i965: Move intel_context::perf_debug to brw_context.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_vec4.cpp
1 /*
2 * Copyright © 2011 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "brw_vec4.h"
25 #include "brw_cfg.h"
26
27 extern "C" {
28 #include "main/macros.h"
29 #include "main/shaderobj.h"
30 #include "program/prog_print.h"
31 #include "program/prog_parameter.h"
32 }
33
34 #define MAX_INSTRUCTION (1 << 30)
35
36 using namespace brw;
37
38 namespace brw {
39
40 /**
41 * Common helper for constructing swizzles. When only a subset of
42 * channels of a vec4 are used, we don't want to reference the other
43 * channels, as that will tell optimization passes that those other
44 * channels are used.
45 */
46 unsigned
47 swizzle_for_size(int size)
48 {
49 static const unsigned size_swizzles[4] = {
50 BRW_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
51 BRW_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
52 BRW_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
53 BRW_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
54 };
55
56 assert((size >= 1) && (size <= 4));
57 return size_swizzles[size - 1];
58 }
59
60 void
61 src_reg::init()
62 {
63 memset(this, 0, sizeof(*this));
64
65 this->file = BAD_FILE;
66 }
67
68 src_reg::src_reg(register_file file, int reg, const glsl_type *type)
69 {
70 init();
71
72 this->file = file;
73 this->reg = reg;
74 if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
75 this->swizzle = swizzle_for_size(type->vector_elements);
76 else
77 this->swizzle = SWIZZLE_XYZW;
78 }
79
80 /** Generic unset register constructor. */
81 src_reg::src_reg()
82 {
83 init();
84 }
85
86 src_reg::src_reg(float f)
87 {
88 init();
89
90 this->file = IMM;
91 this->type = BRW_REGISTER_TYPE_F;
92 this->imm.f = f;
93 }
94
95 src_reg::src_reg(uint32_t u)
96 {
97 init();
98
99 this->file = IMM;
100 this->type = BRW_REGISTER_TYPE_UD;
101 this->imm.u = u;
102 }
103
104 src_reg::src_reg(int32_t i)
105 {
106 init();
107
108 this->file = IMM;
109 this->type = BRW_REGISTER_TYPE_D;
110 this->imm.i = i;
111 }
112
113 src_reg::src_reg(dst_reg reg)
114 {
115 init();
116
117 this->file = reg.file;
118 this->reg = reg.reg;
119 this->reg_offset = reg.reg_offset;
120 this->type = reg.type;
121 this->reladdr = reg.reladdr;
122 this->fixed_hw_reg = reg.fixed_hw_reg;
123
124 int swizzles[4];
125 int next_chan = 0;
126 int last = 0;
127
128 for (int i = 0; i < 4; i++) {
129 if (!(reg.writemask & (1 << i)))
130 continue;
131
132 swizzles[next_chan++] = last = i;
133 }
134
135 for (; next_chan < 4; next_chan++) {
136 swizzles[next_chan] = last;
137 }
138
139 this->swizzle = BRW_SWIZZLE4(swizzles[0], swizzles[1],
140 swizzles[2], swizzles[3]);
141 }
142
143 void
144 dst_reg::init()
145 {
146 memset(this, 0, sizeof(*this));
147 this->file = BAD_FILE;
148 this->writemask = WRITEMASK_XYZW;
149 }
150
151 dst_reg::dst_reg()
152 {
153 init();
154 }
155
156 dst_reg::dst_reg(register_file file, int reg)
157 {
158 init();
159
160 this->file = file;
161 this->reg = reg;
162 }
163
164 dst_reg::dst_reg(register_file file, int reg, const glsl_type *type,
165 int writemask)
166 {
167 init();
168
169 this->file = file;
170 this->reg = reg;
171 this->type = brw_type_for_base_type(type);
172 this->writemask = writemask;
173 }
174
175 dst_reg::dst_reg(struct brw_reg reg)
176 {
177 init();
178
179 this->file = HW_REG;
180 this->fixed_hw_reg = reg;
181 }
182
183 dst_reg::dst_reg(src_reg reg)
184 {
185 init();
186
187 this->file = reg.file;
188 this->reg = reg.reg;
189 this->reg_offset = reg.reg_offset;
190 this->type = reg.type;
191 /* How should we do writemasking when converting from a src_reg? It seems
192 * pretty obvious that for src.xxxx the caller wants to write to src.x, but
193 * what about for src.wx? Just special-case src.xxxx for now.
194 */
195 if (reg.swizzle == BRW_SWIZZLE_XXXX)
196 this->writemask = WRITEMASK_X;
197 else
198 this->writemask = WRITEMASK_XYZW;
199 this->reladdr = reg.reladdr;
200 this->fixed_hw_reg = reg.fixed_hw_reg;
201 }
202
203 bool
204 vec4_instruction::is_send_from_grf()
205 {
206 switch (opcode) {
207 case SHADER_OPCODE_SHADER_TIME_ADD:
208 case VS_OPCODE_PULL_CONSTANT_LOAD_GEN7:
209 return true;
210 default:
211 return false;
212 }
213 }
214
215 bool
216 vec4_visitor::can_do_source_mods(vec4_instruction *inst)
217 {
218 if (intel->gen == 6 && inst->is_math())
219 return false;
220
221 if (inst->is_send_from_grf())
222 return false;
223
224 return true;
225 }
226
227 /**
228 * Returns how many MRFs an opcode will write over.
229 *
230 * Note that this is not the 0 or 1 implied writes in an actual gen
231 * instruction -- the generate_* functions generate additional MOVs
232 * for setup.
