Merge remote branch 'origin/master' into pipe-video
[mesa.git] / src / mesa / drivers / dri / i965 / brw_draw_upload.c
1 /**************************************************************************
2 *
3 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 #undef NDEBUG
29
30 #include "main/glheader.h"
31 #include "main/bufferobj.h"
32 #include "main/context.h"
33 #include "main/enums.h"
34
35 #include "brw_draw.h"
36 #include "brw_defines.h"
37 #include "brw_context.h"
38 #include "brw_state.h"
39
40 #include "intel_batchbuffer.h"
41 #include "intel_buffer_objects.h"
42
43 static GLuint double_types[5] = {
44 0,
45 BRW_SURFACEFORMAT_R64_FLOAT,
46 BRW_SURFACEFORMAT_R64G64_FLOAT,
47 BRW_SURFACEFORMAT_R64G64B64_FLOAT,
48 BRW_SURFACEFORMAT_R64G64B64A64_FLOAT
49 };
50
51 static GLuint float_types[5] = {
52 0,
53 BRW_SURFACEFORMAT_R32_FLOAT,
54 BRW_SURFACEFORMAT_R32G32_FLOAT,
55 BRW_SURFACEFORMAT_R32G32B32_FLOAT,
56 BRW_SURFACEFORMAT_R32G32B32A32_FLOAT
57 };
58
59 static GLuint half_float_types[5] = {
60 0,
61 BRW_SURFACEFORMAT_R16_FLOAT,
62 BRW_SURFACEFORMAT_R16G16_FLOAT,
63 BRW_SURFACEFORMAT_R16G16B16A16_FLOAT,
64 BRW_SURFACEFORMAT_R16G16B16A16_FLOAT
65 };
66
67 static GLuint uint_types_norm[5] = {
68 0,
69 BRW_SURFACEFORMAT_R32_UNORM,
70 BRW_SURFACEFORMAT_R32G32_UNORM,
71 BRW_SURFACEFORMAT_R32G32B32_UNORM,
72 BRW_SURFACEFORMAT_R32G32B32A32_UNORM
73 };
74
75 static GLuint uint_types_scale[5] = {
76 0,
77 BRW_SURFACEFORMAT_R32_USCALED,
78 BRW_SURFACEFORMAT_R32G32_USCALED,
79 BRW_SURFACEFORMAT_R32G32B32_USCALED,
80 BRW_SURFACEFORMAT_R32G32B32A32_USCALED
81 };
82
83 static GLuint int_types_norm[5] = {
84 0,
85 BRW_SURFACEFORMAT_R32_SNORM,
86 BRW_SURFACEFORMAT_R32G32_SNORM,
87 BRW_SURFACEFORMAT_R32G32B32_SNORM,
88 BRW_SURFACEFORMAT_R32G32B32A32_SNORM
89 };
90
91 static GLuint int_types_scale[5] = {
92 0,
93 BRW_SURFACEFORMAT_R32_SSCALED,
94 BRW_SURFACEFORMAT_R32G32_SSCALED,
95 BRW_SURFACEFORMAT_R32G32B32_SSCALED,
96 BRW_SURFACEFORMAT_R32G32B32A32_SSCALED
97 };
98
99 static GLuint ushort_types_norm[5] = {
100 0,
101 BRW_SURFACEFORMAT_R16_UNORM,
102 BRW_SURFACEFORMAT_R16G16_UNORM,
103 BRW_SURFACEFORMAT_R16G16B16_UNORM,
104 BRW_SURFACEFORMAT_R16G16B16A16_UNORM
105 };
106
107 static GLuint ushort_types_scale[5] = {
108 0,
109 BRW_SURFACEFORMAT_R16_USCALED,
110 BRW_SURFACEFORMAT_R16G16_USCALED,
111 BRW_SURFACEFORMAT_R16G16B16_USCALED,
112 BRW_SURFACEFORMAT_R16G16B16A16_USCALED
113 };
114
115 static GLuint short_types_norm[5] = {
116 0,
117 BRW_SURFACEFORMAT_R16_SNORM,
118 BRW_SURFACEFORMAT_R16G16_SNORM,
119 BRW_SURFACEFORMAT_R16G16B16_SNORM,
120 BRW_SURFACEFORMAT_R16G16B16A16_SNORM
121 };
122
123 static GLuint short_types_scale[5] = {
124 0,
125 BRW_SURFACEFORMAT_R16_SSCALED,
126 BRW_SURFACEFORMAT_R16G16_SSCALED,
127 BRW_SURFACEFORMAT_R16G16B16_SSCALED,
128 BRW_SURFACEFORMAT_R16G16B16A16_SSCALED
129 };
130
