c295d91223c13fce633f0a22186f30295fedf927
[mesa.git] / src / mesa / drivers / dri / i965 / brw_draw.c
1 /*
2 * Copyright 2003 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include <sys/errno.h>
27
28 #include "main/context.h"
29 #include "main/condrender.h"
30 #include "main/samplerobj.h"
31 #include "main/state.h"
32 #include "main/enums.h"
33 #include "main/macros.h"
34 #include "main/transformfeedback.h"
35 #include "main/framebuffer.h"
36 #include "tnl/tnl.h"
37 #include "vbo/vbo_context.h"
38 #include "swrast/swrast.h"
39 #include "swrast_setup/swrast_setup.h"
40 #include "drivers/common/meta.h"
41
42 #include "brw_blorp.h"
43 #include "brw_draw.h"
44 #include "brw_defines.h"
45 #include "brw_context.h"
46 #include "brw_state.h"
47 #include "brw_vs.h"
48
49 #include "intel_batchbuffer.h"
50 #include "intel_buffers.h"
51 #include "intel_fbo.h"
52 #include "intel_mipmap_tree.h"
53 #include "intel_buffer_objects.h"
54
55 #define FILE_DEBUG_FLAG DEBUG_PRIMS
56
57 static const GLuint prim_to_hw_prim[GL_TRIANGLE_STRIP_ADJACENCY+1] = {
58 [GL_POINTS] =_3DPRIM_POINTLIST,
59 [GL_LINES] = _3DPRIM_LINELIST,
60 [GL_LINE_LOOP] = _3DPRIM_LINELOOP,
61 [GL_LINE_STRIP] = _3DPRIM_LINESTRIP,
62 [GL_TRIANGLES] = _3DPRIM_TRILIST,
63 [GL_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
64 [GL_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
65 [GL_QUADS] = _3DPRIM_QUADLIST,
66 [GL_QUAD_STRIP] = _3DPRIM_QUADSTRIP,
67 [GL_POLYGON] = _3DPRIM_POLYGON,
68 [GL_LINES_ADJACENCY] = _3DPRIM_LINELIST_ADJ,
69 [GL_LINE_STRIP_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ,
70 [GL_TRIANGLES_ADJACENCY] = _3DPRIM_TRILIST_ADJ,
71 [GL_TRIANGLE_STRIP_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
72 };
73
74
75 static const GLenum reduced_prim[GL_POLYGON+1] = {
76 [GL_POINTS] = GL_POINTS,
77 [GL_LINES] = GL_LINES,
78 [GL_LINE_LOOP] = GL_LINES,
79 [GL_LINE_STRIP] = GL_LINES,
80 [GL_TRIANGLES] = GL_TRIANGLES,
81 [GL_TRIANGLE_STRIP] = GL_TRIANGLES,
82 [GL_TRIANGLE_FAN] = GL_TRIANGLES,
83 [GL_QUADS] = GL_TRIANGLES,
84 [GL_QUAD_STRIP] = GL_TRIANGLES,
85 [GL_POLYGON] = GL_TRIANGLES
86 };
87
88 uint32_t
89 get_hw_prim_for_gl_prim(int mode)
90 {
91 if (mode >= BRW_PRIM_OFFSET)
92 return mode - BRW_PRIM_OFFSET;
93 else {
94 assert(mode < ARRAY_SIZE(prim_to_hw_prim));
95 return prim_to_hw_prim[mode];
96 }
97 }
98
99
100 /* When the primitive changes, set a state bit and re-validate. Not
101 * the nicest and would rather deal with this by having all the
102 * programs be immune to the active primitive (ie. cope with all
103 * possibilities). That may not be realistic however.
