i965: Fix texturing on pre-gen5.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 extern "C" {
29
30 #include <sys/types.h>
31
32 #include "main/macros.h"
33 #include "main/shaderobj.h"
34 #include "main/uniforms.h"
35 #include "program/prog_parameter.h"
36 #include "program/prog_print.h"
37 #include "program/prog_optimize.h"
38 #include "program/register_allocate.h"
39 #include "program/sampler.h"
40 #include "program/hash_table.h"
41 #include "brw_context.h"
42 #include "brw_eu.h"
43 #include "brw_wm.h"
44 #include "talloc.h"
45 }
46 #include "brw_fs.h"
47 #include "../glsl/glsl_types.h"
48 #include "../glsl/ir_optimization.h"
49 #include "../glsl/ir_print_visitor.h"
50
51 static struct brw_reg brw_reg_from_fs_reg(class fs_reg *reg);
52
53 struct gl_shader *
54 brw_new_shader(struct gl_context *ctx, GLuint name, GLuint type)
55 {
56 struct brw_shader *shader;
57
58 shader = talloc_zero(NULL, struct brw_shader);
59 if (shader) {
60 shader->base.Type = type;
61 shader->base.Name = name;
62 _mesa_init_shader(ctx, &shader->base);
63 }
64
65 return &shader->base;
66 }
67
68 struct gl_shader_program *
69 brw_new_shader_program(struct gl_context *ctx, GLuint name)
70 {
71 struct brw_shader_program *prog;
72 prog = talloc_zero(NULL, struct brw_shader_program);
73 if (prog) {
74 prog->base.Name = name;
75 _mesa_init_shader_program(ctx, &prog->base);
76 }
77 return &prog->base;
78 }
79
80 GLboolean
81 brw_compile_shader(struct gl_context *ctx, struct gl_shader *shader)
82 {
83 if (!_mesa_ir_compile_shader(ctx, shader))
84 return GL_FALSE;
85
86 return GL_TRUE;
87 }
88
89 GLboolean
90 brw_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
91 {
92 struct intel_context *intel = intel_context(ctx);
93
94 for (unsigned i = 0; i < prog->_NumLinkedShaders; i++) {
95 struct brw_shader *shader = (struct brw_shader *)prog->_LinkedShaders[i];
96
97 if (shader->base.Type == GL_FRAGMENT_SHADER) {
98 void *mem_ctx = talloc_new(NULL);
99 bool progress;
100
101 if (shader->ir)
102 talloc_free(shader->ir);
103 shader->ir = new(shader) exec_list;
104 clone_ir_list(mem_ctx, shader->ir, shader->base.ir);
105
106 do_mat_op_to_vec(shader->ir);
107 do_mod_to_fract(shader->ir);
108 do_div_to_mul_rcp(shader->ir);
109 do_sub_to_add_neg(shader->ir);
110 do_explog_to_explog2(shader->ir);
111 do_lower_texture_projection(shader->ir);
112 brw_do_cubemap_normalize(shader->ir);
113
114 do {
115 progress = false;
116
117 brw_do_channel_expressions(shader->ir);
118 brw_do_vector_splitting(shader->ir);
119
120 progress = do_lower_jumps(shader->ir, true, true,
121 true, /* main return */
122 false, /* continue */
123 false /* loops */
124 ) || progress;
125
126 progress = do_common_optimization(shader->ir, true, 32) || progress;
127
128 progress = lower_noise(shader->ir) || progress;
129 progress =
130 lower_variable_index_to_cond_assign(shader->ir,
131 GL_TRUE, /* input */
132 GL_TRUE, /* output */
133 GL_TRUE, /* temp */
134 GL_TRUE /* uniform */
135 ) || progress;
136 if (intel->gen == 6) {
137 progress = do_if_to_cond_assign(shader->ir) || progress;
138 }
139 } while (progress);
140
141 validate_ir_tree(shader->ir);
142
143 reparent_ir(shader->ir, shader->ir);
144 talloc_free(mem_ctx);
145 }
146 }
147
148 if (!_mesa_ir_link_shader(ctx, prog))
149 return GL_FALSE;
150
151 return GL_TRUE;
152 }
153
154 static int
155 type_size(const struct glsl_type *type)
156 {
157 unsigned int size, i;
158
159 switch (type->base_type) {
160 case GLSL_TYPE_UINT:
161 case GLSL_TYPE_INT:
162 case GLSL_TYPE_FLOAT:
163 case GLSL_TYPE_BOOL:
164 return type->components();
165 case GLSL_TYPE_ARRAY:
166 return type_size(type->fields.array) * type->length;
167 case GLSL_TYPE_STRUCT:
168 size = 0;
169 for (i = 0; i < type->length; i++) {
170 size += type_size(type->fields.structure[i].type);
171 }
172 return size;
173 case GLSL_TYPE_SAMPLER:
174 /* Samplers take up no register space, since they're baked in at
175 * link time.
176 */
177 return 0;
178 default:
179 assert(!"not reached");
180 return 0;
181 }
182 }
183
184 static const fs_reg reg_undef;
185 static const fs_reg reg_null(ARF, BRW_ARF_NULL);
186
187 int
188 fs_visitor::virtual_grf_alloc(int size)
189 {
190 if (virtual_grf_array_size <= virtual_grf_next) {
191 if (virtual_grf_array_size == 0)
192 virtual_grf_array_size = 16;
193 else
194 virtual_grf_array_size *= 2;
195 virtual_grf_sizes = talloc_realloc(mem_ctx, virtual_grf_sizes,
196 int, virtual_grf_array_size);
197
198 /* This slot is always unused. */
199 virtual_grf_sizes[0] = 0;
200 }
201 virtual_grf_sizes[virtual_grf_next] = size;
202 return virtual_grf_next++;
203 }
204
205 /** Fixed HW reg constructor. */
206 fs_reg::fs_reg(enum register_file file, int hw_reg)
207 {
208 init();
209 this->file = file;
210 this->hw_reg = hw_reg;
211 this->type = BRW_REGISTER_TYPE_F;
212 }
213
214 int
215 brw_type_for_base_type(const struct glsl_type *type)
216 {
217 switch (type->base_type) {
218 case GLSL_TYPE_FLOAT:
219 return BRW_REGISTER_TYPE_F;
220 case GLSL_TYPE_INT:
221 case GLSL_TYPE_BOOL:
222 return BRW_REGISTER_TYPE_D;
223 case GLSL_TYPE_UINT:
224 return BRW_REGISTER_TYPE_UD;
225 case GLSL_TYPE_ARRAY:
226 case GLSL_TYPE_STRUCT:
227 /* These should be overridden with the type of the member when
228 * dereferenced into. BRW_REGISTER_TYPE_UD seems like a likely
229 * way to trip up if we don't.
230 */
231 return BRW_REGISTER_TYPE_UD;
232 default:
233 assert(!"not reached");
234 return BRW_REGISTER_TYPE_F;
235 }
236 }
237
238 /** Automatic reg constructor. */
239 fs_reg::fs_reg(class fs_visitor *v, const struct glsl_type *type)
240 {
241 init();
242
243 this->file = GRF;
244 this->reg = v->virtual_grf_alloc(type_size(type));
245 this->reg_offset = 0;
246 this->type = brw_type_for_base_type(type);
247 }
248
249 fs_reg *
250 fs_visitor::variable_storage(ir_variable *var)
251 {
252 return (fs_reg *)hash_table_find(this->variable_ht, var);
253 }
254
255 /* Our support for uniforms is piggy-backed on the struct
256 * gl_fragment_program, because that's where the values actually
257 * get stored, rather than in some global gl_shader_program uniform
258 * store.
259 */
260 int
261 fs_visitor::setup_uniform_values(int loc, const glsl_type *type)
262 {
263 unsigned int offset = 0;
264 float *vec_values;
265
266 if (type->is_matrix()) {
267 const glsl_type *column = glsl_type::get_instance(GLSL_TYPE_FLOAT,
268 type->vector_elements,
269 1);
270
271 for (unsigned int i = 0; i < type->matrix_columns; i++) {
272 offset += setup_uniform_values(loc + offset, column);
273 }
274
275 return offset;
276 }
277
278 switch (type->base_type) {
279 case GLSL_TYPE_FLOAT:
280 case GLSL_TYPE_UINT:
281 case GLSL_TYPE_INT:
282 case GLSL_TYPE_BOOL:
283 vec_values = fp->Base.Parameters->ParameterValues[loc];
284 for (unsigned int i = 0; i < type->vector_elements; i++) {
285 c->prog_data.param[c->prog_data.nr_params++] = &vec_values[i];
286 }
287 return 1;
288
289 case GLSL_TYPE_STRUCT:
290 for (unsigned int i = 0; i < type->length; i++) {
291 offset += setup_uniform_values(loc + offset,
292 type->fields.structure[i].type);
293 }
294 return offset;
295
296 case GLSL_TYPE_ARRAY:
297 for (unsigned int i = 0; i < type->length; i++) {
298 offset += setup_uniform_values(loc + offset, type->fields.array);
299 }
300 return offset;
301
302 case GLSL_TYPE_SAMPLER:
303 /* The sampler takes up a slot, but we don't use any values from it. */
304 return 1;
305
306 default:
307 assert(!"not reached");
308 return 0;
309 }
310 }
311
312
313 /* Our support for builtin uniforms is even scarier than non-builtin.
314 * It sits on top of the PROG_STATE_VAR parameters that are
315 * automatically updated from GL context state.
316 */
317 void
318 fs_visitor::setup_builtin_uniform_values(ir_variable *ir)
319 {
320 const struct gl_builtin_uniform_desc *statevar = NULL;
321
322 for (unsigned int i = 0; _mesa_builtin_uniform_desc[i].name; i++) {
323 statevar = &_mesa_builtin_uniform_desc[i];
324 if (strcmp(ir->name, _mesa_builtin_uniform_desc[i].name) == 0)
325 break;
326 }
327
328 if (!statevar->name) {
329 this->fail = true;
330 printf("Failed to find builtin uniform `%s'\n", ir->name);
331 return;
332 }
333
334 int array_count;
335 if (ir->type->is_array()) {
336 array_count = ir->type->length;
337 } else {
338 array_count = 1;
339 }
340
341 for (int a = 0; a < array_count; a++) {
342 for (unsigned int i = 0; i < statevar->num_elements; i++) {
343 struct gl_builtin_uniform_element *element = &statevar->elements[i];
344 int tokens[STATE_LENGTH];
345
346 memcpy(tokens, element->tokens, sizeof(element->tokens));
347 if (ir->type->is_array()) {
348 tokens[1] = a;
349 }
350
351 /* This state reference has already been setup by ir_to_mesa,
352 * but we'll get the same index back here.
353 */
354 int index = _mesa_add_state_reference(this->fp->Base.Parameters,
355 (gl_state_index *)tokens);
356 float *vec_values = this->fp->Base.Parameters->ParameterValues[index];
357
358 /* Add each of the unique swizzles of the element as a
359 * parameter. This'll end up matching the expected layout of
360 * the array/matrix/structure we're trying to fill in.
361 */
362 int last_swiz = -1;
363 for (unsigned int i = 0; i < 4; i++) {
364 int swiz = GET_SWZ(element->swizzle, i);
365 if (swiz == last_swiz)
366 break;
367 last_swiz = swiz;
368
369 c->prog_data.param[c->prog_data.nr_params++] = &vec_values[swiz];
370 }
371 }
372 }
373 }
374
375 fs_reg *
376 fs_visitor::emit_fragcoord_interpolation(ir_variable *ir)
377 {
378 fs_reg *reg = new(this->mem_ctx) fs_reg(this, ir->type);
379 fs_reg wpos = *reg;
380 fs_reg neg_y = this->pixel_y;
381 neg_y.negate = true;
382
383 /* gl_FragCoord.x */
384 if (ir->pixel_center_integer) {
385 emit(fs_inst(BRW_OPCODE_MOV, wpos, this->pixel_x));
386 } else {
387 emit(fs_inst(BRW_OPCODE_ADD, wpos, this->pixel_x, fs_reg(0.5f)));
388 }
389 wpos.reg_offset++;
390
391 /* gl_FragCoord.y */
392 if (ir->origin_upper_left && ir->pixel_center_integer) {
393 emit(fs_inst(BRW_OPCODE_MOV, wpos, this->pixel_y));
394 } else {
395 fs_reg pixel_y = this->pixel_y;
396 float offset = (ir->pixel_center_integer ? 0.0 : 0.5);
397
398 if (!ir->origin_upper_left) {
399 pixel_y.negate = true;
400 offset += c->key.drawable_height - 1.0;
401 }
402
403 emit(fs_inst(BRW_OPCODE_ADD, wpos, pixel_y, fs_reg(offset)));
404 }
405 wpos.reg_offset++;
406
407 /* gl_FragCoord.z */
408 emit(fs_inst(FS_OPCODE_LINTERP, wpos, this->delta_x, this->delta_y,
409 interp_reg(FRAG_ATTRIB_WPOS, 2)));
410 wpos.reg_offset++;
411
412 /* gl_FragCoord.w: Already set up in emit_interpolation */
413 emit(fs_inst(BRW_OPCODE_MOV, wpos, this->wpos_w));
414
415 return reg;
416 }
417
418 fs_reg *
419 fs_visitor::emit_general_interpolation(ir_variable *ir)
420 {
421 fs_reg *reg = new(this->mem_ctx) fs_reg(this, ir->type);
422 /* Interpolation is always in floating point regs. */
423 reg->type = BRW_REGISTER_TYPE_F;
424 fs_reg attr = *reg;
425
426 unsigned int array_elements;
427 const glsl_type *type;
428
429 if (ir->type->is_array()) {
430 array_elements = ir->type->length;
431 if (array_elements == 0) {
432 this->fail = true;
433 }
434 type = ir->type->fields.array;
435 } else {
436 array_elements = 1;
437 type = ir->type;
438 }
439
440 int location = ir->location;
441 for (unsigned int i = 0; i < array_elements; i++) {
442 for (unsigned int j = 0; j < type->matrix_columns; j++) {
443 if (urb_setup[location] == -1) {
444 /* If there's no incoming setup data for this slot, don't
445 * emit interpolation for it.