131 static GLuint ubyte_types_norm[5] = {
132 0,
133 BRW_SURFACEFORMAT_R8_UNORM,
134 BRW_SURFACEFORMAT_R8G8_UNORM,
135 BRW_SURFACEFORMAT_R8G8B8_UNORM,
136 BRW_SURFACEFORMAT_R8G8B8A8_UNORM
137 };
138
139 static GLuint ubyte_types_scale[5] = {
140 0,
141 BRW_SURFACEFORMAT_R8_USCALED,
142 BRW_SURFACEFORMAT_R8G8_USCALED,
143 BRW_SURFACEFORMAT_R8G8B8_USCALED,
144 BRW_SURFACEFORMAT_R8G8B8A8_USCALED
145 };
146
147 static GLuint byte_types_norm[5] = {
148 0,
149 BRW_SURFACEFORMAT_R8_SNORM,
150 BRW_SURFACEFORMAT_R8G8_SNORM,
151 BRW_SURFACEFORMAT_R8G8B8_SNORM,
152 BRW_SURFACEFORMAT_R8G8B8A8_SNORM
153 };
154
155 static GLuint byte_types_scale[5] = {
156 0,
157 BRW_SURFACEFORMAT_R8_SSCALED,
158 BRW_SURFACEFORMAT_R8G8_SSCALED,
159 BRW_SURFACEFORMAT_R8G8B8_SSCALED,
160 BRW_SURFACEFORMAT_R8G8B8A8_SSCALED
161 };
162
163
164 /**
165 * Given vertex array type/size/format/normalized info, return
166 * the appopriate hardware surface type.
167 * Format will be GL_RGBA or possibly GL_BGRA for GLubyte[4] color arrays.
168 */
169 static GLuint get_surface_type( GLenum type, GLuint size,
170 GLenum format, GLboolean normalized )
171 {
172 if (unlikely(INTEL_DEBUG & DEBUG_VERTS))
173 printf("type %s size %d normalized %d\n",
174 _mesa_lookup_enum_by_nr(type), size, normalized);
175
176 if (normalized) {
177 switch (type) {
178 case GL_DOUBLE: return double_types[size];
179 case GL_FLOAT: return float_types[size];
180 case GL_HALF_FLOAT: return half_float_types[size];
181 case GL_INT: return int_types_norm[size];
182 case GL_SHORT: return short_types_norm[size];
183 case GL_BYTE: return byte_types_norm[size];
184 case GL_UNSIGNED_INT: return uint_types_norm[size];
185 case GL_UNSIGNED_SHORT: return ushort_types_norm[size];
186 case GL_UNSIGNED_BYTE:
187 if (format == GL_BGRA) {
188 /* See GL_EXT_vertex_array_bgra */
189 assert(size == 4);
190 return BRW_SURFACEFORMAT_B8G8R8A8_UNORM;
191 }
192 else {
193 return ubyte_types_norm[size];
194 }
195 default: assert(0); return 0;
196 }
197 }
198 else {
199 assert(format == GL_RGBA); /* sanity check */
200 switch (type) {
201 case GL_DOUBLE: return double_types[size];
202 case GL_FLOAT: return float_types[size];
203 case GL_HALF_FLOAT: return half_float_types[size];
204 case GL_INT: return int_types_scale[size];
205 case GL_SHORT: return short_types_scale[size];
206 case GL_BYTE: return byte_types_scale[size];
207 case GL_UNSIGNED_INT: return uint_types_scale[size];
208 case GL_UNSIGNED_SHORT: return ushort_types_scale[size];
209 case GL_UNSIGNED_BYTE: return ubyte_types_scale[size];
210 default: assert(0); return 0;
211 }
212 }
213 }
214
215
216 static GLuint get_size( GLenum type )
217 {
218 switch (type) {
219 case GL_DOUBLE: return sizeof(GLdouble);
220 case GL_FLOAT: return sizeof(GLfloat);
221 case GL_HALF_FLOAT: return sizeof(GLhalfARB);
222 case GL_INT: return sizeof(GLint);
