!
617 */
618 struct brw_gs_prog_data
619 {
620 struct brw_vec4_prog_data base;
621
622 /**
623 * Size of an output vertex, measured in HWORDS (32 bytes).
624 */
625 unsigned output_vertex_size_hwords;
626
627 unsigned output_topology;
628
629 /**
630 * Size of the control data (cut bits or StreamID bits), in hwords (32
631 * bytes). 0 if there is no control data.
632 */
633 unsigned control_data_header_size_hwords;
634
635 /**
636 * Format of the control data (either GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID
637 * if the control data is StreamID bits, or
638 * GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT if the control data is cut bits).
639 * Ignored if control_data_header_size is 0.
640 */
641 unsigned control_data_format;
642
643 bool include_primitive_id;
644
645 /**
646 * True if the thread should be dispatched in DUAL_INSTANCE mode, false if
647 * it should be dispatched in DUAL_OBJECT mode.
648 */
649 bool dual_instanced_dispatch;
650 };
651
652 /** Number of texture sampler units */
653 #define BRW_MAX_TEX_UNIT 16
654
655 /** Max number of render targets in a shader */
656 #define BRW_MAX_DRAW_BUFFERS 8
657
658 /** Max number of atomic counter buffer objects in a shader */
659 #define BRW_MAX_ABO 16
660
661 /**
662 * Max number of binding table entries used for stream output.
663 *
664 * From the OpenGL 3.0 spec, table 6.44 (Transform Feedback State), the
665 * minimum value of MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS is 64.
666 *
667 * On Gen6, the size of transform feedback data is limited not by the number
668 * of components but by the number of binding table entries we set aside. We
669 * use one binding table entry for a float, one entry for a vector, and one
670 * entry per matrix column. Since the only way we can communicate our
671 * transform feedback capabilities to the client is via
672 * MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS, we need to plan for the
673 * worst case, in which all the varyings are floats, so we use up one binding
674 * table entry per component. Therefore we need to set aside at least 64
675 * binding table entries for use by transform feedback.
676 *
677 * Note: since we don't currently pack varyings, it is currently impossible
678 * for the client to actually use up all of these binding table entries--if
679 * all of their varyings were floats, they would run out of varying slots and
680 * fail to link. But that's a bug, so it seems prudent to go ahead and
681 * allocate the number of binding table entries we will need once the bug is
682 * fixed.
683 */
684 #define BRW_MAX_SOL_BINDINGS 64
685
686 /** Maximum number of actual buffers used for stream output */
687 #define BRW_MAX_SOL_BUFFERS 4
688
689 #define BRW_MAX_SURFACES (BRW_MAX_DRAW_BUFFERS + \
690 BRW_MAX_TEX_UNIT * 2 + /* normal, gather */ \
691 12 + /* ubo */ \
692 BRW_MAX_ABO + \
693 2 /* shader time, pull constants */)
694
695 #define SURF_INDEX_GEN6_SOL_BINDING(t) (t)
696 #define BRW_MAX_GEN6_GS_SURFACES SURF_INDEX_GEN6_SOL_BINDING(BRW_MAX_SOL_BINDINGS)
697
698 /**
699 * Stride in bytes between shader_time entries.
700 *
701 * We separate entries by a cacheline to reduce traffic between EUs writing to
702 * different entries.
703 */
704 #define SHADER_TIME_STRIDE 64
705
706 enum brw_cache_id {
707 BRW_CC_VP,
708 BRW_CC_UNIT,
709 BRW_WM_PROG,
710 BRW_BLORP_BLIT_PROG,
711 BRW_BLORP_CONST_COLOR_PROG,
712 BRW_SAMPLER,
713 BRW_WM_UNIT,
714 BRW_SF_PROG,
715 BRW_SF_VP,
716 BRW_SF_UNIT, /* scissor state on gen6 */
717 BRW_VS_UNIT,
718 BRW_VS_PROG,
719 BRW_FF_GS_UNIT,
720 BRW_FF_GS_PROG,
721 BRW_GS_PROG,
722 BRW_CLIP_VP,
723 BRW_CLIP_UNIT,
724 BRW_CLIP_PROG,
725
726 BRW_MAX_CACHE
727 };
728
729 struct brw_cache_item {
730 /**
731 * Effectively part of the key, cache_id identifies what kind of state
732 * buffer is involved, and also which brw->state.dirty.cache flag should
733 * be set when this cache item is chosen.
734 */
735 enum brw_cache_id cache_id;
736 /** 32-bit hash of the key data */
737 GLuint hash;
738 GLuint key_size; /* for variable-sized keys */
739 GLuint aux_size;
740 const void *key;
741
742 uint32_t offset;
743 uint32_t size;
744
745 struct brw_cache_item *next;
746 };
747
748
749 typedef bool (*cache_aux_compare_func)(const void *a, const void *b);
750 typedef void (*cache_aux_free_func)(const void *aux);
751
752 struct brw_cache {
753 struct brw_context *brw;
754
755 struct brw_cache_item **items;
756 drm_intel_bo *bo;
757 GLuint size, n_items;
758
759 uint32_t next_offset;
760 bool bo_used_by_gpu;
761
762 /**
763 * Optional functions used in determining whether the prog_data for a new
764 * cache item matches an existing cache item (in case there's relevant data
765 * outside of the prog_data). If NULL, a plain memcmp is done.
766 */
767 cache_aux_compare_func aux_compare[BRW_MAX_CACHE];
768 /** Optional functions for freeing other pointers attached to a prog_data. */
769 cache_aux_free_func aux_free[BRW_MAX_CACHE];
770 };
771
772
773 /* Considered adding a member to this struct to document which flags
774 * an update might raise so that ordering of the state atoms can be
775 * checked or derived at runtime. Dropped the idea in favor of having
776 * a debug mode where the state is monitored for flags which are
777 * raised that have already been tested against.
