Merge branch '7.8'
[mesa.git] / src / mesa / drivers / dri / i965 / brw_draw_upload.c
1 /**************************************************************************
2 *
3 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28
29 #include "main/glheader.h"
30 #include "main/bufferobj.h"
31 #include "main/context.h"
32 #include "main/enums.h"
33
34 #include "brw_draw.h"
35 #include "brw_defines.h"
36 #include "brw_context.h"
37 #include "brw_state.h"
38
39 #include "intel_batchbuffer.h"
40 #include "intel_buffer_objects.h"
41
42 static GLuint double_types[5] = {
43 0,
44 BRW_SURFACEFORMAT_R64_FLOAT,
45 BRW_SURFACEFORMAT_R64G64_FLOAT,
46 BRW_SURFACEFORMAT_R64G64B64_FLOAT,
47 BRW_SURFACEFORMAT_R64G64B64A64_FLOAT
48 };
49
50 static GLuint float_types[5] = {
51 0,
52 BRW_SURFACEFORMAT_R32_FLOAT,
53 BRW_SURFACEFORMAT_R32G32_FLOAT,
54 BRW_SURFACEFORMAT_R32G32B32_FLOAT,
55 BRW_SURFACEFORMAT_R32G32B32A32_FLOAT
56 };
57
58 static GLuint half_float_types[5] = {
59 0,
60 BRW_SURFACEFORMAT_R16_FLOAT,
61 BRW_SURFACEFORMAT_R16G16_FLOAT,
62 0, /* can't seem to render this one */
63 BRW_SURFACEFORMAT_R16G16B16A16_FLOAT
64 };
65
66 static GLuint uint_types_norm[5] = {
67 0,
68 BRW_SURFACEFORMAT_R32_UNORM,
69 BRW_SURFACEFORMAT_R32G32_UNORM,
70 BRW_SURFACEFORMAT_R32G32B32_UNORM,
71 BRW_SURFACEFORMAT_R32G32B32A32_UNORM
72 };
73
74 static GLuint uint_types_scale[5] = {
75 0,
76 BRW_SURFACEFORMAT_R32_USCALED,
77 BRW_SURFACEFORMAT_R32G32_USCALED,
78 BRW_SURFACEFORMAT_R32G32B32_USCALED,
79 BRW_SURFACEFORMAT_R32G32B32A32_USCALED
80 };
81
82 static GLuint int_types_norm[5] = {
83 0,
84 BRW_SURFACEFORMAT_R32_SNORM,
85 BRW_SURFACEFORMAT_R32G32_SNORM,
86 BRW_SURFACEFORMAT_R32G32B32_SNORM,
87 BRW_SURFACEFORMAT_R32G32B32A32_SNORM
88 };
89
90 static GLuint int_types_scale[5] = {
91 0,
92 BRW_SURFACEFORMAT_R32_SSCALED,
93 BRW_SURFACEFORMAT_R32G32_SSCALED,
94 BRW_SURFACEFORMAT_R32G32B32_SSCALED,
95 BRW_SURFACEFORMAT_R32G32B32A32_SSCALED
96 };
97
98 static GLuint ushort_types_norm[5] = {
99 0,
100 BRW_SURFACEFORMAT_R16_UNORM,
101 BRW_SURFACEFORMAT_R16G16_UNORM,
102 BRW_SURFACEFORMAT_R16G16B16_UNORM,
103 BRW_SURFACEFORMAT_R16G16B16A16_UNORM
104 };
105
106 static GLuint ushort_types_scale[5] = {
107 0,
108 BRW_SURFACEFORMAT_R16_USCALED,
109 BRW_SURFACEFORMAT_R16G16_USCALED,
110 BRW_SURFACEFORMAT_R16G16B16_USCALED,
111 BRW_SURFACEFORMAT_R16G16B16A16_USCALED
112 };
113
114 static GLuint short_types_norm[5] = {
115 0,
116 BRW_SURFACEFORMAT_R16_SNORM,
117 BRW_SURFACEFORMAT_R16G16_SNORM,
118 BRW_SURFACEFORMAT_R16G16B16_SNORM,
119 BRW_SURFACEFORMAT_R16G16B16A16_SNORM
120 };
121
122 static GLuint short_types_scale[5] = {
123 0,
124 BRW_SURFACEFORMAT_R16_SSCALED,
125 BRW_SURFACEFORMAT_R16G16_SSCALED,
126 BRW_SURFACEFORMAT_R16G16B16_SSCALED,
127 BRW_SURFACEFORMAT_R16G16B16A16_SSCALED
128 };
129
130 static GLuint ubyte_types_norm[5] = {
131 0,
132 BRW_SURFACEFORMAT_R8_UNORM,
133 BRW_SURFACEFORMAT_R8G8_UNORM,
134 BRW_SURFACEFORMAT_R8G8B8_UNORM,
135 BRW_SURFACEFORMAT_R8G8B8A8_UNORM
136 };
137
138 static GLuint ubyte_types_scale[5] = {
139 0,
140 BRW_SURFACEFORMAT_R8_USCALED,
141 BRW_SURFACEFORMAT_R8G8_USCALED,