223 case GL_SHORT: return sizeof(GLshort);
224 case GL_BYTE: return sizeof(GLbyte);
225 case GL_UNSIGNED_INT: return sizeof(GLuint);
226 case GL_UNSIGNED_SHORT: return sizeof(GLushort);
227 case GL_UNSIGNED_BYTE: return sizeof(GLubyte);
228 default: assert(0); return 0;
229 }
230 }
231
232 static GLuint get_index_type(GLenum type)
233 {
234 switch (type) {
235 case GL_UNSIGNED_BYTE: return BRW_INDEX_BYTE;
236 case GL_UNSIGNED_SHORT: return BRW_INDEX_WORD;
237 case GL_UNSIGNED_INT: return BRW_INDEX_DWORD;
238 default: assert(0); return 0;
239 }
240 }
241
242 static void
243 copy_array_to_vbo_array(struct brw_context *brw,
244 struct brw_vertex_element *element,
245 int min, int max,
246 struct brw_vertex_buffer *buffer,
247 GLuint dst_stride)
248 {
249 int src_stride = element->glarray->StrideB;
250 const unsigned char *src = element->glarray->Ptr + min * src_stride;
251 int count = max - min + 1;
252 GLuint size = count * dst_stride;
253
254 if (dst_stride == src_stride) {
255 intel_upload_data(&brw->intel, src, size, dst_stride,
256 &buffer->bo, &buffer->offset);
257 } else {
258 char * const map = intel_upload_map(&brw->intel, size, dst_stride);
259 char *dst = map;
260
261 while (count--) {
262 memcpy(dst, src, dst_stride);
263 src += src_stride;
264 dst += dst_stride;
265 }
266 intel_upload_unmap(&brw->intel, map, size, dst_stride,
267 &buffer->bo, &buffer->offset);
268 }
269 buffer->stride = dst_stride;
270 }
271
272 static void brw_prepare_vertices(struct brw_context *brw)
273 {
274 struct gl_context *ctx = &brw->intel.ctx;
275 struct intel_context *intel = intel_context(ctx);
276 GLbitfield vs_inputs = brw->vs.prog_data->inputs_read;
277 const unsigned char *ptr = NULL;
278 GLuint interleaved = 0, total_size = 0;
279 unsigned int min_index = brw->vb.min_index;
280 unsigned int max_index = brw->vb.max_index;
281 int delta, i, j;
282
283 struct brw_vertex_element *upload[VERT_ATTRIB_MAX];
284 GLuint nr_uploads = 0;
285
286 /* First build an array of pointers to ve's in vb.inputs_read
287 */
288 if (0)
289 printf("%s %d..%d\n", __FUNCTION__, min_index, max_index);
290
291 /* Accumulate the list of enabled arrays. */
292 brw->vb.nr_enabled = 0;
293 while (vs_inputs) {
294 GLuint i = ffs(vs_inputs) - 1;
295 struct brw_vertex_element *input = &brw->vb.inputs[i];
296
297 vs_inputs &= ~(1 << i);
298 if (input->glarray->Size && get_size(input->glarray->Type))
299 brw->vb.enabled[brw->vb.nr_enabled++] = input;
300 }
301
302 if (brw->vb.nr_enabled == 0)
303 return;
304
305 if (brw->vb.nr_buffers)
306 goto validate;
307
308 /* XXX: In the rare cases where this happens we fallback all
309 * the way to software rasterization, although a tnl fallback
310 * would be sufficient. I don't know of *any* real world
311 * cases with > 17 vertex attributes enabled, so it probably
312 * isn't an issue at this point.