778 */
779 struct brw_tracked_state {
780 struct brw_state_flags dirty;
781 void (*emit)( struct brw_context *brw );
782 };
783
784 enum shader_time_shader_type {
785 ST_NONE,
786 ST_VS,
787 ST_VS_WRITTEN,
788 ST_VS_RESET,
789 ST_FS8,
790 ST_FS8_WRITTEN,
791 ST_FS8_RESET,
792 ST_FS16,
793 ST_FS16_WRITTEN,
794 ST_FS16_RESET,
795 };
796
797 /* Flags for brw->state.cache.
798 */
799 #define CACHE_NEW_CC_VP (1<<BRW_CC_VP)
800 #define CACHE_NEW_CC_UNIT (1<<BRW_CC_UNIT)
801 #define CACHE_NEW_WM_PROG (1<<BRW_WM_PROG)
802 #define CACHE_NEW_BLORP_BLIT_PROG (1<<BRW_BLORP_BLIT_PROG)
803 #define CACHE_NEW_BLORP_CONST_COLOR_PROG (1<<BRW_BLORP_CONST_COLOR_PROG)
804 #define CACHE_NEW_SAMPLER (1<<BRW_SAMPLER)
805 #define CACHE_NEW_WM_UNIT (1<<BRW_WM_UNIT)
806 #define CACHE_NEW_SF_PROG (1<<BRW_SF_PROG)
807 #define CACHE_NEW_SF_VP (1<<BRW_SF_VP)
808 #define CACHE_NEW_SF_UNIT (1<<BRW_SF_UNIT)
809 #define CACHE_NEW_VS_UNIT (1<<BRW_VS_UNIT)
810 #define CACHE_NEW_VS_PROG (1<<BRW_VS_PROG)
811 #define CACHE_NEW_FF_GS_UNIT (1<<BRW_FF_GS_UNIT)
812 #define CACHE_NEW_FF_GS_PROG (1<<BRW_FF_GS_PROG)
813 #define CACHE_NEW_GS_PROG (1<<BRW_GS_PROG)
814 #define CACHE_NEW_CLIP_VP (1<<BRW_CLIP_VP)
815 #define CACHE_NEW_CLIP_UNIT (1<<BRW_CLIP_UNIT)
816 #define CACHE_NEW_CLIP_PROG (1<<BRW_CLIP_PROG)
817
818 struct brw_cached_batch_item {
819 struct header *header;
820 GLuint sz;
821 struct brw_cached_batch_item *next;
822 };
823
824 struct brw_vertex_buffer {
825 /** Buffer object containing the uploaded vertex data */
826 drm_intel_bo *bo;
827 uint32_t offset;
828 /** Byte stride between elements in the uploaded array */
829 GLuint stride;
830 GLuint step_rate;
831 };
832 struct brw_vertex_element {
833 const struct gl_client_array *glarray;
834
835 int buffer;
836
837 /** The corresponding Mesa vertex attribute */
838 gl_vert_attrib attrib;
839 /** Offset of the first element within the buffer object */
840 unsigned int offset;
841 };
842
843 struct brw_query_object {
844 struct gl_query_object Base;
845
846 /** Last query BO associated with this query. */
847 drm_intel_bo *bo;
848
849 /** Last index in bo with query data for this object. */
850 int last_index;
851 };
852
853 struct intel_sync_object {
854 struct gl_sync_object Base;
855
856 /** Batch associated with this sync object */
857 drm_intel_bo *bo;
858 };
859
860 enum brw_gpu_ring {
861 UNKNOWN_RING,
862 RENDER_RING,
863 BLT_RING,
864 };
865
866 struct intel_batchbuffer {
867 /** Current batchbuffer being queued up. */
868 drm_intel_bo *bo;
869 /** Last BO submitted to the hardware. Used for glFinish(). */
870 drm_intel_bo *last_bo;
871 /** BO for post-sync nonzero writes for gen6 workaround. */
872 drm_intel_bo *workaround_bo;
873 bool need_workaround_flush;
874
875 struct cached_batch_item *cached_items;
876
877 uint16_t emit, total;
878 uint16_t used, reserved_space;
879 uint32_t *map;
880 uint32_t *cpu_map;
881 #define BATCH_SZ (8192*sizeof(uint32_t))
882
883 uint32_t state_batch_offset;
884 enum brw_gpu_ring ring;
885 bool needs_sol_reset;
886
887 struct {
888 uint16_t used;
889 int reloc_count;
890 } saved;
891 };
892
893 #define BRW_MAX_XFB_STREAMS 4
894
895 struct brw_transform_feedback_object {
896 struct gl_transform_feedback_object base;
897
898 /** A buffer to hold SO_WRITE_OFFSET(n) values while paused. */
899 drm_intel_bo *offset_bo;
900
901 /** The most recent primitive mode (GL_TRIANGLES/GL_POINTS/GL_LINES). */
902 GLenum primitive_mode;
903
904 /**
905 * Count of primitives generated during this transform feedback operation.
906 * @{
907 */
908 uint64_t prims_generated[BRW_MAX_XFB_STREAMS];
909 drm_intel_bo *prim_count_bo;
910 unsigned prim_count_buffer_index; /**< in number of uint64_t units */
911 /** @} */
912
913 /**
914 * Number of vertices written between last Begin/EndTransformFeedback().
915 *
916 * Used to implement DrawTransformFeedback().
917 */
918 uint64_t vertices_written[BRW_MAX_XFB_STREAMS];
919 bool vertices_written_valid;
920 };
921
922 /**
923 * Data shared between each programmable stage in the pipeline (vs, gs, and
924 * wm).
925 */
926 struct brw_stage_state
927 {
928 struct brw_stage_prog_data *prog_data;
929
930 /**
931 * Optional scratch buffer used to store spilled register values and
932 * variably-indexed GRF arrays.