104 */
105 static void
106 brw_set_prim(struct brw_context *brw, const struct _mesa_prim *prim)
107 {
108 struct gl_context *ctx = &brw->ctx;
109 uint32_t hw_prim = get_hw_prim_for_gl_prim(prim->mode);
110
111 DBG("PRIM: %s\n", _mesa_enum_to_string(prim->mode));
112
113 /* Slight optimization to avoid the GS program when not needed:
114 */
115 if (prim->mode == GL_QUAD_STRIP &&
116 ctx->Light.ShadeModel != GL_FLAT &&
117 ctx->Polygon.FrontMode == GL_FILL &&
118 ctx->Polygon.BackMode == GL_FILL)
119 hw_prim = _3DPRIM_TRISTRIP;
120
121 if (prim->mode == GL_QUADS && prim->count == 4 &&
122 ctx->Light.ShadeModel != GL_FLAT &&
123 ctx->Polygon.FrontMode == GL_FILL &&
124 ctx->Polygon.BackMode == GL_FILL) {
125 hw_prim = _3DPRIM_TRIFAN;
126 }
127
128 if (hw_prim != brw->primitive) {
129 brw->primitive = hw_prim;
130 brw->ctx.NewDriverState |= BRW_NEW_PRIMITIVE;
131
132 if (reduced_prim[prim->mode] != brw->reduced_primitive) {
133 brw->reduced_primitive = reduced_prim[prim->mode];
134 brw->ctx.NewDriverState |= BRW_NEW_REDUCED_PRIMITIVE;
135 }
136 }
137 }
138
139 static void
140 gen6_set_prim(struct brw_context *brw, const struct _mesa_prim *prim)
141 {
142 const struct gl_context *ctx = &brw->ctx;
143 uint32_t hw_prim;
144
145 DBG("PRIM: %s\n", _mesa_enum_to_string(prim->mode));
146
147 if (prim->mode == GL_PATCHES) {
148 hw_prim = _3DPRIM_PATCHLIST(ctx->TessCtrlProgram.patch_vertices);
149 } else {
150 hw_prim = get_hw_prim_for_gl_prim(prim->mode);
151 }
152
153 if (hw_prim != brw->primitive) {
154 brw->primitive = hw_prim;
155 brw->ctx.NewDriverState |= BRW_NEW_PRIMITIVE;
156 if (prim->mode == GL_PATCHES)
157 brw->ctx.NewDriverState |= BRW_NEW_PATCH_PRIMITIVE;
158 }
159 }
160
161
162 /**
163 * The hardware is capable of removing dangling vertices on its own; however,
164 * prior to Gen6, we sometimes convert quads into trifans (and quad strips
165 * into tristrips), since pre-Gen6 hardware requires a GS to render quads.
166 * This function manually trims dangling vertices from a draw call involving
167 * quads so that those dangling vertices won't get drawn when we convert to
168 * trifans/tristrips.
169 */
170 static GLuint
171 trim(GLenum prim, GLuint length)
172 {
173 if (prim == GL_QUAD_STRIP)
174 return length > 3 ? (length - length % 2) : 0;
175 else if (prim == GL_QUADS)
176 return length - length % 4;
177 else
178 return length;
179 }
180
181
182 static void
183 brw_emit_prim(struct brw_context *brw,
184 const struct _mesa_prim *prim,
185 uint32_t hw_prim)
186 {
187 int verts_per_instance;
188 int vertex_access_type;
189 int indirect_flag;
190
191 DBG("PRIM: %s %d %d\n", _mesa_enum_to_string(prim->mode),
192 prim->start, prim->count);
193
194 int start_vertex_location = prim->start;
195 int base_vertex_location = prim->basevertex;
196
197 if (prim->indexed) {
198 vertex_access_type = brw->gen >= 7 ?
199 GEN7_3DPRIM_VERTEXBUFFER_ACCESS_RANDOM :
200 GEN4_3DPRIM_VERTEXBUFFER_ACCESS_RANDOM;
201 start_vertex_location += brw->ib.start_vertex_offset;
202 base_vertex_location += brw->vb.start_vertex_bias;
203 } else {
204 vertex_access_type = brw->gen >= 7 ?
205 GEN7_3DPRIM_VERTEXBUFFER_ACCESS_SEQUENTIAL :
206 GEN4_3DPRIM_VERTEXBUFFER_ACCESS_SEQUENTIAL;
207 start_vertex_location += brw->vb.start_vertex_bias;
208 }
209
210 /* We only need to trim the primitive count on pre-Gen6. */
211 if (brw->gen < 6)
212 verts_per_instance = trim(prim->mode, prim->count);
213 else
214 verts_per_instance = prim->count;
215
216 /* If nothing to emit, just return. */
217 if (verts_per_instance == 0 && !prim->is_indirect)
218 return;
219
220 /* If we're set to always flush, do it before and after the primitive emit.