446 */
447 attr.reg_offset += type->vector_elements;
448 location++;
449 continue;
450 }
451
452 for (unsigned int c = 0; c < type->vector_elements; c++) {
453 struct brw_reg interp = interp_reg(location, c);
454 emit(fs_inst(FS_OPCODE_LINTERP,
455 attr,
456 this->delta_x,
457 this->delta_y,
458 fs_reg(interp)));
459 attr.reg_offset++;
460 }
461
462 if (intel->gen < 6) {
463 attr.reg_offset -= type->vector_elements;
464 for (unsigned int c = 0; c < type->vector_elements; c++) {
465 emit(fs_inst(BRW_OPCODE_MUL,
466 attr,
467 attr,
468 this->pixel_w));
469 attr.reg_offset++;
470 }
471 }
472 location++;
473 }
474 }
475
476 return reg;
477 }
478
479 fs_reg *
480 fs_visitor::emit_frontfacing_interpolation(ir_variable *ir)
481 {
482 fs_reg *reg = new(this->mem_ctx) fs_reg(this, ir->type);
483
484 /* The frontfacing comes in as a bit in the thread payload. */
485 if (intel->gen >= 6) {
486 emit(fs_inst(BRW_OPCODE_ASR,
487 *reg,
488 fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_D)),
489 fs_reg(15)));
490 emit(fs_inst(BRW_OPCODE_NOT,
491 *reg,
492 *reg));
493 emit(fs_inst(BRW_OPCODE_AND,
494 *reg,
495 *reg,
496 fs_reg(1)));
497 } else {
498 fs_reg *reg = new(this->mem_ctx) fs_reg(this, ir->type);
499 struct brw_reg r1_6ud = retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_UD);
500 /* bit 31 is "primitive is back face", so checking < (1 << 31) gives
501 * us front face
502 */
503 fs_inst *inst = emit(fs_inst(BRW_OPCODE_CMP,
504 *reg,
505 fs_reg(r1_6ud),
506 fs_reg(1u << 31)));
507 inst->conditional_mod = BRW_CONDITIONAL_L;
508 emit(fs_inst(BRW_OPCODE_AND, *reg, *reg, fs_reg(1u)));
509 }
510
511 return reg;
512 }
513
514 fs_inst *
515 fs_visitor::emit_math(fs_opcodes opcode, fs_reg dst, fs_reg src)
516 {
517 switch (opcode) {
518 case FS_OPCODE_RCP:
519 case FS_OPCODE_RSQ:
520 case FS_OPCODE_SQRT:
521 case FS_OPCODE_EXP2:
522 case FS_OPCODE_LOG2:
523 case FS_OPCODE_SIN:
524 case FS_OPCODE_COS:
525 break;
526 default:
527 assert(!"not reached: bad math opcode");
528 return NULL;
529 }
530
531 /* Can't do hstride == 0 args to gen6 math, so expand it out. We
532 * might be able to do better by doing execsize = 1 math and then
533 * expanding that result out, but we would need to be careful with
534 * masking.
535 */
536 if (intel->gen >= 6 && src.file == UNIFORM) {
537 fs_reg expanded = fs_reg(this, glsl_type::float_type);
538 emit(fs_inst(BRW_OPCODE_MOV, expanded, src));
539 src = expanded;
540 }
541
542 fs_inst *inst = emit(fs_inst(opcode, dst, src));
543
544 if (intel->gen < 6) {
545 inst->base_mrf = 2;
546 inst->mlen = 1;
547 }
548
549 return inst;
550 }
551
552 fs_inst *
553 fs_visitor::emit_math(fs_opcodes opcode, fs_reg dst, fs_reg src0, fs_reg src1)
554 {
555 int base_mrf = 2;
556 fs_inst *inst;
557
558 assert(opcode == FS_OPCODE_POW);
559
560 if (intel->gen >= 6) {
561 /* Can't do hstride == 0 args to gen6 math, so expand it out. */
562 if (src0.file == UNIFORM) {
563 fs_reg expanded = fs_reg(this, glsl_type::float_type);
564 emit(fs_inst(BRW_OPCODE_MOV, expanded, src0));
565 src0 = expanded;
566 }
567
568 if (src1.file == UNIFORM) {
569 fs_reg expanded = fs_reg(this, glsl_type::float_type);
570 emit(fs_inst(BRW_OPCODE_MOV, expanded, src1));
571 src1 = expanded;
572 }
573
574 inst = emit(fs_inst(opcode, dst, src0, src1));
575 } else {
576 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + 1), src1));
577 inst = emit(fs_inst(opcode, dst, src0, reg_null));
578
579 inst->base_mrf = base_mrf;
580 inst->mlen = 2;
581 }
582 return inst;
583 }
584
585 void
586 fs_visitor::visit(ir_variable *ir)
587 {
588 fs_reg *reg = NULL;
589
590 if (variable_storage(ir))
591 return;
592
593 if (strcmp(ir->name, "gl_FragColor") == 0) {
594 this->frag_color = ir;
595 } else if (strcmp(ir->name, "gl_FragData") == 0) {
596 this->frag_data = ir;
597 } else if (strcmp(ir->name, "gl_FragDepth") == 0) {
598 this->frag_depth = ir;
599 }
600
601 if (ir->mode == ir_var_in) {
602 if (!strcmp(ir->name, "gl_FragCoord")) {
603 reg = emit_fragcoord_interpolation(ir);
604 } else if (!strcmp(ir->name, "gl_FrontFacing")) {
605 reg = emit_frontfacing_interpolation(ir);
606 } else {
607 reg = emit_general_interpolation(ir);
608 }
609 assert(reg);
610 hash_table_insert(this->variable_ht, reg, ir);
611 return;
612 }
613
614 if (ir->mode == ir_var_uniform) {
615 int param_index = c->prog_data.nr_params;
616
617 if (!strncmp(ir->name, "gl_", 3)) {
618 setup_builtin_uniform_values(ir);
619 } else {
620 setup_uniform_values(ir->location, ir->type);
621 }
622
623 reg = new(this->mem_ctx) fs_reg(UNIFORM, param_index);
624 }
625
626 if (!reg)
627 reg = new(this->mem_ctx) fs_reg(this, ir->type);
628
629 hash_table_insert(this->variable_ht, reg, ir);
630 }
631
632 void
633 fs_visitor::visit(ir_dereference_variable *ir)
634 {
635 fs_reg *reg = variable_storage(ir->var);
636 this->result = *reg;
637 }
638
639 void
640 fs_visitor::visit(ir_dereference_record *ir)
641 {
642 const glsl_type *struct_type = ir->record->type;
643
644 ir->record->accept(this);
645
646 unsigned int offset = 0;
647 for (unsigned int i = 0; i < struct_type->length; i++) {
648 if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
649 break;
650 offset += type_size(struct_type->fields.structure[i].type);
651 }
652 this->result.reg_offset += offset;
653 this->result.type = brw_type_for_base_type(ir->type);
654 }
655
656 void
657 fs_visitor::visit(ir_dereference_array *ir)
658 {
659 ir_constant *index;
660 int element_size;
661
662 ir->array->accept(this);
663 index = ir->array_index->as_constant();
664
665 element_size = type_size(ir->type);
666 this->result.type = brw_type_for_base_type(ir->type);
667
668 if (index) {
669 assert(this->result.file == UNIFORM ||
670 (this->result.file == GRF &&
671 this->result.reg != 0));
672 this->result.reg_offset += index->value.i[0] * element_size;
673 } else {
674 assert(!"FINISHME: non-constant array element");
675 }
676 }
677
678 void
679 fs_visitor::visit(ir_expression *ir)
680 {
681 unsigned int operand;
682 fs_reg op[2], temp;
683 fs_reg result;
684 fs_inst *inst;
685
686 for (operand = 0; operand < ir->get_num_operands(); operand++) {
687 ir->operands[operand]->accept(this);
688 if (this->result.file == BAD_FILE) {
689 ir_print_visitor v;
690 printf("Failed to get tree for expression operand:\n");
691 ir->operands[operand]->accept(&v);
692 this->fail = true;
693 }
694 op[operand] = this->result;
695
696 /* Matrix expression operands should have been broken down to vector
697 * operations already.
698 */
699 assert(!ir->operands[operand]->type->is_matrix());
700 /* And then those vector operands should have been broken down to scalar.
701 */
702 assert(!ir->operands[operand]->type->is_vector());
703 }
704
705 /* Storage for our result. If our result goes into an assignment, it will
706 * just get copy-propagated out, so no worries.
707 */
708 this->result = fs_reg(this, ir->type);
709
710 switch (ir->operation) {
711 case ir_unop_logic_not:
712 /* Note that BRW_OPCODE_NOT is not appropriate here, since it is
713 * ones complement of the whole register, not just bit 0.
714 */
715 emit(fs_inst(BRW_OPCODE_ADD, this->result, op[0], fs_reg(-1)));
716 break;
717 case ir_unop_neg:
718 op[0].negate = !op[0].negate;
719 this->result = op[0];
720 break;
721 case ir_unop_abs:
722 op[0].abs = true;
723 this->result = op[0];
724 break;
725 case ir_unop_sign:
726 temp = fs_reg(this, ir->type);
727
728 emit(fs_inst(BRW_OPCODE_MOV, this->result, fs_reg(0.0f)));
729
730 inst = emit(fs_inst(BRW_OPCODE_CMP, reg_null, op[0], fs_reg(0.0f)));
731 inst->conditional_mod = BRW_CONDITIONAL_G;
732 inst = emit(fs_inst(BRW_OPCODE_MOV, this->result, fs_reg(1.0f)));
733 inst->predicated = true;
734
735 inst = emit(fs_inst(BRW_OPCODE_CMP, reg_null, op[0], fs_reg(0.0f)));
736 inst->conditional_mod = BRW_CONDITIONAL_L;
737 inst = emit(fs_inst(BRW_OPCODE_MOV, this->result, fs_reg(-1.0f)));
738 inst->predicated = true;
739
740 break;
741 case ir_unop_rcp:
742 emit_math(FS_OPCODE_RCP, this->result, op[0]);
743 break;
744
745 case ir_unop_exp2:
746 emit_math(FS_OPCODE_EXP2, this->result, op[0]);
747 break;
748 case ir_unop_log2:
749 emit_math(FS_OPCODE_LOG2, this->result, op[0]);
750 break;
751 case ir_unop_exp:
752 case ir_unop_log:
753 assert(!"not reached: should be handled by ir_explog_to_explog2");
754 break;
755 case ir_unop_sin:
756 emit_math(FS_OPCODE_SIN, this->result, op[0]);
757 break;
758 case ir_unop_cos:
759 emit_math(FS_OPCODE_COS, this->result, op[0]);
760 break;
761
762 case ir_unop_dFdx:
763 emit(fs_inst(FS_OPCODE_DDX, this->result, op[0]));
764 break;
765 case ir_unop_dFdy:
766 emit(fs_inst(FS_OPCODE_DDY, this->result, op[0]));
767 break;
768
769 case ir_binop_add:
770 emit(fs_inst(BRW_OPCODE_ADD, this->result, op[0], op[1]));
771 break;
772 case ir_binop_sub:
773 assert(!"not reached: should be handled by ir_sub_to_add_neg");
774 break;
775
776 case ir_binop_mul:
777 emit(fs_inst(BRW_OPCODE_MUL, this->result, op[0], op[1]));
778 break;
779 case ir_binop_div:
780 assert(!"not reached: should be handled by ir_div_to_mul_rcp");
781 break;
782 case ir_binop_mod:
783 assert(!"ir_binop_mod should have been converted to b * fract(a/b)");
784 break;
785
786 case ir_binop_less:
787 inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], op[1]));
788 inst->conditional_mod = BRW_CONDITIONAL_L;
789 emit(fs_inst(BRW_OPCODE_AND, this->result, this->result, fs_reg(0x1)));
790 break;
791 case ir_binop_greater:
792 inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], op[1]));
793 inst->conditional_mod = BRW_CONDITIONAL_G;
794 emit(fs_inst(BRW_OPCODE_AND, this->result, this->result, fs_reg(0x1)));
795 break;
796 case ir_binop_lequal:
797 inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], op[1]));
798 inst->conditional_mod = BRW_CONDITIONAL_LE;
799 emit(fs_inst(BRW_OPCODE_AND, this->result, this->result, fs_reg(0x1)));
800 break;
801 case ir_binop_gequal:
802 inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], op[1]));
803 inst->conditional_mod = BRW_CONDITIONAL_GE;
804 emit(fs_inst(BRW_OPCODE_AND, this->result, this->result, fs_reg(0x1)));
805 break;
806 case ir_binop_equal:
807 case ir_binop_all_equal: /* same as nequal for scalars */
808 inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], op[1]));
809 inst->conditional_mod = BRW_CONDITIONAL_Z;
810 emit(fs_inst(BRW_OPCODE_AND, this->result, this->result, fs_reg(0x1)));
811 break;
812 case ir_binop_nequal:
813 case ir_binop_any_nequal: /* same as nequal for scalars */
814 inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], op[1]));
815 inst->conditional_mod = BRW_CONDITIONAL_NZ;
816 emit(fs_inst(BRW_OPCODE_AND, this->result, this->result, fs_reg(0x1)));
817 break;
818
819 case ir_binop_logic_xor:
820 emit(fs_inst(BRW_OPCODE_XOR, this->result, op[0], op[1]));
821 break;
822
823 case ir_binop_logic_or:
824 emit(fs_inst(BRW_OPCODE_OR, this->result, op[0], op[1]));
825 break;
826
827 case ir_binop_logic_and:
828 emit(fs_inst(BRW_OPCODE_AND, this->result, op[0], op[1]));
829 break;
830
831 case ir_binop_dot:
832 case ir_binop_cross:
833 case ir_unop_any:
834 assert(!"not reached: should be handled by brw_fs_channel_expressions");
835 break;
836
837 case ir_unop_noise:
838 assert(!"not reached: should be handled by lower_noise");
839 break;
840
841 case ir_unop_sqrt:
842 emit_math(FS_OPCODE_SQRT, this->result, op[0]);
843 break;
844
845 case ir_unop_rsq:
846 emit_math(FS_OPCODE_RSQ, this->result, op[0]);
847 break;
848
849 case ir_unop_i2f:
850 case ir_unop_b2f:
851 case ir_unop_b2i:
852 case ir_unop_f2i:
853 emit(fs_inst(BRW_OPCODE_MOV, this->result, op[0]));
854 break;
855 case ir_unop_f2b:
856 case ir_unop_i2b:
857 inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], fs_reg(0.0f)));
858 inst->conditional_mod = BRW_CONDITIONAL_NZ;
859 inst = emit(fs_inst(BRW_OPCODE_AND, this->result,
860 this->result, fs_reg(1)));
861 break;
862
863 case ir_unop_trunc:
864 emit(fs_inst(BRW_OPCODE_RNDZ, this->result, op[0]));
865 break;
866 case ir_unop_ceil:
867 op[0].negate = !op[0].negate;
868 inst = emit(fs_inst(BRW_OPCODE_RNDD, this->result, op[0]));
869 this->result.negate = true;
870 break;
871 case ir_unop_floor:
872 inst = emit(fs_inst(BRW_OPCODE_RNDD, this->result, op[0]));
873 break;
874 case ir_unop_fract:
875 inst = emit(fs_inst(BRW_OPCODE_FRC, this->result, op[0]));
876 break;
877 case ir_unop_round_even:
878 emit(fs_inst(BRW_OPCODE_RNDE, this->result, op[0]));
879 break;
880
881 case ir_binop_min:
882 inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], op[1]));
883 inst->conditional_mod = BRW_CONDITIONAL_L;
884
885 inst = emit(fs_inst(BRW_OPCODE_SEL, this->result, op[0], op[1]));
886 inst->predicated = true;
887 break;
888 case ir_binop_max:
889 inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], op[1]));
890 inst->conditional_mod = BRW_CONDITIONAL_G;
891
892 inst = emit(fs_inst(BRW_OPCODE_SEL, this->result, op[0], op[1]));
893 inst->predicated = true;
894 break;
895
896 case ir_binop_pow:
897 emit_math(FS_OPCODE_POW, this->result, op[0], op[1]);
898 break;
899
900 case ir_unop_bit_not:
901 case ir_unop_u2f:
902 case ir_binop_lshift:
903 case ir_binop_rshift:
904 case ir_binop_bit_and:
905 case ir_binop_bit_xor:
906 case ir_binop_bit_or:
907 assert(!"GLSL 1.30 features unsupported");
908 break;
909 }
910 }
911
912 void
913 fs_visitor::emit_assignment_writes(fs_reg &l, fs_reg &r,
914 const glsl_type *type, bool predicated)
915 {
916 switch (type->base_type) {
917 case GLSL_TYPE_FLOAT:
918 case GLSL_TYPE_UINT:
919 case GLSL_TYPE_INT:
920 case GLSL_TYPE_BOOL:
921 for (unsigned int i = 0; i < type->components(); i++) {
922 l.type = brw_type_for_base_type(type);
923 r.type = brw_type_for_base_type(type);
924
925 fs_inst *inst = emit(fs_inst(BRW_OPCODE_MOV, l, r));
926 inst->predicated = predicated;
927
928 l.reg_offset++;
929 r.reg_offset++;
930 }
931 break;
932 case GLSL_TYPE_ARRAY:
933 for (unsigned int i = 0; i < type->length; i++) {
934 emit_assignment_writes(l, r, type->fields.array, predicated);
935 }
936
937 case GLSL_TYPE_STRUCT:
938 for (unsigned int i = 0; i < type->length; i++) {
939 emit_assignment_writes(l, r, type->fields.structure[i].type,
940 predicated);
941 }
942 break;
943
944 case GLSL_TYPE_SAMPLER:
945 break;
946
947 default:
948 assert(!"not reached");
949 break;
950 }
951 }
952
953 void
954 fs_visitor::visit(ir_assignment *ir)
955 {
956 struct fs_reg l, r;
957 fs_inst *inst;
958
959 /* FINISHME: arrays on the lhs */
960 ir->lhs->accept(this);
961 l = this->result;
962
963 ir->rhs->accept(this);
964 r = this->result;
965
966 assert(l.file != BAD_FILE);
967 assert(r.file != BAD_FILE);
968
969 if (ir->condition) {
970 emit_bool_to_cond_code(ir->condition);
971 }
972
973 if (ir->lhs->type->is_scalar() ||
974 ir->lhs->type->is_vector()) {
975 for (int i = 0; i < ir->lhs->type->vector_elements; i++) {
976 if (ir->write_mask & (1 << i)) {
977 inst = emit(fs_inst(BRW_OPCODE_MOV, l, r));
978 if (ir->condition)
979 inst->predicated = true;
980 r.reg_offset++;
981 }
982 l.reg_offset++;
983 }
984 } else {
985 emit_assignment_writes(l, r, ir->lhs->type, ir->condition != NULL);
986 }
987 }
988
989 fs_inst *
990 fs_visitor::emit_texture_gen4(ir_texture *ir, fs_reg dst, fs_reg coordinate)
991 {
992 int mlen;
993 int base_mrf = 1;
994 bool simd16 = false;
995 fs_reg orig_dst;
996
997 /* g0 header. */
998 mlen = 1;
999
1000 if (ir->shadow_comparitor) {
1001 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
1002 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i),
1003 coordinate));
1004 coordinate.reg_offset++;
1005 }
1006 /* gen4's SIMD8 sampler always has the slots for u,v,r present. */
1007 mlen += 3;
1008
1009 if (ir->op == ir_tex) {
1010 /* There's no plain shadow compare message, so we use shadow
1011 * compare with a bias of 0.0.