313 */
314 if (brw->vb.nr_enabled >= BRW_VEP_MAX) {
315 intel->Fallback = GL_TRUE; /* boolean, not bitfield */
316 return;
317 }
318
319 for (i = j = 0; i < brw->vb.nr_enabled; i++) {
320 struct brw_vertex_element *input = brw->vb.enabled[i];
321 const struct gl_client_array *glarray = input->glarray;
322 int type_size = get_size(glarray->Type);
323
324 input->element_size = type_size * glarray->Size;
325
326 if (_mesa_is_bufferobj(glarray->BufferObj)) {
327 struct intel_buffer_object *intel_buffer =
328 intel_buffer_object(glarray->BufferObj);
329 int k;
330
331 for (k = 0; k < i; k++) {
332 const struct gl_client_array *other = brw->vb.enabled[k]->glarray;
333 if (glarray->BufferObj == other->BufferObj &&
334 glarray->StrideB == other->StrideB &&
335 (uintptr_t)(glarray->Ptr - other->Ptr) < glarray->StrideB)
336 {
337 input->buffer = brw->vb.enabled[k]->buffer;
338 input->offset = glarray->Ptr - other->Ptr;
339 break;
340 }
341 }
342 if (k == i) {
343 struct brw_vertex_buffer *buffer = &brw->vb.buffers[j];
344
345 /* Named buffer object: Just reference its contents directly. */
346 buffer->bo = intel_bufferobj_source(intel,
347 intel_buffer, type_size,
348 &buffer->offset);
349 drm_intel_bo_reference(buffer->bo);
350 buffer->offset += (uintptr_t)glarray->Ptr;
351 buffer->stride = glarray->StrideB;
352
353 input->buffer = j++;
354 input->offset = 0;
355 }
356
357 /* This is a common place to reach if the user mistakenly supplies
358 * a pointer in place of a VBO offset. If we just let it go through,
359 * we may end up dereferencing a pointer beyond the bounds of the
360 * GTT. We would hope that the VBO's max_index would save us, but
361 * Mesa appears to hand us min/max values not clipped to the
362 * array object's _MaxElement, and _MaxElement frequently appears
363 * to be wrong anyway.
364 *
365 * The VBO spec allows application termination in this case, and it's
366 * probably a service to the poor programmer to do so rather than
367 * trying to just not render.
368 */
369 assert(input->offset < brw->vb.buffers[input->buffer].bo->size);
370 } else {
371 /* Queue the buffer object up to be uploaded in the next pass,
372 * when we've decided if we're doing interleaved or not.
373 */
374 if (nr_uploads == 0) {
375 /* Position array not properly enabled:
376 */
377 if (input->attrib == VERT_ATTRIB_POS && glarray->StrideB == 0) {
378 intel->Fallback = GL_TRUE; /* boolean, not bitfield */
379 return;
380 }
381
382 interleaved = glarray->StrideB;
383 ptr = glarray->Ptr;
384 }
385 else if (interleaved != glarray->StrideB ||
386 (uintptr_t)(glarray->Ptr - ptr) > interleaved)
387 {
388 interleaved = 0;
389 }
390 else if ((uintptr_t)(glarray->Ptr - ptr) & (type_size -1))
391 {
392 /* enforce natural alignment (for doubles) */
393 interleaved = 0;
394 }
395
396 upload[nr_uploads++] = input;
397 total_size = ALIGN(total_size, type_size);
398 total_size += input->element_size;
399 }
400 }
401
402 /* If we need to upload all the arrays, then we can trim those arrays to
403 * only the used elements [min_index, max_index] so long as we adjust all
404 * the values used in the 3DPRIMITIVE i.e. by setting the vertex bias.