221 * We want to catch both missed flushes that hurt instruction/state cache
222 * and missed flushes of the render cache as it heads to other parts of
223 * the besides the draw code.
224 */
225 if (brw->always_flush_cache)
226 brw_emit_mi_flush(brw);
227
228 /* If indirect, emit a bunch of loads from the indirect BO. */
229 if (prim->is_indirect) {
230 struct gl_buffer_object *indirect_buffer = brw->ctx.DrawIndirectBuffer;
231 drm_intel_bo *bo = intel_bufferobj_buffer(brw,
232 intel_buffer_object(indirect_buffer),
233 prim->indirect_offset, 5 * sizeof(GLuint));
234
235 indirect_flag = GEN7_3DPRIM_INDIRECT_PARAMETER_ENABLE;
236
237 brw_load_register_mem(brw, GEN7_3DPRIM_VERTEX_COUNT, bo,
238 I915_GEM_DOMAIN_VERTEX, 0,
239 prim->indirect_offset + 0);
240 brw_load_register_mem(brw, GEN7_3DPRIM_INSTANCE_COUNT, bo,
241 I915_GEM_DOMAIN_VERTEX, 0,
242 prim->indirect_offset + 4);
243
244 brw_load_register_mem(brw, GEN7_3DPRIM_START_VERTEX, bo,
245 I915_GEM_DOMAIN_VERTEX, 0,
246 prim->indirect_offset + 8);
247 if (prim->indexed) {
248 brw_load_register_mem(brw, GEN7_3DPRIM_BASE_VERTEX, bo,
249 I915_GEM_DOMAIN_VERTEX, 0,
250 prim->indirect_offset + 12);
251 brw_load_register_mem(brw, GEN7_3DPRIM_START_INSTANCE, bo,
252 I915_GEM_DOMAIN_VERTEX, 0,
253 prim->indirect_offset + 16);
254 } else {
255 brw_load_register_mem(brw, GEN7_3DPRIM_START_INSTANCE, bo,
256 I915_GEM_DOMAIN_VERTEX, 0,
257 prim->indirect_offset + 12);
258 BEGIN_BATCH(3);
259 OUT_BATCH(MI_LOAD_REGISTER_IMM | (3 - 2));
260 OUT_BATCH(GEN7_3DPRIM_BASE_VERTEX);
261 OUT_BATCH(0);
262 ADVANCE_BATCH();
263 }
264 } else {
265 indirect_flag = 0;
266 }
267
268 BEGIN_BATCH(brw->gen >= 7 ? 7 : 6);
269
270 if (brw->gen >= 7) {
271 const int predicate_enable =
272 (brw->predicate.state == BRW_PREDICATE_STATE_USE_BIT)
273 ? GEN7_3DPRIM_PREDICATE_ENABLE : 0;
274
275 OUT_BATCH(CMD_3D_PRIM << 16 | (7 - 2) | indirect_flag | predicate_enable);
276 OUT_BATCH(hw_prim | vertex_access_type);
277 } else {
278 OUT_BATCH(CMD_3D_PRIM << 16 | (6 - 2) |
279 hw_prim << GEN4_3DPRIM_TOPOLOGY_TYPE_SHIFT |
280 vertex_access_type);
281 }
282 OUT_BATCH(verts_per_instance);
283 OUT_BATCH(start_vertex_location);
284 OUT_BATCH(prim->num_instances);
285 OUT_BATCH(prim->base_instance);
286 OUT_BATCH(base_vertex_location);
287 ADVANCE_BATCH();
288
289 if (brw->always_flush_cache)
290 brw_emit_mi_flush(brw);
291 }
292
293
294 static void
295 brw_merge_inputs(struct brw_context *brw,
296 const struct gl_client_array *arrays[])
297 {
298 const struct gl_context *ctx = &brw->ctx;
299 GLuint i;
300
301 for (i = 0; i < brw->vb.nr_buffers; i++) {
302 drm_intel_bo_unreference(brw->vb.buffers[i].bo);
303 brw->vb.buffers[i].bo = NULL;
304 }
305 brw->vb.nr_buffers = 0;
306
307 for (i = 0; i < VERT_ATTRIB_MAX; i++) {
308 brw->vb.inputs[i].buffer = -1;
309 brw->vb.inputs[i].glarray = arrays[i];
310 }
311
312 if (brw->gen < 8 && !brw->is_haswell) {
313 struct gl_program *vp = &ctx->VertexProgram._Current->Base;
314 /* Prior to Haswell, the hardware can't natively support GL_FIXED or
315 * 2_10_10_10_REV vertex formats. Set appropriate workaround flags.