233 */
234 int
235 vec4_visitor::implied_mrf_writes(vec4_instruction *inst)
236 {
237 if (inst->mlen == 0)
238 return 0;
239
240 switch (inst->opcode) {
241 case SHADER_OPCODE_RCP:
242 case SHADER_OPCODE_RSQ:
243 case SHADER_OPCODE_SQRT:
244 case SHADER_OPCODE_EXP2:
245 case SHADER_OPCODE_LOG2:
246 case SHADER_OPCODE_SIN:
247 case SHADER_OPCODE_COS:
248 return 1;
249 case SHADER_OPCODE_INT_QUOTIENT:
250 case SHADER_OPCODE_INT_REMAINDER:
251 case SHADER_OPCODE_POW:
252 return 2;
253 case VS_OPCODE_URB_WRITE:
254 return 1;
255 case VS_OPCODE_PULL_CONSTANT_LOAD:
256 return 2;
257 case VS_OPCODE_SCRATCH_READ:
258 return 2;
259 case VS_OPCODE_SCRATCH_WRITE:
260 return 3;
261 case SHADER_OPCODE_SHADER_TIME_ADD:
262 return 0;
263 case SHADER_OPCODE_TEX:
264 case SHADER_OPCODE_TXL:
265 case SHADER_OPCODE_TXD:
266 case SHADER_OPCODE_TXF:
267 case SHADER_OPCODE_TXF_MS:
268 case SHADER_OPCODE_TXS:
269 return inst->header_present ? 1 : 0;
270 default:
271 assert(!"not reached");
272 return inst->mlen;
273 }
274 }
275
276 bool
277 src_reg::equals(src_reg *r)
278 {
279 return (file == r->file &&
280 reg == r->reg &&
281 reg_offset == r->reg_offset &&
282 type == r->type &&
283 negate == r->negate &&
284 abs == r->abs &&
285 swizzle == r->swizzle &&
286 !reladdr && !r->reladdr &&
287 memcmp(&fixed_hw_reg, &r->fixed_hw_reg,
288 sizeof(fixed_hw_reg)) == 0 &&
289 imm.u == r->imm.u);
290 }
291
292 /**
293 * Must be called after calculate_live_intervales() to remove unused
294 * writes to registers -- register allocation will fail otherwise
295 * because something deffed but not used won't be considered to
296 * interfere with other regs.
297 */
298 bool
299 vec4_visitor::dead_code_eliminate()
300 {
301 bool progress = false;
302 int pc = 0;
303
304 calculate_live_intervals();
305
306 foreach_list_safe(node, &this->instructions) {
307 vec4_instruction *inst = (vec4_instruction *)node;
308
309 if (inst->dst.file == GRF) {
310 assert(this->virtual_grf_end[inst->dst.reg] >= pc);
311 if (this->virtual_grf_end[inst->dst.reg] == pc) {
312 inst->remove();
313 progress = true;
314 }
315 }
316
317 pc++;
318 }
319
320 if (progress)
321 live_intervals_valid = false;
322
323 return progress;
324 }
325
326 void
327 vec4_visitor::split_uniform_registers()
328 {
329 /* Prior to this, uniforms have been in an array sized according to
330 * the number of vector uniforms present, sparsely filled (so an
331 * aggregate results in reg indices being skipped over). Now we're
332 * going to cut those aggregates up so each .reg index is one
333 * vector. The goal is to make elimination of unused uniform
334 * components easier later.
335 */
336 foreach_list(node, &this->instructions) {
337 vec4_instruction *inst = (vec4_instruction *)node;
338
339 for (int i = 0 ; i < 3; i++) {
340 if (inst->src[i].file != UNIFORM)
341 continue;
342
343 assert(!inst->src[i].reladdr);
344
345 inst->src[i].reg += inst->src[i].reg_offset;
346 inst->src[i].reg_offset = 0;
347 }
348 }
349
350 /* Update that everything is now vector-sized. */
351 for (int i = 0; i < this->uniforms; i++) {
352 this->uniform_size[i] = 1;
353 }
354 }
355
356 void
357 vec4_visitor::pack_uniform_registers()
358 {
359 bool uniform_used[this->uniforms];
360 int new_loc[this->uniforms];
361 int new_chan[this->uniforms];
362
363 memset(uniform_used, 0, sizeof(uniform_used));
364 memset(new_loc, 0, sizeof(new_loc));
365 memset(new_chan, 0, sizeof(new_chan));
366
367 /* Find which uniform vectors are actually used by the program. We
368 * expect unused vector elements when we've moved array access out
369 * to pull constants, and from some GLSL code generators like wine.
370 */
371 foreach_list(node, &this->instructions) {
372 vec4_instruction *inst = (vec4_instruction *)node;
373
374 for (int i = 0 ; i < 3; i++) {
375 if (inst->src[i].file != UNIFORM)
376 continue;
377
378 uniform_used[inst->src[i].reg] = true;
379 }
380 }
381
382 int new_uniform_count = 0;
383
384 /* Now, figure out a packing of the live uniform vectors into our
385 * push constants.
386 */
387 for (int src = 0; src < uniforms; src++) {
388 int size = this->uniform_vector_size[src];
389
390 if (!uniform_used[src]) {
391 this->uniform_vector_size[src] = 0;
392 continue;
393 }
394
395 int dst;
396 /* Find the lowest place we can slot this uniform in. */
397 for (dst = 0; dst < src; dst++) {
398 if (this->uniform_vector_size[dst] + size <= 4)
399 break;
400 }
401
402 if (src == dst) {
403 new_loc[src] = dst;
404 new_chan[src] = 0;
405 } else {
406 new_loc[src] = dst;
407 new_chan[src] = this->uniform_vector_size[dst];
408
409 /* Move the references to the data */
410 for (int j = 0; j < size; j++) {
411 prog_data->param[dst * 4 + new_chan[src] + j] =
412 prog_data->param[src * 4 + j];
413 }
414
415 this->uniform_vector_size[dst] += size;
416 this->uniform_vector_size[src] = 0;
417 }
418
419 new_uniform_count = MAX2(new_uniform_count, dst + 1);
420 }
421
422 this->uniforms = new_uniform_count;
423
424 /* Now, update the instructions for our repacked uniforms. */
425 foreach_list(node, &this->instructions) {
426 vec4_instruction *inst = (vec4_instruction *)node;
427
428 for (int i = 0 ; i < 3; i++) {
429 int src = inst->src[i].reg;
430
431 if (inst->src[i].file != UNIFORM)
432 continue;
433
434 inst->src[i].reg = new_loc[src];
435
436 int sx = BRW_GET_SWZ(inst->src[i].swizzle, 0) + new_chan[src];
437 int sy = BRW_GET_SWZ(inst->src[i].swizzle, 1) + new_chan[src];
438 int sz = BRW_GET_SWZ(inst->src[i].swizzle, 2) + new_chan[src];
439 int sw = BRW_GET_SWZ(inst->src[i].swizzle, 3) + new_chan[src];
440 inst->src[i].swizzle = BRW_SWIZZLE4(sx, sy, sz, sw);
441 }
442 }
443 }
444
445 bool
446 src_reg::is_zero() const
447 {
448 if (file != IMM)
449 return false;
450
451 if (type == BRW_REGISTER_TYPE_F) {
452 return imm.f == 0.0;
453 } else {
454 return imm.i == 0;
455 }
456 }
457
458 bool
459 src_reg::is_one() const
460 {
461 if (file != IMM)
462 return false;
463
464 if (type == BRW_REGISTER_TYPE_F) {
465 return imm.f == 1.0;
466 } else {
467 return imm.i == 1;
468 }
469 }
470
471 /**
472 * Does algebraic optimizations (0 * a = 0, 1 * a = a, a + 0 = a).