405 */
406 brw->vb.start_vertex_bias = 0;
407 delta = min_index;
408 if (nr_uploads == brw->vb.nr_enabled) {
409 brw->vb.start_vertex_bias = -delta;
410 delta = 0;
411 }
412 if (delta && !brw->intel.intelScreen->relaxed_relocations)
413 min_index = delta = 0;
414
415 /* Handle any arrays to be uploaded. */
416 if (nr_uploads > 1) {
417 if (interleaved && interleaved <= 2*total_size) {
418 struct brw_vertex_buffer *buffer = &brw->vb.buffers[j];
419 /* All uploads are interleaved, so upload the arrays together as
420 * interleaved. First, upload the contents and set up upload[0].
421 */
422 copy_array_to_vbo_array(brw, upload[0], min_index, max_index,
423 buffer, interleaved);
424 buffer->offset -= delta * interleaved;
425
426 for (i = 0; i < nr_uploads; i++) {
427 /* Then, just point upload[i] at upload[0]'s buffer. */
428 upload[i]->offset =
429 ((const unsigned char *)upload[i]->glarray->Ptr - ptr);
430 upload[i]->buffer = j;
431 }
432 j++;
433
434 nr_uploads = 0;
435 }
436 else if (total_size < 2048) {
437 /* Upload non-interleaved arrays into a single interleaved array */
438 struct brw_vertex_buffer *buffer;
439 int count = max_index - min_index + 1;
440 int offset;
441 char *map;
442
443 map = intel_upload_map(&brw->intel, total_size * count, total_size);
444 for (i = offset = 0; i < nr_uploads; i++) {
445 const unsigned char *src = upload[i]->glarray->Ptr;
446 int size = upload[i]->element_size;
447 int stride = upload[i]->glarray->StrideB;
448 char *dst;
449 int n;
450
451 offset = ALIGN(offset, get_size(upload[i]->glarray->Type));
452 dst = map + offset;
453 src += min_index * stride;
454
455 for (n = 0; n < count; n++) {
456 memcpy(dst, src, size);
457 src += stride;
458 dst += total_size;
459 }
460
461 upload[i]->offset = offset;
462 upload[i]->buffer = j;
463
464 offset += size;
465 }
466 assert(offset == total_size);
467 buffer = &brw->vb.buffers[j++];
468 intel_upload_unmap(&brw->intel, map, offset * count, offset,
469 &buffer->bo, &buffer->offset);
470 buffer->stride = offset;
471 buffer->offset -= delta * offset;
472
473 nr_uploads = 0;
474 }
475 }
476 /* Upload non-interleaved arrays */
477 for (i = 0; i < nr_uploads; i++) {
478 struct brw_vertex_buffer *buffer = &brw->vb.buffers[j];
479 copy_array_to_vbo_array(brw, upload[i], min_index, max_index,
480 buffer, upload[i]->element_size);
481 buffer->offset -= delta * buffer->stride;
482 upload[i]->buffer = j++;
483 upload[i]->offset = 0;
484 }
485
486 /* can we simply extend the current vb? */
487 if (j == brw->vb.nr_current_buffers) {
488 int delta = 0;
489 for (i = 0; i < j; i++) {
490 int d;
491
492 if (brw->vb.current_buffers[i].handle != brw->vb.buffers[i].bo->handle ||
493 brw->vb.current_buffers[i].stride != brw->vb.buffers[i].stride)
494 break;
495
496 d = brw->vb.buffers[i].offset - brw->vb.current_buffers[i].offset;
497 if (i == 0)
498 delta = d / brw->vb.current_buffers[i].stride;
499 if (delta * brw->vb.current_buffers[i].stride != d)
500 break;
501 }
502
503 if (i == j) {
504 brw->vb.start_vertex_bias += delta;
505 while (--j >= 0)
506 drm_intel_bo_unreference(brw->vb.buffers[j].bo);
507 j = 0;
508 }
509 }
510
511 brw->vb.nr_buffers = j;
512
513 validate:
514 brw_prepare_query_begin(brw);
515 for (i = 0; i < brw->vb.nr_buffers; i++) {
516 brw_add_validated_bo(brw, brw->vb.buffers[i].bo);
517 }
518 }
519
520 static void brw_emit_vertices(struct brw_context *brw)
521 {
522 struct gl_context *ctx = &brw->intel.ctx;
523 struct intel_context *intel = intel_context(ctx);
524 GLuint i;
525
526 brw_emit_query_begin(brw);
527
528 /* If the VS doesn't read any inputs (calculating vertex position from
529 * a state variable for some reason, for example), emit a single pad
530 * VERTEX_ELEMENT struct and bail.