1012 */
1013 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen),
1014 fs_reg(0.0f)));
1015 mlen++;
1016 } else if (ir->op == ir_txb) {
1017 ir->lod_info.bias->accept(this);
1018 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen),
1019 this->result));
1020 mlen++;
1021 } else {
1022 assert(ir->op == ir_txl);
1023 ir->lod_info.lod->accept(this);
1024 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen),
1025 this->result));
1026 mlen++;
1027 }
1028
1029 ir->shadow_comparitor->accept(this);
1030 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result));
1031 mlen++;
1032 } else if (ir->op == ir_tex) {
1033 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
1034 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i),
1035 coordinate));
1036 coordinate.reg_offset++;
1037 }
1038 /* gen4's SIMD8 sampler always has the slots for u,v,r present. */
1039 mlen += 3;
1040 } else {
1041 /* Oh joy. gen4 doesn't have SIMD8 non-shadow-compare bias/lod
1042 * instructions. We'll need to do SIMD16 here.
1043 */
1044 assert(ir->op == ir_txb || ir->op == ir_txl);
1045
1046 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
1047 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i * 2),
1048 coordinate));
1049 coordinate.reg_offset++;
1050 }
1051
1052 /* lod/bias appears after u/v/r. */
1053 mlen += 6;
1054
1055 if (ir->op == ir_txb) {
1056 ir->lod_info.bias->accept(this);
1057 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen),
1058 this->result));
1059 mlen++;
1060 } else {
1061 ir->lod_info.lod->accept(this);
1062 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen),
1063 this->result));
1064 mlen++;
1065 }
1066
1067 /* The unused upper half. */
1068 mlen++;
1069
1070 /* Now, since we're doing simd16, the return is 2 interleaved
1071 * vec4s where the odd-indexed ones are junk. We'll need to move
1072 * this weirdness around to the expected layout.
1073 */
1074 simd16 = true;
1075 orig_dst = dst;
1076 dst = fs_reg(this, glsl_type::get_array_instance(glsl_type::vec4_type,
1077 2));
1078 dst.type = BRW_REGISTER_TYPE_F;
1079 }
1080
1081 fs_inst *inst = NULL;
1082 switch (ir->op) {
1083 case ir_tex:
1084 inst = emit(fs_inst(FS_OPCODE_TEX, dst));
1085 break;
1086 case ir_txb:
1087 inst = emit(fs_inst(FS_OPCODE_TXB, dst));
1088 break;
1089 case ir_txl:
1090 inst = emit(fs_inst(FS_OPCODE_TXL, dst));
1091 break;
1092 case ir_txd:
1093 case ir_txf:
1094 assert(!"GLSL 1.30 features unsupported");
1095 break;
1096 }
1097 inst->base_mrf = base_mrf;
1098 inst->mlen = mlen;
1099
1100 if (simd16) {
1101 for (int i = 0; i < 4; i++) {
1102 emit(fs_inst(BRW_OPCODE_MOV, orig_dst, dst));
1103 orig_dst.reg_offset++;
1104 dst.reg_offset += 2;
1105 }
1106 }
1107
1108 return inst;
1109 }
1110
1111 fs_inst *
1112 fs_visitor::emit_texture_gen5(ir_texture *ir, fs_reg dst, fs_reg coordinate)
1113 {
1114 /* gen5's SIMD8 sampler has slots for u, v, r, array index, then
1115 * optional parameters like shadow comparitor or LOD bias. If
1116 * optional parameters aren't present, those base slots are
1117 * optional and don't need to be included in the message.
1118 *
1119 * We don't fill in the unnecessary slots regardless, which may
1120 * look surprising in the disassembly.
1121 */
1122 int mlen = 1; /* g0 header always present. */
1123 int base_mrf = 1;
1124
1125 for (int i = 0; i < ir->coordinate->type->vector_elements; i++) {
1126 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen + i),
1127 coordinate));
1128 coordinate.reg_offset++;
1129 }
1130 mlen += ir->coordinate->type->vector_elements;
1131
1132 if (ir->shadow_comparitor) {
1133 mlen = MAX2(mlen, 5);
1134
1135 ir->shadow_comparitor->accept(this);
1136 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result));
1137 mlen++;
1138 }
1139
1140 fs_inst *inst = NULL;
1141 switch (ir->op) {
1142 case ir_tex:
1143 inst = emit(fs_inst(FS_OPCODE_TEX, dst));
1144 break;
1145 case ir_txb:
1146 ir->lod_info.bias->accept(this);
1147 mlen = MAX2(mlen, 5);
1148 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result));
1149 mlen++;
1150
1151 inst = emit(fs_inst(FS_OPCODE_TXB, dst));
1152 break;
1153 case ir_txl:
1154 ir->lod_info.lod->accept(this);
1155 mlen = MAX2(mlen, 5);
1156 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result));
1157 mlen++;
1158
1159 inst = emit(fs_inst(FS_OPCODE_TXL, dst));
1160 break;
1161 case ir_txd:
1162 case ir_txf:
1163 assert(!"GLSL 1.30 features unsupported");
1164 break;
1165 }
1166 inst->base_mrf = base_mrf;
1167 inst->mlen = mlen;
1168
1169 return inst;
1170 }
1171
1172 void
1173 fs_visitor::visit(ir_texture *ir)
1174 {
1175 int sampler;
1176 fs_inst *inst = NULL;
1177
1178 ir->coordinate->accept(this);
1179 fs_reg coordinate = this->result;
1180
1181 /* Should be lowered by do_lower_texture_projection */
1182 assert(!ir->projector);
1183
1184 sampler = _mesa_get_sampler_uniform_value(ir->sampler,
1185 ctx->Shader.CurrentProgram,
1186 &brw->fragment_program->Base);
1187 sampler = c->fp->program.Base.SamplerUnits[sampler];
1188
1189 /* The 965 requires the EU to do the normalization of GL rectangle
1190 * texture coordinates. We use the program parameter state
1191 * tracking to get the scaling factor.
1192 */
1193 if (ir->sampler->type->sampler_dimensionality == GLSL_SAMPLER_DIM_RECT) {
1194 struct gl_program_parameter_list *params = c->fp->program.Base.Parameters;
1195 int tokens[STATE_LENGTH] = {
1196 STATE_INTERNAL,
1197 STATE_TEXRECT_SCALE,
1198 sampler,
1199 0,
1200 0
1201 };
1202
1203 fs_reg scale_x = fs_reg(UNIFORM, c->prog_data.nr_params);
1204 fs_reg scale_y = fs_reg(UNIFORM, c->prog_data.nr_params + 1);
1205 GLuint index = _mesa_add_state_reference(params,
1206 (gl_state_index *)tokens);
1207 float *vec_values = this->fp->Base.Parameters->ParameterValues[index];
1208
1209 c->prog_data.param[c->prog_data.nr_params++] = &vec_values[0];
1210 c->prog_data.param[c->prog_data.nr_params++] = &vec_values[1];
1211
1212 fs_reg dst = fs_reg(this, ir->coordinate->type);
1213 fs_reg src = coordinate;
1214 coordinate = dst;
1215
1216 emit(fs_inst(BRW_OPCODE_MUL, dst, src, scale_x));
1217 dst.reg_offset++;
1218 src.reg_offset++;
1219 emit(fs_inst(BRW_OPCODE_MUL, dst, src, scale_y));
1220 }
1221
1222 /* Writemasking doesn't eliminate channels on SIMD8 texture
1223 * samples, so don't worry about them.