473 *
474 * While GLSL IR also performs this optimization, we end up with it in
475 * our instruction stream for a couple of reasons. One is that we
476 * sometimes generate silly instructions, for example in array access
477 * where we'll generate "ADD offset, index, base" even if base is 0.
478 * The other is that GLSL IR's constant propagation doesn't track the
479 * components of aggregates, so some VS patterns (initialize matrix to
480 * 0, accumulate in vertex blending factors) end up breaking down to
481 * instructions involving 0.
482 */
483 bool
484 vec4_visitor::opt_algebraic()
485 {
486 bool progress = false;
487
488 foreach_list(node, &this->instructions) {
489 vec4_instruction *inst = (vec4_instruction *)node;
490
491 switch (inst->opcode) {
492 case BRW_OPCODE_ADD:
493 if (inst->src[1].is_zero()) {
494 inst->opcode = BRW_OPCODE_MOV;
495 inst->src[1] = src_reg();
496 progress = true;
497 }
498 break;
499
500 case BRW_OPCODE_MUL:
501 if (inst->src[1].is_zero()) {
502 inst->opcode = BRW_OPCODE_MOV;
503 switch (inst->src[0].type) {
504 case BRW_REGISTER_TYPE_F:
505 inst->src[0] = src_reg(0.0f);
506 break;
507 case BRW_REGISTER_TYPE_D:
508 inst->src[0] = src_reg(0);
509 break;
510 case BRW_REGISTER_TYPE_UD:
511 inst->src[0] = src_reg(0u);
512 break;
513 default:
514 assert(!"not reached");
515 inst->src[0] = src_reg(0.0f);
516 break;
517 }
518 inst->src[1] = src_reg();
519 progress = true;
520 } else if (inst->src[1].is_one()) {
521 inst->opcode = BRW_OPCODE_MOV;
522 inst->src[1] = src_reg();
523 progress = true;
524 }
525 break;
526 default:
527 break;
528 }
529 }
530
531 if (progress)
532 this->live_intervals_valid = false;
533
534 return progress;
535 }
536
537 /**
538 * Only a limited number of hardware registers may be used for push
539 * constants, so this turns access to the overflowed constants into
540 * pull constants.
541 */
542 void
543 vec4_visitor::move_push_constants_to_pull_constants()
544 {
545 int pull_constant_loc[this->uniforms];
546
547 /* Only allow 32 registers (256 uniform components) as push constants,
548 * which is the limit on gen6.
549 */
550 int max_uniform_components = 32 * 8;
551 if (this->uniforms * 4 <= max_uniform_components)
552 return;
553
554 /* Make some sort of choice as to which uniforms get sent to pull
555 * constants. We could potentially do something clever here like
556 * look for the most infrequently used uniform vec4s, but leave
557 * that for later.
558 */
559 for (int i = 0; i < this->uniforms * 4; i += 4) {
560 pull_constant_loc[i / 4] = -1;
561
562 if (i >= max_uniform_components) {
563 const float **values = &prog_data->param[i];
564
565 /* Try to find an existing copy of this uniform in the pull
566 * constants if it was part of an array access already.
567 */
568 for (unsigned int j = 0; j < prog_data->nr_pull_params; j += 4) {
569 int matches;
570
571 for (matches = 0; matches < 4; matches++) {
572 if (prog_data->pull_param[j + matches] != values[matches])
573 break;
574 }
575
576 if (matches == 4) {
577 pull_constant_loc[i / 4] = j / 4;
578 break;
579 }
580 }
581
582 if (pull_constant_loc[i / 4] == -1) {
583 assert(prog_data->nr_pull_params % 4 == 0);
584 pull_constant_loc[i / 4] = prog_data->nr_pull_params / 4;
585
586 for (int j = 0; j < 4; j++) {
587 prog_data->pull_param[prog_data->nr_pull_params++] = values[j];
588 }
589 }
590 }
591 }
592
593 /* Now actually rewrite usage of the things we've moved to pull
594 * constants.
595 */
596 foreach_list_safe(node, &this->instructions) {
597 vec4_instruction *inst = (vec4_instruction *)node;
598
599 for (int i = 0 ; i < 3; i++) {
600 if (inst->src[i].file != UNIFORM ||
601 pull_constant_loc[inst->src[i].reg] == -1)
602 continue;
603
604 int uniform = inst->src[i].reg;
605
606 dst_reg temp = dst_reg(this, glsl_type::vec4_type);
607
608 emit_pull_constant_load(inst, temp, inst->src[i],
609 pull_constant_loc[uniform]);
610
611 inst->src[i].file = temp.file;
612 inst->src[i].reg = temp.reg;
613 inst->src[i].reg_offset = temp.reg_offset;
614 inst->src[i].reladdr = NULL;
615 }
616 }
617
618 /* Repack push constants to remove the now-unused ones. */
619 pack_uniform_registers();
620 }
621
622 /**
623 * Sets the dependency control fields on instructions after register
624 * allocation and before the generator is run.
625 *
626 * When you have a sequence of instructions like:
627 *
628 * DP4 temp.x vertex uniform[0]
629 * DP4 temp.y vertex uniform[0]
630 * DP4 temp.z vertex uniform[0]
631 * DP4 temp.w vertex uniform[0]
632 *
633 * The hardware doesn't know that it can actually run the later instructions
634 * while the previous ones are in flight, producing stalls. However, we have
635 * manual fields we can set in the instructions that let it do so.
636 */
637 void
638 vec4_visitor::opt_set_dependency_control()
639 {
640 vec4_instruction *last_grf_write[BRW_MAX_GRF];
641 uint8_t grf_channels_written[BRW_MAX_GRF];
642 vec4_instruction *last_mrf_write[BRW_MAX_GRF];
643 uint8_t mrf_channels_written[BRW_MAX_GRF];
644
645 cfg_t cfg(this);
646
647 assert(prog_data->total_grf ||
648 !"Must be called after register allocation");
649
650 for (int i = 0; i < cfg.num_blocks; i++) {
651 bblock_t *bblock = cfg.blocks[i];
652 vec4_instruction *inst;
653
654 memset(last_grf_write, 0, sizeof(last_grf_write));
655 memset(last_mrf_write, 0, sizeof(last_mrf_write));
656
657 for (inst = (vec4_instruction *)bblock->start;
658 inst != (vec4_instruction *)bblock->end->next;
659 inst = (vec4_instruction *)inst->next) {
660 /* If we read from a register that we were doing dependency control
661 * on, don't do dependency control across the read.
