i965: Drop trailing whitespace from the rest of the driver.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_gs_emit.c
1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keith@tungstengraphics.com>
30 */
31
32
33 #include "main/glheader.h"
34 #include "main/macros.h"
35 #include "main/enums.h"
36
37 #include "program/program.h"
38 #include "intel_batchbuffer.h"
39
40 #include "brw_defines.h"
41 #include "brw_context.h"
42 #include "brw_eu.h"
43 #include "brw_gs.h"
44
45 /**
46 * Allocate registers for GS.
47 *
48 * If sol_program is true, then:
49 *
50 * - The thread will be spawned with the "SVBI Payload Enable" bit set, so GRF
51 * 1 needs to be set aside to hold the streamed vertex buffer indices.
52 *
53 * - The thread will need to use the destination_indices register.
54 */
55 static void brw_ff_gs_alloc_regs(struct brw_ff_gs_compile *c,
56 GLuint nr_verts,
57 bool sol_program)
58 {
59 GLuint i = 0,j;
60
61 /* Register usage is static, precompute here:
62 */
63 c->reg.R0 = retype(brw_vec8_grf(i, 0), BRW_REGISTER_TYPE_UD); i++;
64
65 /* Streamed vertex buffer indices */
66 if (sol_program)
67 c->reg.SVBI = retype(brw_vec8_grf(i++, 0), BRW_REGISTER_TYPE_UD);
68
69 /* Payload vertices plus space for more generated vertices:
70 */
71 for (j = 0; j < nr_verts; j++) {
72 c->reg.vertex[j] = brw_vec4_grf(i, 0);
73 i += c->nr_regs;
74 }
75
76 c->reg.header = retype(brw_vec8_grf(i++, 0), BRW_REGISTER_TYPE_UD);
77 c->reg.temp = retype(brw_vec8_grf(i++, 0), BRW_REGISTER_TYPE_UD);
78
79 if (sol_program) {
80 c->reg.destination_indices =
81 retype(brw_vec4_grf(i++, 0), BRW_REGISTER_TYPE_UD);
82 }
83
84 c->prog_data.urb_read_length = c->nr_regs;
85 c->prog_data.total_grf = i;
86 }
87
88
89 /**
90 * Set up the initial value of c->reg.header register based on c->reg.R0.
91 *
92 * The following information is passed to the GS thread in R0, and needs to be
93 * included in the first URB_WRITE or FF_SYNC message sent by the GS:
94 *
95 * - DWORD 0 [31:0] handle info (Gen4 only)
96 * - DWORD 5 [7:0] FFTID
97 * - DWORD 6 [31:0] Debug info
98 * - DWORD 7 [31:0] Debug info
99 *
100 * This function sets up the above data by copying by copying the contents of
101 * R0 to the header register.
102 */
103 static void brw_ff_gs_initialize_header(struct brw_ff_gs_compile *c)
104 {
105 struct brw_compile *p = &c->func;
106 brw_MOV(p, c->reg.header, c->reg.R0);
107 }
108
109 /**
110 * Overwrite DWORD 2 of c->reg.header with the given immediate unsigned value.
111 *
112 * In URB_WRITE messages, DWORD 2 contains the fields PrimType, PrimStart,
113 * PrimEnd, Increment CL_INVOCATIONS, and SONumPrimsWritten, many of which we
114 * need to be able to update on a per-vertex basis.
115 */
116 static void brw_ff_gs_overwrite_header_dw2(struct brw_ff_gs_compile *c,
117 unsigned dw2)
118 {
119 struct brw_compile *p = &c->func;
120 brw_MOV(p, get_element_ud(c->reg.header, 2), brw_imm_ud(dw2));
121 }
122
123 /**
124 * Overwrite DWORD 2 of c->reg.header with the primitive type from c->reg.R0.
125 *
126 * When the thread is spawned, GRF 0 contains the primitive type in bits 4:0
127 * of DWORD 2. URB_WRITE messages need the primitive type in bits 6:2 of
128 * DWORD 2. So this function extracts the primitive type field, bitshifts it
129 * appropriately, and stores it in c->reg.header.
130 */
131 static void brw_ff_gs_overwrite_header_dw2_from_r0(struct brw_ff_gs_compile *c)
132 {
133 struct brw_compile *p = &c->func;
134 brw_AND(p, get_element_ud(c->reg.header, 2), get_element_ud(c->reg.R0, 2),
135 brw_imm_ud(0x1f));
136 brw_SHL(p, get_element_ud(c->reg.header, 2),
137 get_element_ud(c->reg.header, 2), brw_imm_ud(2));
138 }
139
140 /**
141 * Apply an additive offset to DWORD 2 of c->reg.header.