316 */
317 for (i = 0; i < VERT_ATTRIB_MAX; i++) {
318 if (!(vp->InputsRead & BITFIELD64_BIT(i)))
319 continue;
320
321 uint8_t wa_flags = 0;
322
323 switch (brw->vb.inputs[i].glarray->Type) {
324
325 case GL_FIXED:
326 wa_flags = brw->vb.inputs[i].glarray->Size;
327 break;
328
329 case GL_INT_2_10_10_10_REV:
330 wa_flags |= BRW_ATTRIB_WA_SIGN;
331 /* fallthough */
332
333 case GL_UNSIGNED_INT_2_10_10_10_REV:
334 if (brw->vb.inputs[i].glarray->Format == GL_BGRA)
335 wa_flags |= BRW_ATTRIB_WA_BGRA;
336
337 if (brw->vb.inputs[i].glarray->Normalized)
338 wa_flags |= BRW_ATTRIB_WA_NORMALIZE;
339 else if (!brw->vb.inputs[i].glarray->Integer)
340 wa_flags |= BRW_ATTRIB_WA_SCALE;
341
342 break;
343 }
344
345 if (brw->vb.attrib_wa_flags[i] != wa_flags) {
346 brw->vb.attrib_wa_flags[i] = wa_flags;
347 brw->ctx.NewDriverState |= BRW_NEW_VS_ATTRIB_WORKAROUNDS;
348 }
349 }
350 }
351 }
352
353 /**
354 * \brief Call this after drawing to mark which buffers need resolving
355 *
356 * If the depth buffer was written to and if it has an accompanying HiZ
357 * buffer, then mark that it needs a depth resolve.
358 *
359 * If the color buffer is a multisample window system buffer, then
360 * mark that it needs a downsample.
361 *
362 * Also mark any render targets which will be textured as needing a render
363 * cache flush.
364 */
365 static void
366 brw_postdraw_set_buffers_need_resolve(struct brw_context *brw)
367 {
368 struct gl_context *ctx = &brw->ctx;
369 struct gl_framebuffer *fb = ctx->DrawBuffer;
370
371 struct intel_renderbuffer *front_irb = NULL;
372 struct intel_renderbuffer *back_irb = intel_get_renderbuffer(fb, BUFFER_BACK_LEFT);
373 struct intel_renderbuffer *depth_irb = intel_get_renderbuffer(fb, BUFFER_DEPTH);
374 struct intel_renderbuffer *stencil_irb = intel_get_renderbuffer(fb, BUFFER_STENCIL);
375 struct gl_renderbuffer_attachment *depth_att = &fb->Attachment[BUFFER_DEPTH];
376
377 if (_mesa_is_front_buffer_drawing(fb))
378 front_irb = intel_get_renderbuffer(fb, BUFFER_FRONT_LEFT);
379
380 if (front_irb)
381 front_irb->need_downsample = true;
382 if (back_irb)
383 back_irb->need_downsample = true;
384 if (depth_irb && ctx->Depth.Mask) {
385 intel_renderbuffer_att_set_needs_depth_resolve(depth_att);
386 brw_render_cache_set_add_bo(brw, depth_irb->mt->bo);
387 }
388
389 if (ctx->Extensions.ARB_stencil_texturing &&
390 stencil_irb && ctx->Stencil._WriteEnabled) {
391 brw_render_cache_set_add_bo(brw, stencil_irb->mt->bo);
392 }
393
394 for (unsigned i = 0; i < fb->_NumColorDrawBuffers; i++) {
395 struct intel_renderbuffer *irb =
396 intel_renderbuffer(fb->_ColorDrawBuffers[i]);
397
398 if (irb)
399 brw_render_cache_set_add_bo(brw, irb->mt->bo);
400 }
401 }
402
403 /* May fail if out of video memory for texture or vbo upload, or on
404 * fallback conditions.
