Merge remote-tracking branch 'mesa-public/master' into vulkan
[mesa.git] / src / mesa / drivers / dri / i965 / brw_meta_fast_clear.c
1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "main/mtypes.h"
25 #include "main/macros.h"
26 #include "main/context.h"
27 #include "main/objectlabel.h"
28 #include "main/shaderapi.h"
29 #include "main/arrayobj.h"
30 #include "main/bufferobj.h"
31 #include "main/buffers.h"
32 #include "main/blend.h"
33 #include "main/enable.h"
34 #include "main/depth.h"
35 #include "main/stencil.h"
36 #include "main/varray.h"
37 #include "main/uniforms.h"
38 #include "main/fbobject.h"
39 #include "main/texobj.h"
40
41 #include "main/api_validate.h"
42 #include "main/state.h"
43
44 #include "vbo/vbo_context.h"
45
46 #include "drivers/common/meta.h"
47
48 #include "brw_defines.h"
49 #include "brw_context.h"
50 #include "brw_draw.h"
51 #include "intel_fbo.h"
52 #include "intel_batchbuffer.h"
53
54 #include "brw_blorp.h"
55
56 struct brw_fast_clear_state {
57 GLuint vao;
58 GLuint vbo;
59 GLuint shader_prog;
60 GLint color_location;
61 };
62
63 static bool
64 brw_fast_clear_init(struct brw_context *brw)
65 {
66 struct brw_fast_clear_state *clear;
67
68 if (brw->fast_clear_state) {
69 clear = brw->fast_clear_state;
70 _mesa_BindVertexArray(clear->vao);
71 _mesa_BindBuffer(GL_ARRAY_BUFFER, clear->vbo);
72 return true;
73 }
74
75 brw->fast_clear_state = clear = malloc(sizeof *clear);
76 if (clear == NULL)
77 return false;
78
79 memset(clear, 0, sizeof *clear);
80 _mesa_GenVertexArrays(1, &clear->vao);
81 _mesa_BindVertexArray(clear->vao);
82 _mesa_GenBuffers(1, &clear->vbo);
83 _mesa_BindBuffer(GL_ARRAY_BUFFER, clear->vbo);
84 _mesa_VertexAttribPointer(0, 2, GL_FLOAT, GL_FALSE, sizeof(float) * 2, 0);
85 _mesa_EnableVertexAttribArray(0);
86
87 return true;
88 }
89
90 static void
91 brw_bind_rep_write_shader(struct brw_context *brw, float *color)
92 {
93 const char *vs_source =
94 "#extension GL_AMD_vertex_shader_layer : enable\n"
95 "#extension GL_ARB_draw_instanced : enable\n"
96 "attribute vec4 position;\n"
97 "uniform int layer;\n"
98 "void main()\n"
99 "{\n"
100 "#ifdef GL_AMD_vertex_shader_layer\n"
101 " gl_Layer = gl_InstanceID;\n"
102 "#endif\n"
103 " gl_Position = position;\n"
104 "}\n";
105 const char *fs_source =
106 "uniform vec4 color;\n"
107 "void main()\n"
108 "{\n"
109 " gl_FragColor = color;\n"
110 "}\n";
111
112 GLuint vs, fs;
113 struct brw_fast_clear_state *clear = brw->fast_clear_state;
114 struct gl_context *ctx = &brw->ctx;
115
116 if (clear->shader_prog) {
117 _mesa_UseProgram(clear->shader_prog);
118 _mesa_Uniform4fv(clear->color_location, 1, color);
119 return;
120 }
121
122 vs = _mesa_meta_compile_shader_with_debug(ctx, GL_VERTEX_SHADER, vs_source);
123 fs = _mesa_meta_compile_shader_with_debug(ctx, GL_FRAGMENT_SHADER, fs_source);
124
125 clear->shader_prog = _mesa_CreateProgram();
126 _mesa_AttachShader(clear->shader_prog, fs);
127 _mesa_DeleteShader(fs);
128 _mesa_AttachShader(clear->shader_prog, vs);
129 _mesa_DeleteShader(vs);
130 _mesa_BindAttribLocation(clear->shader_prog, 0, "position");
131 _mesa_ObjectLabel(GL_PROGRAM, clear->shader_prog, -1, "meta repclear");
132 _mesa_LinkProgram(clear->shader_prog);
133
134 clear->color_location =
135 _mesa_GetUniformLocation(clear->shader_prog, "color");
136
137 _mesa_UseProgram(clear->shader_prog);
138 _mesa_Uniform4fv(clear->color_location, 1, color);