662 */
663 for (int i = 0; i < 3; i++) {
664 int reg = inst->src[i].reg + inst->src[i].reg_offset;
665 if (inst->src[i].file == GRF) {
666 last_grf_write[reg] = NULL;
667 } else if (inst->src[i].file == HW_REG) {
668 memset(last_grf_write, 0, sizeof(last_grf_write));
669 break;
670 }
671 assert(inst->src[i].file != MRF);
672 }
673
674 /* In the presence of send messages, totally interrupt dependency
675 * control. They're long enough that the chance of dependency
676 * control around them just doesn't matter.
677 */
678 if (inst->mlen) {
679 memset(last_grf_write, 0, sizeof(last_grf_write));
680 memset(last_mrf_write, 0, sizeof(last_mrf_write));
681 continue;
682 }
683
684 /* It looks like setting dependency control on a predicated
685 * instruction hangs the GPU.
686 */
687 if (inst->predicate) {
688 memset(last_grf_write, 0, sizeof(last_grf_write));
689 memset(last_mrf_write, 0, sizeof(last_mrf_write));
690 continue;
691 }
692
693 /* Now, see if we can do dependency control for this instruction
694 * against a previous one writing to its destination.
695 */
696 int reg = inst->dst.reg + inst->dst.reg_offset;
697 if (inst->dst.file == GRF) {
698 if (last_grf_write[reg] &&
699 !(inst->dst.writemask & grf_channels_written[reg])) {
700 last_grf_write[reg]->no_dd_clear = true;
701 inst->no_dd_check = true;
702 } else {
703 grf_channels_written[reg] = 0;
704 }
705
706 last_grf_write[reg] = inst;
707 grf_channels_written[reg] |= inst->dst.writemask;
708 } else if (inst->dst.file == MRF) {
709 if (last_mrf_write[reg] &&
710 !(inst->dst.writemask & mrf_channels_written[reg])) {
711 last_mrf_write[reg]->no_dd_clear = true;
712 inst->no_dd_check = true;
713 } else {
714 mrf_channels_written[reg] = 0;
715 }
716
717 last_mrf_write[reg] = inst;
718 mrf_channels_written[reg] |= inst->dst.writemask;
719 } else if (inst->dst.reg == HW_REG) {
720 if (inst->dst.fixed_hw_reg.file == BRW_GENERAL_REGISTER_FILE)
721 memset(last_grf_write, 0, sizeof(last_grf_write));
722 if (inst->dst.fixed_hw_reg.file == BRW_MESSAGE_REGISTER_FILE)
723 memset(last_mrf_write, 0, sizeof(last_mrf_write));
724 }
725 }
726 }
727 }
728
729 bool
730 vec4_instruction::can_reswizzle_dst(int dst_writemask,
731 int swizzle,
732 int swizzle_mask)
733 {
734 /* If this instruction sets anything not referenced by swizzle, then we'd
735 * totally break it when we reswizzle.
736 */
737 if (dst.writemask & ~swizzle_mask)
738 return false;
739
740 switch (opcode) {
741 case BRW_OPCODE_DP4:
742 case BRW_OPCODE_DP3:
743 case BRW_OPCODE_DP2:
744 return true;
745 default:
746 /* Check if there happens to be no reswizzling required. */
747 for (int c = 0; c < 4; c++) {
748 int bit = 1 << BRW_GET_SWZ(swizzle, c);
749 /* Skip components of the swizzle not used by the dst. */
750 if (!(dst_writemask & (1 << c)))
751 continue;
752
753 /* We don't do the reswizzling yet, so just sanity check that we
754 * don't have to.
755 */
756 if (bit != (1 << c))
757 return false;
758 }
759 return true;
760 }
761 }
762
763 /**
764 * For any channels in the swizzle's source that were populated by this
765 * instruction, rewrite the instruction to put the appropriate result directly
766 * in those channels.
767 *
768 * e.g. for swizzle=yywx, MUL a.xy b c -> MUL a.yy_x b.yy z.yy_x
769 */
770 void
771 vec4_instruction::reswizzle_dst(int dst_writemask, int swizzle)
772 {
773 int new_writemask = 0;
774
775 switch (opcode) {
776 case BRW_OPCODE_DP4:
777 case BRW_OPCODE_DP3:
778 case BRW_OPCODE_DP2:
779 for (int c = 0; c < 4; c++) {
780 int bit = 1 << BRW_GET_SWZ(swizzle, c);
781 /* Skip components of the swizzle not used by the dst. */
782 if (!(dst_writemask & (1 << c)))
783 continue;
784 /* If we were populating this component, then populate the
785 * corresponding channel of the new dst.
786 */
787 if (dst.writemask & bit)
788 new_writemask |= (1 << c);
789 }
790 dst.writemask = new_writemask;
791 break;
792 default:
793 for (int c = 0; c < 4; c++) {
794 /* Skip components of the swizzle not used by the dst. */
795 if (!(dst_writemask & (1 << c)))
796 continue;
797
798 /* We don't do the reswizzling yet, so just sanity check that we
799 * don't have to.
800 */
801 assert((1 << BRW_GET_SWZ(swizzle, c)) == (1 << c));
802 }
803 break;
804 }
805 }
806
807 /*
808 * Tries to reduce extra MOV instructions by taking temporary GRFs that get
809 * just written and then MOVed into another reg and making the original write
810 * of the GRF write directly to the final destination instead.
811 */
812 bool
813 vec4_visitor::opt_register_coalesce()
814 {
815 bool progress = false;
816 int next_ip = 0;
817
818 calculate_live_intervals();
819
820 foreach_list_safe(node, &this->instructions) {
821 vec4_instruction *inst = (vec4_instruction *)node;
822
823 int ip = next_ip;
824 next_ip++;
825
826 if (inst->opcode != BRW_OPCODE_MOV ||
827 (inst->dst.file != GRF && inst->dst.file != MRF) ||
828 inst->predicate ||
829 inst->src[0].file != GRF ||
830 inst->dst.type != inst->src[0].type ||
831 inst->src[0].abs || inst->src[0].negate || inst->src[0].reladdr)
832 continue;
833
834 bool to_mrf = (inst->dst.file == MRF);
835
836 /* Can't coalesce this GRF if someone else was going to
837 * read it later.