933 */
934 drm_intel_bo *scratch_bo;
935
936 /** Pull constant buffer */
937 drm_intel_bo *const_bo;
938
939 /** Offset in the program cache to the program */
940 uint32_t prog_offset;
941
942 /** Offset in the batchbuffer to Gen4-5 pipelined state (VS/WM/GS_STATE). */
943 uint32_t state_offset;
944
945 uint32_t push_const_offset; /* Offset in the batchbuffer */
946 int push_const_size; /* in 256-bit register increments */
947
948 /* Binding table: pointers to SURFACE_STATE entries. */
949 uint32_t bind_bo_offset;
950 uint32_t surf_offset[BRW_MAX_SURFACES];
951
952 /** SAMPLER_STATE count and table offset */
953 uint32_t sampler_count;
954 uint32_t sampler_offset;
955
956 /** Offsets in the batch to sampler default colors (texture border color) */
957 uint32_t sdc_offset[BRW_MAX_TEX_UNIT];
958 };
959
960
961 /**
962 * brw_context is derived from gl_context.
963 */
964 struct brw_context
965 {
966 struct gl_context ctx; /**< base class, must be first field */
967
968 struct
969 {
970 void (*update_texture_surface)(struct gl_context *ctx,
971 unsigned unit,
972 uint32_t *surf_offset,
973 bool for_gather);
974 void (*update_renderbuffer_surface)(struct brw_context *brw,
975 struct gl_renderbuffer *rb,
976 bool layered,
977 unsigned unit);
978 void (*update_null_renderbuffer_surface)(struct brw_context *brw,
979 unsigned unit);
980
981 void (*create_raw_surface)(struct brw_context *brw,
982 drm_intel_bo *bo,
983 uint32_t offset,
984 uint32_t size,
985 uint32_t *out_offset,
986 bool rw);
987 void (*emit_buffer_surface_state)(struct brw_context *brw,
988 uint32_t *out_offset,
989 drm_intel_bo *bo,
990 unsigned buffer_offset,
991 unsigned surface_format,
992 unsigned buffer_size,
993 unsigned pitch,
994 unsigned mocs,
995 bool rw);
996
997 /** Upload a SAMPLER_STATE table. */
998 void (*upload_sampler_state_table)(struct brw_context *brw,
999 struct gl_program *prog,
1000 uint32_t sampler_count,
1001 uint32_t *sst_offset,
1002 uint32_t *sdc_offset);
1003
1004 /**
1005 * Send the appropriate state packets to configure depth, stencil, and
1006 * HiZ buffers (i965+ only)
1007 */
1008 void (*emit_depth_stencil_hiz)(struct brw_context *brw,
1009 struct intel_mipmap_tree *depth_mt,
1010 uint32_t depth_offset,
1011 uint32_t depthbuffer_format,
1012 uint32_t depth_surface_type,
1013 struct intel_mipmap_tree *stencil_mt,
1014 bool hiz, bool separate_stencil,
1015 uint32_t width, uint32_t height,
1016 uint32_t tile_x, uint32_t tile_y);
1017
1018 } vtbl;
1019
1020 dri_bufmgr *bufmgr;
1021
1022 drm_intel_context *hw_ctx;
1023
1024 /**
1025 * Number of resets observed in the system at context creation.
1026 *
1027 * This is tracked in the context so that we can determine that another
1028 * reset has occured.
1029 */
1030 uint32_t reset_count;
1031
1032 struct intel_batchbuffer batch;
1033 bool no_batch_wrap;
1034
1035 struct {
1036 drm_intel_bo *bo;
1037 GLuint offset;
1038 uint32_t buffer_len;
1039 uint32_t buffer_offset;
1040 char buffer[4096];
1041 } upload;
1042
1043 /**
1044 * Set if rendering has occured to the drawable's front buffer.
1045 *
1046 * This is used in the DRI2 case to detect that glFlush should also copy
1047 * the contents of the fake front buffer to the real front buffer.
1048 */
1049 bool front_buffer_dirty;
1050
1051 /**
1052 * Track whether front-buffer rendering is currently enabled
1053 *
1054 * A separate flag is used to track this in order to support MRT more
1055 * easily.
1056 */
1057 bool is_front_buffer_rendering;
1058
1059 /**
1060 * Track whether front-buffer is the current read target.
1061 *
1062 * This is closely associated with is_front_buffer_rendering, but may
1063 * be set separately. The DRI2 fake front buffer must be referenced
1064 * either way.
1065 */
1066 bool is_front_buffer_reading;
1067
1068 /** Framerate throttling: @{ */
1069 drm_intel_bo *first_post_swapbuffers_batch;
1070 bool need_throttle;
1071 /** @} */
1072
1073 GLuint stats_wm;
1074
1075 /**
1076 * drirc options:
1077 * @{
1078 */
1079 bool no_rast;
1080 bool always_flush_batch;
1081 bool always_flush_cache;
1082 bool disable_throttling;
1083 bool precompile;
1084 bool disable_derivative_optimization;
1085
1086 driOptionCache optionCache;
1087 /** @} */
1088
1089 GLuint primitive; /**< Hardware primitive, such as _3DPRIM_TRILIST. */
1090
1091 GLenum reduced_primitive;
1092
1093 /**
1094 * Set if we're either a debug context or the INTEL_DEBUG=perf environment
1095 * variable is set, this is the flag indicating to do expensive work that
1096 * might lead to a perf_debug() call.