139 }
140
141 void
142 brw_meta_fast_clear_free(struct brw_context *brw)
143 {
144 struct brw_fast_clear_state *clear = brw->fast_clear_state;
145 GET_CURRENT_CONTEXT(old_context);
146
147 if (clear == NULL)
148 return;
149
150 _mesa_make_current(&brw->ctx, NULL, NULL);
151
152 _mesa_DeleteVertexArrays(1, &clear->vao);
153 _mesa_DeleteBuffers(1, &clear->vbo);
154 _mesa_DeleteProgram(clear->shader_prog);
155 free(clear);
156
157 if (old_context)
158 _mesa_make_current(old_context, old_context->WinSysDrawBuffer, old_context->WinSysReadBuffer);
159 else
160 _mesa_make_current(NULL, NULL, NULL);
161 }
162
163 struct rect {
164 int x0, y0, x1, y1;
165 };
166
167 static void
168 brw_draw_rectlist(struct gl_context *ctx, struct rect *rect, int num_instances)
169 {
170 int start = 0, count = 3;
171 struct _mesa_prim prim;
172 float verts[6];
173
174 verts[0] = rect->x1;
175 verts[1] = rect->y1;
176 verts[2] = rect->x0;
177 verts[3] = rect->y1;
178 verts[4] = rect->x0;
179 verts[5] = rect->y0;
180
181 /* upload new vertex data */
182 _mesa_BufferData(GL_ARRAY_BUFFER_ARB, sizeof(verts), verts,
183 GL_DYNAMIC_DRAW_ARB);
184
185 if (ctx->NewState)
186 _mesa_update_state(ctx);
187
188 vbo_bind_arrays(ctx);
189
190 memset(&prim, 0, sizeof prim);
191 prim.begin = 1;
192 prim.end = 1;
193 prim.mode = BRW_PRIM_OFFSET + _3DPRIM_RECTLIST;
194 prim.num_instances = num_instances;
195 prim.start = start;
196 prim.count = count;
197
198 /* Make sure our internal prim value doesn't clash with a valid GL value. */
199 assert(!_mesa_is_valid_prim_mode(ctx, prim.mode));
200
201 brw_draw_prims(ctx, &prim, 1, NULL,
202 GL_TRUE, start, start + count - 1,
203 NULL, 0, NULL);
204 }
205
206 static void
207 get_fast_clear_rect(struct gl_framebuffer *fb,
208 struct intel_renderbuffer *irb, struct rect *rect)
209 {
210 unsigned int x_align, y_align;
211 unsigned int x_scaledown, y_scaledown;
212
213 if (irb->mt->msaa_layout == INTEL_MSAA_LAYOUT_NONE) {
214 /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
215 * Target(s)", beneath the "Fast Color Clear" bullet (p327):
216 *
217 * Clear pass must have a clear rectangle that must follow
218 * alignment rules in terms of pixels and lines as shown in the
219 * table below. Further, the clear-rectangle height and width
220 * must be multiple of the following dimensions. If the height
221 * and width of the render target being cleared do not meet these
222 * requirements, an MCS buffer can be created such that it
223 * follows the requirement and covers the RT.
224 *
225 * The alignment size in the table that follows is related to the
226 * alignment size returned by intel_get_non_msrt_mcs_alignment(), but
227 * with X alignment multiplied by 16 and Y alignment multiplied by 32.
228 */
229 intel_get_non_msrt_mcs_alignment(irb->mt, &x_align, &y_align);
230 x_align *= 16;
231 y_align *= 32;
232
233 /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
234 * Target(s)", beneath the "Fast Color Clear" bullet (p327):
235 *
236 * In order to optimize the performance MCS buffer (when bound to
237 * 1X RT) clear similarly to MCS buffer clear for MSRT case,
238 * clear rect is required to be scaled by the following factors
239 * in the horizontal and vertical directions:
240 *
241 * The X and Y scale down factors in the table that follows are each
242 * equal to half the alignment value computed above.
