Merge remote-tracking branch 'mesa-public/master' into vulkan
[mesa.git] / src / mesa / drivers / dri / i965 / brw_gs.c
1 /*
2 * Copyright © 2013 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file brw_vec4_gs.c
26 *
27 * State atom for client-programmable geometry shaders, and support code.
28 */
29
30 #include "brw_gs.h"
31 #include "brw_context.h"
32 #include "brw_vec4_gs_visitor.h"
33 #include "brw_state.h"
34 #include "brw_ff_gs.h"
35
36 bool
37 brw_compile_gs_prog(struct brw_context *brw,
38 struct gl_shader_program *prog,
39 struct brw_geometry_program *gp,
40 struct brw_gs_prog_key *key,
41 struct brw_gs_compile_output *output)
42 {
43 struct brw_gs_compile c;
44 memset(&c, 0, sizeof(c));
45 c.key = *key;
46 c.gp = gp;
47
48 /* We get the bind map as input in the output struct...*/
49 c.prog_data.base.base.map_entries = output->prog_data.base.base.map_entries;
50 memcpy(c.prog_data.base.base.bind_map, output->prog_data.base.base.bind_map,
51 sizeof(c.prog_data.base.base.bind_map));
52
53 c.prog_data.include_primitive_id =
54 (gp->program.Base.InputsRead & VARYING_BIT_PRIMITIVE_ID) != 0;
55
56 c.prog_data.invocations = gp->program.Invocations;
57
58 /* Allocate the references to the uniforms that will end up in the
59 * prog_data associated with the compiled program, and which will be freed
60 * by the state cache.
61 *
62 * Note: param_count needs to be num_uniform_components * 4, since we add
63 * padding around uniform values below vec4 size, so the worst case is that
64 * every uniform is a float which gets padded to the size of a vec4.
65 */
66 struct gl_shader *gs = prog->_LinkedShaders[MESA_SHADER_GEOMETRY];
67 int param_count = gs->num_uniform_components * 4;
68
69 /* We also upload clip plane data as uniforms */
70 param_count += MAX_CLIP_PLANES * 4;
71 param_count += gs->NumImages * BRW_IMAGE_PARAM_SIZE;
72
73 c.prog_data.base.base.param =
74 rzalloc_array(NULL, const gl_constant_value *, param_count);
75 c.prog_data.base.base.pull_param =
76 rzalloc_array(NULL, const gl_constant_value *, param_count);
77 c.prog_data.base.base.image_param =
78 rzalloc_array(NULL, struct brw_image_param, gs->NumImages);
79 c.prog_data.base.base.nr_params = param_count;
80 c.prog_data.base.base.nr_image_params = gs->NumImages;
81
82 if (brw->gen >= 7) {
83 if (gp->program.OutputType == GL_POINTS) {
84 /* When the output type is points, the geometry shader may output data
85 * to multiple streams, and EndPrimitive() has no effect. So we
86 * configure the hardware to interpret the control data as stream ID.
87 */
88 c.prog_data.control_data_format = GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID;
89
90 /* We only have to emit control bits if we are using streams */
91 if (prog->Geom.UsesStreams)
92 c.control_data_bits_per_vertex = 2;
93 else
94 c.control_data_bits_per_vertex = 0;
95 } else {
96 /* When the output type is triangle_strip or line_strip, EndPrimitive()
97 * may be used to terminate the current strip and start a new one
98 * (similar to primitive restart), and outputting data to multiple
99 * streams is not supported. So we configure the hardware to interpret
100 * the control data as EndPrimitive information (a.k.a. "cut bits").
101 */
102 c.prog_data.control_data_format = GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT;
103
104 /* We only need to output control data if the shader actually calls
105 * EndPrimitive().
106 */
107 c.control_data_bits_per_vertex = gp->program.UsesEndPrimitive ? 1 : 0;
108 }
109 } else {
110 /* There are no control data bits in gen6. */
111 c.control_data_bits_per_vertex = 0;
112
113 /* If it is using transform feedback, enable it */
114 if (prog->TransformFeedback.NumVarying)
115 c.prog_data.gen6_xfb_enabled = true;
116 else
117 c.prog_data.gen6_xfb_enabled = false;
118 }
119 c.control_data_header_size_bits =
120 gp->program.VerticesOut * c.control_data_bits_per_vertex;
121
122 /* 1 HWORD = 32 bytes = 256 bits */
123 c.prog_data.control_data_header_size_hwords =
124 ALIGN(c.control_data_header_size_bits, 256) / 256;
125
126 GLbitfield64 outputs_written = gp->program.Base.OutputsWritten;
127
128 /* In order for legacy clipping to work, we need to populate the clip
129 * distance varying slots whenever clipping is enabled, even if the vertex
130 * shader doesn't write to gl_ClipDistance.