1224 */
1225 fs_reg dst = fs_reg(this, glsl_type::vec4_type);
1226
1227 if (intel->gen < 5) {
1228 inst = emit_texture_gen4(ir, dst, coordinate);
1229 } else {
1230 inst = emit_texture_gen5(ir, dst, coordinate);
1231 }
1232
1233 inst->sampler = sampler;
1234
1235 this->result = dst;
1236
1237 if (ir->shadow_comparitor)
1238 inst->shadow_compare = true;
1239
1240 if (c->key.tex_swizzles[inst->sampler] != SWIZZLE_NOOP) {
1241 fs_reg swizzle_dst = fs_reg(this, glsl_type::vec4_type);
1242
1243 for (int i = 0; i < 4; i++) {
1244 int swiz = GET_SWZ(c->key.tex_swizzles[inst->sampler], i);
1245 fs_reg l = swizzle_dst;
1246 l.reg_offset += i;
1247
1248 if (swiz == SWIZZLE_ZERO) {
1249 emit(fs_inst(BRW_OPCODE_MOV, l, fs_reg(0.0f)));
1250 } else if (swiz == SWIZZLE_ONE) {
1251 emit(fs_inst(BRW_OPCODE_MOV, l, fs_reg(1.0f)));
1252 } else {
1253 fs_reg r = dst;
1254 r.reg_offset += GET_SWZ(c->key.tex_swizzles[inst->sampler], i);
1255 emit(fs_inst(BRW_OPCODE_MOV, l, r));
1256 }
1257 }
1258 this->result = swizzle_dst;
1259 }
1260 }
1261
1262 void
1263 fs_visitor::visit(ir_swizzle *ir)
1264 {
1265 ir->val->accept(this);
1266 fs_reg val = this->result;
1267
1268 if (ir->type->vector_elements == 1) {
1269 this->result.reg_offset += ir->mask.x;
1270 return;
1271 }
1272
1273 fs_reg result = fs_reg(this, ir->type);
1274 this->result = result;
1275
1276 for (unsigned int i = 0; i < ir->type->vector_elements; i++) {
1277 fs_reg channel = val;
1278 int swiz = 0;
1279
1280 switch (i) {
1281 case 0:
1282 swiz = ir->mask.x;
1283 break;
1284 case 1:
1285 swiz = ir->mask.y;
1286 break;
1287 case 2:
1288 swiz = ir->mask.z;
1289 break;
1290 case 3:
1291 swiz = ir->mask.w;
1292 break;
1293 }
1294
1295 channel.reg_offset += swiz;
1296 emit(fs_inst(BRW_OPCODE_MOV, result, channel));
1297 result.reg_offset++;
1298 }
1299 }
1300
1301 void
1302 fs_visitor::visit(ir_discard *ir)
1303 {
1304 fs_reg temp = fs_reg(this, glsl_type::uint_type);
1305
1306 assert(ir->condition == NULL); /* FINISHME */
1307
1308 emit(fs_inst(FS_OPCODE_DISCARD_NOT, temp, reg_null));
1309 emit(fs_inst(FS_OPCODE_DISCARD_AND, reg_null, temp));
1310 kill_emitted = true;
1311 }
1312
1313 void
1314 fs_visitor::visit(ir_constant *ir)
1315 {
1316 fs_reg reg(this, ir->type);
1317 this->result = reg;
1318
1319 for (unsigned int i = 0; i < ir->type->vector_elements; i++) {
1320 switch (ir->type->base_type) {
1321 case GLSL_TYPE_FLOAT:
1322 emit(fs_inst(BRW_OPCODE_MOV, reg, fs_reg(ir->value.f[i])));
1323 break;
1324 case GLSL_TYPE_UINT:
1325 emit(fs_inst(BRW_OPCODE_MOV, reg, fs_reg(ir->value.u[i])));
1326 break;
1327 case GLSL_TYPE_INT:
1328 emit(fs_inst(BRW_OPCODE_MOV, reg, fs_reg(ir->value.i[i])));
1329 break;
1330 case GLSL_TYPE_BOOL:
1331 emit(fs_inst(BRW_OPCODE_MOV, reg, fs_reg((int)ir->value.b[i])));
1332 break;
1333 default:
1334 assert(!"Non-float/uint/int/bool constant");
1335 }
1336 reg.reg_offset++;
1337 }
1338 }
1339
1340 void
1341 fs_visitor::emit_bool_to_cond_code(ir_rvalue *ir)
1342 {
1343 ir_expression *expr = ir->as_expression();
1344
1345 if (expr) {
1346 fs_reg op[2];
1347 fs_inst *inst;
1348
1349 for (unsigned int i = 0; i < expr->get_num_operands(); i++) {
1350 assert(expr->operands[i]->type->is_scalar());
1351
1352 expr->operands[i]->accept(this);
1353 op[i] = this->result;
1354 }
1355
1356 switch (expr->operation) {
1357 case ir_unop_logic_not:
1358 inst = emit(fs_inst(BRW_OPCODE_ADD, reg_null, op[0], fs_reg(-1)));
1359 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1360 break;
1361
1362 case ir_binop_logic_xor:
1363 inst = emit(fs_inst(BRW_OPCODE_XOR, reg_null, op[0], op[1]));
1364 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1365 break;
1366
1367 case ir_binop_logic_or:
1368 inst = emit(fs_inst(BRW_OPCODE_OR, reg_null, op[0], op[1]));
1369 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1370 break;
1371
1372 case ir_binop_logic_and:
1373 inst = emit(fs_inst(BRW_OPCODE_AND, reg_null, op[0], op[1]));
1374 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1375 break;
1376
1377 case ir_unop_f2b:
1378 if (intel->gen >= 6) {
1379 inst = emit(fs_inst(BRW_OPCODE_CMP, reg_null, op[0], fs_reg(0.0f)));
1380 } else {
1381 inst = emit(fs_inst(BRW_OPCODE_MOV, reg_null, op[0]));
1382 }
1383 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1384 break;
1385
1386 case ir_unop_i2b:
1387 if (intel->gen >= 6) {
1388 inst = emit(fs_inst(BRW_OPCODE_CMP, reg_null, op[0], fs_reg(0)));
1389 } else {
1390 inst = emit(fs_inst(BRW_OPCODE_MOV, reg_null, op[0]));
1391 }
1392 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1393 break;
1394
1395 case ir_binop_greater:
1396 inst = emit(fs_inst(BRW_OPCODE_CMP, reg_null, op[0], op[1]));
1397 inst->conditional_mod = BRW_CONDITIONAL_G;
1398 break;
1399 case ir_binop_gequal:
1400 inst = emit(fs_inst(BRW_OPCODE_CMP, reg_null, op[0], op[1]));
1401 inst->conditional_mod = BRW_CONDITIONAL_GE;
1402 break;
1403 case ir_binop_less:
1404 inst = emit(fs_inst(BRW_OPCODE_CMP, reg_null, op[0], op[1]));
1405 inst->conditional_mod = BRW_CONDITIONAL_L;
1406 break;
1407 case ir_binop_lequal:
1408 inst = emit(fs_inst(BRW_OPCODE_CMP, reg_null, op[0], op[1]));
1409 inst->conditional_mod = BRW_CONDITIONAL_LE;
1410 break;
1411 case ir_binop_equal:
1412 case ir_binop_all_equal:
1413 inst = emit(fs_inst(BRW_OPCODE_CMP, reg_null, op[0], op[1]));
1414 inst->conditional_mod = BRW_CONDITIONAL_Z;
1415 break;
1416 case ir_binop_nequal:
1417 case ir_binop_any_nequal:
1418 inst = emit(fs_inst(BRW_OPCODE_CMP, reg_null, op[0], op[1]));
1419 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1420 break;
1421 default:
1422 assert(!"not reached");
1423 this->fail = true;
1424 break;
1425 }
1426 return;
1427 }
1428
1429 ir->accept(this);
1430
1431 if (intel->gen >= 6) {
1432 fs_inst *inst = emit(fs_inst(BRW_OPCODE_AND, reg_null,
1433 this->result, fs_reg(1)));
1434 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1435 } else {
1436 fs_inst *inst = emit(fs_inst(BRW_OPCODE_MOV, reg_null, this->result));
1437 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1438 }
1439 }
1440
1441 void
1442 fs_visitor::visit(ir_if *ir)
1443 {
1444 fs_inst *inst;
1445
1446 /* Don't point the annotation at the if statement, because then it plus
1447 * the then and else blocks get printed.
1448 */
1449 this->base_ir = ir->condition;
1450
1451 emit_bool_to_cond_code(ir->condition);
1452
1453 inst = emit(fs_inst(BRW_OPCODE_IF));
1454 inst->predicated = true;
1455
1456 foreach_iter(exec_list_iterator, iter, ir->then_instructions) {
1457 ir_instruction *ir = (ir_instruction *)iter.get();
1458 this->base_ir = ir;
1459
1460 ir->accept(this);
1461 }
1462
1463 if (!ir->else_instructions.is_empty()) {
1464 emit(fs_inst(BRW_OPCODE_ELSE));
1465
1466 foreach_iter(exec_list_iterator, iter, ir->else_instructions) {
1467 ir_instruction *ir = (ir_instruction *)iter.get();
1468 this->base_ir = ir;
1469
1470 ir->accept(this);
1471 }
1472 }
1473
1474 emit(fs_inst(BRW_OPCODE_ENDIF));
1475 }
1476
1477 void
1478 fs_visitor::visit(ir_loop *ir)
1479 {
1480 fs_reg counter = reg_undef;
1481
1482 if (ir->counter) {
1483 this->base_ir = ir->counter;
1484 ir->counter->accept(this);
1485 counter = *(variable_storage(ir->counter));
1486
1487 if (ir->from) {
1488 this->base_ir = ir->from;
1489 ir->from->accept(this);
1490
1491 emit(fs_inst(BRW_OPCODE_MOV, counter, this->result));
1492 }
1493 }
1494
1495 emit(fs_inst(BRW_OPCODE_DO));
1496
1497 if (ir->to) {
1498 this->base_ir = ir->to;
1499 ir->to->accept(this);
1500
1501 fs_inst *inst = emit(fs_inst(BRW_OPCODE_CMP, reg_null,
1502 counter, this->result));
1503 switch (ir->cmp) {
1504 case ir_binop_equal:
1505 inst->conditional_mod = BRW_CONDITIONAL_Z;
1506 break;
1507 case ir_binop_nequal:
1508 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1509 break;
1510 case ir_binop_gequal:
1511 inst->conditional_mod = BRW_CONDITIONAL_GE;
1512 break;
1513 case ir_binop_lequal:
1514 inst->conditional_mod = BRW_CONDITIONAL_LE;
1515 break;
1516 case ir_binop_greater:
1517 inst->conditional_mod = BRW_CONDITIONAL_G;
1518 break;
1519 case ir_binop_less:
1520 inst->conditional_mod = BRW_CONDITIONAL_L;
1521 break;
1522 default:
1523 assert(!"not reached: unknown loop condition");
1524 this->fail = true;
1525 break;
1526 }
1527
1528 inst = emit(fs_inst(BRW_OPCODE_BREAK));
1529 inst->predicated = true;
1530 }
1531
1532 foreach_iter(exec_list_iterator, iter, ir->body_instructions) {
1533 ir_instruction *ir = (ir_instruction *)iter.get();
1534
1535 this->base_ir = ir;
1536 ir->accept(this);
1537 }
1538
1539 if (ir->increment) {
1540 this->base_ir = ir->increment;
1541 ir->increment->accept(this);
1542 emit(fs_inst(BRW_OPCODE_ADD, counter, counter, this->result));
1543 }
1544
1545 emit(fs_inst(BRW_OPCODE_WHILE));
1546 }
1547
1548 void
1549 fs_visitor::visit(ir_loop_jump *ir)
1550 {
1551 switch (ir->mode) {
1552 case ir_loop_jump::jump_break:
1553 emit(fs_inst(BRW_OPCODE_BREAK));
1554 break;
1555 case ir_loop_jump::jump_continue:
1556 emit(fs_inst(BRW_OPCODE_CONTINUE));
1557 break;
1558 }
1559 }
1560
1561 void
1562 fs_visitor::visit(ir_call *ir)
1563 {
1564 assert(!"FINISHME");
1565 }
1566
1567 void
1568 fs_visitor::visit(ir_return *ir)
1569 {
1570 assert(!"FINISHME");
1571 }
1572
1573 void
1574 fs_visitor::visit(ir_function *ir)
1575 {
1576 /* Ignore function bodies other than main() -- we shouldn't see calls to
1577 * them since they should all be inlined before we get to ir_to_mesa.
1578 */
1579 if (strcmp(ir->name, "main") == 0) {
1580 const ir_function_signature *sig;
1581 exec_list empty;
1582
1583 sig = ir->matching_signature(&empty);
1584
1585 assert(sig);
1586
1587 foreach_iter(exec_list_iterator, iter, sig->body) {
1588 ir_instruction *ir = (ir_instruction *)iter.get();
1589 this->base_ir = ir;
1590
1591 ir->accept(this);
1592 }
1593 }
1594 }
1595
1596 void
1597 fs_visitor::visit(ir_function_signature *ir)
1598 {
1599 assert(!"not reached");
1600 (void)ir;
1601 }
1602
1603 fs_inst *
1604 fs_visitor::emit(fs_inst inst)
1605 {
1606 fs_inst *list_inst = new(mem_ctx) fs_inst;
1607 *list_inst = inst;
1608
1609 list_inst->annotation = this->current_annotation;
1610 list_inst->ir = this->base_ir;
1611
1612 this->instructions.push_tail(list_inst);
1613
1614 return list_inst;
1615 }
1616
1617 /** Emits a dummy fragment shader consisting of magenta for bringup purposes. */
1618 void
1619 fs_visitor::emit_dummy_fs()
1620 {
1621 /* Everyone's favorite color. */
1622 emit(fs_inst(BRW_OPCODE_MOV,
1623 fs_reg(MRF, 2),
1624 fs_reg(1.0f)));
1625 emit(fs_inst(BRW_OPCODE_MOV,
1626 fs_reg(MRF, 3),
1627 fs_reg(0.0f)));
1628 emit(fs_inst(BRW_OPCODE_MOV,
1629 fs_reg(MRF, 4),
1630 fs_reg(1.0f)));
1631 emit(fs_inst(BRW_OPCODE_MOV,
1632 fs_reg(MRF, 5),
1633 fs_reg(0.0f)));
1634
1635 fs_inst *write;
1636 write = emit(fs_inst(FS_OPCODE_FB_WRITE,
1637 fs_reg(0),
1638 fs_reg(0)));
1639 write->base_mrf = 0;
1640 }
1641
1642 /* The register location here is relative to the start of the URB
1643 * data. It will get adjusted to be a real location before
1644 * generate_code() time.
1645 */
1646 struct brw_reg
1647 fs_visitor::interp_reg(int location, int channel)
1648 {
1649 int regnr = urb_setup[location] * 2 + channel / 2;
1650 int stride = (channel & 1) * 4;
1651
1652 assert(urb_setup[location] != -1);
1653
1654 return brw_vec1_grf(regnr, stride);
1655 }
1656
1657 /** Emits the interpolation for the varying inputs. */
1658 void
1659 fs_visitor::emit_interpolation_setup_gen4()
1660 {
1661 struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
1662
1663 this->current_annotation = "compute pixel centers";
1664 this->pixel_x = fs_reg(this, glsl_type::uint_type);
1665 this->pixel_y = fs_reg(this, glsl_type::uint_type);
1666 this->pixel_x.type = BRW_REGISTER_TYPE_UW;
1667 this->pixel_y.type = BRW_REGISTER_TYPE_UW;
1668 emit(fs_inst(BRW_OPCODE_ADD,
1669 this->pixel_x,
1670 fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
1671 fs_reg(brw_imm_v(0x10101010))));
1672 emit(fs_inst(BRW_OPCODE_ADD,
1673 this->pixel_y,
1674 fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
1675 fs_reg(brw_imm_v(0x11001100))));
1676
1677 this->current_annotation = "compute pixel deltas from v0";
1678 if (brw->has_pln) {
1679 this->delta_x = fs_reg(this, glsl_type::vec2_type);
1680 this->delta_y = this->delta_x;
1681 this->delta_y.reg_offset++;
1682 } else {
1683 this->delta_x = fs_reg(this, glsl_type::float_type);
1684 this->delta_y = fs_reg(this, glsl_type::float_type);
1685 }
1686 emit(fs_inst(BRW_OPCODE_ADD,
1687 this->delta_x,
1688 this->pixel_x,
1689 fs_reg(negate(brw_vec1_grf(1, 0)))));
1690 emit(fs_inst(BRW_OPCODE_ADD,
1691 this->delta_y,
1692 this->pixel_y,
1693 fs_reg(negate(brw_vec1_grf(1, 1)))));
1694
1695 this->current_annotation = "compute pos.w and 1/pos.w";
1696 /* Compute wpos.w. It's always in our setup, since it's needed to
1697 * interpolate the other attributes.
1698 */
1699 this->wpos_w = fs_reg(this, glsl_type::float_type);
1700 emit(fs_inst(FS_OPCODE_LINTERP, wpos_w, this->delta_x, this->delta_y,
1701 interp_reg(FRAG_ATTRIB_WPOS, 3)));
1702 /* Compute the pixel 1/W value from wpos.w. */
1703 this->pixel_w = fs_reg(this, glsl_type::float_type);
1704 emit_math(FS_OPCODE_RCP, this->pixel_w, wpos_w);
1705 this->current_annotation = NULL;
1706 }
1707
1708 /** Emits the interpolation for the varying inputs. */
1709 void
1710 fs_visitor::emit_interpolation_setup_gen6()
1711 {
1712 struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
1713
1714 /* If the pixel centers end up used, the setup is the same as for gen4. */
1715 this->current_annotation = "compute pixel centers";
1716 fs_reg int_pixel_x = fs_reg(this, glsl_type::uint_type);
1717 fs_reg int_pixel_y = fs_reg(this, glsl_type::uint_type);
1718 int_pixel_x.type = BRW_REGISTER_TYPE_UW;
1719 int_pixel_y.type = BRW_REGISTER_TYPE_UW;
1720 emit(fs_inst(BRW_OPCODE_ADD,
1721 int_pixel_x,
1722 fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
1723 fs_reg(brw_imm_v(0x10101010))));
1724 emit(fs_inst(BRW_OPCODE_ADD,
1725 int_pixel_y,
1726 fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
1727 fs_reg(brw_imm_v(0x11001100))));
1728
1729 /* As of gen6, we can no longer mix float and int sources. We have
1730 * to turn the integer pixel centers into floats for their actual
1731 * use.