243 */
244 x_scaledown = x_align / 2;
245 y_scaledown = y_align / 2;
246
247 /* From BSpec: 3D-Media-GPGPU Engine > 3D Pipeline > Pixel > Pixel
248 * Backend > MCS Buffer for Render Target(s) [DevIVB+] > Table "Color
249 * Clear of Non-MultiSampled Render Target Restrictions":
250 *
251 * Clear rectangle must be aligned to two times the number of
252 * pixels in the table shown below due to 16x16 hashing across the
253 * slice.
254 */
255 x_align *= 2;
256 y_align *= 2;
257 } else {
258 /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
259 * Target(s)", beneath the "MSAA Compression" bullet (p326):
260 *
261 * Clear pass for this case requires that scaled down primitive
262 * is sent down with upper left co-ordinate to coincide with
263 * actual rectangle being cleared. For MSAA, clear rectangle’s
264 * height and width need to as show in the following table in
265 * terms of (width,height) of the RT.
266 *
267 * MSAA Width of Clear Rect Height of Clear Rect
268 * 4X Ceil(1/8*width) Ceil(1/2*height)
269 * 8X Ceil(1/2*width) Ceil(1/2*height)
270 *
271 * The text "with upper left co-ordinate to coincide with actual
272 * rectangle being cleared" is a little confusing--it seems to imply
273 * that to clear a rectangle from (x,y) to (x+w,y+h), one needs to
274 * feed the pipeline using the rectangle (x,y) to
275 * (x+Ceil(w/N),y+Ceil(h/2)), where N is either 2 or 8 depending on
276 * the number of samples. Experiments indicate that this is not
277 * quite correct; actually, what the hardware appears to do is to
278 * align whatever rectangle is sent down the pipeline to the nearest
279 * multiple of 2x2 blocks, and then scale it up by a factor of N
280 * horizontally and 2 vertically. So the resulting alignment is 4
281 * vertically and either 4 or 16 horizontally, and the scaledown
282 * factor is 2 vertically and either 2 or 8 horizontally.
283 */
284 switch (irb->mt->num_samples) {
285 case 2:
286 case 4:
287 x_scaledown = 8;
288 break;
289 case 8:
290 x_scaledown = 2;
291 break;
292 default:
293 unreachable("Unexpected sample count for fast clear");
294 }
295 y_scaledown = 2;
296 x_align = x_scaledown * 2;
297 y_align = y_scaledown * 2;
298 }
299
300 rect->x0 = fb->_Xmin;
301 rect->x1 = fb->_Xmax;
302 if (fb->Name != 0) {
303 rect->y0 = fb->_Ymin;
304 rect->y1 = fb->_Ymax;
305 } else {
306 rect->y0 = fb->Height - fb->_Ymax;
307 rect->y1 = fb->Height - fb->_Ymin;
308 }
309
310 rect->x0 = ROUND_DOWN_TO(rect->x0, x_align) / x_scaledown;
311 rect->y0 = ROUND_DOWN_TO(rect->y0, y_align) / y_scaledown;
312 rect->x1 = ALIGN(rect->x1, x_align) / x_scaledown;
313 rect->y1 = ALIGN(rect->y1, y_align) / y_scaledown;
314 }
315
316 static void
317 get_buffer_rect(const struct gl_framebuffer *fb, struct rect *rect)
318 {
319 rect->x0 = fb->_Xmin;
320 rect->x1 = fb->_Xmax;
321 if (fb->Name != 0) {
322 rect->y0 = fb->_Ymin;
323 rect->y1 = fb->_Ymax;
324 } else {
325 rect->y0 = fb->Height - fb->_Ymax;
326 rect->y1 = fb->Height - fb->_Ymin;
327 }
328 }
329
330 /**
331 * Determine if fast color clear supports the given clear color.
332 *
333 * Fast color clear can only clear to color values of 1.0 or 0.0. At the
334 * moment we only support floating point, unorm, and snorm buffers.