142 BRW_SURFACEFORMAT_R8G8B8_USCALED,
143 BRW_SURFACEFORMAT_R8G8B8A8_USCALED
144 };
145
146 static GLuint byte_types_norm[5] = {
147 0,
148 BRW_SURFACEFORMAT_R8_SNORM,
149 BRW_SURFACEFORMAT_R8G8_SNORM,
150 BRW_SURFACEFORMAT_R8G8B8_SNORM,
151 BRW_SURFACEFORMAT_R8G8B8A8_SNORM
152 };
153
154 static GLuint byte_types_scale[5] = {
155 0,
156 BRW_SURFACEFORMAT_R8_SSCALED,
157 BRW_SURFACEFORMAT_R8G8_SSCALED,
158 BRW_SURFACEFORMAT_R8G8B8_SSCALED,
159 BRW_SURFACEFORMAT_R8G8B8A8_SSCALED
160 };
161
162
163 /**
164 * Given vertex array type/size/format/normalized info, return
165 * the appopriate hardware surface type.
166 * Format will be GL_RGBA or possibly GL_BGRA for GLubyte[4] color arrays.
167 */
168 static GLuint get_surface_type( GLenum type, GLuint size,
169 GLenum format, GLboolean normalized )
170 {
171 if (INTEL_DEBUG & DEBUG_VERTS)
172 printf("type %s size %d normalized %d\n",
173 _mesa_lookup_enum_by_nr(type), size, normalized);
174
175 if (normalized) {
176 switch (type) {
177 case GL_DOUBLE: return double_types[size];
178 case GL_FLOAT: return float_types[size];
179 case GL_HALF_FLOAT: return half_float_types[size];
180 case GL_INT: return int_types_norm[size];
181 case GL_SHORT: return short_types_norm[size];
182 case GL_BYTE: return byte_types_norm[size];
183 case GL_UNSIGNED_INT: return uint_types_norm[size];
184 case GL_UNSIGNED_SHORT: return ushort_types_norm[size];
185 case GL_UNSIGNED_BYTE:
186 if (format == GL_BGRA) {
187 /* See GL_EXT_vertex_array_bgra */
188 assert(size == 4);
189 return BRW_SURFACEFORMAT_B8G8R8A8_UNORM;
190 }
191 else {
192 return ubyte_types_norm[size];
193 }
194 default: assert(0); return 0;
195 }
196 }
197 else {
198 assert(format == GL_RGBA); /* sanity check */
199 switch (type) {
200 case GL_DOUBLE: return double_types[size];
201 case GL_FLOAT: return float_types[size];
202 case GL_HALF_FLOAT: return half_float_types[size];
203 case GL_INT: return int_types_scale[size];
204 case GL_SHORT: return short_types_scale[size];
205 case GL_BYTE: return byte_types_scale[size];
206 case GL_UNSIGNED_INT: return uint_types_scale[size];
207 case GL_UNSIGNED_SHORT: return ushort_types_scale[size];
208 case GL_UNSIGNED_BYTE: return ubyte_types_scale[size];
209 default: assert(0); return 0;
210 }
211 }
212 }
213
214
215 static GLuint get_size( GLenum type )
216 {
217 switch (type) {
218 case GL_DOUBLE: return sizeof(GLdouble);
219 case GL_FLOAT: return sizeof(GLfloat);
220 case GL_HALF_FLOAT: return sizeof(GLhalfARB);
221 case GL_INT: return sizeof(GLint);
222 case GL_SHORT: return sizeof(GLshort);
223 case GL_BYTE: return sizeof(GLbyte);
224 case GL_UNSIGNED_INT: return sizeof(GLuint);
225 case GL_UNSIGNED_SHORT: return sizeof(GLushort);
226 case GL_UNSIGNED_BYTE: return sizeof(GLubyte);
227 default: return 0;
228 }
229 }
230
231 static GLuint get_index_type(GLenum type)
232 {
233 switch (type) {
234 case GL_UNSIGNED_BYTE: return BRW_INDEX_BYTE;
235 case GL_UNSIGNED_SHORT: return BRW_INDEX_WORD;
236 case GL_UNSIGNED_INT: return BRW_INDEX_DWORD;
237 default: assert(0); return 0;
238 }
239 }
240
241 static void wrap_buffers( struct brw_context *brw,