131 */
132 if (c.key.base.userclip_active) {
133 outputs_written |= BITFIELD64_BIT(VARYING_SLOT_CLIP_DIST0);
134 outputs_written |= BITFIELD64_BIT(VARYING_SLOT_CLIP_DIST1);
135 }
136
137 brw_compute_vue_map(brw->intelScreen->devinfo,
138 &c.prog_data.base.vue_map, outputs_written);
139
140 /* Compute the output vertex size.
141 *
142 * From the Ivy Bridge PRM, Vol2 Part1 7.2.1.1 STATE_GS - Output Vertex
143 * Size (p168):
144 *
145 * [0,62] indicating [1,63] 16B units
146 *
147 * Specifies the size of each vertex stored in the GS output entry
148 * (following any Control Header data) as a number of 128-bit units
149 * (minus one).
150 *
151 * Programming Restrictions: The vertex size must be programmed as a
152 * multiple of 32B units with the following exception: Rendering is
153 * disabled (as per SOL stage state) and the vertex size output by the
154 * GS thread is 16B.
155 *
156 * If rendering is enabled (as per SOL state) the vertex size must be
157 * programmed as a multiple of 32B units. In other words, the only time
158 * software can program a vertex size with an odd number of 16B units
159 * is when rendering is disabled.
160 *
161 * Note: B=bytes in the above text.
162 *
163 * It doesn't seem worth the extra trouble to optimize the case where the
164 * vertex size is 16B (especially since this would require special-casing
165 * the GEN assembly that writes to the URB). So we just set the vertex
166 * size to a multiple of 32B (2 vec4's) in all cases.
167 *
168 * The maximum output vertex size is 62*16 = 992 bytes (31 hwords). We
169 * budget that as follows:
170 *
171 * 512 bytes for varyings (a varying component is 4 bytes and
172 * gl_MaxGeometryOutputComponents = 128)
173 * 16 bytes overhead for VARYING_SLOT_PSIZ (each varying slot is 16
174 * bytes)
175 * 16 bytes overhead for gl_Position (we allocate it a slot in the VUE
176 * even if it's not used)
177 * 32 bytes overhead for gl_ClipDistance (we allocate it 2 VUE slots
178 * whenever clip planes are enabled, even if the shader doesn't
179 * write to gl_ClipDistance)
180 * 16 bytes overhead since the VUE size must be a multiple of 32 bytes
181 * (see below)--this causes up to 1 VUE slot to be wasted
182 * 400 bytes available for varying packing overhead
183 *
184 * Worst-case varying packing overhead is 3/4 of a varying slot (12 bytes)
185 * per interpolation type, so this is plenty.
186 *
187 */
188 unsigned output_vertex_size_bytes = c.prog_data.base.vue_map.num_slots * 16;
189 assert(brw->gen == 6 ||
190 output_vertex_size_bytes <= GEN7_MAX_GS_OUTPUT_VERTEX_SIZE_BYTES);
191 c.prog_data.output_vertex_size_hwords =
192 ALIGN(output_vertex_size_bytes, 32) / 32;
193
194 /* Compute URB entry size. The maximum allowed URB entry size is 32k.
195 * That divides up as follows:
196 *
197 * 64 bytes for the control data header (cut indices or StreamID bits)
198 * 4096 bytes for varyings (a varying component is 4 bytes and
199 * gl_MaxGeometryTotalOutputComponents = 1024)
200 * 4096 bytes overhead for VARYING_SLOT_PSIZ (each varying slot is 16
201 * bytes/vertex and gl_MaxGeometryOutputVertices is 256)
202 * 4096 bytes overhead for gl_Position (we allocate it a slot in the VUE
203 * even if it's not used)
204 * 8192 bytes overhead for gl_ClipDistance (we allocate it 2 VUE slots
205 * whenever clip planes are enabled, even if the shader doesn't
206 * write to gl_ClipDistance)
207 * 4096 bytes overhead since the VUE size must be a multiple of 32
208 * bytes (see above)--this causes up to 1 VUE slot to be wasted
209 * 8128 bytes available for varying packing overhead
210 *
211 * Worst-case varying packing overhead is 3/4 of a varying slot per
212 * interpolation type, which works out to 3072 bytes, so this would allow
213 * us to accommodate 2 interpolation types without any danger of running
214 * out of URB space.
215 *
216 * In practice, the risk of running out of URB space is very small, since
217 * the above figures are all worst-case, and most of them scale with the
218 * number of output vertices. So we'll just calculate the amount of space
219 * we need, and if it's too large, fail to compile.