531 *
532 * The stale VB state stays in place, but they don't do anything unless
533 * a VE loads from them.
534 */
535 if (brw->vb.nr_enabled == 0) {
536 BEGIN_BATCH(3);
537 OUT_BATCH((CMD_VERTEX_ELEMENT << 16) | 1);
538 if (intel->gen >= 6) {
539 OUT_BATCH((0 << GEN6_VE0_INDEX_SHIFT) |
540 GEN6_VE0_VALID |
541 (BRW_SURFACEFORMAT_R32G32B32A32_FLOAT << BRW_VE0_FORMAT_SHIFT) |
542 (0 << BRW_VE0_SRC_OFFSET_SHIFT));
543 } else {
544 OUT_BATCH((0 << BRW_VE0_INDEX_SHIFT) |
545 BRW_VE0_VALID |
546 (BRW_SURFACEFORMAT_R32G32B32A32_FLOAT << BRW_VE0_FORMAT_SHIFT) |
547 (0 << BRW_VE0_SRC_OFFSET_SHIFT));
548 }
549 OUT_BATCH((BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_0_SHIFT) |
550 (BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_1_SHIFT) |
551 (BRW_VE1_COMPONENT_STORE_0 << BRW_VE1_COMPONENT_2_SHIFT) |
552 (BRW_VE1_COMPONENT_STORE_1_FLT << BRW_VE1_COMPONENT_3_SHIFT));
553 CACHED_BATCH();
554 return;
555 }
556
557 /* Now emit VB and VEP state packets.
558 */
559
560 if (brw->vb.nr_buffers) {
561 BEGIN_BATCH(1 + 4*brw->vb.nr_buffers);
562 OUT_BATCH((CMD_VERTEX_BUFFER << 16) | (4*brw->vb.nr_buffers - 1));
563 for (i = 0; i < brw->vb.nr_buffers; i++) {
564 struct brw_vertex_buffer *buffer = &brw->vb.buffers[i];
565 uint32_t dw0;
566
567 if (intel->gen >= 6) {
568 dw0 = GEN6_VB0_ACCESS_VERTEXDATA | (i << GEN6_VB0_INDEX_SHIFT);
569 } else {
570 dw0 = BRW_VB0_ACCESS_VERTEXDATA | (i << BRW_VB0_INDEX_SHIFT);
571 }
572
573 OUT_BATCH(dw0 | (buffer->stride << BRW_VB0_PITCH_SHIFT));
574 OUT_RELOC(buffer->bo, I915_GEM_DOMAIN_VERTEX, 0, buffer->offset);
575 if (intel->gen >= 5) {
576 OUT_RELOC(buffer->bo, I915_GEM_DOMAIN_VERTEX, 0, buffer->bo->size - 1);
577 } else
578 OUT_BATCH(0);
579 OUT_BATCH(0); /* Instance data step rate */
580
581 brw->vb.current_buffers[i].handle = buffer->bo->handle;
582 brw->vb.current_buffers[i].offset = buffer->offset;
583 brw->vb.current_buffers[i].stride = buffer->stride;
584 }
585 brw->vb.nr_current_buffers = i;
586 ADVANCE_BATCH();
587 }
588
589 BEGIN_BATCH(1 + brw->vb.nr_enabled * 2);
590 OUT_BATCH((CMD_VERTEX_ELEMENT << 16) | (2*brw->vb.nr_enabled - 1));
591 for (i = 0; i < brw->vb.nr_enabled; i++) {
592 struct brw_vertex_element *input = brw->vb.enabled[i];
593 uint32_t format = get_surface_type(input->glarray->Type,
594 input->glarray->Size,
595 input->glarray->Format,
596 input->glarray->Normalized);
597 uint32_t comp0 = BRW_VE1_COMPONENT_STORE_SRC;
598 uint32_t comp1 = BRW_VE1_COMPONENT_STORE_SRC;