405 */
406 static void
407 brw_try_draw_prims(struct gl_context *ctx,
408 const struct gl_client_array *arrays[],
409 const struct _mesa_prim *prims,
410 GLuint nr_prims,
411 const struct _mesa_index_buffer *ib,
412 GLuint min_index,
413 GLuint max_index,
414 struct gl_buffer_object *indirect)
415 {
416 struct brw_context *brw = brw_context(ctx);
417 GLuint i;
418 bool fail_next = false;
419
420 if (ctx->NewState)
421 _mesa_update_state(ctx);
422
423 /* We have to validate the textures *before* checking for fallbacks;
424 * otherwise, the software fallback won't be able to rely on the
425 * texture state, the firstLevel and lastLevel fields won't be
426 * set in the intel texture object (they'll both be 0), and the
427 * software fallback will segfault if it attempts to access any
428 * texture level other than level 0.
429 */
430 brw_validate_textures(brw);
431
432 /* Find the highest sampler unit used by each shader program. A bit-count
433 * won't work since ARB programs use the texture unit number as the sampler
434 * index.
435 */
436 brw->wm.base.sampler_count =
437 _mesa_fls(ctx->FragmentProgram._Current->Base.SamplersUsed);
438 brw->gs.base.sampler_count = ctx->GeometryProgram._Current ?
439 _mesa_fls(ctx->GeometryProgram._Current->Base.SamplersUsed) : 0;
440 brw->tes.base.sampler_count = ctx->TessEvalProgram._Current ?
441 _mesa_fls(ctx->TessEvalProgram._Current->Base.SamplersUsed) : 0;
442 brw->tcs.base.sampler_count = ctx->TessCtrlProgram._Current ?
443 _mesa_fls(ctx->TessCtrlProgram._Current->Base.SamplersUsed) : 0;
444 brw->vs.base.sampler_count =
445 _mesa_fls(ctx->VertexProgram._Current->Base.SamplersUsed);
446
447 intel_prepare_render(brw);
448
449 /* This workaround has to happen outside of brw_upload_render_state()
450 * because it may flush the batchbuffer for a blit, affecting the state
451 * flags.
452 */
453 brw_workaround_depthstencil_alignment(brw, 0);
454
455 /* Bind all inputs, derive varying and size information:
456 */
457 brw_merge_inputs(brw, arrays);
458
459 brw->ib.ib = ib;
460 brw->ctx.NewDriverState |= BRW_NEW_INDICES;
461
462 brw->vb.min_index = min_index;
463 brw->vb.max_index = max_index;
464 brw->ctx.NewDriverState |= BRW_NEW_VERTICES;
465
466 for (i = 0; i < nr_prims; i++) {
467 int estimated_max_prim_size;
468 const int sampler_state_size = 16;
469
470 estimated_max_prim_size = 512; /* batchbuffer commands */
471 estimated_max_prim_size += BRW_MAX_TEX_UNIT *
472 (sampler_state_size + sizeof(struct gen5_sampler_default_color));
473 estimated_max_prim_size += 1024; /* gen6 VS push constants */
474 estimated_max_prim_size += 1024; /* gen6 WM push constants */
475 estimated_max_prim_size += 512; /* misc. pad */
476
477 /* Flush the batch if it's approaching full, so that we don't wrap while
478 * we've got validated state that needs to be in the same batch as the
479 * primitives.