220 *
221 * The above is for gen7+ where we have a single URB entry that will hold
222 * all the output. In gen6, we will have to allocate URB entries for every
223 * vertex we emit, so our URB entries only need to be large enough to hold
224 * a single vertex. Also, gen6 does not have a control data header.
225 */
226 unsigned output_size_bytes;
227 if (brw->gen >= 7) {
228 output_size_bytes =
229 c.prog_data.output_vertex_size_hwords * 32 * gp->program.VerticesOut;
230 output_size_bytes += 32 * c.prog_data.control_data_header_size_hwords;
231 } else {
232 output_size_bytes = c.prog_data.output_vertex_size_hwords * 32;
233 }
234
235 /* Broadwell stores "Vertex Count" as a full 8 DWord (32 byte) URB output,
236 * which comes before the control header.
237 */
238 if (brw->gen >= 8)
239 output_size_bytes += 32;
240
241 assert(output_size_bytes >= 1);
242 int max_output_size_bytes = GEN7_MAX_GS_URB_ENTRY_SIZE_BYTES;
243 if (brw->gen == 6)
244 max_output_size_bytes = GEN6_MAX_GS_URB_ENTRY_SIZE_BYTES;
245 if (output_size_bytes > max_output_size_bytes)
246 return false;
247
248
249 /* URB entry sizes are stored as a multiple of 64 bytes in gen7+ and
250 * a multiple of 128 bytes in gen6.
251 */
252 if (brw->gen >= 7)
253 c.prog_data.base.urb_entry_size = ALIGN(output_size_bytes, 64) / 64;
254 else
255 c.prog_data.base.urb_entry_size = ALIGN(output_size_bytes, 128) / 128;
256
257 c.prog_data.output_topology =
258 get_hw_prim_for_gl_prim(gp->program.OutputType);
259
260 brw_compute_vue_map(brw->intelScreen->devinfo,
261 &c.input_vue_map, c.key.input_varyings);
262
263 /* GS inputs are read from the VUE 256 bits (2 vec4's) at a time, so we
264 * need to program a URB read length of ceiling(num_slots / 2).
265 */
266 c.prog_data.base.urb_read_length = (c.input_vue_map.num_slots + 1) / 2;
267
268 void *mem_ctx = ralloc_context(NULL);
269 unsigned program_size;
270 const unsigned *program =
271 brw_gs_emit(brw, prog, &c, mem_ctx, &program_size);
272 if (program == NULL) {
273 ralloc_free(mem_ctx);
274 return false;
275 }
276
277 output->mem_ctx = mem_ctx;
278 output->program = program;
279 output->program_size = program_size;
280 memcpy(&output->prog_data, &c.prog_data,
281 sizeof(output->prog_data));
282
283 return true;
284 }
285
286 bool
287 brw_codegen_gs_prog(struct brw_context *brw,
288 struct gl_shader_program *prog,
289 struct brw_geometry_program *gp,
290 struct brw_gs_prog_key *key)
291 {
292 struct brw_gs_compile_output output;
293 struct brw_stage_state *stage_state = &brw->gs.base;
294
295 if (brw_compile_gs_prog(brw, prog, gp, key, &output))
296 return false;
297
298 if (output.prog_data.base.base.total_scratch) {
299 brw_get_scratch_bo(brw, &stage_state->scratch_bo,
300 output.prog_data.base.base.total_scratch *
301 brw->max_gs_threads);
302 }
303
304 brw_upload_cache(&brw->cache, BRW_CACHE_GS_PROG,
305 key, sizeof(*key),
306 output.program, output.program_size,
307 &output.prog_data, sizeof(output.prog_data),
308 &stage_state->prog_offset, &brw->gs.prog_data);
309 ralloc_free(output.mem_ctx);
310
311 return true;
312 }
313
314 static bool
315 brw_gs_state_dirty(struct brw_context *brw)
316 {
317 return brw_state_dirty(brw,
318 _NEW_TEXTURE,
319 BRW_NEW_GEOMETRY_PROGRAM |
320 BRW_NEW_TRANSFORM_FEEDBACK |
321 BRW_NEW_VUE_MAP_VS);
322 }
323
324 static void
325 brw_gs_populate_key(struct brw_context *brw,
326 struct brw_gs_prog_key *key)
327 {
328 struct gl_context *ctx = &brw->ctx;
329 struct brw_stage_state *stage_state = &brw->gs.base;
330 struct brw_geometry_program *gp =
331 (struct brw_geometry_program *) brw->geometry_program;
332 struct gl_program *prog = &gp->program.Base;