838 */
839 if (this->virtual_grf_end[inst->src[0].reg] > ip)
840 continue;
841
842 /* We need to check interference with the final destination between this
843 * instruction and the earliest instruction involved in writing the GRF
844 * we're eliminating. To do that, keep track of which of our source
845 * channels we've seen initialized.
846 */
847 bool chans_needed[4] = {false, false, false, false};
848 int chans_remaining = 0;
849 int swizzle_mask = 0;
850 for (int i = 0; i < 4; i++) {
851 int chan = BRW_GET_SWZ(inst->src[0].swizzle, i);
852
853 if (!(inst->dst.writemask & (1 << i)))
854 continue;
855
856 swizzle_mask |= (1 << chan);
857
858 if (!chans_needed[chan]) {
859 chans_needed[chan] = true;
860 chans_remaining++;
861 }
862 }
863
864 /* Now walk up the instruction stream trying to see if we can rewrite
865 * everything writing to the temporary to write into the destination
866 * instead.
867 */
868 vec4_instruction *scan_inst;
869 for (scan_inst = (vec4_instruction *)inst->prev;
870 scan_inst->prev != NULL;
871 scan_inst = (vec4_instruction *)scan_inst->prev) {
872 if (scan_inst->dst.file == GRF &&
873 scan_inst->dst.reg == inst->src[0].reg &&
874 scan_inst->dst.reg_offset == inst->src[0].reg_offset) {
875 /* Found something writing to the reg we want to coalesce away. */
876 if (to_mrf) {
877 /* SEND instructions can't have MRF as a destination. */
878 if (scan_inst->mlen)
879 break;
880
881 if (intel->gen == 6) {
882 /* gen6 math instructions must have the destination be
883 * GRF, so no compute-to-MRF for them.
884 */
885 if (scan_inst->is_math()) {
886 break;
887 }
888 }
889 }
890
891 /* If we can't handle the swizzle, bail. */
892 if (!scan_inst->can_reswizzle_dst(inst->dst.writemask,
893 inst->src[0].swizzle,
894 swizzle_mask)) {
895 break;
896 }
897
898 /* Mark which channels we found unconditional writes for. */
899 if (!scan_inst->predicate) {
900 for (int i = 0; i < 4; i++) {
901 if (scan_inst->dst.writemask & (1 << i) &&
902 chans_needed[i]) {
903 chans_needed[i] = false;
904 chans_remaining--;
905 }
906 }
907 }
908
909 if (chans_remaining == 0)
910 break;
911 }
912
913 /* We don't handle flow control here. Most computation of values
914 * that could be coalesced happens just before their use.
915 */
916 if (scan_inst->opcode == BRW_OPCODE_DO ||
917 scan_inst->opcode == BRW_OPCODE_WHILE ||
918 scan_inst->opcode == BRW_OPCODE_ELSE ||
919 scan_inst->opcode == BRW_OPCODE_ENDIF) {
920 break;
921 }
922
923 /* You can't read from an MRF, so if someone else reads our MRF's
924 * source GRF that we wanted to rewrite, that stops us. If it's a
925 * GRF we're trying to coalesce to, we don't actually handle
926 * rewriting sources so bail in that case as well.
927 */
928 bool interfered = false;
929 for (int i = 0; i < 3; i++) {
930 if (scan_inst->src[i].file == GRF &&
931 scan_inst->src[i].reg == inst->src[0].reg &&
932 scan_inst->src[i].reg_offset == inst->src[0].reg_offset) {
933 interfered = true;
934 }
935 }
936 if (interfered)
937 break;
938
939 /* If somebody else writes our destination here, we can't coalesce
940 * before that.
941 */
942 if (scan_inst->dst.file == inst->dst.file &&
943 scan_inst->dst.reg == inst->dst.reg) {
944 break;
945 }
946
947 /* Check for reads of the register we're trying to coalesce into. We
948 * can't go rewriting instructions above that to put some other value
949 * in the register instead.
950 */
951 if (to_mrf && scan_inst->mlen > 0) {
952 if (inst->dst.reg >= scan_inst->base_mrf &&
953 inst->dst.reg < scan_inst->base_mrf + scan_inst->mlen) {
954 break;
955 }
956 } else {
957 for (int i = 0; i < 3; i++) {
958 if (scan_inst->src[i].file == inst->dst.file &&
959 scan_inst->src[i].reg == inst->dst.reg &&
960 scan_inst->src[i].reg_offset == inst->src[0].reg_offset) {
961 interfered = true;
962 }
963 }
964 if (interfered)
965 break;
966 }
967 }
968
969 if (chans_remaining == 0) {
970 /* If we've made it here, we have an MOV we want to coalesce out, and
971 * a scan_inst pointing to the earliest instruction involved in
972 * computing the value. Now go rewrite the instruction stream
973 * between the two.
974 */
975
976 while (scan_inst != inst) {
977 if (scan_inst->dst.file == GRF &&
978 scan_inst->dst.reg == inst->src[0].reg &&
979 scan_inst->dst.reg_offset == inst->src[0].reg_offset) {
980 scan_inst->reswizzle_dst(inst->dst.writemask,
981 inst->src[0].swizzle);
982 scan_inst->dst.file = inst->dst.file;
983 scan_inst->dst.reg = inst->dst.reg;
984 scan_inst->dst.reg_offset = inst->dst.reg_offset;
985 scan_inst->saturate |= inst->saturate;
986 }
987 scan_inst = (vec4_instruction *)scan_inst->next;
988 }
989 inst->remove();
990 progress = true;
991 }
992 }
993
994 if (progress)
995 live_intervals_valid = false;
996
997 return progress;
998 }
999
1000 /**
1001 * Splits virtual GRFs requesting more than one contiguous physical register.
1002 *
1003 * We initially create large virtual GRFs for temporary structures, arrays,
1004 * and matrices, so that the dereference visitor functions can add reg_offsets
1005 * to work their way down to the actual member being accessed. But when it
1006 * comes to optimization, we'd like to treat each register as individual
1007 * storage if possible.
1008 *
1009 * So far, the only thing that might prevent splitting is a send message from
1010 * a GRF on IVB.
1011 */
1012 void
1013 vec4_visitor::split_virtual_grfs()
1014 {
1015 int num_vars = this->virtual_grf_count;
1016 int new_virtual_grf[num_vars];
1017 bool split_grf[num_vars];
1018
1019 memset(new_virtual_grf, 0, sizeof(new_virtual_grf));
1020
1021 /* Try to split anything > 0 sized. */
1022 for (int i = 0; i < num_vars; i++) {
1023 split_grf[i] = this->virtual_grf_sizes[i] != 1;
1024 }
1025
1026 /* Check that the instructions are compatible with the registers we're trying
1027 * to split.