480 */
481 intel_batchbuffer_require_space(brw, estimated_max_prim_size, RENDER_RING);
482 intel_batchbuffer_save_state(brw);
483
484 if (brw->num_instances != prims[i].num_instances ||
485 brw->basevertex != prims[i].basevertex) {
486 brw->num_instances = prims[i].num_instances;
487 brw->basevertex = prims[i].basevertex;
488 if (i > 0) { /* For i == 0 we just did this before the loop */
489 brw->ctx.NewDriverState |= BRW_NEW_VERTICES;
490 brw_merge_inputs(brw, arrays);
491 }
492 }
493
494 /* Determine if we need to flag BRW_NEW_VERTICES for updating the
495 * gl_BaseVertexARB or gl_BaseInstanceARB values. For indirect draw, we
496 * always flag if the shader uses one of the values. For direct draws,
497 * we only flag if the values change.
498 */
499 const int new_basevertex =
500 prims[i].indexed ? prims[i].basevertex : prims[i].start;
501 const int new_baseinstance = prims[i].base_instance;
502 if (i > 0) {
503 const bool uses_draw_parameters =
504 brw->vs.prog_data->uses_basevertex ||
505 brw->vs.prog_data->uses_baseinstance;
506
507 if ((uses_draw_parameters && prims[i].is_indirect) ||
508 (brw->vs.prog_data->uses_basevertex &&
509 brw->draw.params.gl_basevertex != new_basevertex) ||
510 (brw->vs.prog_data->uses_baseinstance &&
511 brw->draw.params.gl_baseinstance != new_baseinstance))
512 brw->ctx.NewDriverState |= BRW_NEW_VERTICES;
513 }
514
515 brw->draw.params.gl_basevertex = new_basevertex;
516 brw->draw.params.gl_baseinstance = new_baseinstance;
517 drm_intel_bo_unreference(brw->draw.draw_params_bo);
518
519 if (prims[i].is_indirect) {
520 /* Point draw_params_bo at the indirect buffer. */
521 brw->draw.draw_params_bo =
522 intel_buffer_object(ctx->DrawIndirectBuffer)->buffer;
523 drm_intel_bo_reference(brw->draw.draw_params_bo);
524 brw->draw.draw_params_offset =
525 prims[i].indirect_offset + (prims[i].indexed ? 12 : 8);
526 } else {
527 /* Set draw_params_bo to NULL so brw_prepare_vertices knows it
528 * has to upload gl_BaseVertex and such if they're needed.
529 */
530 brw->draw.draw_params_bo = NULL;
531 brw->draw.draw_params_offset = 0;
532 }
533
534 /* gl_DrawID always needs its own vertex buffer since it's not part of
535 * the indirect parameter buffer. If the program uses gl_DrawID we need
536 * to flag BRW_NEW_VERTICES. For the first iteration, we don't have
537 * valid brw->vs.prog_data, but we always flag BRW_NEW_VERTICES before
538 * the loop.
539 */
540 brw->draw.gl_drawid = prims[i].draw_id;
541 drm_intel_bo_unreference(brw->draw.draw_id_bo);
542 brw->draw.draw_id_bo = NULL;
543 if (i > 0 && brw->vs.prog_data->uses_drawid)
544 brw->ctx.NewDriverState |= BRW_NEW_VERTICES;
545
546 if (brw->gen < 6)
547 brw_set_prim(brw, &prims[i]);
548 else
549 gen6_set_prim(brw, &prims[i]);
550
551 retry:
552
553 /* Note that before the loop, brw->ctx.NewDriverState was set to != 0, and
554 * that the state updated in the loop outside of this block is that in
555 * *_set_prim or intel_batchbuffer_flush(), which only impacts
556 * brw->ctx.NewDriverState.
557 */
558 if (brw->ctx.NewDriverState) {
559 brw->no_batch_wrap = true;
560 brw_upload_render_state(brw);
561 }
562
563 brw_emit_prim(brw, &prims[i], brw->primitive);
564
565 brw->no_batch_wrap = false;
566
567 if (dri_bufmgr_check_aperture_space(&brw->batch.bo, 1)) {
568 if (!fail_next) {
569 intel_batchbuffer_reset_to_saved(brw);
570 intel_batchbuffer_flush(brw);
571 fail_next = true;
572 goto retry;
573 } else {
574 int ret = intel_batchbuffer_flush(brw);
575 WARN_ONCE(ret == -ENOSPC,
576 "i965: Single primitive emit exceeded "
577 "available aperture space\n");
578 }
579 }
580
581 /* Now that we know we haven't run out of aperture space, we can safely
582 * reset the dirty bits.