242 GLuint size )
243 {
244 if (size < BRW_UPLOAD_INIT_SIZE)
245 size = BRW_UPLOAD_INIT_SIZE;
246
247 brw->vb.upload.offset = 0;
248
249 if (brw->vb.upload.bo != NULL)
250 dri_bo_unreference(brw->vb.upload.bo);
251 brw->vb.upload.bo = dri_bo_alloc(brw->intel.bufmgr, "temporary VBO",
252 size, 1);
253 }
254
255 static void get_space( struct brw_context *brw,
256 GLuint size,
257 dri_bo **bo_return,
258 GLuint *offset_return )
259 {
260 size = ALIGN(size, 64);
261
262 if (brw->vb.upload.bo == NULL ||
263 brw->vb.upload.offset + size > brw->vb.upload.bo->size) {
264 wrap_buffers(brw, size);
265 }
266
267 assert(*bo_return == NULL);
268 dri_bo_reference(brw->vb.upload.bo);
269 *bo_return = brw->vb.upload.bo;
270 *offset_return = brw->vb.upload.offset;
271 brw->vb.upload.offset += size;
272 }
273
274 static void
275 copy_array_to_vbo_array( struct brw_context *brw,
276 struct brw_vertex_element *element,
277 GLuint dst_stride)
278 {
279 GLuint size = element->count * dst_stride;
280
281 get_space(brw, size, &element->bo, &element->offset);
282
283 if (element->glarray->StrideB == 0) {
284 assert(element->count == 1);
285 element->stride = 0;
286 } else {
287 element->stride = dst_stride;
288 }
289
290 if (dst_stride == element->glarray->StrideB) {
291 drm_intel_gem_bo_map_gtt(element->bo);
292 memcpy((char *)element->bo->virtual + element->offset,
293 element->glarray->Ptr, size);
294 drm_intel_gem_bo_unmap_gtt(element->bo);
295 } else {
296 char *dest;
297 const unsigned char *src = element->glarray->Ptr;
298 int i;
299
300 drm_intel_gem_bo_map_gtt(element->bo);
301 dest = element->bo->virtual;
302 dest += element->offset;
303
304 for (i = 0; i < element->count; i++) {
305 memcpy(dest, src, dst_stride);
306 src += element->glarray->StrideB;
307 dest += dst_stride;
308 }
309
310 drm_intel_gem_bo_unmap_gtt(element->bo);
311 }
312 }
313
314 static void brw_prepare_vertices(struct brw_context *brw)
315 {
316 GLcontext *ctx = &brw->intel.ctx;
317 struct intel_context *intel = intel_context(ctx);
318 GLbitfield vs_inputs = brw->vs.prog_data->inputs_read;
319 GLuint i;
320 const unsigned char *ptr = NULL;
321 GLuint interleave = 0;
322 unsigned int min_index = brw->vb.min_index;
323 unsigned int max_index = brw->vb.max_index;
324
325 struct brw_vertex_element *upload[VERT_ATTRIB_MAX];
326 GLuint nr_uploads = 0;
327
328 /* First build an array of pointers to ve's in vb.inputs_read
329 */
330 if (0)
331 printf("%s %d..%d\n", __FUNCTION__, min_index, max_index);
332
333 /* Accumulate the list of enabled arrays. */
334 brw->vb.nr_enabled = 0;
335 while (vs_inputs) {
336 GLuint i = _mesa_ffsll(vs_inputs) - 1;
337 struct brw_vertex_element *input = &brw->vb.inputs[i];
338
339 vs_inputs &= ~(1 << i);
340 brw->vb.enabled[brw->vb.nr_enabled++] = input;
341 }
342
343 /* XXX: In the rare cases where this happens we fallback all
344 * the way to software rasterization, although a tnl fallback
345 * would be sufficient. I don't know of *any* real world
346 * cases with > 17 vertex attributes enabled, so it probably
347 * isn't an issue at this point.