335 */
336 static bool
337 is_color_fast_clear_compatible(struct brw_context *brw,
338 mesa_format format,
339 const union gl_color_union *color)
340 {
341 if (_mesa_is_format_integer_color(format)) {
342 if (brw->gen >= 8) {
343 perf_debug("Integer fast clear not enabled for (%s)",
344 _mesa_get_format_name(format));
345 }
346 return false;
347 }
348
349 for (int i = 0; i < 4; i++) {
350 if (color->f[i] != 0.0f && color->f[i] != 1.0f &&
351 _mesa_format_has_color_component(format, i)) {
352 return false;
353 }
354 }
355 return true;
356 }
357
358 /**
359 * Convert the given color to a bitfield suitable for ORing into DWORD 7 of
360 * SURFACE_STATE.
361 */
362 static uint32_t
363 compute_fast_clear_color_bits(const union gl_color_union *color)
364 {
365 uint32_t bits = 0;
366 for (int i = 0; i < 4; i++) {
367 /* Testing for non-0 works for integer and float colors */
368 if (color->f[i] != 0.0f)
369 bits |= 1 << (GEN7_SURFACE_CLEAR_COLOR_SHIFT + (3 - i));
370 }
371 return bits;
372 }
373
374 static const uint32_t fast_clear_color[4] = { ~0, ~0, ~0, ~0 };
375
376 static void
377 set_fast_clear_op(struct brw_context *brw, uint32_t op)
378 {
379 /* Set op and dirty BRW_NEW_FRAGMENT_PROGRAM to make sure we re-emit
380 * 3DSTATE_PS.
381 */
382 brw->wm.fast_clear_op = op;
383 brw->ctx.NewDriverState |= BRW_NEW_FRAGMENT_PROGRAM;
384 }
385
386 static void
387 use_rectlist(struct brw_context *brw, bool enable)
388 {
389 /* Set custom state to let us use _3DPRIM_RECTLIST and the replicated
390 * rendertarget write. When we enable reclist mode, we disable the
391 * viewport transform, disable clipping, enable the rep16 write
392 * optimization and disable simd8 dispatch in the PS.
393 */
394 brw->sf.viewport_transform_enable = !enable;
395 brw->use_rep_send = enable;
396 brw->no_simd8 = enable;
397
398 /* Dirty state to make sure we reemit the state packages affected by the
399 * custom state. We dirty BRW_NEW_FRAGMENT_PROGRAM to emit 3DSTATE_PS for
400 * disabling simd8 dispatch, _NEW_LIGHT to emit 3DSTATE_SF for disabling
401 * the viewport transform and 3DSTATE_CLIP to disable clipping for the
402 * reclist primitive. This is a little messy - it would be nicer to
403 * BRW_NEW_FAST_CLEAR flag or so, but we're out of brw state bits. Dirty
404 * _NEW_BUFFERS to make sure we emit new SURFACE_STATE with the new fast
405 * clear color value.
406 */
407 brw->NewGLState |= _NEW_LIGHT | _NEW_BUFFERS;
408 brw->ctx.NewDriverState |= BRW_NEW_FRAGMENT_PROGRAM;
409 }
410
411 bool
412 brw_meta_fast_clear(struct brw_context *brw, struct gl_framebuffer *fb,
413 GLbitfield buffers, bool partial_clear)
414 {
415 struct gl_context *ctx = &brw->ctx;
416 mesa_format format;
417 enum { FAST_CLEAR, REP_CLEAR, PLAIN_CLEAR } clear_type;
418 GLbitfield plain_clear_buffers, meta_save, rep_clear_buffers, fast_clear_buffers;
419 struct rect fast_clear_rect, clear_rect;
420 int layers;
421
422 fast_clear_buffers = rep_clear_buffers = plain_clear_buffers = 0;
423
424 /* First we loop through the color draw buffers and determine which ones
425 * can be fast cleared, which ones can use the replicated write and which
426 * ones have to fall back to regular color clear.