599 uint32_t comp2 = BRW_VE1_COMPONENT_STORE_SRC;
600 uint32_t comp3 = BRW_VE1_COMPONENT_STORE_SRC;
601
602 switch (input->glarray->Size) {
603 case 0: comp0 = BRW_VE1_COMPONENT_STORE_0;
604 case 1: comp1 = BRW_VE1_COMPONENT_STORE_0;
605 case 2: comp2 = BRW_VE1_COMPONENT_STORE_0;
606 case 3: comp3 = BRW_VE1_COMPONENT_STORE_1_FLT;
607 break;
608 }
609
610 if (intel->gen >= 6) {
611 OUT_BATCH((input->buffer << GEN6_VE0_INDEX_SHIFT) |
612 GEN6_VE0_VALID |
613 (format << BRW_VE0_FORMAT_SHIFT) |
614 (input->offset << BRW_VE0_SRC_OFFSET_SHIFT));
615 } else {
616 OUT_BATCH((input->buffer << BRW_VE0_INDEX_SHIFT) |
617 BRW_VE0_VALID |
618 (format << BRW_VE0_FORMAT_SHIFT) |
619 (input->offset << BRW_VE0_SRC_OFFSET_SHIFT));
620 }
621
622 if (intel->gen >= 5)
623 OUT_BATCH((comp0 << BRW_VE1_COMPONENT_0_SHIFT) |
624 (comp1 << BRW_VE1_COMPONENT_1_SHIFT) |
625 (comp2 << BRW_VE1_COMPONENT_2_SHIFT) |
626 (comp3 << BRW_VE1_COMPONENT_3_SHIFT));
627 else
628 OUT_BATCH((comp0 << BRW_VE1_COMPONENT_0_SHIFT) |
629 (comp1 << BRW_VE1_COMPONENT_1_SHIFT) |
630 (comp2 << BRW_VE1_COMPONENT_2_SHIFT) |
631 (comp3 << BRW_VE1_COMPONENT_3_SHIFT) |
632 ((i * 4) << BRW_VE1_DST_OFFSET_SHIFT));
633 }
634 CACHED_BATCH();
635 }
636
637 const struct brw_tracked_state brw_vertices = {
638 .dirty = {
639 .mesa = 0,
640 .brw = BRW_NEW_BATCH | BRW_NEW_VERTICES,
641 .cache = 0,
642 },
643 .prepare = brw_prepare_vertices,
644 .emit = brw_emit_vertices,
645 };
646
647 static void brw_prepare_indices(struct brw_context *brw)
648 {
649 struct gl_context *ctx = &brw->intel.ctx;
650 struct intel_context *intel = &brw->intel;
651 const struct _mesa_index_buffer *index_buffer = brw->ib.ib;
652 GLuint ib_size;
653 drm_intel_bo *bo = NULL;
654 struct gl_buffer_object *bufferobj;
655 GLuint offset;
656 GLuint ib_type_size;
657
658 if (index_buffer == NULL)
659 return;
660
661 ib_type_size = get_size(index_buffer->type);
662 ib_size = ib_type_size * index_buffer->count;
663 bufferobj = index_buffer->obj;
664
665 /* Turn into a proper VBO:
666 */
667 if (!_mesa_is_bufferobj(bufferobj)) {
668
669 /* Get new bufferobj, offset:
670 */
671 intel_upload_data(&brw->intel, index_buffer->ptr, ib_size, ib_type_size,
672 &bo, &offset);
673 brw->ib.start_vertex_offset = offset / ib_type_size;
674 } else {
675 offset = (GLuint) (unsigned long) index_buffer->ptr;
676
677 /* If the index buffer isn't aligned to its element size, we have to
678 * rebase it into a temporary.