142 *
143 * This is used to set/unset the "PrimStart" and "PrimEnd" flags appropriately
144 * for each vertex.
145 */
146 static void brw_ff_gs_offset_header_dw2(struct brw_ff_gs_compile *c,
147 int offset)
148 {
149 struct brw_compile *p = &c->func;
150 brw_ADD(p, get_element_d(c->reg.header, 2), get_element_d(c->reg.header, 2),
151 brw_imm_d(offset));
152 }
153
154
155 /**
156 * Emit a vertex using the URB_WRITE message. Use the contents of
157 * c->reg.header for the message header, and the registers starting at \c vert
158 * for the vertex data.
159 *
160 * If \c last is true, then this is the last vertex, so no further URB space
161 * should be allocated, and this message should end the thread.
162 *
163 * If \c last is false, then a new URB entry will be allocated, and its handle
164 * will be stored in DWORD 0 of c->reg.header for use in the next URB_WRITE
165 * message.
166 */
167 static void brw_ff_gs_emit_vue(struct brw_ff_gs_compile *c,
168 struct brw_reg vert,
169 bool last)
170 {
171 struct brw_compile *p = &c->func;
172 int write_offset = 0;
173 bool complete = false;
174
175 do {
176 /* We can't write more than 14 registers at a time to the URB */
177 int write_len = MIN2(c->nr_regs - write_offset, 14);
178 if (write_len == c->nr_regs - write_offset)
179 complete = true;
180
181 /* Copy the vertex from vertn into m1..mN+1:
182 */
183 brw_copy8(p, brw_message_reg(1), offset(vert, write_offset), write_len);
184
185 /* Send the vertex data to the URB. If this is the last write for this
186 * vertex, then we mark it as complete, and either end the thread or
187 * allocate another vertex URB entry (depending whether this is the last
188 * vertex).
189 */
190 enum brw_urb_write_flags flags;
191 if (!complete)
192 flags = BRW_URB_WRITE_NO_FLAGS;
193 else if (last)
194 flags = BRW_URB_WRITE_EOT_COMPLETE;
195 else
196 flags = BRW_URB_WRITE_ALLOCATE_COMPLETE;
197 brw_urb_WRITE(p,
198 (flags & BRW_URB_WRITE_ALLOCATE) ? c->reg.temp
199 : retype(brw_null_reg(), BRW_REGISTER_TYPE_UD),
200 0,
201 c->reg.header,
202 flags,
203 write_len + 1, /* msg length */
204 (flags & BRW_URB_WRITE_ALLOCATE) ? 1
205 : 0, /* response length */
206 write_offset, /* urb offset */
207 BRW_URB_SWIZZLE_NONE);
208 write_offset += write_len;
209 } while (!complete);
210
211 if (!last) {
212 brw_MOV(p, get_element_ud(c->reg.header, 0),
213 get_element_ud(c->reg.temp, 0));
214 }
215 }
216
217 /**
218 * Send an FF_SYNC message to ensure that all previously spawned GS threads
219 * have finished sending primitives down the pipeline, and to allocate a URB
220 * entry for the first output vertex. Only needed on Ironlake+.
221 *
222 * This function modifies c->reg.header: in DWORD 1, it stores num_prim (which
223 * is needed by the FF_SYNC message), and in DWORD 0, it stores the handle to
224 * the allocated URB entry (which will be needed by the URB_WRITE meesage that
225 * follows).