427 */
428 for (unsigned buf = 0; buf < fb->_NumColorDrawBuffers; buf++) {
429 struct gl_renderbuffer *rb = fb->_ColorDrawBuffers[buf];
430 struct intel_renderbuffer *irb = intel_renderbuffer(rb);
431 int index = fb->_ColorDrawBufferIndexes[buf];
432
433 /* Only clear the buffers present in the provided mask */
434 if (((1 << index) & buffers) == 0)
435 continue;
436
437 /* If this is an ES2 context or GL_ARB_ES2_compatibility is supported,
438 * the framebuffer can be complete with some attachments missing. In
439 * this case the _ColorDrawBuffers pointer will be NULL.
440 */
441 if (rb == NULL)
442 continue;
443
444 clear_type = FAST_CLEAR;
445
446 /* We don't have fast clear until gen7. */
447 if (brw->gen < 7)
448 clear_type = REP_CLEAR;
449
450 if (irb->mt->fast_clear_state == INTEL_FAST_CLEAR_STATE_NO_MCS)
451 clear_type = REP_CLEAR;
452
453 if (brw->gen >= 9 && clear_type == FAST_CLEAR) {
454 perf_debug("fast MCS clears are disabled on gen9");
455 clear_type = REP_CLEAR;
456 }
457
458 /* We can't do scissored fast clears because of the restrictions on the
459 * fast clear rectangle size.
460 */
461 if (partial_clear)
462 clear_type = REP_CLEAR;
463
464 /* Fast clear is only supported for colors where all components are
465 * either 0 or 1.
466 */
467 format = _mesa_get_render_format(ctx, irb->mt->format);
468 if (!is_color_fast_clear_compatible(brw, format, &ctx->Color.ClearColor))
469 clear_type = REP_CLEAR;
470
471 /* From the SNB PRM (Vol4_Part1):
472 *
473 * "Replicated data (Message Type = 111) is only supported when
474 * accessing tiled memory. Using this Message Type to access
475 * linear (untiled) memory is UNDEFINED."
476 */
477 if (irb->mt->tiling == I915_TILING_NONE) {
478 perf_debug("Falling back to plain clear because %dx%d buffer is untiled\n",
479 irb->mt->logical_width0, irb->mt->logical_height0);
480 clear_type = PLAIN_CLEAR;
481 }
482
483 /* Constant color writes ignore everything in blend and color calculator
484 * state. This is not documented.
485 */
486 GLubyte *color_mask = ctx->Color.ColorMask[buf];
487 for (int i = 0; i < 4; i++) {
488 if (_mesa_format_has_color_component(irb->mt->format, i) &&
489 !color_mask[i]) {
490 perf_debug("Falling back to plain clear on %dx%d buffer because of color mask\n",
491 irb->mt->logical_width0, irb->mt->logical_height0);
492 clear_type = PLAIN_CLEAR;
493 }
494 }
495
496 /* Allocate the MCS for non MSRT surfaces now if we're doing a fast
497 * clear and we don't have the MCS yet. On failure, fall back to
498 * replicated clear.
499 */
500 if (clear_type == FAST_CLEAR && irb->mt->mcs_mt == NULL)
501 if (!intel_miptree_alloc_non_msrt_mcs(brw, irb->mt))
502 clear_type = REP_CLEAR;
503
504 switch (clear_type) {
505 case FAST_CLEAR:
506 irb->mt->fast_clear_color_value =
507 compute_fast_clear_color_bits(&ctx->Color.ClearColor);
508 irb->need_downsample = true;
509
510 /* If the buffer is already in INTEL_FAST_CLEAR_STATE_CLEAR, the
511 * clear is redundant and can be skipped. Only skip after we've
512 * updated the fast clear color above though.
513 */
514 if (irb->mt->fast_clear_state == INTEL_FAST_CLEAR_STATE_CLEAR)
515 continue;
516
517 /* Set fast_clear_state to RESOLVED so we don't try resolve them when
518 * we draw, in case the mt is also bound as a texture.