1097 */
1098 bool perf_debug;
1099
1100 uint32_t max_gtt_map_object_size;
1101
1102 int gen;
1103 int gt;
1104
1105 bool is_g4x;
1106 bool is_baytrail;
1107 bool is_haswell;
1108
1109 bool has_hiz;
1110 bool has_separate_stencil;
1111 bool must_use_separate_stencil;
1112 bool has_llc;
1113 bool has_swizzling;
1114 bool has_surface_tile_offset;
1115 bool has_compr4;
1116 bool has_negative_rhw_bug;
1117 bool has_pln;
1118
1119 /**
1120 * Some versions of Gen hardware don't do centroid interpolation correctly
1121 * on unlit pixels, causing incorrect values for derivatives near triangle
1122 * edges. Enabling this flag causes the fragment shader to use
1123 * non-centroid interpolation for unlit pixels, at the expense of two extra
1124 * fragment shader instructions.
1125 */
1126 bool needs_unlit_centroid_workaround;
1127
1128 GLuint NewGLState;
1129 struct {
1130 struct brw_state_flags dirty;
1131 } state;
1132
1133 struct brw_cache cache;
1134 struct brw_cached_batch_item *cached_batch_items;
1135
1136 /* Whether a meta-operation is in progress. */
1137 bool meta_in_progress;
1138
1139 struct {
1140 struct brw_vertex_element inputs[VERT_ATTRIB_MAX];
1141 struct brw_vertex_buffer buffers[VERT_ATTRIB_MAX];
1142
1143 struct brw_vertex_element *enabled[VERT_ATTRIB_MAX];
1144 GLuint nr_enabled;
1145 GLuint nr_buffers;
1146
1147 /* Summary of size and varying of active arrays, so we can check
1148 * for changes to this state:
1149 */
1150 unsigned int min_index, max_index;
1151
1152 /* Offset from start of vertex buffer so we can avoid redefining
1153 * the same VB packed over and over again.
1154 */
1155 unsigned int start_vertex_bias;
1156 } vb;
1157
1158 struct {
1159 /**
1160 * Index buffer for this draw_prims call.
1161 *
1162 * Updates are signaled by BRW_NEW_INDICES.
1163 */
1164 const struct _mesa_index_buffer *ib;
1165
1166 /* Updates are signaled by BRW_NEW_INDEX_BUFFER. */
1167 drm_intel_bo *bo;
1168 GLuint type;
1169
1170 /* Offset to index buffer index to use in CMD_3D_PRIM so that we can
1171 * avoid re-uploading the IB packet over and over if we're actually
1172 * referencing the same index buffer.
1173 */
1174 unsigned int start_vertex_offset;
1175 } ib;
1176
1177 /* Active vertex program:
1178 */
1179 const struct gl_vertex_program *vertex_program;
1180 const struct gl_geometry_program *geometry_program;
1181 const struct gl_fragment_program *fragment_program;
1182
1183 /* hw-dependent 3DSTATE_VF_STATISTICS opcode */
1184 uint32_t CMD_VF_STATISTICS;
1185 /* hw-dependent 3DSTATE_PIPELINE_SELECT opcode */
1186 uint32_t CMD_PIPELINE_SELECT;
1187
1188 /**
1189 * Platform specific constants containing the maximum number of threads
1190 * for each pipeline stage.
1191 */
1192 int max_vs_threads;
1193 int max_gs_threads;
1194 int max_wm_threads;
1195
1196 /* BRW_NEW_URB_ALLOCATIONS:
1197 */
1198 struct {
1199 GLuint vsize; /* vertex size plus header in urb registers */
1200 GLuint csize; /* constant buffer size in urb registers */
1201 GLuint sfsize; /* setup data size in urb registers */
1202
1203 bool constrained;
1204
1205 GLuint min_vs_entries; /* Minimum number of VS entries */
1206 GLuint max_vs_entries; /* Maximum number of VS entries */
1207 GLuint max_gs_entries; /* Maximum number of GS entries */
1208
1209 GLuint nr_vs_entries;
1210 GLuint nr_gs_entries;
1211 GLuint nr_clip_entries;
1212 GLuint nr_sf_entries;
1213 GLuint nr_cs_entries;
1214
1215 GLuint vs_start;
1216 GLuint gs_start;
1217 GLuint clip_start;
1218 GLuint sf_start;
1219 GLuint cs_start;
1220 GLuint size; /* Hardware URB size, in KB. */
1221
1222 /* gen6: True if the most recently sent _3DSTATE_URB message allocated
1223 * URB space for the GS.
1224 */
1225 bool gen6_gs_previously_active;
1226 } urb;
1227
1228
1229 /* BRW_NEW_CURBE_OFFSETS:
1230 */
1231 struct {
1232 GLuint wm_start; /**< pos of first wm const in CURBE buffer */
1233 GLuint wm_size; /**< number of float[4] consts, multiple of 16 */
1234 GLuint clip_start;
1235 GLuint clip_size;
1236 GLuint vs_start;
1237 GLuint vs_size;
1238 GLuint total_size;
1239
1240 drm_intel_bo *curbe_bo;
1241 /** Offset within curbe_bo of space for current curbe entry */
1242 GLuint curbe_offset;
1243 /** Offset within curbe_bo of space for next curbe entry */
1244 GLuint curbe_next_offset;
1245
1246 /**
1247 * Copy of the last set of CURBEs uploaded. Frequently we'll end up
1248 * in brw_curbe.c with the same set of constant data to be uploaded,
1249 * so we'd rather not upload new constants in that case (it can cause
1250 * a pipeline bubble since only up to 4 can be pipelined at a time).
1251 */
1252 GLfloat *last_buf;
1253 /**
1254 * Allocation for where to calculate the next set of CURBEs.
1255 * It's a hot enough path that malloc/free of that data matters.
1256 */
1257 GLfloat *next_buf;
1258 GLuint last_bufsz;
1259 } curbe;
1260
1261 /**
1262 * Layout of vertex data exiting the vertex shader.
1263 *
1264 * BRW_NEW_VUE_MAP_VS is flagged when this VUE map changes.
1265 */
1266 struct brw_vue_map vue_map_vs;
1267
1268 /**
1269 * Layout of vertex data exiting the geometry portion of the pipleine.