1732 */
1733 this->pixel_x = fs_reg(this, glsl_type::float_type);
1734 this->pixel_y = fs_reg(this, glsl_type::float_type);
1735 emit(fs_inst(BRW_OPCODE_MOV, this->pixel_x, int_pixel_x));
1736 emit(fs_inst(BRW_OPCODE_MOV, this->pixel_y, int_pixel_y));
1737
1738 this->current_annotation = "compute 1/pos.w";
1739 this->wpos_w = fs_reg(brw_vec8_grf(c->key.source_w_reg, 0));
1740 this->pixel_w = fs_reg(this, glsl_type::float_type);
1741 emit_math(FS_OPCODE_RCP, this->pixel_w, wpos_w);
1742
1743 this->delta_x = fs_reg(brw_vec8_grf(2, 0));
1744 this->delta_y = fs_reg(brw_vec8_grf(3, 0));
1745
1746 this->current_annotation = NULL;
1747 }
1748
1749 void
1750 fs_visitor::emit_fb_writes()
1751 {
1752 this->current_annotation = "FB write header";
1753 GLboolean header_present = GL_TRUE;
1754 int nr = 0;
1755
1756 if (intel->gen >= 6 &&
1757 !this->kill_emitted &&
1758 c->key.nr_color_regions == 1) {
1759 header_present = false;
1760 }
1761
1762 if (header_present) {
1763 /* m0, m1 header */
1764 nr += 2;
1765 }
1766
1767 if (c->key.aa_dest_stencil_reg) {
1768 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, nr++),
1769 fs_reg(brw_vec8_grf(c->key.aa_dest_stencil_reg, 0))));
1770 }
1771
1772 /* Reserve space for color. It'll be filled in per MRT below. */
1773 int color_mrf = nr;
1774 nr += 4;
1775
1776 if (c->key.source_depth_to_render_target) {
1777 if (c->key.computes_depth) {
1778 /* Hand over gl_FragDepth. */
1779 assert(this->frag_depth);
1780 fs_reg depth = *(variable_storage(this->frag_depth));
1781
1782 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, nr++), depth));
1783 } else {
1784 /* Pass through the payload depth. */
1785 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, nr++),
1786 fs_reg(brw_vec8_grf(c->key.source_depth_reg, 0))));
1787 }
1788 }
1789
1790 if (c->key.dest_depth_reg) {
1791 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, nr++),
1792 fs_reg(brw_vec8_grf(c->key.dest_depth_reg, 0))));
1793 }
1794
1795 fs_reg color = reg_undef;
1796 if (this->frag_color)
1797 color = *(variable_storage(this->frag_color));
1798 else if (this->frag_data)
1799 color = *(variable_storage(this->frag_data));
1800
1801 for (int target = 0; target < c->key.nr_color_regions; target++) {
1802 this->current_annotation = talloc_asprintf(this->mem_ctx,
1803 "FB write target %d",
1804 target);
1805 if (this->frag_color || this->frag_data) {
1806 for (int i = 0; i < 4; i++) {
1807 emit(fs_inst(BRW_OPCODE_MOV,
1808 fs_reg(MRF, color_mrf + i),
1809 color));
1810 color.reg_offset++;
1811 }
1812 }
1813
1814 if (this->frag_color)
1815 color.reg_offset -= 4;
1816
1817 fs_inst *inst = emit(fs_inst(FS_OPCODE_FB_WRITE,
1818 reg_undef, reg_undef));
1819 inst->target = target;
1820 inst->base_mrf = 0;
1821 inst->mlen = nr;
1822 if (target == c->key.nr_color_regions - 1)
1823 inst->eot = true;
1824 inst->header_present = header_present;
1825 }
1826
1827 if (c->key.nr_color_regions == 0) {
1828 fs_inst *inst = emit(fs_inst(FS_OPCODE_FB_WRITE,
1829 reg_undef, reg_undef));
1830 inst->base_mrf = 0;
1831 inst->mlen = nr;
1832 inst->eot = true;
1833 inst->header_present = header_present;
1834 }
1835
1836 this->current_annotation = NULL;
1837 }
1838
1839 void
1840 fs_visitor::generate_fb_write(fs_inst *inst)
1841 {
1842 GLboolean eot = inst->eot;
1843 struct brw_reg implied_header;
1844
1845 /* Header is 2 regs, g0 and g1 are the contents. g0 will be implied
1846 * move, here's g1.
1847 */
1848 brw_push_insn_state(p);
1849 brw_set_mask_control(p, BRW_MASK_DISABLE);
1850 brw_set_compression_control(p, BRW_COMPRESSION_NONE);
1851
1852 if (inst->header_present) {
1853 if (intel->gen >= 6) {
1854 brw_MOV(p,
1855 brw_message_reg(inst->base_mrf),
1856 brw_vec8_grf(0, 0));
1857 implied_header = brw_null_reg();
1858 } else {
1859 implied_header = retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW);
1860 }
1861
1862 brw_MOV(p,
1863 brw_message_reg(inst->base_mrf + 1),
1864 brw_vec8_grf(1, 0));
1865 } else {
1866 implied_header = brw_null_reg();
1867 }
1868
1869 brw_pop_insn_state(p);
1870
1871 brw_fb_WRITE(p,
1872 8, /* dispatch_width */
1873 retype(vec8(brw_null_reg()), BRW_REGISTER_TYPE_UW),
1874 inst->base_mrf,
1875 implied_header,
1876 inst->target,
1877 inst->mlen,
1878 0,
1879 eot);
1880 }
1881
1882 void
1883 fs_visitor::generate_linterp(fs_inst *inst,
1884 struct brw_reg dst, struct brw_reg *src)
1885 {
1886 struct brw_reg delta_x = src[0];
1887 struct brw_reg delta_y = src[1];
1888 struct brw_reg interp = src[2];
1889
1890 if (brw->has_pln &&
1891 delta_y.nr == delta_x.nr + 1 &&
1892 (intel->gen >= 6 || (delta_x.nr & 1) == 0)) {
1893 brw_PLN(p, dst, interp, delta_x);
1894 } else {
1895 brw_LINE(p, brw_null_reg(), interp, delta_x);
1896 brw_MAC(p, dst, suboffset(interp, 1), delta_y);
1897 }
1898 }
1899
1900 void
1901 fs_visitor::generate_math(fs_inst *inst,
1902 struct brw_reg dst, struct brw_reg *src)
1903 {
1904 int op;
1905
1906 switch (inst->opcode) {
1907 case FS_OPCODE_RCP:
1908 op = BRW_MATH_FUNCTION_INV;
1909 break;
1910 case FS_OPCODE_RSQ:
1911 op = BRW_MATH_FUNCTION_RSQ;
1912 break;
1913 case FS_OPCODE_SQRT:
1914 op = BRW_MATH_FUNCTION_SQRT;
1915 break;
1916 case FS_OPCODE_EXP2:
1917 op = BRW_MATH_FUNCTION_EXP;
1918 break;
1919 case FS_OPCODE_LOG2:
1920 op = BRW_MATH_FUNCTION_LOG;
1921 break;
1922 case FS_OPCODE_POW:
1923 op = BRW_MATH_FUNCTION_POW;
1924 break;
1925 case FS_OPCODE_SIN:
1926 op = BRW_MATH_FUNCTION_SIN;
1927 break;
1928 case FS_OPCODE_COS:
1929 op = BRW_MATH_FUNCTION_COS;
1930 break;
1931 default:
1932 assert(!"not reached: unknown math function");
1933 op = 0;
1934 break;
1935 }
1936
1937 if (intel->gen >= 6) {
1938 assert(inst->mlen == 0);
1939
1940 if (inst->opcode == FS_OPCODE_POW) {
1941 brw_math2(p, dst, op, src[0], src[1]);
1942 } else {
1943 brw_math(p, dst,
1944 op,
1945 inst->saturate ? BRW_MATH_SATURATE_SATURATE :
1946 BRW_MATH_SATURATE_NONE,
1947 0, src[0],
1948 BRW_MATH_DATA_VECTOR,
1949 BRW_MATH_PRECISION_FULL);
1950 }
1951 } else {
1952 assert(inst->mlen >= 1);
1953
1954 brw_math(p, dst,
1955 op,
1956 inst->saturate ? BRW_MATH_SATURATE_SATURATE :
1957 BRW_MATH_SATURATE_NONE,
1958 inst->base_mrf, src[0],
1959 BRW_MATH_DATA_VECTOR,
1960 BRW_MATH_PRECISION_FULL);
1961 }
1962 }
1963
1964 void
1965 fs_visitor::generate_tex(fs_inst *inst, struct brw_reg dst)
1966 {
1967 int msg_type = -1;
1968 int rlen = 4;
1969 uint32_t simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
1970
1971 if (intel->gen >= 5) {
1972 switch (inst->opcode) {
1973 case FS_OPCODE_TEX:
1974 if (inst->shadow_compare) {
1975 msg_type = BRW_SAMPLER_MESSAGE_SAMPLE_COMPARE_GEN5;
1976 } else {
1977 msg_type = BRW_SAMPLER_MESSAGE_SAMPLE_GEN5;
1978 }
1979 break;
1980 case FS_OPCODE_TXB:
1981 if (inst->shadow_compare) {
1982 msg_type = BRW_SAMPLER_MESSAGE_SAMPLE_BIAS_COMPARE_GEN5;
1983 } else {
1984 msg_type = BRW_SAMPLER_MESSAGE_SAMPLE_BIAS_GEN5;
1985 }
1986 break;
1987 }
1988 } else {
1989 switch (inst->opcode) {
1990 case FS_OPCODE_TEX:
1991 /* Note that G45 and older determines shadow compare and dispatch width
1992 * from message length for most messages.
1993 */
1994 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE;
1995 if (inst->shadow_compare) {
1996 assert(inst->mlen == 6);
1997 } else {
1998 assert(inst->mlen <= 4);
1999 }
2000 break;
2001 case FS_OPCODE_TXB:
2002 if (inst->shadow_compare) {
2003 assert(inst->mlen == 6);
2004 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE;
2005 } else {
2006 assert(inst->mlen == 9);
2007 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_BIAS;
2008 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
2009 }
2010 break;
2011 }
2012 }
2013 assert(msg_type != -1);
2014
2015 if (simd_mode == BRW_SAMPLER_SIMD_MODE_SIMD16) {
2016 rlen = 8;
2017 dst = vec16(dst);
2018 }
2019
2020 brw_SAMPLE(p,
2021 retype(dst, BRW_REGISTER_TYPE_UW),
2022 inst->base_mrf,
2023 retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW),
2024 SURF_INDEX_TEXTURE(inst->sampler),
2025 inst->sampler,
2026 WRITEMASK_XYZW,
2027 msg_type,
2028 rlen,
2029 inst->mlen,
2030 0,
2031 1,
2032 simd_mode);
2033 }
2034
2035
2036 /* For OPCODE_DDX and OPCODE_DDY, per channel of output we've got input
2037 * looking like:
2038 *
2039 * arg0: ss0.tl ss0.tr ss0.bl ss0.br ss1.tl ss1.tr ss1.bl ss1.br
2040 *
2041 * and we're trying to produce:
2042 *
2043 * DDX DDY
2044 * dst: (ss0.tr - ss0.tl) (ss0.tl - ss0.bl)
2045 * (ss0.tr - ss0.tl) (ss0.tr - ss0.br)
2046 * (ss0.br - ss0.bl) (ss0.tl - ss0.bl)
2047 * (ss0.br - ss0.bl) (ss0.tr - ss0.br)
2048 * (ss1.tr - ss1.tl) (ss1.tl - ss1.bl)
2049 * (ss1.tr - ss1.tl) (ss1.tr - ss1.br)
2050 * (ss1.br - ss1.bl) (ss1.tl - ss1.bl)
2051 * (ss1.br - ss1.bl) (ss1.tr - ss1.br)
2052 *
2053 * and add another set of two more subspans if in 16-pixel dispatch mode.
2054 *
2055 * For DDX, it ends up being easy: width = 2, horiz=0 gets us the same result
2056 * for each pair, and vertstride = 2 jumps us 2 elements after processing a
2057 * pair. But for DDY, it's harder, as we want to produce the pairs swizzled
2058 * between each other. We could probably do it like ddx and swizzle the right
2059 * order later, but bail for now and just produce
2060 * ((ss0.tl - ss0.bl)x4 (ss1.tl - ss1.bl)x4)
2061 */
2062 void
2063 fs_visitor::generate_ddx(fs_inst *inst, struct brw_reg dst, struct brw_reg src)
2064 {
2065 struct brw_reg src0 = brw_reg(src.file, src.nr, 1,
2066 BRW_REGISTER_TYPE_F,
2067 BRW_VERTICAL_STRIDE_2,
2068 BRW_WIDTH_2,
2069 BRW_HORIZONTAL_STRIDE_0,
2070 BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
2071 struct brw_reg src1 = brw_reg(src.file, src.nr, 0,
2072 BRW_REGISTER_TYPE_F,
2073 BRW_VERTICAL_STRIDE_2,
2074 BRW_WIDTH_2,
2075 BRW_HORIZONTAL_STRIDE_0,
2076 BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
2077 brw_ADD(p, dst, src0, negate(src1));
2078 }
2079
2080 void
2081 fs_visitor::generate_ddy(fs_inst *inst, struct brw_reg dst, struct brw_reg src)
2082 {
2083 struct brw_reg src0 = brw_reg(src.file, src.nr, 0,
2084 BRW_REGISTER_TYPE_F,
2085 BRW_VERTICAL_STRIDE_4,
2086 BRW_WIDTH_4,
2087 BRW_HORIZONTAL_STRIDE_0,
2088 BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
2089 struct brw_reg src1 = brw_reg(src.file, src.nr, 2,
2090 BRW_REGISTER_TYPE_F,
2091 BRW_VERTICAL_STRIDE_4,
2092 BRW_WIDTH_4,
2093 BRW_HORIZONTAL_STRIDE_0,
2094 BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
2095 brw_ADD(p, dst, src0, negate(src1));
2096 }
2097
2098 void
2099 fs_visitor::generate_discard_not(fs_inst *inst, struct brw_reg mask)
2100 {
2101 brw_push_insn_state(p);
2102 brw_set_mask_control(p, BRW_MASK_DISABLE);
2103 brw_NOT(p, mask, brw_mask_reg(1)); /* IMASK */
2104 brw_pop_insn_state(p);
2105 }
2106
2107 void
2108 fs_visitor::generate_discard_and(fs_inst *inst, struct brw_reg mask)
2109 {
2110 struct brw_reg g0 = retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW);
2111 mask = brw_uw1_reg(mask.file, mask.nr, 0);
2112
2113 brw_push_insn_state(p);
2114 brw_set_mask_control(p, BRW_MASK_DISABLE);
2115 brw_AND(p, g0, mask, g0);
2116 brw_pop_insn_state(p);
2117 }
2118
2119 void
2120 fs_visitor::assign_curb_setup()
2121 {
2122 c->prog_data.first_curbe_grf = c->key.nr_payload_regs;
2123 c->prog_data.curb_read_length = ALIGN(c->prog_data.nr_params, 8) / 8;
2124
2125 /* Map the offsets in the UNIFORM file to fixed HW regs. */
2126 foreach_iter(exec_list_iterator, iter, this->instructions) {
2127 fs_inst *inst = (fs_inst *)iter.get();
2128
2129 for (unsigned int i = 0; i < 3; i++) {
2130 if (inst->src[i].file == UNIFORM) {
2131 int constant_nr = inst->src[i].hw_reg + inst->src[i].reg_offset;
2132 struct brw_reg brw_reg = brw_vec1_grf(c->prog_data.first_curbe_grf +
2133 constant_nr / 8,
2134 constant_nr % 8);
2135
2136 inst->src[i].file = FIXED_HW_REG;
2137 inst->src[i].fixed_hw_reg = brw_reg;
2138 }
2139 }
2140 }
2141 }
2142
2143 void
2144 fs_visitor::calculate_urb_setup()
2145 {
2146 for (unsigned int i = 0; i < FRAG_ATTRIB_MAX; i++) {
2147 urb_setup[i] = -1;
2148 }
2149
2150 int urb_next = 0;
2151 /* Figure out where each of the incoming setup attributes lands. */
2152 if (intel->gen >= 6) {
2153 for (unsigned int i = 0; i < FRAG_ATTRIB_MAX; i++) {
2154 if (brw->fragment_program->Base.InputsRead & BITFIELD64_BIT(i)) {
2155 urb_setup[i] = urb_next++;
2156 }
2157 }
2158 } else {
2159 /* FINISHME: The sf doesn't map VS->FS inputs for us very well. */
2160 for (unsigned int i = 0; i < VERT_RESULT_MAX; i++) {
2161 if (c->key.vp_outputs_written & BITFIELD64_BIT(i)) {
2162 int fp_index;
2163
2164 if (i >= VERT_RESULT_VAR0)
2165 fp_index = i - (VERT_RESULT_VAR0 - FRAG_ATTRIB_VAR0);
2166 else if (i <= VERT_RESULT_TEX7)
2167 fp_index = i;
2168 else
2169 fp_index = -1;
2170
2171 if (fp_index >= 0)
2172 urb_setup[fp_index] = urb_next++;
2173 }
2174 }
2175 }
2176
2177 /* Each attribute is 4 setup channels, each of which is half a reg. */
2178 c->prog_data.urb_read_length = urb_next * 2;
2179 }
2180
2181 void
2182 fs_visitor::assign_urb_setup()
2183 {
2184 int urb_start = c->prog_data.first_curbe_grf + c->prog_data.curb_read_length;
2185
2186 /* Offset all the urb_setup[] index by the actual position of the
2187 * setup regs, now that the location of the constants has been chosen.