348 */
349 if (brw->vb.nr_enabled >= BRW_VEP_MAX) {
350 intel->Fallback = GL_TRUE; /* boolean, not bitfield */
351 return;
352 }
353
354 for (i = 0; i < brw->vb.nr_enabled; i++) {
355 struct brw_vertex_element *input = brw->vb.enabled[i];
356
357 input->element_size = get_size(input->glarray->Type) * input->glarray->Size;
358
359 if (_mesa_is_bufferobj(input->glarray->BufferObj)) {
360 struct intel_buffer_object *intel_buffer =
361 intel_buffer_object(input->glarray->BufferObj);
362
363 /* Named buffer object: Just reference its contents directly. */
364 dri_bo_unreference(input->bo);
365 input->bo = intel_bufferobj_buffer(intel, intel_buffer,
366 INTEL_READ);
367 dri_bo_reference(input->bo);
368 input->offset = (unsigned long)input->glarray->Ptr;
369 input->stride = input->glarray->StrideB;
370 input->count = input->glarray->_MaxElement;
371
372 /* This is a common place to reach if the user mistakenly supplies
373 * a pointer in place of a VBO offset. If we just let it go through,
374 * we may end up dereferencing a pointer beyond the bounds of the
375 * GTT. We would hope that the VBO's max_index would save us, but
376 * Mesa appears to hand us min/max values not clipped to the
377 * array object's _MaxElement, and _MaxElement frequently appears
378 * to be wrong anyway.
379 *
380 * The VBO spec allows application termination in this case, and it's
381 * probably a service to the poor programmer to do so rather than
382 * trying to just not render.
383 */
384 assert(input->offset < input->bo->size);
385 } else {
386 input->count = input->glarray->StrideB ? max_index + 1 - min_index : 1;
387 if (input->bo != NULL) {
388 /* Already-uploaded vertex data is present from a previous
389 * prepare_vertices, but we had to re-validate state due to
390 * check_aperture failing and a new batch being produced.
391 */
392 continue;
393 }
394
395 /* Queue the buffer object up to be uploaded in the next pass,
396 * when we've decided if we're doing interleaved or not.
397 */
398 if (input->attrib == VERT_ATTRIB_POS) {
399 /* Position array not properly enabled:
400 */
401 if (input->glarray->StrideB == 0) {
402 intel->Fallback = GL_TRUE; /* boolean, not bitfield */
403 return;
404 }
405
406 interleave = input->glarray->StrideB;
407 ptr = input->glarray->Ptr;
408 }
409 else if (interleave != input->glarray->StrideB ||
410 (const unsigned char *)input->glarray->Ptr - ptr < 0 ||
411 (const unsigned char *)input->glarray->Ptr - ptr > interleave)
412 {
413 interleave = 0;
414 }
415
416 upload[nr_uploads++] = input;
417
418 /* We rebase drawing to start at element zero only when
419 * varyings are not in vbos, which means we can end up
420 * uploading non-varying arrays (stride != 0) when min_index
421 * is zero. This doesn't matter as the amount to upload is
422 * the same for these arrays whether the draw call is rebased
423 * or not - we just have to upload the one element.
424 */
425 assert(min_index == 0 || input->glarray->StrideB == 0);
426 }
427 }
428
429 /* Handle any arrays to be uploaded. */
430 if (nr_uploads > 1 && interleave && interleave <= 256) {
431 /* All uploads are interleaved, so upload the arrays together as
432 * interleaved. First, upload the contents and set up upload[0].