226 */
227 static void brw_ff_gs_ff_sync(struct brw_ff_gs_compile *c, int num_prim)
228 {
229 struct brw_compile *p = &c->func;
230
231 brw_MOV(p, get_element_ud(c->reg.header, 1), brw_imm_ud(num_prim));
232 brw_ff_sync(p,
233 c->reg.temp,
234 0,
235 c->reg.header,
236 1, /* allocate */
237 1, /* response length */
238 0 /* eot */);
239 brw_MOV(p, get_element_ud(c->reg.header, 0),
240 get_element_ud(c->reg.temp, 0));
241 }
242
243
244 void
245 brw_ff_gs_quads(struct brw_ff_gs_compile *c, struct brw_ff_gs_prog_key *key)
246 {
247 struct brw_context *brw = c->func.brw;
248
249 brw_ff_gs_alloc_regs(c, 4, false);
250 brw_ff_gs_initialize_header(c);
251 /* Use polygons for correct edgeflag behaviour. Note that vertex 3
252 * is the PV for quads, but vertex 0 for polygons:
253 */
254 if (brw->gen == 5)
255 brw_ff_gs_ff_sync(c, 1);
256 brw_ff_gs_overwrite_header_dw2(
257 c, ((_3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT)
258 | URB_WRITE_PRIM_START));
259 if (key->pv_first) {
260 brw_ff_gs_emit_vue(c, c->reg.vertex[0], 0);
261 brw_ff_gs_overwrite_header_dw2(
262 c, _3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT);
263 brw_ff_gs_emit_vue(c, c->reg.vertex[1], 0);
264 brw_ff_gs_emit_vue(c, c->reg.vertex[2], 0);
265 brw_ff_gs_overwrite_header_dw2(
266 c, ((_3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT)
267 | URB_WRITE_PRIM_END));
268 brw_ff_gs_emit_vue(c, c->reg.vertex[3], 1);
269 }
270 else {
271 brw_ff_gs_emit_vue(c, c->reg.vertex[3], 0);
272 brw_ff_gs_overwrite_header_dw2(
273 c, _3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT);
274 brw_ff_gs_emit_vue(c, c->reg.vertex[0], 0);
275 brw_ff_gs_emit_vue(c, c->reg.vertex[1], 0);
276 brw_ff_gs_overwrite_header_dw2(
277 c, ((_3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT)
278 | URB_WRITE_PRIM_END));
279 brw_ff_gs_emit_vue(c, c->reg.vertex[2], 1);
280 }
281 }
282
283 void
284 brw_ff_gs_quad_strip(struct brw_ff_gs_compile *c,
285 struct brw_ff_gs_prog_key *key)
286 {
287 struct brw_context *brw = c->func.brw;
288
289 brw_ff_gs_alloc_regs(c, 4, false);
290 brw_ff_gs_initialize_header(c);
291
292 if (brw->gen == 5)
293 brw_ff_gs_ff_sync(c, 1);
294 brw_ff_gs_overwrite_header_dw2(
295 c, ((_3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT)
296 | URB_WRITE_PRIM_START));
297 if (key->pv_first) {
298 brw_ff_gs_emit_vue(c, c->reg.vertex[0], 0);
299 brw_ff_gs_overwrite_header_dw2(
300 c, _3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT);
301 brw_ff_gs_emit_vue(c, c->reg.vertex[1], 0);
302 brw_ff_gs_emit_vue(c, c->reg.vertex[2], 0);
303 brw_ff_gs_overwrite_header_dw2(
304 c, ((_3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT)
305 | URB_WRITE_PRIM_END));
306 brw_ff_gs_emit_vue(c, c->reg.vertex[3], 1);
307 }
308 else {
309 brw_ff_gs_emit_vue(c, c->reg.vertex[2], 0);
310 brw_ff_gs_overwrite_header_dw2(
311 c, _3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT);
312 brw_ff_gs_emit_vue(c, c->reg.vertex[3], 0);
313 brw_ff_gs_emit_vue(c, c->reg.vertex[0], 0);
314 brw_ff_gs_overwrite_header_dw2(
315 c, ((_3DPRIM_POLYGON << URB_WRITE_PRIM_TYPE_SHIFT)
316 | URB_WRITE_PRIM_END));
317 brw_ff_gs_emit_vue(c, c->reg.vertex[1], 1);
318 }
319 }
320
321 void brw_ff_gs_lines(struct brw_ff_gs_compile *c)
322 {
323 struct brw_context *brw = c->func.brw;
324
325 brw_ff_gs_alloc_regs(c, 2, false);
326 brw_ff_gs_initialize_header(c);
327
328 if (brw->gen == 5)
329 brw_ff_gs_ff_sync(c, 1);
330 brw_ff_gs_overwrite_header_dw2(
331 c, ((_3DPRIM_LINESTRIP << URB_WRITE_PRIM_TYPE_SHIFT)
332 | URB_WRITE_PRIM_START));
333 brw_ff_gs_emit_vue(c, c->reg.vertex[0], 0);
334 brw_ff_gs_overwrite_header_dw2(
335 c, ((_3DPRIM_LINESTRIP << URB_WRITE_PRIM_TYPE_SHIFT)
336 | URB_WRITE_PRIM_END));
337 brw_ff_gs_emit_vue(c, c->reg.vertex[1], 1);
338 }
339
340 /**
341 * Generate the geometry shader program used on Gen6 to perform stream output
342 * (transform feedback).