2188 */
2189 foreach_iter(exec_list_iterator, iter, this->instructions) {
2190 fs_inst *inst = (fs_inst *)iter.get();
2191
2192 if (inst->opcode != FS_OPCODE_LINTERP)
2193 continue;
2194
2195 assert(inst->src[2].file == FIXED_HW_REG);
2196
2197 inst->src[2].fixed_hw_reg.nr += urb_start;
2198 }
2199
2200 this->first_non_payload_grf = urb_start + c->prog_data.urb_read_length;
2201 }
2202
2203 static void
2204 assign_reg(int *reg_hw_locations, fs_reg *reg)
2205 {
2206 if (reg->file == GRF && reg->reg != 0) {
2207 assert(reg->reg_offset >= 0);
2208 reg->hw_reg = reg_hw_locations[reg->reg] + reg->reg_offset;
2209 reg->reg = 0;
2210 }
2211 }
2212
2213 void
2214 fs_visitor::assign_regs_trivial()
2215 {
2216 int last_grf = 0;
2217 int hw_reg_mapping[this->virtual_grf_next];
2218 int i;
2219
2220 hw_reg_mapping[0] = 0;
2221 hw_reg_mapping[1] = this->first_non_payload_grf;
2222 for (i = 2; i < this->virtual_grf_next; i++) {
2223 hw_reg_mapping[i] = (hw_reg_mapping[i - 1] +
2224 this->virtual_grf_sizes[i - 1]);
2225 }
2226 last_grf = hw_reg_mapping[i - 1] + this->virtual_grf_sizes[i - 1];
2227
2228 foreach_iter(exec_list_iterator, iter, this->instructions) {
2229 fs_inst *inst = (fs_inst *)iter.get();
2230
2231 assign_reg(hw_reg_mapping, &inst->dst);
2232 assign_reg(hw_reg_mapping, &inst->src[0]);
2233 assign_reg(hw_reg_mapping, &inst->src[1]);
2234 }
2235
2236 this->grf_used = last_grf + 1;
2237 }
2238
2239 void
2240 fs_visitor::assign_regs()
2241 {
2242 int last_grf = 0;
2243 int hw_reg_mapping[this->virtual_grf_next + 1];
2244 int base_reg_count = BRW_MAX_GRF - this->first_non_payload_grf;
2245 int class_sizes[base_reg_count];
2246 int class_count = 0;
2247 int aligned_pair_class = -1;
2248
2249 /* Set up the register classes.
2250 *
2251 * The base registers store a scalar value. For texture samples,
2252 * we get virtual GRFs composed of 4 contiguous hw register. For
2253 * structures and arrays, we store them as contiguous larger things
2254 * than that, though we should be able to do better most of the
2255 * time.
2256 */
2257 class_sizes[class_count++] = 1;
2258 if (brw->has_pln && intel->gen < 6) {
2259 /* Always set up the (unaligned) pairs for gen5, so we can find
2260 * them for making the aligned pair class.
2261 */
2262 class_sizes[class_count++] = 2;
2263 }
2264 for (int r = 1; r < this->virtual_grf_next; r++) {
2265 int i;
2266
2267 for (i = 0; i < class_count; i++) {
2268 if (class_sizes[i] == this->virtual_grf_sizes[r])
2269 break;
2270 }
2271 if (i == class_count) {
2272 if (this->virtual_grf_sizes[r] >= base_reg_count) {
2273 fprintf(stderr, "Object too large to register allocate.\n");
2274 this->fail = true;
2275 }
2276
2277 class_sizes[class_count++] = this->virtual_grf_sizes[r];
2278 }
2279 }
2280
2281 int ra_reg_count = 0;
2282 int class_base_reg[class_count];
2283 int class_reg_count[class_count];
2284 int classes[class_count + 1];
2285
2286 for (int i = 0; i < class_count; i++) {
2287 class_base_reg[i] = ra_reg_count;
2288 class_reg_count[i] = base_reg_count - (class_sizes[i] - 1);
2289 ra_reg_count += class_reg_count[i];
2290 }
2291
2292 struct ra_regs *regs = ra_alloc_reg_set(ra_reg_count);
2293 for (int i = 0; i < class_count; i++) {
2294 classes[i] = ra_alloc_reg_class(regs);
2295
2296 for (int i_r = 0; i_r < class_reg_count[i]; i_r++) {
2297 ra_class_add_reg(regs, classes[i], class_base_reg[i] + i_r);
2298 }
2299
2300 /* Add conflicts between our contiguous registers aliasing
2301 * base regs and other register classes' contiguous registers
2302 * that alias base regs, or the base regs themselves for classes[0].
2303 */
2304 for (int c = 0; c <= i; c++) {
2305 for (int i_r = 0; i_r < class_reg_count[i]; i_r++) {
2306 for (int c_r = MAX2(0, i_r - (class_sizes[c] - 1));
2307 c_r < MIN2(class_reg_count[c], i_r + class_sizes[i]);
2308 c_r++) {
2309
2310 if (0) {
2311 printf("%d/%d conflicts %d/%d\n",
2312 class_sizes[i], this->first_non_payload_grf + i_r,
2313 class_sizes[c], this->first_non_payload_grf + c_r);
2314 }
2315
2316 ra_add_reg_conflict(regs,
2317 class_base_reg[i] + i_r,
2318 class_base_reg[c] + c_r);
2319 }
2320 }
2321 }
2322 }
2323
2324 /* Add a special class for aligned pairs, which we'll put delta_x/y
2325 * in on gen5 so that we can do PLN.
2326 */
2327 if (brw->has_pln && intel->gen < 6) {
2328 int reg_count = (base_reg_count - 1) / 2;
2329 int unaligned_pair_class = 1;
2330 assert(class_sizes[unaligned_pair_class] == 2);
2331
2332 aligned_pair_class = class_count;
2333 classes[aligned_pair_class] = ra_alloc_reg_class(regs);
2334 class_sizes[aligned_pair_class] = 2;
2335 class_base_reg[aligned_pair_class] = 0;
2336 class_reg_count[aligned_pair_class] = 0;
2337 int start = (this->first_non_payload_grf & 1) ? 1 : 0;
2338
2339 for (int i = 0; i < reg_count; i++) {
2340 ra_class_add_reg(regs, classes[aligned_pair_class],
2341 class_base_reg[unaligned_pair_class] + i * 2 + start);
2342 }
2343 class_count++;
2344 }
2345
2346 ra_set_finalize(regs);
2347
2348 struct ra_graph *g = ra_alloc_interference_graph(regs,
2349 this->virtual_grf_next);
2350 /* Node 0 is just a placeholder to keep virtual_grf[] mapping 1:1
2351 * with nodes.
2352 */
2353 ra_set_node_class(g, 0, classes[0]);
2354
2355 for (int i = 1; i < this->virtual_grf_next; i++) {
2356 for (int c = 0; c < class_count; c++) {
2357 if (class_sizes[c] == this->virtual_grf_sizes[i]) {
2358 if (aligned_pair_class >= 0 &&
2359 this->delta_x.reg == i) {
2360 ra_set_node_class(g, i, classes[aligned_pair_class]);
2361 } else {
2362 ra_set_node_class(g, i, classes[c]);
2363 }
2364 break;
2365 }
2366 }
2367
2368 for (int j = 1; j < i; j++) {
2369 if (virtual_grf_interferes(i, j)) {
2370 ra_add_node_interference(g, i, j);
2371 }
2372 }
2373 }
2374
2375 /* FINISHME: Handle spilling */
2376 if (!ra_allocate_no_spills(g)) {
2377 fprintf(stderr, "Failed to allocate registers.\n");
2378 this->fail = true;
2379 return;
2380 }
2381
2382 /* Get the chosen virtual registers for each node, and map virtual
2383 * regs in the register classes back down to real hardware reg
2384 * numbers.
2385 */
2386 hw_reg_mapping[0] = 0; /* unused */
2387 for (int i = 1; i < this->virtual_grf_next; i++) {
2388 int reg = ra_get_node_reg(g, i);
2389 int hw_reg = -1;
2390
2391 for (int c = 0; c < class_count; c++) {
2392 if (reg >= class_base_reg[c] &&
2393 reg < class_base_reg[c] + class_reg_count[c]) {
2394 hw_reg = reg - class_base_reg[c];
2395 break;
2396 }
2397 }
2398
2399 assert(hw_reg >= 0);
2400 hw_reg_mapping[i] = this->first_non_payload_grf + hw_reg;
2401 last_grf = MAX2(last_grf,
2402 hw_reg_mapping[i] + this->virtual_grf_sizes[i] - 1);
2403 }
2404
2405 foreach_iter(exec_list_iterator, iter, this->instructions) {
2406 fs_inst *inst = (fs_inst *)iter.get();
2407
2408 assign_reg(hw_reg_mapping, &inst->dst);
2409 assign_reg(hw_reg_mapping, &inst->src[0]);
2410 assign_reg(hw_reg_mapping, &inst->src[1]);
2411 }
2412
2413 this->grf_used = last_grf + 1;
2414
2415 talloc_free(g);
2416 talloc_free(regs);
2417 }
2418
2419 /**
2420 * Split large virtual GRFs into separate components if we can.
2421 *
2422 * This is mostly duplicated with what brw_fs_vector_splitting does,
2423 * but that's really conservative because it's afraid of doing
2424 * splitting that doesn't result in real progress after the rest of
2425 * the optimization phases, which would cause infinite looping in
2426 * optimization. We can do it once here, safely. This also has the
2427 * opportunity to split interpolated values, or maybe even uniforms,
2428 * which we don't have at the IR level.
2429 *
2430 * We want to split, because virtual GRFs are what we register
2431 * allocate and spill (due to contiguousness requirements for some
2432 * instructions), and they're what we naturally generate in the
2433 * codegen process, but most virtual GRFs don't actually need to be
2434 * contiguous sets of GRFs. If we split, we'll end up with reduced
2435 * live intervals and better dead code elimination and coalescing.
2436 */
2437 void
2438 fs_visitor::split_virtual_grfs()
2439 {
2440 int num_vars = this->virtual_grf_next;
2441 bool split_grf[num_vars];
2442 int new_virtual_grf[num_vars];
2443
2444 /* Try to split anything > 0 sized. */
2445 for (int i = 0; i < num_vars; i++) {
2446 if (this->virtual_grf_sizes[i] != 1)
2447 split_grf[i] = true;
2448 else
2449 split_grf[i] = false;
2450 }
2451
2452 if (brw->has_pln) {
2453 /* PLN opcodes rely on the delta_xy being contiguous. */
2454 split_grf[this->delta_x.reg] = false;
2455 }
2456
2457 foreach_iter(exec_list_iterator, iter, this->instructions) {
2458 fs_inst *inst = (fs_inst *)iter.get();
2459
2460 /* Texturing produces 4 contiguous registers, so no splitting. */
2461 if ((inst->opcode == FS_OPCODE_TEX ||
2462 inst->opcode == FS_OPCODE_TXB ||
2463 inst->opcode == FS_OPCODE_TXL) &&
2464 inst->dst.file == GRF) {
2465 split_grf[inst->dst.reg] = false;
2466 }
2467 }
2468
2469 /* Allocate new space for split regs. Note that the virtual
2470 * numbers will be contiguous.