433 */
434 copy_array_to_vbo_array(brw, upload[0], interleave);
435
436 for (i = 1; i < nr_uploads; i++) {
437 /* Then, just point upload[i] at upload[0]'s buffer. */
438 upload[i]->stride = interleave;
439 upload[i]->offset = upload[0]->offset +
440 ((const unsigned char *)upload[i]->glarray->Ptr - ptr);
441 upload[i]->bo = upload[0]->bo;
442 dri_bo_reference(upload[i]->bo);
443 }
444 }
445 else {
446 /* Upload non-interleaved arrays */
447 for (i = 0; i < nr_uploads; i++) {
448 copy_array_to_vbo_array(brw, upload[i], upload[i]->element_size);
449 }
450 }
451
452 brw_prepare_query_begin(brw);
453
454 for (i = 0; i < brw->vb.nr_enabled; i++) {
455 struct brw_vertex_element *input = brw->vb.enabled[i];
456
457 brw_add_validated_bo(brw, input->bo);
458 }
459 }
460
461 static void brw_emit_vertices(struct brw_context *brw)
462 {
463 GLcontext *ctx = &brw->intel.ctx;
464 struct intel_context *intel = intel_context(ctx);
465 GLuint i;
466
467 brw_emit_query_begin(brw);
468
469 /* If the VS doesn't read any inputs (calculating vertex position from
470 * a state variable for some reason, for example), emit a single pad
471 * VERTEX_ELEMENT struct and bail.
472 *
473 * The stale VB state stays in place, but they don't do anything unless
474 * a VE loads from them.
475 */
476 if (brw->vb.nr_enabled == 0) {
477 BEGIN_BATCH(3);
478 OUT_BATCH((CMD_VERTEX_ELEMENT << 16) | 1);
479 if (IS_GEN6(intel->intelScreen->deviceID)) {
480 OUT_BATCH((0 << GEN6_VE0_INDEX_SHIFT) |
481 GEN6_VE0_VALID |
482 (BRW_SURFACEFORMAT_R32G32B32A32_FLOAT << BRW_VE0_FORMAT_SHIFT) |
483 (0 << BRW_VE0_SRC_OFFSET_SHIFT));
484 } else {
485 OUT_BATCH((0 << BRW_VE0_INDEX_SHIFT) |
486 BRW_VE0_VALID |
487 (BRW_SURFACEFORMAT_R32G32B32A32_FLOAT << BRW_VE0_FORMAT_SHIFT) |
488 (0 << BRW_VE0_SRC_OFFSET_SHIFT));
489 }
490 OUT_BATCH((BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_0_SHIFT) |
491 (BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_1_SHIFT) |
492 (BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_2_SHIFT) |
493 (BRW_VE1_COMPONENT_STORE_1_FLT << BRW_VE1_COMPONENT_3_SHIFT));
494 ADVANCE_BATCH();
495 return;
496 }
497
498 /* Now emit VB and VEP state packets.
499 *
500 * This still defines a hardware VB for each input, even if they
501 * are interleaved or from the same VBO. TBD if this makes a
502 * performance difference.