343 */
344 void
345 gen6_sol_program(struct brw_ff_gs_compile *c, struct brw_ff_gs_prog_key *key,
346 unsigned num_verts, bool check_edge_flags)
347 {
348 struct brw_compile *p = &c->func;
349 c->prog_data.svbi_postincrement_value = num_verts;
350
351 brw_ff_gs_alloc_regs(c, num_verts, true);
352 brw_ff_gs_initialize_header(c);
353
354 if (key->num_transform_feedback_bindings > 0) {
355 unsigned vertex, binding;
356 struct brw_reg destination_indices_uw =
357 vec8(retype(c->reg.destination_indices, BRW_REGISTER_TYPE_UW));
358
359 /* Note: since we use the binding table to keep track of buffer offsets
360 * and stride, the GS doesn't need to keep track of a separate pointer
361 * into each buffer; it uses a single pointer which increments by 1 for
362 * each vertex. So we use SVBI0 for this pointer, regardless of whether
363 * transform feedback is in interleaved or separate attribs mode.
364 *
365 * Make sure that the buffers have enough room for all the vertices.
366 */
367 brw_ADD(p, get_element_ud(c->reg.temp, 0),
368 get_element_ud(c->reg.SVBI, 0), brw_imm_ud(num_verts));
369 brw_CMP(p, vec1(brw_null_reg()), BRW_CONDITIONAL_LE,
370 get_element_ud(c->reg.temp, 0),
371 get_element_ud(c->reg.SVBI, 4));
372 brw_IF(p, BRW_EXECUTE_1);
373
374 /* Compute the destination indices to write to. Usually we use SVBI[0]
375 * + (0, 1, 2). However, for odd-numbered triangles in tristrips, the
376 * vertices come down the pipeline in reversed winding order, so we need
377 * to flip the order when writing to the transform feedback buffer. To
378 * ensure that flatshading accuracy is preserved, we need to write them
379 * in order SVBI[0] + (0, 2, 1) if we're using the first provoking
380 * vertex convention, and in order SVBI[0] + (1, 0, 2) if we're using
381 * the last provoking vertex convention.
382 *
383 * Note: since brw_imm_v can only be used in instructions in
384 * packed-word execution mode, and SVBI is a double-word, we need to
385 * first move the appropriate immediate constant ((0, 1, 2), (0, 2, 1),
386 * or (1, 0, 2)) to the destination_indices register, and then add SVBI
387 * using a separate instruction. Also, since the immediate constant is
388 * expressed as packed words, and we need to load double-words into
389 * destination_indices, we need to intersperse zeros to fill the upper
390 * halves of each double-word.
391 */
392 brw_MOV(p, destination_indices_uw,
393 brw_imm_v(0x00020100)); /* (0, 1, 2) */
394 if (num_verts == 3) {
395 /* Get primitive type into temp register. */
396 brw_AND(p, get_element_ud(c->reg.temp, 0),
397 get_element_ud(c->reg.R0, 2), brw_imm_ud(0x1f));
398
399 /* Test if primitive type is TRISTRIP_REVERSE. We need to do this as
400 * an 8-wide comparison so that the conditional MOV that follows
401 * moves all 8 words correctly.
402 */
403 brw_CMP(p, vec8(brw_null_reg()), BRW_CONDITIONAL_EQ,
404 get_element_ud(c->reg.temp, 0),
405 brw_imm_ud(_3DPRIM_TRISTRIP_REVERSE));
406
407 /* If so, then overwrite destination_indices_uw with the appropriate
408 * reordering.
409 */
410 brw_MOV(p, destination_indices_uw,
411 brw_imm_v(key->pv_first ? 0x00010200 /* (0, 2, 1) */
412 : 0x00020001)); /* (1, 0, 2) */
413 brw_set_predicate_control(p, BRW_PREDICATE_NONE);
414 }
415 brw_ADD(p, c->reg.destination_indices,
416 c->reg.destination_indices, get_element_ud(c->reg.SVBI, 0));
417
418 /* For each vertex, generate code to output each varying using the
419 * appropriate binding table entry.
420 */
421 for (vertex = 0; vertex < num_verts; ++vertex) {
422 /* Set up the correct destination index for this vertex */
423 brw_MOV(p, get_element_ud(c->reg.header, 5),
424 get_element_ud(c->reg.destination_indices, vertex));
425
426 for (binding = 0; binding < key->num_transform_feedback_bindings;
427 ++binding) {
428 unsigned char varying =
429 key->transform_feedback_bindings[binding];
430 unsigned char slot = c->vue_map.varying_to_slot[varying];
431 /* From the Sandybridge PRM, Volume 2, Part 1, Section 4.5.1:
432 *
433 * "Prior to End of Thread with a URB_WRITE, the kernel must
434 * ensure that all writes are complete by sending the final
435 * write as a committed write."