2471 */
2472 for (int i = 0; i < num_vars; i++) {
2473 if (split_grf[i]) {
2474 new_virtual_grf[i] = virtual_grf_alloc(1);
2475 for (int j = 2; j < this->virtual_grf_sizes[i]; j++) {
2476 int reg = virtual_grf_alloc(1);
2477 assert(reg == new_virtual_grf[i] + j - 1);
2478 }
2479 this->virtual_grf_sizes[i] = 1;
2480 }
2481 }
2482
2483 foreach_iter(exec_list_iterator, iter, this->instructions) {
2484 fs_inst *inst = (fs_inst *)iter.get();
2485
2486 if (inst->dst.file == GRF &&
2487 split_grf[inst->dst.reg] &&
2488 inst->dst.reg_offset != 0) {
2489 inst->dst.reg = (new_virtual_grf[inst->dst.reg] +
2490 inst->dst.reg_offset - 1);
2491 inst->dst.reg_offset = 0;
2492 }
2493 for (int i = 0; i < 3; i++) {
2494 if (inst->src[i].file == GRF &&
2495 split_grf[inst->src[i].reg] &&
2496 inst->src[i].reg_offset != 0) {
2497 inst->src[i].reg = (new_virtual_grf[inst->src[i].reg] +
2498 inst->src[i].reg_offset - 1);
2499 inst->src[i].reg_offset = 0;
2500 }
2501 }
2502 }
2503 }
2504
2505 void
2506 fs_visitor::calculate_live_intervals()
2507 {
2508 int num_vars = this->virtual_grf_next;
2509 int *def = talloc_array(mem_ctx, int, num_vars);
2510 int *use = talloc_array(mem_ctx, int, num_vars);
2511 int loop_depth = 0;
2512 int loop_start = 0;
2513
2514 for (int i = 0; i < num_vars; i++) {
2515 def[i] = 1 << 30;
2516 use[i] = -1;
2517 }
2518
2519 int ip = 0;
2520 foreach_iter(exec_list_iterator, iter, this->instructions) {
2521 fs_inst *inst = (fs_inst *)iter.get();
2522
2523 if (inst->opcode == BRW_OPCODE_DO) {
2524 if (loop_depth++ == 0)
2525 loop_start = ip;
2526 } else if (inst->opcode == BRW_OPCODE_WHILE) {
2527 loop_depth--;
2528
2529 if (loop_depth == 0) {
2530 /* FINISHME:
2531 *
2532 * Patches up any vars marked for use within the loop as
2533 * live until the end. This is conservative, as there
2534 * will often be variables defined and used inside the
2535 * loop but dead at the end of the loop body.
2536 */
2537 for (int i = 0; i < num_vars; i++) {
2538 if (use[i] == loop_start) {
2539 use[i] = ip;
2540 }
2541 }
2542 }
2543 } else {
2544 int eip = ip;
2545
2546 if (loop_depth)
2547 eip = loop_start;
2548
2549 for (unsigned int i = 0; i < 3; i++) {
2550 if (inst->src[i].file == GRF && inst->src[i].reg != 0) {
2551 use[inst->src[i].reg] = MAX2(use[inst->src[i].reg], eip);
2552 }
2553 }
2554 if (inst->dst.file == GRF && inst->dst.reg != 0) {
2555 def[inst->dst.reg] = MIN2(def[inst->dst.reg], eip);
2556 }
2557 }
2558
2559 ip++;
2560 }
2561
2562 talloc_free(this->virtual_grf_def);
2563 talloc_free(this->virtual_grf_use);
2564 this->virtual_grf_def = def;
2565 this->virtual_grf_use = use;
2566 }
2567
2568 /**
2569 * Attempts to move immediate constants into the immediate
2570 * constant slot of following instructions.
2571 *
2572 * Immediate constants are a bit tricky -- they have to be in the last
2573 * operand slot, you can't do abs/negate on them,
2574 */
2575
2576 bool
2577 fs_visitor::propagate_constants()
2578 {
2579 bool progress = false;
2580
2581 foreach_iter(exec_list_iterator, iter, this->instructions) {
2582 fs_inst *inst = (fs_inst *)iter.get();
2583
2584 if (inst->opcode != BRW_OPCODE_MOV ||
2585 inst->predicated ||
2586 inst->dst.file != GRF || inst->src[0].file != IMM ||
2587 inst->dst.type != inst->src[0].type)
2588 continue;
2589
2590 /* Don't bother with cases where we should have had the
2591 * operation on the constant folded in GLSL already.
2592 */
2593 if (inst->saturate)
2594 continue;
2595
2596 /* Found a move of a constant to a GRF. Find anything else using the GRF
2597 * before it's written, and replace it with the constant if we can.
2598 */
2599 exec_list_iterator scan_iter = iter;
2600 scan_iter.next();
2601 for (; scan_iter.has_next(); scan_iter.next()) {
2602 fs_inst *scan_inst = (fs_inst *)scan_iter.get();
2603
2604 if (scan_inst->opcode == BRW_OPCODE_DO ||
2605 scan_inst->opcode == BRW_OPCODE_WHILE ||
2606 scan_inst->opcode == BRW_OPCODE_ELSE ||
2607 scan_inst->opcode == BRW_OPCODE_ENDIF) {
2608 break;
2609 }
2610
2611 for (int i = 2; i >= 0; i--) {
2612 if (scan_inst->src[i].file != GRF ||
2613 scan_inst->src[i].reg != inst->dst.reg ||
2614 scan_inst->src[i].reg_offset != inst->dst.reg_offset)
2615 continue;
2616
2617 /* Don't bother with cases where we should have had the
2618 * operation on the constant folded in GLSL already.
2619 */
2620 if (scan_inst->src[i].negate || scan_inst->src[i].abs)
2621 continue;
2622
2623 switch (scan_inst->opcode) {
2624 case BRW_OPCODE_MOV:
2625 scan_inst->src[i] = inst->src[0];
2626 progress = true;
2627 break;
2628
2629 case BRW_OPCODE_MUL:
2630 case BRW_OPCODE_ADD:
2631 if (i == 1) {
2632 scan_inst->src[i] = inst->src[0];
2633 progress = true;
2634 } else if (i == 0 && scan_inst->src[1].file != IMM) {
2635 /* Fit this constant in by commuting the operands */
2636 scan_inst->src[0] = scan_inst->src[1];
2637 scan_inst->src[1] = inst->src[0];
2638 }
2639 break;
2640 case BRW_OPCODE_CMP:
2641 if (i == 1) {
2642 scan_inst->src[i] = inst->src[0];
2643 progress = true;
2644 }
2645 }
2646 }
2647
2648 if (scan_inst->dst.file == GRF &&
2649 scan_inst->dst.reg == inst->dst.reg &&
2650 (scan_inst->dst.reg_offset == inst->dst.reg_offset ||
2651 scan_inst->opcode == FS_OPCODE_TEX)) {
2652 break;
2653 }
2654 }
2655 }
2656
2657 return progress;
2658 }
2659 /**
2660 * Must be called after calculate_live_intervales() to remove unused
2661 * writes to registers -- register allocation will fail otherwise
2662 * because something deffed but not used won't be considered to
2663 * interfere with other regs.
2664 */
2665 bool
2666 fs_visitor::dead_code_eliminate()
2667 {
2668 bool progress = false;
2669 int num_vars = this->virtual_grf_next;
2670 bool dead[num_vars];
2671
2672 for (int i = 0; i < num_vars; i++) {
2673 dead[i] = this->virtual_grf_def[i] >= this->virtual_grf_use[i];
2674
2675 if (dead[i]) {
2676 /* Mark off its interval so it won't interfere with anything. */
2677 this->virtual_grf_def[i] = -1;
2678 this->virtual_grf_use[i] = -1;
2679 }
2680 }
2681
2682 foreach_iter(exec_list_iterator, iter, this->instructions) {
2683 fs_inst *inst = (fs_inst *)iter.get();
2684
2685 if (inst->dst.file == GRF && dead[inst->dst.reg]) {
2686 inst->remove();
2687 progress = true;
2688 }
2689 }
2690
2691 return progress;
2692 }
2693
2694 bool
2695 fs_visitor::register_coalesce()
2696 {
2697 bool progress = false;
2698
2699 foreach_iter(exec_list_iterator, iter, this->instructions) {
2700 fs_inst *inst = (fs_inst *)iter.get();
2701
2702 if (inst->opcode != BRW_OPCODE_MOV ||
2703 inst->predicated ||
2704 inst->saturate ||
2705 inst->dst.file != GRF || inst->src[0].file != GRF ||
2706 inst->dst.type != inst->src[0].type)
2707 continue;
2708
2709 /* Found a move of a GRF to a GRF. Let's see if we can coalesce
2710 * them: check for no writes to either one until the exit of the
2711 * program.
2712 */
2713 bool interfered = false;
2714 exec_list_iterator scan_iter = iter;
2715 scan_iter.next();
2716 for (; scan_iter.has_next(); scan_iter.next()) {
2717 fs_inst *scan_inst = (fs_inst *)scan_iter.get();
2718
2719 if (scan_inst->opcode == BRW_OPCODE_DO ||
2720 scan_inst->opcode == BRW_OPCODE_WHILE ||
2721 scan_inst->opcode == BRW_OPCODE_ENDIF) {
2722 interfered = true;
2723 iter = scan_iter;
2724 break;
2725 }
2726
2727 if (scan_inst->dst.file == GRF) {
2728 if (scan_inst->dst.reg == inst->dst.reg &&
2729 (scan_inst->dst.reg_offset == inst->dst.reg_offset ||
2730 scan_inst->opcode == FS_OPCODE_TEX)) {
2731 interfered = true;
2732 break;
2733 }
2734 if (scan_inst->dst.reg == inst->src[0].reg &&
2735 (scan_inst->dst.reg_offset == inst->src[0].reg_offset ||
2736 scan_inst->opcode == FS_OPCODE_TEX)) {
2737 interfered = true;
2738 break;
2739 }
2740 }
2741 }
2742 if (interfered) {
2743 continue;
2744 }
2745
2746 /* Update live interval so we don't have to recalculate. */
2747 this->virtual_grf_use[inst->src[0].reg] = MAX2(virtual_grf_use[inst->src[0].reg],
2748 virtual_grf_use[inst->dst.reg]);
2749
2750 /* Rewrite the later usage to point at the source of the move to
2751 * be removed.
2752 */
2753 for (exec_list_iterator scan_iter = iter; scan_iter.has_next();
2754 scan_iter.next()) {
2755 fs_inst *scan_inst = (fs_inst *)scan_iter.get();
2756
2757 for (int i = 0; i < 3; i++) {
2758 if (scan_inst->src[i].file == GRF &&
2759 scan_inst->src[i].reg == inst->dst.reg &&
2760 scan_inst->src[i].reg_offset == inst->dst.reg_offset) {
2761 scan_inst->src[i].reg = inst->src[0].reg;
2762 scan_inst->src[i].reg_offset = inst->src[0].reg_offset;
2763 scan_inst->src[i].abs |= inst->src[0].abs;
2764 scan_inst->src[i].negate ^= inst->src[0].negate;
2765 }
2766 }
2767 }
2768
2769 inst->remove();
2770 progress = true;
2771 }
2772
2773 return progress;
2774 }
2775
2776
2777 bool
2778 fs_visitor::compute_to_mrf()
2779 {
2780 bool progress = false;
2781 int next_ip = 0;
2782
2783 foreach_iter(exec_list_iterator, iter, this->instructions) {
2784 fs_inst *inst = (fs_inst *)iter.get();
2785
2786 int ip = next_ip;
2787 next_ip++;
2788
2789 if (inst->opcode != BRW_OPCODE_MOV ||
2790 inst->predicated ||
2791 inst->dst.file != MRF || inst->src[0].file != GRF ||
2792 inst->dst.type != inst->src[0].type ||
2793 inst->src[0].abs || inst->src[0].negate)
2794 continue;
2795
2796 /* Can't compute-to-MRF this GRF if someone else was going to
2797 * read it later.
2798 */
2799 if (this->virtual_grf_use[inst->src[0].reg] > ip)
2800 continue;
2801
2802 /* Found a move of a GRF to a MRF. Let's see if we can go
2803 * rewrite the thing that made this GRF to write into the MRF.
2804 */
2805 bool found = false;
2806 fs_inst *scan_inst;
2807 for (scan_inst = (fs_inst *)inst->prev;
2808 scan_inst->prev != NULL;
2809 scan_inst = (fs_inst *)scan_inst->prev) {
2810 /* We don't handle flow control here. Most computation of
2811 * values that end up in MRFs are shortly before the MRF
2812 * write anyway.
2813 */
2814 if (scan_inst->opcode == BRW_OPCODE_DO ||
2815 scan_inst->opcode == BRW_OPCODE_WHILE ||
2816 scan_inst->opcode == BRW_OPCODE_ENDIF) {
2817 break;
2818 }
2819
2820 /* You can't read from an MRF, so if someone else reads our
2821 * MRF's source GRF that we wanted to rewrite, that stops us.
2822 */
2823 bool interfered = false;
2824 for (int i = 0; i < 3; i++) {
2825 if (scan_inst->src[i].file == GRF &&
2826 scan_inst->src[i].reg == inst->src[0].reg &&
2827 scan_inst->src[i].reg_offset == inst->src[0].reg_offset) {
2828 interfered = true;
2829 }
2830 }
2831 if (interfered)
2832 break;
2833
2834 if (scan_inst->dst.file == MRF &&
2835 scan_inst->dst.hw_reg == inst->dst.hw_reg) {
2836 /* Somebody else wrote our MRF here, so we can't can't
2837 * compute-to-MRF before that.
2838 */
2839 break;
2840 }
2841
2842 if (scan_inst->mlen > 0) {
2843 /* Found a SEND instruction, which will do some amount of
2844 * implied write that may overwrite our MRF that we were
2845 * hoping to compute-to-MRF somewhere above it. Nothing
2846 * we have implied-writes more than 2 MRFs from base_mrf,
2847 * though.
2848 */
2849 int implied_write_len = MIN2(scan_inst->mlen, 2);
2850 if (inst->dst.hw_reg >= scan_inst->base_mrf &&
2851 inst->dst.hw_reg < scan_inst->base_mrf + implied_write_len) {
2852 break;
2853 }
2854 }
2855
2856 if (scan_inst->dst.file == GRF &&
2857 scan_inst->dst.reg == inst->src[0].reg) {
2858 /* Found the last thing to write our reg we want to turn
2859 * into a compute-to-MRF.
2860 */
2861
2862 if (scan_inst->opcode == FS_OPCODE_TEX) {
2863 /* texturing writes several continuous regs, so we can't
2864 * compute-to-mrf that.
2865 */
2866 break;
2867 }
2868
2869 /* If it's predicated, it (probably) didn't populate all
2870 * the channels.
2871 */
2872 if (scan_inst->predicated)
2873 break;
2874
2875 /* SEND instructions can't have MRF as a destination. */
2876 if (scan_inst->mlen)
2877 break;
2878
2879 if (intel->gen >= 6) {
2880 /* gen6 math instructions must have the destination be
2881 * GRF, so no compute-to-MRF for them.