503 */
504 BEGIN_BATCH(1 + brw->vb.nr_enabled * 4);
505 OUT_BATCH((CMD_VERTEX_BUFFER << 16) |
506 ((1 + brw->vb.nr_enabled * 4) - 2));
507
508 for (i = 0; i < brw->vb.nr_enabled; i++) {
509 struct brw_vertex_element *input = brw->vb.enabled[i];
510 uint32_t dw0;
511
512 if (intel->gen >= 6) {
513 dw0 = GEN6_VB0_ACCESS_VERTEXDATA |
514 (i << GEN6_VB0_INDEX_SHIFT);
515 } else {
516 dw0 = BRW_VB0_ACCESS_VERTEXDATA |
517 (i << BRW_VB0_INDEX_SHIFT);
518 }
519
520 OUT_BATCH(dw0 |
521 (input->stride << BRW_VB0_PITCH_SHIFT));
522 OUT_RELOC(input->bo,
523 I915_GEM_DOMAIN_VERTEX, 0,
524 input->offset);
525 if (intel->gen >= 5) {
526 OUT_RELOC(input->bo,
527 I915_GEM_DOMAIN_VERTEX, 0,
528 input->bo->size - 1);
529 } else
530 OUT_BATCH(input->stride ? input->count : 0);
531 OUT_BATCH(0); /* Instance data step rate */
532 }
533 ADVANCE_BATCH();
534
535 BEGIN_BATCH(1 + brw->vb.nr_enabled * 2);
536 OUT_BATCH((CMD_VERTEX_ELEMENT << 16) | ((1 + brw->vb.nr_enabled * 2) - 2));
537 for (i = 0; i < brw->vb.nr_enabled; i++) {
538 struct brw_vertex_element *input = brw->vb.enabled[i];
539 uint32_t format = get_surface_type(input->glarray->Type,
540 input->glarray->Size,
541 input->glarray->Format,
542 input->glarray->Normalized);
543 uint32_t comp0 = BRW_VE1_COMPONENT_STORE_SRC;
544 uint32_t comp1 = BRW_VE1_COMPONENT_STORE_SRC;
545 uint32_t comp2 = BRW_VE1_COMPONENT_STORE_SRC;
546 uint32_t comp3 = BRW_VE1_COMPONENT_STORE_SRC;
547
548 switch (input->glarray->Size) {
549 case 0: comp0 = BRW_VE1_COMPONENT_STORE_0;
550 case 1: comp1 = BRW_VE1_COMPONENT_STORE_0;
551 case 2: comp2 = BRW_VE1_COMPONENT_STORE_0;
552 case 3: comp3 = BRW_VE1_COMPONENT_STORE_1_FLT;
553 break;
554 }
555
556 if (IS_GEN6(intel->intelScreen->deviceID)) {
557 OUT_BATCH((i << GEN6_VE0_INDEX_SHIFT) |
558 GEN6_VE0_VALID |
559 (format << BRW_VE0_FORMAT_SHIFT) |
560 (0 << BRW_VE0_SRC_OFFSET_SHIFT));
561 } else {
562 OUT_BATCH((i << BRW_VE0_INDEX_SHIFT) |
563 BRW_VE0_VALID |
564 (format << BRW_VE0_FORMAT_SHIFT) |
565 (0 << BRW_VE0_SRC_OFFSET_SHIFT));
566 }
567
568 if (intel->gen >= 5)
569 OUT_BATCH((comp0 << BRW_VE1_COMPONENT_0_SHIFT) |
570 (comp1 << BRW_VE1_COMPONENT_1_SHIFT) |
571 (comp2 << BRW_VE1_COMPONENT_2_SHIFT) |
572 (comp3 << BRW_VE1_COMPONENT_3_SHIFT));
573 else
574 OUT_BATCH((comp0 << BRW_VE1_COMPONENT_0_SHIFT) |
575 (comp1 << BRW_VE1_COMPONENT_1_SHIFT) |
576 (comp2 << BRW_VE1_COMPONENT_2_SHIFT) |
577 (comp3 << BRW_VE1_COMPONENT_3_SHIFT) |
578 ((i * 4) << BRW_VE1_DST_OFFSET_SHIFT));
579 }
580 ADVANCE_BATCH();
581 }
582
583 const struct brw_tracked_state brw_vertices = {
584 .dirty = {
585 .mesa = 0,
586 .brw = BRW_NEW_BATCH | BRW_NEW_VERTICES,
587 .cache = 0,
588 },
589 .prepare = brw_prepare_vertices,
590 .emit = brw_emit_vertices,
591 };
592
593 static void brw_prepare_indices(struct brw_context *brw)
594 {
595 GLcontext *ctx = &brw->intel.ctx;
596 struct intel_context *intel = &brw->intel;
597 const struct _mesa_index_buffer *index_buffer = brw->ib.ib;
598 GLuint ib_size;
599 dri_bo *bo = NULL;
600 struct gl_buffer_object *bufferobj;
601 GLuint offset;
602 GLuint ib_type_size;
603
604 if (index_buffer == NULL)
605 return;
606
607 ib_type_size = get_size(index_buffer->type);
608 ib_size = ib_type_size * index_buffer->count;
609 bufferobj = index_buffer->obj;;
610
611 /* Turn into a proper VBO:
612 */
613 if (!_mesa_is_bufferobj(bufferobj)) {
614 brw->ib.start_vertex_offset = 0;
615
616 /* Get new bufferobj, offset:
617 */
618 get_space(brw, ib_size, &bo, &offset);
619
620 /* Straight upload
621 */
622 drm_intel_gem_bo_map_gtt(bo);
623 memcpy((char *)bo->virtual + offset, index_buffer->ptr, ib_size);
624 drm_intel_gem_bo_unmap_gtt(bo);
625 } else {
626 offset = (GLuint) (unsigned long) index_buffer->ptr;
627 brw->ib.start_vertex_offset = 0;
628
629 /* If the index buffer isn't aligned to its element size, we have to
630 * rebase it into a temporary.