1028 */
1029 foreach_list(node, &this->instructions) {
1030 vec4_instruction *inst = (vec4_instruction *)node;
1031
1032 /* If there's a SEND message loading from a GRF on gen7+, it needs to be
1033 * contiguous. Assume that the GRF for the SEND is always in src[0].
1034 */
1035 if (inst->is_send_from_grf()) {
1036 split_grf[inst->src[0].reg] = false;
1037 }
1038 }
1039
1040 /* Allocate new space for split regs. Note that the virtual
1041 * numbers will be contiguous.
1042 */
1043 for (int i = 0; i < num_vars; i++) {
1044 if (!split_grf[i])
1045 continue;
1046
1047 new_virtual_grf[i] = virtual_grf_alloc(1);
1048 for (int j = 2; j < this->virtual_grf_sizes[i]; j++) {
1049 int reg = virtual_grf_alloc(1);
1050 assert(reg == new_virtual_grf[i] + j - 1);
1051 (void) reg;
1052 }
1053 this->virtual_grf_sizes[i] = 1;
1054 }
1055
1056 foreach_list(node, &this->instructions) {
1057 vec4_instruction *inst = (vec4_instruction *)node;
1058
1059 if (inst->dst.file == GRF && split_grf[inst->dst.reg] &&
1060 inst->dst.reg_offset != 0) {
1061 inst->dst.reg = (new_virtual_grf[inst->dst.reg] +
1062 inst->dst.reg_offset - 1);
1063 inst->dst.reg_offset = 0;
1064 }
1065 for (int i = 0; i < 3; i++) {
1066 if (inst->src[i].file == GRF && split_grf[inst->src[i].reg] &&
1067 inst->src[i].reg_offset != 0) {
1068 inst->src[i].reg = (new_virtual_grf[inst->src[i].reg] +
1069 inst->src[i].reg_offset - 1);
1070 inst->src[i].reg_offset = 0;
1071 }
1072 }
1073 }
1074 this->live_intervals_valid = false;
1075 }
1076
1077 void
1078 vec4_visitor::dump_instruction(backend_instruction *be_inst)
1079 {
1080 vec4_instruction *inst = (vec4_instruction *)be_inst;
1081
1082 printf("%s ", brw_instruction_name(inst->opcode));
1083
1084 switch (inst->dst.file) {
1085 case GRF:
1086 printf("vgrf%d.%d", inst->dst.reg, inst->dst.reg_offset);
1087 break;
1088 case MRF:
1089 printf("m%d", inst->dst.reg);
1090 break;
1091 case BAD_FILE:
1092 printf("(null)");
1093 break;
1094 default:
1095 printf("???");
1096 break;
1097 }
1098 if (inst->dst.writemask != WRITEMASK_XYZW) {
1099 printf(".");
1100 if (inst->dst.writemask & 1)
1101 printf("x");
1102 if (inst->dst.writemask & 2)
1103 printf("y");
1104 if (inst->dst.writemask & 4)
1105 printf("z");
1106 if (inst->dst.writemask & 8)
1107 printf("w");
1108 }
1109 printf(", ");
1110
1111 for (int i = 0; i < 3; i++) {
1112 switch (inst->src[i].file) {
1113 case GRF:
1114 printf("vgrf%d", inst->src[i].reg);
1115 break;
1116 case ATTR:
1117 printf("attr%d", inst->src[i].reg);
1118 break;
1119 case UNIFORM:
1120 printf("u%d", inst->src[i].reg);
1121 break;
1122 case IMM:
1123 switch (inst->src[i].type) {
1124 case BRW_REGISTER_TYPE_F:
1125 printf("%fF", inst->src[i].imm.f);
1126 break;
1127 case BRW_REGISTER_TYPE_D:
1128 printf("%dD", inst->src[i].imm.i);
1129 break;
1130 case BRW_REGISTER_TYPE_UD:
1131 printf("%uU", inst->src[i].imm.u);
1132 break;
1133 default:
1134 printf("???");
1135 break;
1136 }
1137 break;
1138 case BAD_FILE:
1139 printf("(null)");
1140 break;
1141 default:
1142 printf("???");
1143 break;
1144 }
1145
1146 if (inst->src[i].reg_offset)
1147 printf(".%d", inst->src[i].reg_offset);
1148
1149 static const char *chans[4] = {"x", "y", "z", "w"};
1150 printf(".");
1151 for (int c = 0; c < 4; c++) {
1152 printf("%s", chans[BRW_GET_SWZ(inst->src[i].swizzle, c)]);
1153 }
1154
1155 if (i < 3)
1156 printf(", ");
1157 }
1158
1159 printf("\n");
1160 }
1161
1162 /**
1163 * Replace each register of type ATTR in this->instructions with a reference
1164 * to a fixed HW register.
1165 */
1166 void
1167 vec4_visitor::lower_attributes_to_hw_regs(const int *attribute_map)
1168 {
1169 foreach_list(node, &this->instructions) {
1170 vec4_instruction *inst = (vec4_instruction *)node;
1171
1172 /* We have to support ATTR as a destination for GL_FIXED fixup. */
1173 if (inst->dst.file == ATTR) {
1174 int grf = attribute_map[inst->dst.reg + inst->dst.reg_offset];
1175
1176 /* All attributes used in the shader need to have been assigned a
1177 * hardware register by the caller
1178 */
1179 assert(grf != 0);
1180
1181 struct brw_reg reg = brw_vec8_grf(grf, 0);
1182 reg.type = inst->dst.type;
1183 reg.dw1.bits.writemask = inst->dst.writemask;
1184
1185 inst->dst.file = HW_REG;
1186 inst->dst.fixed_hw_reg = reg;
1187 }
1188
1189 for (int i = 0; i < 3; i++) {
1190 if (inst->src[i].file != ATTR)
1191 continue;
1192
1193 int grf = attribute_map[inst->src[i].reg + inst->src[i].reg_offset];
1194
1195 /* All attributes used in the shader need to have been assigned a
1196 * hardware register by the caller
1197 */
1198 assert(grf != 0);
1199
1200 struct brw_reg reg = brw_vec8_grf(grf, 0);
1201 reg.dw1.bits.swizzle = inst->src[i].swizzle;
1202 reg.type = inst->src[i].type;
1203 if (inst->src[i].abs)
1204 reg = brw_abs(reg);
1205 if (inst->src[i].negate)
1206 reg = negate(reg);
1207
1208 inst->src[i].file = HW_REG;
1209 inst->src[i].fixed_hw_reg = reg;
1210 }
1211 }
1212 }
1213
1214 int
1215 vec4_vs_visitor::setup_attributes(int payload_reg)
1216 {
1217 int nr_attributes;
1218 int attribute_map[VERT_ATTRIB_MAX + 1];
1219 memset(attribute_map, 0, sizeof(attribute_map));
1220
1221 nr_attributes = 0;
1222 for (int i = 0; i < VERT_ATTRIB_MAX; i++) {
1223 if (vs_prog_data->inputs_read & BITFIELD64_BIT(i)) {
1224 attribute_map[i] = payload_reg + nr_attributes;
1225 nr_attributes++;
1226 }
1227 }
1228
1229 /* VertexID is stored by the VF as the last vertex element, but we
1230 * don't represent it with a flag in inputs_read, so we call it
1231 * VERT_ATTRIB_MAX.