519 */
520 irb->mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_RESOLVED;
521 irb->need_downsample = true;
522 fast_clear_buffers |= 1 << index;
523 get_fast_clear_rect(fb, irb, &fast_clear_rect);
524 break;
525
526 case REP_CLEAR:
527 rep_clear_buffers |= 1 << index;
528 get_buffer_rect(fb, &clear_rect);
529 break;
530
531 case PLAIN_CLEAR:
532 plain_clear_buffers |= 1 << index;
533 get_buffer_rect(fb, &clear_rect);
534 continue;
535 }
536 }
537
538 assert((fast_clear_buffers & rep_clear_buffers) == 0);
539
540 if (!(fast_clear_buffers | rep_clear_buffers)) {
541 if (plain_clear_buffers)
542 /* If we only have plain clears, skip the meta save/restore. */
543 goto out;
544 else
545 /* Nothing left to do. This happens when we hit the redundant fast
546 * clear case above and nothing else.
547 */
548 return true;
549 }
550
551 meta_save =
552 MESA_META_ALPHA_TEST |
553 MESA_META_BLEND |
554 MESA_META_DEPTH_TEST |
555 MESA_META_RASTERIZATION |
556 MESA_META_SHADER |
557 MESA_META_STENCIL_TEST |
558 MESA_META_VERTEX |
559 MESA_META_VIEWPORT |
560 MESA_META_CLIP |
561 MESA_META_CLAMP_FRAGMENT_COLOR |
562 MESA_META_MULTISAMPLE |
563 MESA_META_OCCLUSION_QUERY |
564 MESA_META_DRAW_BUFFERS;
565
566 _mesa_meta_begin(ctx, meta_save);
567
568 if (!brw_fast_clear_init(brw)) {
569 /* This is going to be hard to recover from, most likely out of memory.
570 * Bail and let meta try and (probably) fail for us.
571 */
572 plain_clear_buffers = buffers;
573 goto bail_to_meta;
574 }
575
576 /* Clears never have the color clamped. */
577 if (ctx->Extensions.ARB_color_buffer_float)
578 _mesa_ClampColor(GL_CLAMP_FRAGMENT_COLOR, GL_FALSE);
579
580 _mesa_set_enable(ctx, GL_DEPTH_TEST, GL_FALSE);
581 _mesa_DepthMask(GL_FALSE);
582 _mesa_set_enable(ctx, GL_STENCIL_TEST, GL_FALSE);
583
584 use_rectlist(brw, true);
585
586 layers = MAX2(1, fb->MaxNumLayers);
587 if (fast_clear_buffers) {
588 _mesa_meta_drawbuffers_from_bitfield(fast_clear_buffers);
589 brw_bind_rep_write_shader(brw, (float *) fast_clear_color);
590 set_fast_clear_op(brw, GEN7_PS_RENDER_TARGET_FAST_CLEAR_ENABLE);
591 brw_draw_rectlist(ctx, &fast_clear_rect, layers);
592 set_fast_clear_op(brw, 0);
593 }
594
595 if (rep_clear_buffers) {
596 _mesa_meta_drawbuffers_from_bitfield(rep_clear_buffers);
597 brw_bind_rep_write_shader(brw, ctx->Color.ClearColor.f);
598 brw_draw_rectlist(ctx, &clear_rect, layers);
599 }
600
601 /* Now set the mts we cleared to INTEL_FAST_CLEAR_STATE_CLEAR so we'll
602 * resolve them eventually.
603 */
604 for (unsigned buf = 0; buf < fb->_NumColorDrawBuffers; buf++) {
605 struct gl_renderbuffer *rb = fb->_ColorDrawBuffers[buf];
606 struct intel_renderbuffer *irb = intel_renderbuffer(rb);
607 int index = fb->_ColorDrawBufferIndexes[buf];
608
609 if ((1 << index) & fast_clear_buffers)
610 irb->mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_CLEAR;
611 }
612
613 bail_to_meta:
614 /* Dirty _NEW_BUFFERS so we reemit SURFACE_STATE which sets the fast clear
615 * color before resolve and sets irb->mt->fast_clear_state to UNRESOLVED if
616 * we render to it.
617 */
618 brw->NewGLState |= _NEW_BUFFERS;
619
620
621 /* Set the custom state back to normal and dirty the same bits as above */
622 use_rectlist(brw, false);
623
624 _mesa_meta_end(ctx);
625
626 /* From BSpec: Render Target Fast Clear:
627 *
628 * After Render target fast clear, pipe-control with color cache
629 * write-flush must be issued before sending any DRAW commands on that
630 * render target.