1270 * This comes from the geometry shader if one exists, otherwise from the
1271 * vertex shader.
1272 *
1273 * BRW_NEW_VUE_MAP_GEOM_OUT is flagged when the VUE map changes.
1274 */
1275 struct brw_vue_map vue_map_geom_out;
1276
1277 /**
1278 * Data structures used by all vec4 program compiles (not specific to any
1279 * particular program).
1280 */
1281 struct {
1282 struct ra_regs *regs;
1283
1284 /**
1285 * Array of the ra classes for the unaligned contiguous register
1286 * block sizes used.
1287 */
1288 int *classes;
1289
1290 /**
1291 * Mapping for register-allocated objects in *regs to the first
1292 * GRF for that object.
1293 */
1294 uint8_t *ra_reg_to_grf;
1295 } vec4;
1296
1297 struct {
1298 struct brw_stage_state base;
1299 struct brw_vs_prog_data *prog_data;
1300 } vs;
1301
1302 struct {
1303 struct brw_stage_state base;
1304 struct brw_gs_prog_data *prog_data;
1305
1306 /**
1307 * True if the 3DSTATE_GS command most recently emitted to the 3D
1308 * pipeline enabled the GS; false otherwise.
1309 */
1310 bool enabled;
1311 } gs;
1312
1313 struct {
1314 struct brw_ff_gs_prog_data *prog_data;
1315
1316 bool prog_active;
1317 /** Offset in the program cache to the CLIP program pre-gen6 */
1318 uint32_t prog_offset;
1319 uint32_t state_offset;
1320
1321 uint32_t bind_bo_offset;
1322 uint32_t surf_offset[BRW_MAX_GEN6_GS_SURFACES];
1323 } ff_gs;
1324
1325 struct {
1326 struct brw_clip_prog_data *prog_data;
1327
1328 /** Offset in the program cache to the CLIP program pre-gen6 */
1329 uint32_t prog_offset;
1330
1331 /* Offset in the batch to the CLIP state on pre-gen6. */
1332 uint32_t state_offset;
1333
1334 /* As of gen6, this is the offset in the batch to the CLIP VP,
1335 * instead of vp_bo.
1336 */
1337 uint32_t vp_offset;
1338 } clip;
1339
1340
1341 struct {
1342 struct brw_sf_prog_data *prog_data;
1343
1344 /** Offset in the program cache to the CLIP program pre-gen6 */
1345 uint32_t prog_offset;
1346 uint32_t state_offset;
1347 uint32_t vp_offset;
1348 } sf;
1349
1350 struct {
1351 struct brw_stage_state base;
1352 struct brw_wm_prog_data *prog_data;
1353
1354 GLuint render_surf;
1355
1356 /**
1357 * Buffer object used in place of multisampled null render targets on
1358 * Gen6. See brw_update_null_renderbuffer_surface().
1359 */
1360 drm_intel_bo *multisampled_null_render_target_bo;
1361
1362 struct {
1363 struct ra_regs *regs;
1364
1365 /**
1366 * Array of the ra classes for the unaligned contiguous register
1367 * block sizes used, indexed by register size.
1368 */
1369 int classes[16];
1370
1371 /**
1372 * Mapping for register-allocated objects in *regs to the first
1373 * GRF for that object.
1374 */
1375 uint8_t *ra_reg_to_grf;
1376
1377 /**
1378 * ra class for the aligned pairs we use for PLN, which doesn't
1379 * appear in *classes.
1380 */
1381 int aligned_pairs_class;
1382 } reg_sets[2];
1383 } wm;
1384
1385
1386 struct {
1387 uint32_t state_offset;
1388 uint32_t blend_state_offset;
1389 uint32_t depth_stencil_state_offset;
1390 uint32_t vp_offset;
1391 } cc;
1392
1393 struct {
1394 struct brw_query_object *obj;
1395 bool begin_emitted;
1396 } query;
1397
1398 struct {
1399 /** A map from pipeline statistics counter IDs to MMIO addresses. */
1400 const int *statistics_registers;
1401
1402 /** The number of active monitors using OA counters. */
1403 unsigned oa_users;
1404
1405 /**
1406 * A buffer object storing OA counter snapshots taken at the start and
1407 * end of each batch (creating "bookends" around the batch).
1408 */
1409 drm_intel_bo *bookend_bo;
1410
1411 /** The number of snapshots written to bookend_bo. */
1412 int bookend_snapshots;
1413
1414 /**
1415 * An array of monitors whose results haven't yet been assembled based on
1416 * the data in buffer objects.
1417 *
1418 * These may be active, or have already ended. However, the results
1419 * have not been requested.
1420 */
1421 struct brw_perf_monitor_object **unresolved;
1422 int unresolved_elements;
1423 int unresolved_array_size;
1424
1425 /**
1426 * Mapping from a uint32_t offset within an OA snapshot to the ID of
1427 * the counter which MI_REPORT_PERF_COUNT stores there.
1428 */
1429 const int *oa_snapshot_layout;
1430
1431 /** Number of 32-bit entries in a hardware counter snapshot. */
1432 int entries_per_oa_snapshot;
1433 } perfmon;
1434
1435 int num_atoms;
1436 const struct brw_tracked_state **atoms;
1437
1438 /* If (INTEL_DEBUG & DEBUG_BATCH) */
1439 struct {
1440 uint32_t offset;
1441 uint32_t size;
1442 enum state_struct_type type;
1443 } *state_batch_list;
1444 int state_batch_count;
1445
1446 uint32_t render_target_format[MESA_FORMAT_COUNT];
1447 bool format_supported_as_render_target[MESA_FORMAT_COUNT];
1448
1449 /* Interpolation modes, one byte per vue slot.
1450 * Used Gen4/5 by the clip|sf|wm stages. Ignored on Gen6+.