679 */
680 if ((get_size(index_buffer->type) - 1) & offset) {
681 GLubyte *map = ctx->Driver.MapBuffer(ctx,
682 GL_ELEMENT_ARRAY_BUFFER_ARB,
683 GL_DYNAMIC_DRAW_ARB,
684 bufferobj);
685 map += offset;
686
687 intel_upload_data(&brw->intel, map, ib_size, ib_type_size,
688 &bo, &offset);
689 brw->ib.start_vertex_offset = offset / ib_type_size;
690
691 ctx->Driver.UnmapBuffer(ctx, GL_ELEMENT_ARRAY_BUFFER_ARB, bufferobj);
692 } else {
693 /* Use CMD_3D_PRIM's start_vertex_offset to avoid re-uploading
694 * the index buffer state when we're just moving the start index
695 * of our drawing.
696 */
697 brw->ib.start_vertex_offset = offset / ib_type_size;
698
699 bo = intel_bufferobj_source(intel,
700 intel_buffer_object(bufferobj),
701 ib_type_size,
702 &offset);
703 drm_intel_bo_reference(bo);
704
705 brw->ib.start_vertex_offset += offset / ib_type_size;
706 }
707 }
708
709 if (brw->ib.bo != bo) {
710 drm_intel_bo_unreference(brw->ib.bo);
711 brw->ib.bo = bo;
712
713 brw_add_validated_bo(brw, brw->ib.bo);
714 brw->state.dirty.brw |= BRW_NEW_INDEX_BUFFER;
715 } else {
716 drm_intel_bo_unreference(bo);
717 }
718
719 if (index_buffer->type != brw->ib.type) {
720 brw->ib.type = index_buffer->type;
721 brw->state.dirty.brw |= BRW_NEW_INDEX_BUFFER;
722 }
723 }
724
725 const struct brw_tracked_state brw_indices = {
726 .dirty = {
727 .mesa = 0,
728 .brw = BRW_NEW_INDICES,
729 .cache = 0,
730 },
731 .prepare = brw_prepare_indices,
732 };
733
734 static void brw_emit_index_buffer(struct brw_context *brw)
735 {
736 struct intel_context *intel = &brw->intel;
737 const struct _mesa_index_buffer *index_buffer = brw->ib.ib;
738
739 if (index_buffer == NULL)
740 return;
741
742 BEGIN_BATCH(3);
743 OUT_BATCH(CMD_INDEX_BUFFER << 16 |
744 /* cut index enable << 10 */
745 get_index_type(index_buffer->type) << 8 |
746 1);
747 OUT_RELOC(brw->ib.bo,
748 I915_GEM_DOMAIN_VERTEX, 0,
749 0);
750 OUT_RELOC(brw->ib.bo,
751 I915_GEM_DOMAIN_VERTEX, 0,
752 brw->ib.bo->size - 1);
753 ADVANCE_BATCH();
754 }
755
756 const struct brw_tracked_state brw_index_buffer = {
757 .dirty = {
758 .mesa = 0,
759 .brw = BRW_NEW_BATCH | BRW_NEW_INDEX_BUFFER,
760 .cache = 0,
761 },
762 .emit = brw_emit_index_buffer,
763 };