2882 */
2883 if (scan_inst->opcode == FS_OPCODE_RCP ||
2884 scan_inst->opcode == FS_OPCODE_RSQ ||
2885 scan_inst->opcode == FS_OPCODE_SQRT ||
2886 scan_inst->opcode == FS_OPCODE_EXP2 ||
2887 scan_inst->opcode == FS_OPCODE_LOG2 ||
2888 scan_inst->opcode == FS_OPCODE_SIN ||
2889 scan_inst->opcode == FS_OPCODE_COS ||
2890 scan_inst->opcode == FS_OPCODE_POW) {
2891 break;
2892 }
2893 }
2894
2895 if (scan_inst->dst.reg_offset == inst->src[0].reg_offset) {
2896 /* Found the creator of our MRF's source value. */
2897 found = true;
2898 break;
2899 }
2900 }
2901 }
2902 if (found) {
2903 scan_inst->dst.file = MRF;
2904 scan_inst->dst.hw_reg = inst->dst.hw_reg;
2905 scan_inst->saturate |= inst->saturate;
2906 inst->remove();
2907 progress = true;
2908 }
2909 }
2910
2911 return progress;
2912 }
2913
2914 bool
2915 fs_visitor::virtual_grf_interferes(int a, int b)
2916 {
2917 int start = MAX2(this->virtual_grf_def[a], this->virtual_grf_def[b]);
2918 int end = MIN2(this->virtual_grf_use[a], this->virtual_grf_use[b]);
2919
2920 /* For dead code, just check if the def interferes with the other range. */
2921 if (this->virtual_grf_use[a] == -1) {
2922 return (this->virtual_grf_def[a] >= this->virtual_grf_def[b] &&
2923 this->virtual_grf_def[a] < this->virtual_grf_use[b]);
2924 }
2925 if (this->virtual_grf_use[b] == -1) {
2926 return (this->virtual_grf_def[b] >= this->virtual_grf_def[a] &&
2927 this->virtual_grf_def[b] < this->virtual_grf_use[a]);
2928 }
2929
2930 return start < end;
2931 }
2932
2933 static struct brw_reg brw_reg_from_fs_reg(fs_reg *reg)
2934 {
2935 struct brw_reg brw_reg;
2936
2937 switch (reg->file) {
2938 case GRF:
2939 case ARF:
2940 case MRF:
2941 brw_reg = brw_vec8_reg(reg->file,
2942 reg->hw_reg, 0);
2943 brw_reg = retype(brw_reg, reg->type);
2944 break;
2945 case IMM:
2946 switch (reg->type) {
2947 case BRW_REGISTER_TYPE_F:
2948 brw_reg = brw_imm_f(reg->imm.f);
2949 break;
2950 case BRW_REGISTER_TYPE_D:
2951 brw_reg = brw_imm_d(reg->imm.i);
2952 break;
2953 case BRW_REGISTER_TYPE_UD:
2954 brw_reg = brw_imm_ud(reg->imm.u);
2955 break;
2956 default:
2957 assert(!"not reached");
2958 break;
2959 }
2960 break;
2961 case FIXED_HW_REG:
2962 brw_reg = reg->fixed_hw_reg;
2963 break;
2964 case BAD_FILE:
2965 /* Probably unused. */
2966 brw_reg = brw_null_reg();
2967 break;
2968 case UNIFORM:
2969 assert(!"not reached");
2970 brw_reg = brw_null_reg();
2971 break;
2972 }
2973 if (reg->abs)
2974 brw_reg = brw_abs(brw_reg);
2975 if (reg->negate)
2976 brw_reg = negate(brw_reg);
2977
2978 return brw_reg;
2979 }
2980
2981 void
2982 fs_visitor::generate_code()
2983 {
2984 unsigned int annotation_len = 0;
2985 int last_native_inst = 0;
2986 struct brw_instruction *if_stack[16], *loop_stack[16];
2987 int if_stack_depth = 0, loop_stack_depth = 0;
2988 int if_depth_in_loop[16];
2989
2990 if_depth_in_loop[loop_stack_depth] = 0;
2991
2992 memset(&if_stack, 0, sizeof(if_stack));
2993 foreach_iter(exec_list_iterator, iter, this->instructions) {
2994 fs_inst *inst = (fs_inst *)iter.get();
2995 struct brw_reg src[3], dst;
2996
2997 for (unsigned int i = 0; i < 3; i++) {
2998 src[i] = brw_reg_from_fs_reg(&inst->src[i]);
2999 }
3000 dst = brw_reg_from_fs_reg(&inst->dst);
3001
3002 brw_set_conditionalmod(p, inst->conditional_mod);
3003 brw_set_predicate_control(p, inst->predicated);
3004
3005 switch (inst->opcode) {
3006 case BRW_OPCODE_MOV:
3007 brw_MOV(p, dst, src[0]);
3008 break;
3009 case BRW_OPCODE_ADD:
3010 brw_ADD(p, dst, src[0], src[1]);
3011 break;
3012 case BRW_OPCODE_MUL:
3013 brw_MUL(p, dst, src[0], src[1]);
3014 break;
3015
3016 case BRW_OPCODE_FRC:
3017 brw_FRC(p, dst, src[0]);
3018 break;
3019 case BRW_OPCODE_RNDD:
3020 brw_RNDD(p, dst, src[0]);
3021 break;
3022 case BRW_OPCODE_RNDE:
3023 brw_RNDE(p, dst, src[0]);
3024 break;
3025 case BRW_OPCODE_RNDZ:
3026 brw_RNDZ(p, dst, src[0]);
3027 break;
3028
3029 case BRW_OPCODE_AND:
3030 brw_AND(p, dst, src[0], src[1]);
3031 break;
3032 case BRW_OPCODE_OR:
3033 brw_OR(p, dst, src[0], src[1]);
3034 break;
3035 case BRW_OPCODE_XOR:
3036 brw_XOR(p, dst, src[0], src[1]);
3037 break;
3038 case BRW_OPCODE_NOT:
3039 brw_NOT(p, dst, src[0]);
3040 break;
3041 case BRW_OPCODE_ASR:
3042 brw_ASR(p, dst, src[0], src[1]);
3043 break;
3044 case BRW_OPCODE_SHR:
3045 brw_SHR(p, dst, src[0], src[1]);
3046 break;
3047 case BRW_OPCODE_SHL:
3048 brw_SHL(p, dst, src[0], src[1]);
3049 break;
3050
3051 case BRW_OPCODE_CMP:
3052 brw_CMP(p, dst, inst->conditional_mod, src[0], src[1]);
3053 break;
3054 case BRW_OPCODE_SEL:
3055 brw_SEL(p, dst, src[0], src[1]);
3056 break;
3057
3058 case BRW_OPCODE_IF:
3059 assert(if_stack_depth < 16);
3060 if_stack[if_stack_depth] = brw_IF(p, BRW_EXECUTE_8);
3061 if_depth_in_loop[loop_stack_depth]++;
3062 if_stack_depth++;
3063 break;
3064 case BRW_OPCODE_ELSE:
3065 if_stack[if_stack_depth - 1] =
3066 brw_ELSE(p, if_stack[if_stack_depth - 1]);
3067 break;
3068 case BRW_OPCODE_ENDIF:
3069 if_stack_depth--;
3070 brw_ENDIF(p , if_stack[if_stack_depth]);
3071 if_depth_in_loop[loop_stack_depth]--;
3072 break;
3073
3074 case BRW_OPCODE_DO:
3075 loop_stack[loop_stack_depth++] = brw_DO(p, BRW_EXECUTE_8);
3076 if_depth_in_loop[loop_stack_depth] = 0;
3077 break;
3078
3079 case BRW_OPCODE_BREAK:
3080 brw_BREAK(p, if_depth_in_loop[loop_stack_depth]);
3081 brw_set_predicate_control(p, BRW_PREDICATE_NONE);
3082 break;
3083 case BRW_OPCODE_CONTINUE:
3084 brw_CONT(p, if_depth_in_loop[loop_stack_depth]);
3085 brw_set_predicate_control(p, BRW_PREDICATE_NONE);
3086 break;
3087
3088 case BRW_OPCODE_WHILE: {
3089 struct brw_instruction *inst0, *inst1;
3090 GLuint br = 1;
3091
3092 if (intel->gen >= 5)
3093 br = 2;
3094
3095 assert(loop_stack_depth > 0);
3096 loop_stack_depth--;
3097 inst0 = inst1 = brw_WHILE(p, loop_stack[loop_stack_depth]);
3098 /* patch all the BREAK/CONT instructions from last BGNLOOP */
3099 while (inst0 > loop_stack[loop_stack_depth]) {
3100 inst0--;
3101 if (inst0->header.opcode == BRW_OPCODE_BREAK &&
3102 inst0->bits3.if_else.jump_count == 0) {
3103 inst0->bits3.if_else.jump_count = br * (inst1 - inst0 + 1);
3104 }
3105 else if (inst0->header.opcode == BRW_OPCODE_CONTINUE &&
3106 inst0->bits3.if_else.jump_count == 0) {
3107 inst0->bits3.if_else.jump_count = br * (inst1 - inst0);
3108 }
3109 }
3110 }
3111 break;
3112
3113 case FS_OPCODE_RCP:
3114 case FS_OPCODE_RSQ:
3115 case FS_OPCODE_SQRT:
3116 case FS_OPCODE_EXP2:
3117 case FS_OPCODE_LOG2:
3118 case FS_OPCODE_POW:
3119 case FS_OPCODE_SIN:
3120 case FS_OPCODE_COS:
3121 generate_math(inst, dst, src);
3122 break;
3123 case FS_OPCODE_LINTERP:
3124 generate_linterp(inst, dst, src);
3125 break;
3126 case FS_OPCODE_TEX:
3127 case FS_OPCODE_TXB:
3128 case FS_OPCODE_TXL:
3129 generate_tex(inst, dst);
3130 break;
3131 case FS_OPCODE_DISCARD_NOT:
3132 generate_discard_not(inst, dst);
3133 break;
3134 case FS_OPCODE_DISCARD_AND:
3135 generate_discard_and(inst, src[0]);
3136 break;
3137 case FS_OPCODE_DDX:
3138 generate_ddx(inst, dst, src[0]);
3139 break;
3140 case FS_OPCODE_DDY:
3141 generate_ddy(inst, dst, src[0]);
3142 break;
3143 case FS_OPCODE_FB_WRITE:
3144 generate_fb_write(inst);
3145 break;
3146 default:
3147 if (inst->opcode < (int)ARRAY_SIZE(brw_opcodes)) {
3148 _mesa_problem(ctx, "Unsupported opcode `%s' in FS",
3149 brw_opcodes[inst->opcode].name);
3150 } else {
3151 _mesa_problem(ctx, "Unsupported opcode %d in FS", inst->opcode);
3152 }
3153 this->fail = true;
3154 }
3155
3156 if (annotation_len < p->nr_insn) {
3157 annotation_len *= 2;
3158 if (annotation_len < 16)
3159 annotation_len = 16;
3160
3161 this->annotation_string = talloc_realloc(this->mem_ctx,
3162 annotation_string,
3163 const char *,
3164 annotation_len);
3165 this->annotation_ir = talloc_realloc(this->mem_ctx,
3166 annotation_ir,
3167 ir_instruction *,
3168 annotation_len);
3169 }
3170
3171 for (unsigned int i = last_native_inst; i < p->nr_insn; i++) {
3172 this->annotation_string[i] = inst->annotation;
3173 this->annotation_ir[i] = inst->ir;
3174 }
3175 last_native_inst = p->nr_insn;
3176 }
3177 }
3178
3179 GLboolean
3180 brw_wm_fs_emit(struct brw_context *brw, struct brw_wm_compile *c)
3181 {
3182 struct brw_compile *p = &c->func;
3183 struct intel_context *intel = &brw->intel;
3184 struct gl_context *ctx = &intel->ctx;
3185 struct brw_shader *shader = NULL;
3186 struct gl_shader_program *prog = ctx->Shader.CurrentProgram;
3187
3188 if (!prog)
3189 return GL_FALSE;
3190
3191 for (unsigned int i = 0; i < prog->_NumLinkedShaders; i++) {
3192 if (prog->_LinkedShaders[i]->Type == GL_FRAGMENT_SHADER) {
3193 shader = (struct brw_shader *)prog->_LinkedShaders[i];
3194 break;
3195 }
3196 }
3197 if (!shader)
3198 return GL_FALSE;
3199
3200 /* We always use 8-wide mode, at least for now. For one, flow
3201 * control only works in 8-wide. Also, when we're fragment shader
3202 * bound, we're almost always under register pressure as well, so
3203 * 8-wide would save us from the performance cliff of spilling
3204 * regs.
3205 */
3206 c->dispatch_width = 8;
3207
3208 if (INTEL_DEBUG & DEBUG_WM) {
3209 printf("GLSL IR for native fragment shader %d:\n", prog->Name);
3210 _mesa_print_ir(shader->ir, NULL);
3211 printf("\n");
3212 }
3213
3214 /* Now the main event: Visit the shader IR and generate our FS IR for it.
3215 */
3216 fs_visitor v(c, shader);
3217
3218 if (0) {
3219 v.emit_dummy_fs();
3220 } else {
3221 v.calculate_urb_setup();
3222 if (intel->gen < 6)
3223 v.emit_interpolation_setup_gen4();
3224 else
3225 v.emit_interpolation_setup_gen6();
3226
3227 /* Generate FS IR for main(). (the visitor only descends into
3228 * functions called "main").
3229 */
3230 foreach_iter(exec_list_iterator, iter, *shader->ir) {
3231 ir_instruction *ir = (ir_instruction *)iter.get();
3232 v.base_ir = ir;
3233 ir->accept(&v);
3234 }
3235
3236 v.emit_fb_writes();
3237
3238 v.split_virtual_grfs();
3239
3240 v.assign_curb_setup();
3241 v.assign_urb_setup();
3242
3243 bool progress;
3244 do {
3245 progress = false;
3246 v.calculate_live_intervals();
3247 progress = v.propagate_constants() || progress;
3248 progress = v.register_coalesce() || progress;
3249 progress = v.compute_to_mrf() || progress;
3250 progress = v.dead_code_eliminate() || progress;
3251 } while (progress);
3252
3253 if (0)
3254 v.assign_regs_trivial();
3255 else
3256 v.assign_regs();
3257 }
3258
3259 if (!v.fail)
3260 v.generate_code();
3261
3262 assert(!v.fail); /* FINISHME: Cleanly fail, tested at link time, etc. */
3263
3264 if (v.fail)
3265 return GL_FALSE;
3266
3267 if (INTEL_DEBUG & DEBUG_WM) {
3268 const char *last_annotation_string = NULL;
3269 ir_instruction *last_annotation_ir = NULL;
3270
3271 printf("Native code for fragment shader %d:\n", prog->Name);
3272 for (unsigned int i = 0; i < p->nr_insn; i++) {
3273 if (last_annotation_ir != v.annotation_ir[i]) {
3274 last_annotation_ir = v.annotation_ir[i];
3275 if (last_annotation_ir) {
3276 printf(" ");
3277 last_annotation_ir->print();
3278 printf("\n");
3279 }
3280 }
3281 if (last_annotation_string != v.annotation_string[i]) {
3282 last_annotation_string = v.annotation_string[i];
3283 if (last_annotation_string)
3284 printf(" %s\n", last_annotation_string);
3285 }
3286 brw_disasm(stdout, &p->store[i], intel->gen);
3287 }
3288 printf("\n");
3289 }
3290
3291 c->prog_data.total_grf = v.grf_used;
3292 c->prog_data.total_scratch = 0;
3293
3294 return GL_TRUE;
3295 }