1451 */
1452 struct interpolation_mode_map interpolation_mode;
1453
1454 /* PrimitiveRestart */
1455 struct {
1456 bool in_progress;
1457 bool enable_cut_index;
1458 } prim_restart;
1459
1460 /** Computed depth/stencil/hiz state from the current attached
1461 * renderbuffers, valid only during the drawing state upload loop after
1462 * brw_workaround_depthstencil_alignment().
1463 */
1464 struct {
1465 struct intel_mipmap_tree *depth_mt;
1466 struct intel_mipmap_tree *stencil_mt;
1467
1468 /* Inter-tile (page-aligned) byte offsets. */
1469 uint32_t depth_offset, hiz_offset, stencil_offset;
1470 /* Intra-tile x,y offsets for drawing to depth/stencil/hiz */
1471 uint32_t tile_x, tile_y;
1472 } depthstencil;
1473
1474 uint32_t num_instances;
1475 int basevertex;
1476
1477 struct {
1478 drm_intel_bo *bo;
1479 struct gl_shader_program **shader_programs;
1480 struct gl_program **programs;
1481 enum shader_time_shader_type *types;
1482 uint64_t *cumulative;
1483 int num_entries;
1484 int max_entries;
1485 double report_time;
1486 } shader_time;
1487
1488 __DRIcontext *driContext;
1489 struct intel_screen *intelScreen;
1490 };
1491
1492 static inline bool
1493 is_power_of_two(uint32_t value)
1494 {
1495 return (value & (value - 1)) == 0;
1496 }
1497
1498 /*======================================================================
1499 * brw_vtbl.c
1500 */
1501 void brwInitVtbl( struct brw_context *brw );
1502
1503 /* brw_clear.c */
1504 extern void intelInitClearFuncs(struct dd_function_table *functions);
1505
1506 /*======================================================================
1507 * brw_context.c
1508 */
1509 extern const char *const brw_vendor_string;
1510
1511 extern const char *brw_get_renderer_string(unsigned deviceID);
1512
1513 extern void intelFinish(struct gl_context * ctx);
1514
1515 enum {
1516 DRI_CONF_BO_REUSE_DISABLED,
1517 DRI_CONF_BO_REUSE_ALL
1518 };
1519
1520 void intel_update_renderbuffers(__DRIcontext *context,
1521 __DRIdrawable *drawable);
1522 void intel_prepare_render(struct brw_context *brw);
1523
1524 void intel_resolve_for_dri2_flush(struct brw_context *brw,
1525 __DRIdrawable *drawable);
1526
1527 GLboolean brwCreateContext(gl_api api,
1528 const struct gl_config *mesaVis,
1529 __DRIcontext *driContextPriv,
1530 unsigned major_version,
1531 unsigned minor_version,
1532 uint32_t flags,
1533 bool notify_reset,
1534 unsigned *error,
1535 void *sharedContextPrivate);
1536
1537 /*======================================================================
1538 * brw_misc_state.c
1539 */
1540 void brw_get_depthstencil_tile_masks(struct intel_mipmap_tree *depth_mt,
1541 uint32_t depth_level,
1542 uint32_t depth_layer,
1543 struct intel_mipmap_tree *stencil_mt,
1544 uint32_t *out_tile_mask_x,
1545 uint32_t *out_tile_mask_y);
1546 void brw_workaround_depthstencil_alignment(struct brw_context *brw,
1547 GLbitfield clear_mask);
1548
1549 /* brw_object_purgeable.c */
1550 void brw_init_object_purgeable_functions(struct dd_function_table *functions);
1551
1552 /*======================================================================
1553 * brw_queryobj.c
1554 */
1555 void brw_init_common_queryobj_functions(struct dd_function_table *functions);
1556 void gen4_init_queryobj_functions(struct dd_function_table *functions);
1557 void brw_emit_query_begin(struct brw_context *brw);
1558 void brw_emit_query_end(struct brw_context *brw);
1559
1560 /** gen6_queryobj.c */
1561 void gen6_init_queryobj_functions(struct dd_function_table *functions);
1562 void brw_write_timestamp(struct brw_context *brw, drm_intel_bo *bo, int idx);
1563 void brw_store_register_mem64(struct brw_context *brw,
1564 drm_intel_bo *bo, uint32_t reg, int idx);
1565
1566 /*======================================================================
1567 * brw_state_dump.c
1568 */
1569 void brw_debug_batch(struct brw_context *brw);
1570 void brw_annotate_aub(struct brw_context *brw);
1571
1572 /*======================================================================
1573 * brw_tex.c
1574 */
1575 void brw_validate_textures( struct brw_context *brw );
1576
1577
1578 /*======================================================================
1579 * brw_program.c
1580 */
1581 void brwInitFragProgFuncs( struct dd_function_table *functions );
1582
1583 int brw_get_scratch_size(int size);
1584 void brw_get_scratch_bo(struct brw_context *brw,
1585 drm_intel_bo **scratch_bo, int size);
1586 void brw_init_shader_time(struct brw_context *brw);
1587 int brw_get_shader_time_index(struct brw_context *brw,
1588 struct gl_shader_program *shader_prog,
1589 struct gl_program *prog,
1590 enum shader_time_shader_type type);
1591 void brw_collect_and_report_shader_time(struct brw_context *brw);
1592 void brw_destroy_shader_time(struct brw_context *brw);
1593
1594 /* brw_urb.c
1595 */
1596 void brw_upload_urb_fence(struct brw_context *brw);
1597
1598 /* brw_curbe.c
1599 */
1600 void brw_upload_cs_urb_state(struct brw_context *brw);
1601
1602 /* brw_fs_reg_allocate.cpp
1603 */
1604 void brw_fs_alloc_reg_sets(struct brw_context *brw);
1605
1606 /* brw_vec4_reg_allocate.cpp */
1607 void brw_vec4_alloc_reg_set(struct brw_context *brw);
1608
1609 /* brw_disasm.c */
1610 int brw_disasm (FILE *file, struct brw_instruction *inst, int gen);
1611
1612 /* brw_vs.c */
1613 gl_clip_plane *brw_select_clip_planes(struct gl_context *ctx);
1614
1615 /* brw_draw_upload.c */
1616 unsigned brw_get_vertex_surface_type(struct brw_context *brw,
1617 const struct gl_client_array *glarray);
1618 unsigned brw_get_index_type(GLenum type);
1619
1620 /* brw_wm_surface_state.c */
1621 void brw_init_surface_formats(struct brw_context *brw);
1622 void brw_create_constant_surface(struct brw_context *brw,
1623 drm_intel_bo *bo,
1624 uint32_t offset,