631 */
632 brw_emit_mi_flush(brw);
633
634 /* If we had to fall back to plain clear for any buffers, clear those now
635 * by calling into meta.
636 */
637 out:
638 if (plain_clear_buffers)
639 _mesa_meta_glsl_Clear(&brw->ctx, plain_clear_buffers);
640
641 return true;
642 }
643
644 static void
645 get_resolve_rect(struct brw_context *brw,
646 struct intel_mipmap_tree *mt, struct rect *rect)
647 {
648 unsigned x_align, y_align;
649 unsigned x_scaledown, y_scaledown;
650
651 /* From the Ivy Bridge PRM, Vol2 Part1 11.9 "Render Target Resolve":
652 *
653 * A rectangle primitive must be scaled down by the following factors
654 * with respect to render target being resolved.
655 *
656 * The scaledown factors in the table that follows are related to the
657 * alignment size returned by intel_get_non_msrt_mcs_alignment() by a
658 * multiplier. For IVB and HSW, we divide by two, for BDW we multiply
659 * by 8 and 16 and 8 and 8 for SKL.
660 */
661
662 intel_get_non_msrt_mcs_alignment(mt, &x_align, &y_align);
663 if (brw->gen >= 9) {
664 x_scaledown = x_align * 8;
665 y_scaledown = y_align * 8;
666 } else if (brw->gen >= 8) {
667 x_scaledown = x_align * 8;
668 y_scaledown = y_align * 16;
669 } else {
670 x_scaledown = x_align / 2;
671 y_scaledown = y_align / 2;
672 }
673 rect->x0 = rect->y0 = 0;
674 rect->x1 = ALIGN(mt->logical_width0, x_scaledown) / x_scaledown;
675 rect->y1 = ALIGN(mt->logical_height0, y_scaledown) / y_scaledown;
676 }
677
678 void
679 brw_meta_resolve_color(struct brw_context *brw,
680 struct intel_mipmap_tree *mt)
681 {
682 struct gl_context *ctx = &brw->ctx;
683 GLuint fbo, rbo;
684 struct rect rect;
685
686 brw_emit_mi_flush(brw);
687
688 _mesa_meta_begin(ctx, MESA_META_ALL);
689
690 _mesa_GenFramebuffers(1, &fbo);
691 rbo = brw_get_rb_for_slice(brw, mt, 0, 0, false);
692
693 _mesa_BindFramebuffer(GL_DRAW_FRAMEBUFFER, fbo);
694 _mesa_FramebufferRenderbuffer(GL_DRAW_FRAMEBUFFER,
695 GL_COLOR_ATTACHMENT0,
696 GL_RENDERBUFFER, rbo);
697 _mesa_DrawBuffer(GL_COLOR_ATTACHMENT0);
698
699 brw_fast_clear_init(brw);
700
701 use_rectlist(brw, true);
702
703 brw_bind_rep_write_shader(brw, (float *) fast_clear_color);
704
705 set_fast_clear_op(brw, GEN7_PS_RENDER_TARGET_RESOLVE_ENABLE);
706
707 mt->fast_clear_state = INTEL_FAST_CLEAR_STATE_RESOLVED;
708 get_resolve_rect(brw, mt, &rect);
709
710 brw_draw_rectlist(ctx, &rect, 1);
711
712 set_fast_clear_op(brw, 0);
713 use_rectlist(brw, false);
714
715 _mesa_DeleteRenderbuffers(1, &rbo);
716 _mesa_DeleteFramebuffers(1, &fbo);
717
718 _mesa_meta_end(ctx);
719
720 /* We're typically called from intel_update_state() and we're supposed to
721 * return with the state all updated to what it was before
722 * brw_meta_resolve_color() was called. The meta rendering will have
723 * messed up the state and we need to call _mesa_update_state() again to
724 * get back to where we were supposed to be when resolve was called.
725 */
726 if (ctx->NewState)
727 _mesa_update_state(ctx);
728 }