436 */
437 bool final_write =
438 binding == key->num_transform_feedback_bindings - 1 &&
439 vertex == num_verts - 1;
440 struct brw_reg vertex_slot = c->reg.vertex[vertex];
441 vertex_slot.nr += slot / 2;
442 vertex_slot.subnr = (slot % 2) * 16;
443 /* gl_PointSize is stored in VARYING_SLOT_PSIZ.w. */
444 vertex_slot.dw1.bits.swizzle = varying == VARYING_SLOT_PSIZ
445 ? BRW_SWIZZLE_WWWW : key->transform_feedback_swizzles[binding];
446 brw_set_access_mode(p, BRW_ALIGN_16);
447 brw_MOV(p, stride(c->reg.header, 4, 4, 1),
448 retype(vertex_slot, BRW_REGISTER_TYPE_UD));
449 brw_set_access_mode(p, BRW_ALIGN_1);
450 brw_svb_write(p,
451 final_write ? c->reg.temp : brw_null_reg(), /* dest */
452 1, /* msg_reg_nr */
453 c->reg.header, /* src0 */
454 SURF_INDEX_GEN6_SOL_BINDING(binding), /* binding_table_index */
455 final_write); /* send_commit_msg */
456 }
457 }
458 brw_ENDIF(p);
459
460 /* Now, reinitialize the header register from R0 to restore the parts of
461 * the register that we overwrote while streaming out transform feedback
462 * data.
463 */
464 brw_ff_gs_initialize_header(c);
465
466 /* Finally, wait for the write commit to occur so that we can proceed to
467 * other things safely.
468 *
469 * From the Sandybridge PRM, Volume 4, Part 1, Section 3.3:
470 *
471 * The write commit does not modify the destination register, but
472 * merely clears the dependency associated with the destination
473 * register. Thus, a simple “mov” instruction using the register as a
474 * source is sufficient to wait for the write commit to occur.
475 */
476 brw_MOV(p, c->reg.temp, c->reg.temp);
477 }
478
479 brw_ff_gs_ff_sync(c, 1);
480
481 brw_ff_gs_overwrite_header_dw2_from_r0(c);
482 switch (num_verts) {
483 case 1:
484 brw_ff_gs_offset_header_dw2(c,
485 URB_WRITE_PRIM_START | URB_WRITE_PRIM_END);
486 brw_ff_gs_emit_vue(c, c->reg.vertex[0], true);
487 break;
488 case 2:
489 brw_ff_gs_offset_header_dw2(c, URB_WRITE_PRIM_START);
490 brw_ff_gs_emit_vue(c, c->reg.vertex[0], false);
491 brw_ff_gs_offset_header_dw2(c,
492 URB_WRITE_PRIM_END - URB_WRITE_PRIM_START);
493 brw_ff_gs_emit_vue(c, c->reg.vertex[1], true);
494 break;
495 case 3:
496 if (check_edge_flags) {
497 /* Only emit vertices 0 and 1 if this is the first triangle of the
498 * polygon. Otherwise they are redundant.
499 */
500 brw_set_conditionalmod(p, BRW_CONDITIONAL_NZ);
501 brw_AND(p, retype(brw_null_reg(), BRW_REGISTER_TYPE_UD),
502 get_element_ud(c->reg.R0, 2),
503 brw_imm_ud(BRW_GS_EDGE_INDICATOR_0));
504 brw_IF(p, BRW_EXECUTE_1);
505 }
506 brw_ff_gs_offset_header_dw2(c, URB_WRITE_PRIM_START);
507 brw_ff_gs_emit_vue(c, c->reg.vertex[0], false);
508 brw_ff_gs_offset_header_dw2(c, -URB_WRITE_PRIM_START);
509 brw_ff_gs_emit_vue(c, c->reg.vertex[1], false);
510 if (check_edge_flags) {
511 brw_ENDIF(p);
512 /* Only emit vertex 2 in PRIM_END mode if this is the last triangle
513 * of the polygon. Otherwise leave the primitive incomplete because
514 * there are more polygon vertices coming.
515 */
516 brw_set_conditionalmod(p, BRW_CONDITIONAL_NZ);
517 brw_AND(p, retype(brw_null_reg(), BRW_REGISTER_TYPE_UD),
518 get_element_ud(c->reg.R0, 2),
519 brw_imm_ud(BRW_GS_EDGE_INDICATOR_1));
520 brw_set_predicate_control(p, BRW_PREDICATE_NORMAL);
521 }
522 brw_ff_gs_offset_header_dw2(c, URB_WRITE_PRIM_END);
523 brw_set_predicate_control(p, BRW_PREDICATE_NONE);
524 brw_ff_gs_emit_vue(c, c->reg.vertex[2], true);
525 break;
526 }
527 }