1625 uint32_t size,
1626 uint32_t *out_offset,
1627 bool dword_pitch);
1628 void brw_update_buffer_texture_surface(struct gl_context *ctx,
1629 unsigned unit,
1630 uint32_t *surf_offset);
1631 void
1632 brw_update_sol_surface(struct brw_context *brw,
1633 struct gl_buffer_object *buffer_obj,
1634 uint32_t *out_offset, unsigned num_vector_components,
1635 unsigned stride_dwords, unsigned offset_dwords);
1636 void brw_upload_ubo_surfaces(struct brw_context *brw,
1637 struct gl_shader *shader,
1638 struct brw_stage_state *stage_state,
1639 struct brw_stage_prog_data *prog_data);
1640 void brw_upload_abo_surfaces(struct brw_context *brw,
1641 struct gl_shader_program *prog,
1642 struct brw_stage_state *stage_state,
1643 struct brw_stage_prog_data *prog_data);
1644
1645 /* brw_surface_formats.c */
1646 bool brw_is_hiz_depth_format(struct brw_context *ctx, gl_format format);
1647 bool brw_render_target_supported(struct brw_context *brw,
1648 struct gl_renderbuffer *rb);
1649
1650 /* brw_performance_monitor.c */
1651 void brw_init_performance_monitors(struct brw_context *brw);
1652 void brw_dump_perf_monitors(struct brw_context *brw);
1653 void brw_perf_monitor_new_batch(struct brw_context *brw);
1654 void brw_perf_monitor_finish_batch(struct brw_context *brw);
1655
1656 /* intel_extensions.c */
1657 extern void intelInitExtensions(struct gl_context *ctx);
1658
1659 /* intel_state.c */
1660 extern int intel_translate_shadow_compare_func(GLenum func);
1661 extern int intel_translate_compare_func(GLenum func);
1662 extern int intel_translate_stencil_op(GLenum op);
1663 extern int intel_translate_logic_op(GLenum opcode);
1664
1665 /* intel_syncobj.c */
1666 void intel_init_syncobj_functions(struct dd_function_table *functions);
1667
1668 /* gen6_sol.c */
1669 struct gl_transform_feedback_object *
1670 brw_new_transform_feedback(struct gl_context *ctx, GLuint name);
1671 void
1672 brw_delete_transform_feedback(struct gl_context *ctx,
1673 struct gl_transform_feedback_object *obj);
1674 void
1675 brw_begin_transform_feedback(struct gl_context *ctx, GLenum mode,
1676 struct gl_transform_feedback_object *obj);
1677 void
1678 brw_end_transform_feedback(struct gl_context *ctx,
1679 struct gl_transform_feedback_object *obj);
1680 GLsizei
1681 brw_get_transform_feedback_vertex_count(struct gl_context *ctx,
1682 struct gl_transform_feedback_object *obj,
1683 GLuint stream);
1684
1685 /* gen7_sol_state.c */
1686 void
1687 gen7_begin_transform_feedback(struct gl_context *ctx, GLenum mode,
1688 struct gl_transform_feedback_object *obj);
1689 void
1690 gen7_end_transform_feedback(struct gl_context *ctx,
1691 struct gl_transform_feedback_object *obj);
1692 void
1693 gen7_pause_transform_feedback(struct gl_context *ctx,
1694 struct gl_transform_feedback_object *obj);
1695 void
1696 gen7_resume_transform_feedback(struct gl_context *ctx,
1697 struct gl_transform_feedback_object *obj);
1698
1699 /* brw_blorp_blit.cpp */
1700 GLbitfield
1701 brw_blorp_framebuffer(struct brw_context *brw,
1702 GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1,
1703 GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1,
1704 GLbitfield mask, GLenum filter);
1705
1706 bool
1707 brw_blorp_copytexsubimage(struct brw_context *brw,
1708 struct gl_renderbuffer *src_rb,
1709 struct gl_texture_image *dst_image,
1710 int slice,
1711 int srcX0, int srcY0,
1712 int dstX0, int dstY0,
1713 int width, int height);
1714
1715 /* gen6_multisample_state.c */
1716 unsigned
1717 gen6_determine_sample_mask(struct brw_context *brw);
1718
1719 void
1720 gen6_emit_3dstate_multisample(struct brw_context *brw,
1721 unsigned num_samples);
1722 void
1723 gen6_emit_3dstate_sample_mask(struct brw_context *brw, unsigned mask);
1724 void
1725 gen6_get_sample_position(struct gl_context *ctx,
1726 struct gl_framebuffer *fb,
1727 GLuint index,
1728 GLfloat *result);
1729
1730 /* gen7_urb.c */
1731 void
1732 gen7_emit_push_constant_state(struct brw_context *brw, unsigned vs_size,
1733 unsigned gs_size, unsigned fs_size);
1734
1735 void
1736 gen7_emit_urb_state(struct brw_context *brw,
1737 unsigned nr_vs_entries, unsigned vs_size,
1738 unsigned vs_start, unsigned nr_gs_entries,
1739 unsigned gs_size, unsigned gs_start);
1740
1741
1742 /* brw_reset.c */
1743 extern GLenum
1744 brw_get_graphics_reset_status(struct gl_context *ctx);
1745
1746 /*======================================================================
1747 * Inline conversion functions. These are better-typed than the
1748 * macros used previously:
1749 */
1750 static inline struct brw_context *
1751 brw_context( struct gl_context *ctx )
1752 {
1753 return (struct brw_context *)ctx;
1754 }
1755
1756 static inline struct brw_vertex_program *
1757 brw_vertex_program(struct gl_vertex_program *p)
1758 {
1759 return (struct brw_vertex_program *) p;
1760 }
1761
1762 static inline const struct brw_vertex_program *
1763 brw_vertex_program_const(const struct gl_vertex_program *p)
1764 {
1765 return (const struct brw_vertex_program *) p;
1766 }
1767
1768 static inline struct brw_geometry_program *
1769 brw_geometry_program(struct gl_geometry_program *p)
1770 {
1771 return (struct brw_geometry_program *) p;
1772 }
1773
1774 static inline struct brw_fragment_program *
1775 brw_fragment_program(struct gl_fragment_program *p)
1776 {
1777 return (struct brw_fragment_program *) p;
1778 }
1779
1780 static inline const struct brw_fragment_program *
1781 brw_fragment_program_const(const struct gl_fragment_program *p)
1782 {
1783 return (const struct brw_fragment_program *) p;
1784 }
1785
1786 /**
1787 * Pre-gen6, the register file of the EUs was shared between threads,
1788 * and each thread used some subset allocated on a 16-register block
1789 * granularity. The unit states wanted these block counts.