631 */
632 if ((get_size(index_buffer->type) - 1) & offset) {
633 GLubyte *map = ctx->Driver.MapBuffer(ctx,
634 GL_ELEMENT_ARRAY_BUFFER_ARB,
635 GL_DYNAMIC_DRAW_ARB,
636 bufferobj);
637 map += offset;
638
639 get_space(brw, ib_size, &bo, &offset);
640
641 dri_bo_subdata(bo, offset, ib_size, map);
642
643 ctx->Driver.UnmapBuffer(ctx, GL_ELEMENT_ARRAY_BUFFER_ARB, bufferobj);
644 } else {
645 bo = intel_bufferobj_buffer(intel, intel_buffer_object(bufferobj),
646 INTEL_READ);
647 dri_bo_reference(bo);
648
649 /* Use CMD_3D_PRIM's start_vertex_offset to avoid re-uploading
650 * the index buffer state when we're just moving the start index
651 * of our drawing.
652 */
653 brw->ib.start_vertex_offset = offset / ib_type_size;
654 offset = 0;
655 ib_size = bo->size;
656 }
657 }
658
659 if (brw->ib.bo != bo ||
660 brw->ib.offset != offset ||
661 brw->ib.size != ib_size)
662 {
663 drm_intel_bo_unreference(brw->ib.bo);
664 brw->ib.bo = bo;
665 brw->ib.offset = offset;
666 brw->ib.size = ib_size;
667
668 brw->state.dirty.brw |= BRW_NEW_INDEX_BUFFER;
669 } else {
670 drm_intel_bo_unreference(bo);
671 }
672
673 brw_add_validated_bo(brw, brw->ib.bo);
674 }
675
676 const struct brw_tracked_state brw_indices = {
677 .dirty = {
678 .mesa = 0,
679 .brw = BRW_NEW_INDICES,
680 .cache = 0,
681 },
682 .prepare = brw_prepare_indices,
683 };
684
685 static void brw_emit_index_buffer(struct brw_context *brw)
686 {
687 struct intel_context *intel = &brw->intel;
688 const struct _mesa_index_buffer *index_buffer = brw->ib.ib;
689
690 if (index_buffer == NULL)
691 return;
692
693 /* Emit the indexbuffer packet:
694 */
695 {
696 struct brw_indexbuffer ib;
697
698 memset(&ib, 0, sizeof(ib));
699
700 ib.header.bits.opcode = CMD_INDEX_BUFFER;
701 ib.header.bits.length = sizeof(ib)/4 - 2;
702 ib.header.bits.index_format = get_index_type(index_buffer->type);
703 ib.header.bits.cut_index_enable = 0;
704
705 BEGIN_BATCH(4);
706 OUT_BATCH( ib.header.dword );
707 OUT_RELOC(brw->ib.bo,
708 I915_GEM_DOMAIN_VERTEX, 0,
709 brw->ib.offset);
710 OUT_RELOC(brw->ib.bo,
711 I915_GEM_DOMAIN_VERTEX, 0,
712 brw->ib.offset + brw->ib.size - 1);
713 OUT_BATCH( 0 );
714 ADVANCE_BATCH();
715 }
716 }
717
718 const struct brw_tracked_state brw_index_buffer = {
719 .dirty = {
720 .mesa = 0,
721 .brw = BRW_NEW_BATCH | BRW_NEW_INDEX_BUFFER,
722 .cache = 0,
723 },
724 .emit = brw_emit_index_buffer,
725 };