1232 */
1233 if (vs_prog_data->uses_vertexid) {
1234 attribute_map[VERT_ATTRIB_MAX] = payload_reg + nr_attributes;
1235 nr_attributes++;
1236 }
1237
1238 lower_attributes_to_hw_regs(attribute_map);
1239
1240 /* The BSpec says we always have to read at least one thing from
1241 * the VF, and it appears that the hardware wedges otherwise.
1242 */
1243 if (nr_attributes == 0)
1244 nr_attributes = 1;
1245
1246 prog_data->urb_read_length = (nr_attributes + 1) / 2;
1247
1248 unsigned vue_entries =
1249 MAX2(nr_attributes, prog_data->vue_map.num_slots);
1250
1251 if (intel->gen == 6)
1252 prog_data->urb_entry_size = ALIGN(vue_entries, 8) / 8;
1253 else
1254 prog_data->urb_entry_size = ALIGN(vue_entries, 4) / 4;
1255
1256 return payload_reg + nr_attributes;
1257 }
1258
1259 int
1260 vec4_visitor::setup_uniforms(int reg)
1261 {
1262 /* The pre-gen6 VS requires that some push constants get loaded no
1263 * matter what, or the GPU would hang.
1264 */
1265 if (intel->gen < 6 && this->uniforms == 0) {
1266 this->uniform_vector_size[this->uniforms] = 1;
1267
1268 for (unsigned int i = 0; i < 4; i++) {
1269 unsigned int slot = this->uniforms * 4 + i;
1270 static float zero = 0.0;
1271 prog_data->param[slot] = &zero;
1272 }
1273
1274 this->uniforms++;
1275 reg++;
1276 } else {
1277 reg += ALIGN(uniforms, 2) / 2;
1278 }
1279
1280 prog_data->nr_params = this->uniforms * 4;
1281
1282 prog_data->curb_read_length = reg - 1;
1283
1284 return reg;
1285 }
1286
1287 void
1288 vec4_visitor::setup_payload(void)
1289 {
1290 int reg = 0;
1291
1292 /* The payload always contains important data in g0, which contains
1293 * the URB handles that are passed on to the URB write at the end
1294 * of the thread. So, we always start push constants at g1.
1295 */
1296 reg++;
1297
1298 reg = setup_uniforms(reg);
1299
1300 reg = setup_attributes(reg);
1301
1302 this->first_non_payload_grf = reg;
1303 }
1304
1305 src_reg
1306 vec4_visitor::get_timestamp()
1307 {
1308 assert(intel->gen >= 7);
1309
1310 src_reg ts = src_reg(brw_reg(BRW_ARCHITECTURE_REGISTER_FILE,
1311 BRW_ARF_TIMESTAMP,
1312 0,
1313 BRW_REGISTER_TYPE_UD,
1314 BRW_VERTICAL_STRIDE_0,
1315 BRW_WIDTH_4,
1316 BRW_HORIZONTAL_STRIDE_4,
1317 BRW_SWIZZLE_XYZW,
1318 WRITEMASK_XYZW));
1319
1320 dst_reg dst = dst_reg(this, glsl_type::uvec4_type);
1321
1322 vec4_instruction *mov = emit(MOV(dst, ts));
1323 /* We want to read the 3 fields we care about (mostly field 0, but also 2)
1324 * even if it's not enabled in the dispatch.
1325 */
1326 mov->force_writemask_all = true;
1327
1328 return src_reg(dst);
1329 }
1330
1331 void
1332 vec4_visitor::emit_shader_time_begin()
1333 {
1334 current_annotation = "shader time start";
1335 shader_start_time = get_timestamp();
1336 }
1337
1338 void
1339 vec4_visitor::emit_shader_time_end()
1340 {
1341 current_annotation = "shader time end";
1342 src_reg shader_end_time = get_timestamp();
1343
1344
1345 /* Check that there weren't any timestamp reset events (assuming these
1346 * were the only two timestamp reads that happened).
1347 */
1348 src_reg reset_end = shader_end_time;
1349 reset_end.swizzle = BRW_SWIZZLE_ZZZZ;
1350 vec4_instruction *test = emit(AND(dst_null_d(), reset_end, src_reg(1u)));
1351 test->conditional_mod = BRW_CONDITIONAL_Z;
1352
1353 emit(IF(BRW_PREDICATE_NORMAL));
1354
1355 /* Take the current timestamp and get the delta. */
1356 shader_start_time.negate = true;
1357 dst_reg diff = dst_reg(this, glsl_type::uint_type);
1358 emit(ADD(diff, shader_start_time, shader_end_time));
1359
1360 /* If there were no instructions between the two timestamp gets, the diff
1361 * is 2 cycles. Remove that overhead, so I can forget about that when
1362 * trying to determine the time taken for single instructions.