1790 */
1791 static inline int
1792 brw_register_blocks(int reg_count)
1793 {
1794 return ALIGN(reg_count, 16) / 16 - 1;
1795 }
1796
1797 static inline uint32_t
1798 brw_program_reloc(struct brw_context *brw, uint32_t state_offset,
1799 uint32_t prog_offset)
1800 {
1801 if (brw->gen >= 5) {
1802 /* Using state base address. */
1803 return prog_offset;
1804 }
1805
1806 drm_intel_bo_emit_reloc(brw->batch.bo,
1807 state_offset,
1808 brw->cache.bo,
1809 prog_offset,
1810 I915_GEM_DOMAIN_INSTRUCTION, 0);
1811
1812 return brw->cache.bo->offset + prog_offset;
1813 }
1814
1815 bool brw_do_cubemap_normalize(struct exec_list *instructions);
1816 bool brw_lower_texture_gradients(struct brw_context *brw,
1817 struct exec_list *instructions);
1818 bool brw_do_lower_offset_arrays(struct exec_list *instructions);
1819 bool brw_do_lower_unnormalized_offset(struct exec_list *instructions);
1820
1821 struct opcode_desc {
1822 char *name;
1823 int nsrc;
1824 int ndst;
1825 };
1826
1827 extern const struct opcode_desc opcode_descs[128];
1828 extern const char * const conditional_modifier[16];
1829 extern const char * const reg_encoding[8];
1830
1831 void
1832 brw_emit_depthbuffer(struct brw_context *brw);
1833
1834 void
1835 brw_emit_depth_stencil_hiz(struct brw_context *brw,
1836 struct intel_mipmap_tree *depth_mt,
1837 uint32_t depth_offset, uint32_t depthbuffer_format,
1838 uint32_t depth_surface_type,
1839 struct intel_mipmap_tree *stencil_mt,
1840 bool hiz, bool separate_stencil,
1841 uint32_t width, uint32_t height,
1842 uint32_t tile_x, uint32_t tile_y);
1843
1844 void
1845 gen7_emit_depth_stencil_hiz(struct brw_context *brw,
1846 struct intel_mipmap_tree *depth_mt,
1847 uint32_t depth_offset, uint32_t depthbuffer_format,
1848 uint32_t depth_surface_type,
1849 struct intel_mipmap_tree *stencil_mt,
1850 bool hiz, bool separate_stencil,
1851 uint32_t width, uint32_t height,
1852 uint32_t tile_x, uint32_t tile_y);
1853
1854 extern const GLuint prim_to_hw_prim[GL_TRIANGLE_STRIP_ADJACENCY+1];
1855
1856 void
1857 brw_setup_vec4_key_clip_info(struct brw_context *brw,
1858 struct brw_vec4_prog_key *key,
1859 bool program_uses_clip_distance);
1860
1861 void
1862 gen6_upload_vec4_push_constants(struct brw_context *brw,
1863 const struct gl_program *prog,
1864 const struct brw_vec4_prog_data *prog_data,
1865 struct brw_stage_state *stage_state,
1866 enum state_struct_type type);
1867
1868 /* ================================================================
1869 * From linux kernel i386 header files, copes with odd sizes better
1870 * than COPY_DWORDS would:
1871 * XXX Put this in src/mesa/main/imports.h ???
1872 */
1873 #if defined(i386) || defined(__i386__)
1874 static inline void * __memcpy(void * to, const void * from, size_t n)
1875 {
1876 int d0, d1, d2;
1877 __asm__ __volatile__(
1878 "rep ; movsl\n\t"
1879 "testb $2,%b4\n\t"
1880 "je 1f\n\t"
1881 "movsw\n"
1882 "1:\ttestb $1,%b4\n\t"
1883 "je 2f\n\t"
1884 "movsb\n"
1885 "2:"
1886 : "=&c" (d0), "=&D" (d1), "=&S" (d2)
1887 :"0" (n/4), "q" (n),"1" ((long) to),"2" ((long) from)
1888 : "memory");
1889 return (to);
1890 }
1891 #else
1892 #define __memcpy(a,b,c) memcpy(a,b,c)
1893 #endif
1894
1895 #ifdef __cplusplus
1896 }
1897 #endif
1898
1899 #endif