583 */
584 if (brw->ctx.NewDriverState)
585 brw_render_state_finished(brw);
586 }
587
588 if (brw->always_flush_batch)
589 intel_batchbuffer_flush(brw);
590
591 brw_state_cache_check_size(brw);
592 brw_postdraw_set_buffers_need_resolve(brw);
593
594 return;
595 }
596
597 void
598 brw_draw_prims(struct gl_context *ctx,
599 const struct _mesa_prim *prims,
600 GLuint nr_prims,
601 const struct _mesa_index_buffer *ib,
602 GLboolean index_bounds_valid,
603 GLuint min_index,
604 GLuint max_index,
605 struct gl_transform_feedback_object *unused_tfb_object,
606 unsigned stream,
607 struct gl_buffer_object *indirect)
608 {
609 struct brw_context *brw = brw_context(ctx);
610 const struct gl_client_array **arrays = ctx->Array._DrawArrays;
611
612 assert(unused_tfb_object == NULL);
613
614 if (!brw_check_conditional_render(brw))
615 return;
616
617 /* Handle primitive restart if needed */
618 if (brw_handle_primitive_restart(ctx, prims, nr_prims, ib, indirect)) {
619 /* The draw was handled, so we can exit now */
620 return;
621 }
622
623 /* Do GL_SELECT and GL_FEEDBACK rendering using swrast, even though it
624 * won't support all the extensions we support.
625 */
626 if (ctx->RenderMode != GL_RENDER) {
627 perf_debug("%s render mode not supported in hardware\n",
628 _mesa_enum_to_string(ctx->RenderMode));
629 _swsetup_Wakeup(ctx);
630 _tnl_wakeup(ctx);
631 _tnl_draw_prims(ctx, prims, nr_prims, ib,
632 index_bounds_valid, min_index, max_index, NULL, 0, NULL);
633 return;
634 }
635
636 /* If we're going to have to upload any of the user's vertex arrays, then
637 * get the minimum and maximum of their index buffer so we know what range
638 * to upload.
639 */
640 if (!index_bounds_valid && !vbo_all_varyings_in_vbos(arrays)) {
641 perf_debug("Scanning index buffer to compute index buffer bounds. "
642 "Use glDrawRangeElements() to avoid this.\n");
643 vbo_get_minmax_indices(ctx, prims, ib, &min_index, &max_index, nr_prims);
644 }
645
646 /* Try drawing with the hardware, but don't do anything else if we can't
647 * manage it. swrast doesn't support our featureset, so we can't fall back
648 * to it.
649 */
650 brw_try_draw_prims(ctx, arrays, prims, nr_prims, ib, min_index, max_index,
651 indirect);
652 }
653
654 void
655 brw_draw_init(struct brw_context *brw)
656 {
657 struct gl_context *ctx = &brw->ctx;
658 struct vbo_context *vbo = vbo_context(ctx);
659
660 /* Register our drawing function:
661 */
662 vbo->draw_prims = brw_draw_prims;
663
664 for (int i = 0; i < VERT_ATTRIB_MAX; i++)
665 brw->vb.inputs[i].buffer = -1;
666 brw->vb.nr_buffers = 0;
667 brw->vb.nr_enabled = 0;
668 }
669
670 void
671 brw_draw_destroy(struct brw_context *brw)
672 {
673 unsigned i;
674
675 for (i = 0; i < brw->vb.nr_buffers; i++) {
676 drm_intel_bo_unreference(brw->vb.buffers[i].bo);
677 brw->vb.buffers[i].bo = NULL;
678 }
679 brw->vb.nr_buffers = 0;
680
681 for (i = 0; i < brw->vb.nr_enabled; i++) {
682 brw->vb.enabled[i]->buffer = -1;
683 }
684 brw->vb.nr_enabled = 0;
685
686 drm_intel_bo_unreference(brw->ib.bo);
687 brw->ib.bo = NULL;
688 }