1363 */
1364 emit(ADD(diff, src_reg(diff), src_reg(-2u)));
1365
1366 emit_shader_time_write(ST_VS, src_reg(diff));
1367 emit_shader_time_write(ST_VS_WRITTEN, src_reg(1u));
1368 emit(BRW_OPCODE_ELSE);
1369 emit_shader_time_write(ST_VS_RESET, src_reg(1u));
1370 emit(BRW_OPCODE_ENDIF);
1371 }
1372
1373 void
1374 vec4_visitor::emit_shader_time_write(enum shader_time_shader_type type,
1375 src_reg value)
1376 {
1377 int shader_time_index =
1378 brw_get_shader_time_index(brw, shader_prog, prog, type);
1379
1380 dst_reg dst =
1381 dst_reg(this, glsl_type::get_array_instance(glsl_type::vec4_type, 2));
1382
1383 dst_reg offset = dst;
1384 dst_reg time = dst;
1385 time.reg_offset++;
1386
1387 offset.type = BRW_REGISTER_TYPE_UD;
1388 emit(MOV(offset, src_reg(shader_time_index * SHADER_TIME_STRIDE)));
1389
1390 time.type = BRW_REGISTER_TYPE_UD;
1391 emit(MOV(time, src_reg(value)));
1392
1393 emit(SHADER_OPCODE_SHADER_TIME_ADD, dst_reg(), src_reg(dst));
1394 }
1395
1396 bool
1397 vec4_visitor::run()
1398 {
1399 sanity_param_count = prog->Parameters->NumParameters;
1400
1401 if (INTEL_DEBUG & DEBUG_SHADER_TIME)
1402 emit_shader_time_begin();
1403
1404 emit_prolog();
1405
1406 /* Generate VS IR for main(). (the visitor only descends into
1407 * functions called "main").
1408 */
1409 if (shader) {
1410 visit_instructions(shader->ir);
1411 } else {
1412 emit_program_code();
1413 }
1414 base_ir = NULL;
1415
1416 if (key->userclip_active && !key->uses_clip_distance)
1417 setup_uniform_clipplane_values();
1418
1419 emit_thread_end();
1420
1421 /* Before any optimization, push array accesses out to scratch
1422 * space where we need them to be. This pass may allocate new
1423 * virtual GRFs, so we want to do it early. It also makes sure
1424 * that we have reladdr computations available for CSE, since we'll
1425 * often do repeated subexpressions for those.
1426 */
1427 if (shader) {
1428 move_grf_array_access_to_scratch();
1429 move_uniform_array_access_to_pull_constants();
1430 } else {
1431 /* The ARB_vertex_program frontend emits pull constant loads directly
1432 * rather than using reladdr, so we don't need to walk through all the
1433 * instructions looking for things to move. There isn't anything.
1434 *
1435 * We do still need to split things to vec4 size.
1436 */
1437 split_uniform_registers();
1438 }
1439 pack_uniform_registers();
1440 move_push_constants_to_pull_constants();
1441 split_virtual_grfs();
1442
1443 bool progress;
1444 do {
1445 progress = false;
1446 progress = dead_code_eliminate() || progress;
1447 progress = opt_copy_propagation() || progress;
1448 progress = opt_algebraic() || progress;
1449 progress = opt_register_coalesce() || progress;
1450 } while (progress);
1451
1452
1453 if (failed)
1454 return false;
1455
1456 setup_payload();
1457
1458 if (false) {
1459 /* Debug of register spilling: Go spill everything. */
1460 const int grf_count = virtual_grf_count;
1461 float spill_costs[virtual_grf_count];
1462 bool no_spill[virtual_grf_count];
1463 evaluate_spill_costs(spill_costs, no_spill);
1464 for (int i = 0; i < grf_count; i++) {
1465 if (no_spill[i])
1466 continue;
1467 spill_reg(i);
1468 }
1469 }
1470
1471 while (!reg_allocate()) {
1472 if (failed)
1473 break;
1474 }
1475
1476 opt_schedule_instructions();
1477
1478 opt_set_dependency_control();
1479
1480 /* If any state parameters were appended, then ParameterValues could have
1481 * been realloced, in which case the driver uniform storage set up by
1482 * _mesa_associate_uniform_storage() would point to freed memory. Make
1483 * sure that didn't happen.
1484 */
1485 assert(sanity_param_count == prog->Parameters->NumParameters);
1486
1487 return !failed;
1488 }
1489
1490 } /* namespace brw */
1491
1492 extern "C" {
1493
1494 /**
1495 * Compile a vertex shader.
1496 *
1497 * Returns the final assembly and the program's size.
1498 */
1499 const unsigned *
1500 brw_vs_emit(struct brw_context *brw,
1501 struct gl_shader_program *prog,
1502 struct brw_vs_compile *c,
1503 struct brw_vs_prog_data *prog_data,
1504 void *mem_ctx,
1505 unsigned *final_assembly_size)
1506 {
1507 bool start_busy = false;
1508 float start_time = 0;
1509
1510 if (unlikely(brw->perf_debug)) {
1511 start_busy = (brw->batch.last_bo &&
1512 drm_intel_bo_busy(brw->batch.last_bo));
1513 start_time = get_time();
1514 }
1515
1516 struct brw_shader *shader = NULL;
1517 if (prog)
1518 shader = (brw_shader *) prog->_LinkedShaders[MESA_SHADER_VERTEX];
1519
1520 if (unlikely(INTEL_DEBUG & DEBUG_VS)) {
1521 if (prog) {
1522 printf("GLSL IR for native vertex shader %d:\n", prog->Name);
1523 _mesa_print_ir(shader->ir, NULL);
1524 printf("\n\n");
1525 } else {
1526 printf("ARB_vertex_program %d for native vertex shader\n",
1527 c->vp->program.Base.Id);
1528 _mesa_print_program(&c->vp->program.Base);
1529 }
1530 }
1531
1532 vec4_vs_visitor v(brw, c, prog_data, prog, shader, mem_ctx);
1533 if (!v.run()) {
1534 if (prog) {
1535 prog->LinkStatus = false;
1536 ralloc_strcat(&prog->InfoLog, v.fail_msg);
1537 }
1538
1539 _mesa_problem(NULL, "Failed to compile vertex shader: %s\n",
1540 v.fail_msg);
1541
1542 return NULL;
1543 }
1544
1545 vec4_generator g(brw, prog, &c->vp->program.Base, mem_ctx,
1546 INTEL_DEBUG & DEBUG_VS);
1547 const unsigned *generated =g.generate_assembly(&v.instructions,
1548 final_assembly_size);
1549
1550 if (unlikely(brw->perf_debug) && shader) {
1551 if (shader->compiled_once) {
1552 brw_vs_debug_recompile(brw, prog, &c->key);
1553 }
1554 if (start_busy && !drm_intel_bo_busy(brw->batch.last_bo)) {
1555 perf_debug("VS compile took %.03f ms and stalled the GPU\n",
1556 (get_time() - start_time) * 1000);
1557 }
1558 shader->compiled_once = true;
1559 }
1560
1561 return generated;
1562 }
1563
1564 } /* extern "C" */