333
334 memset(key, 0, sizeof(*key));
335
336 key->base.program_string_id = gp->id;
337 brw_setup_vue_key_clip_info(brw, &key->base,
338 gp->program.Base.UsesClipDistanceOut);
339
340 /* _NEW_TEXTURE */
341 brw_populate_sampler_prog_key_data(ctx, prog, stage_state->sampler_count,
342 &key->base.tex);
343
344 /* BRW_NEW_VUE_MAP_VS */
345 key->input_varyings = brw->vue_map_vs.slots_valid;
346 }
347
348 void
349 brw_upload_gs_prog(struct brw_context *brw)
350 {
351 struct gl_context *ctx = &brw->ctx;
352 struct gl_shader_program **current = ctx->_Shader->CurrentProgram;
353 struct brw_stage_state *stage_state = &brw->gs.base;
354 struct brw_gs_prog_key key;
355 /* BRW_NEW_GEOMETRY_PROGRAM */
356 struct brw_geometry_program *gp =
357 (struct brw_geometry_program *) brw->geometry_program;
358
359 if (!brw_gs_state_dirty(brw))
360 return;
361
362 if (gp == NULL) {
363 /* No geometry shader. Vertex data just passes straight through. */
364 if (brw->ctx.NewDriverState & BRW_NEW_VUE_MAP_VS) {
365 brw->vue_map_geom_out = brw->vue_map_vs;
366 brw->ctx.NewDriverState |= BRW_NEW_VUE_MAP_GEOM_OUT;
367 }
368
369 if (brw->gen == 6 &&
370 (brw->ctx.NewDriverState & BRW_NEW_TRANSFORM_FEEDBACK)) {
371 gen6_brw_upload_ff_gs_prog(brw);
372 return;
373 }
374
375 /* Other state atoms had better not try to access prog_data, since
376 * there's no GS program.
377 */
378 brw->gs.prog_data = NULL;
379 brw->gs.base.prog_data = NULL;
380
381 return;
382 }
383
384 brw_gs_populate_key(brw, &key);
385
386 if (!brw_search_cache(&brw->cache, BRW_CACHE_GS_PROG,
387 &key, sizeof(key),
388 &stage_state->prog_offset, &brw->gs.prog_data)) {
389 bool success = brw_codegen_gs_prog(brw, current[MESA_SHADER_GEOMETRY],
390 gp, &key);
391 assert(success);
392 (void)success;
393 }
394 brw->gs.base.prog_data = &brw->gs.prog_data->base.base;
395
396 if (memcmp(&brw->gs.prog_data->base.vue_map, &brw->vue_map_geom_out,
397 sizeof(brw->vue_map_geom_out)) != 0) {
398 brw->vue_map_geom_out = brw->gs.prog_data->base.vue_map;
399 brw->ctx.NewDriverState |= BRW_NEW_VUE_MAP_GEOM_OUT;
400 }
401 }
402
403 bool
404 brw_gs_precompile(struct gl_context *ctx,
405 struct gl_shader_program *shader_prog,
406 struct gl_program *prog)
407 {
408 struct brw_context *brw = brw_context(ctx);
409 struct brw_gs_prog_key key;
410 uint32_t old_prog_offset = brw->gs.base.prog_offset;
411 struct brw_gs_prog_data *old_prog_data = brw->gs.prog_data;
412 bool success;
413
414 struct gl_geometry_program *gp = (struct gl_geometry_program *) prog;
415 struct brw_geometry_program *bgp = brw_geometry_program(gp);
416
417 memset(&key, 0, sizeof(key));
418
419 brw_vue_setup_prog_key_for_precompile(ctx, &key.base, bgp->id, &gp->Base);
420
421 /* Assume that the set of varyings coming in from the vertex shader exactly
422 * matches what the geometry shader requires.
423 */
424 key.input_varyings = gp->Base.InputsRead;
425
426 success = brw_codegen_gs_prog(brw, shader_prog, bgp, &key);
427
428 brw->gs.base.prog_offset = old_prog_offset;
429 brw->gs.prog_data = old_prog_data;
430
431 return success;
432 }
433
434
435 bool
436 brw_gs_prog_data_compare(const void *in_a, const void *in_b)
437 {
438 const struct brw_gs_prog_data *a = in_a;
439 const struct brw_gs_prog_data *b = in_b;
440
441 /* Compare the base structure. */
442 if (!brw_stage_prog_data_compare(&a->base.base, &b->base.base))
443 return false;
444
445 /* Compare the rest of the struct. */
446 const unsigned offset = sizeof(struct brw_stage_prog_data);
447 if (memcmp(((char *) a) + offset, ((char *) b) + offset,
448 sizeof(struct brw_gs_prog_data) - offset)) {
449 return false;
450 }
451
452 return true;
453 }