210e20ea2ec9d1e73d1f9349d81d304df8baddae
[mesa.git] / src / mesa / drivers / dri / i965 / brw_vec4_gs.c
1 /*
2 * Copyright © 2013 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file brw_vec4_gs.c
26 *
27 * State atom for client-programmable geometry shaders, and support code.
28 */
29
30 #include "brw_vec4_gs.h"
31 #include "brw_context.h"
32 #include "brw_vec4_gs_visitor.h"
33 #include "brw_state.h"
34
35
36 static bool
37 do_gs_prog(struct brw_context *brw,
38 struct gl_shader_program *prog,
39 struct brw_geometry_program *gp,
40 struct brw_gs_prog_key *key)
41 {
42 struct brw_stage_state *stage_state = &brw->gs.base;
43 struct brw_gs_compile c;
44 memset(&c, 0, sizeof(c));
45 c.key = *key;
46 c.gp = gp;
47
48 c.prog_data.include_primitive_id =
49 (gp->program.Base.InputsRead & VARYING_BIT_PRIMITIVE_ID) != 0;
50
51 c.prog_data.invocations = gp->program.Invocations;
52
53 /* Allocate the references to the uniforms that will end up in the
54 * prog_data associated with the compiled program, and which will be freed
55 * by the state cache.
56 *
57 * Note: param_count needs to be num_uniform_components * 4, since we add
58 * padding around uniform values below vec4 size, so the worst case is that
59 * every uniform is a float which gets padded to the size of a vec4.
60 */
61 struct gl_shader *gs = prog->_LinkedShaders[MESA_SHADER_GEOMETRY];
62 int param_count = gs->num_uniform_components * 4;
63
64 /* We also upload clip plane data as uniforms */
65 param_count += MAX_CLIP_PLANES * 4;
66
67 c.prog_data.base.base.param =
68 rzalloc_array(NULL, const gl_constant_value *, param_count);
69 c.prog_data.base.base.pull_param =
70 rzalloc_array(NULL, const gl_constant_value *, param_count);
71 /* Setting nr_params here NOT to the size of the param and pull_param
72 * arrays, but to the number of uniform components vec4_visitor
73 * needs. vec4_visitor::setup_uniforms() will set it back to a proper value.
74 */
75 c.prog_data.base.base.nr_params = ALIGN(param_count, 4) / 4 + gs->num_samplers;
76
77 if (gp->program.OutputType == GL_POINTS) {
78 /* When the output type is points, the geometry shader may output data
79 * to multiple streams, and EndPrimitive() has no effect. So we
80 * configure the hardware to interpret the control data as stream ID.
81 */
82 c.prog_data.control_data_format = GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID;
83
84 /* We only have to emit control bits if we are using streams */
85 if (prog->Geom.UsesStreams)
86 c.control_data_bits_per_vertex = 2;
87 else
88 c.control_data_bits_per_vertex = 0;
89 } else {
90 /* When the output type is triangle_strip or line_strip, EndPrimitive()
91 * may be used to terminate the current strip and start a new one
92 * (similar to primitive restart), and outputting data to multiple
93 * streams is not supported. So we configure the hardware to interpret
94 * the control data as EndPrimitive information (a.k.a. "cut bits").
95 */
96 c.prog_data.control_data_format = GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT;
97
98 /* We only need to output control data if the shader actually calls
99 * EndPrimitive().
100 */
101 c.control_data_bits_per_vertex = gp->program.UsesEndPrimitive ? 1 : 0;
102 }
103 c.control_data_header_size_bits =
104 gp->program.VerticesOut * c.control_data_bits_per_vertex;
105
106 /* 1 HWORD = 32 bytes = 256 bits */
107 c.prog_data.control_data_header_size_hwords =
108 ALIGN(c.control_data_header_size_bits, 256) / 256;
109
110 GLbitfield64 outputs_written = gp->program.Base.OutputsWritten;
111
112 /* In order for legacy clipping to work, we need to populate the clip
113 * distance varying slots whenever clipping is enabled, even if the vertex
114 * shader doesn't write to gl_ClipDistance.
115 */
116 if (c.key.base.userclip_active) {
117 outputs_written |= BITFIELD64_BIT(VARYING_SLOT_CLIP_DIST0);
118 outputs_written |= BITFIELD64_BIT(VARYING_SLOT_CLIP_DIST1);
119 }
120
121 brw_compute_vue_map(brw, &c.prog_data.base.vue_map, outputs_written);
122
123 /* Compute the output vertex size.
124 *
125 * From the Ivy Bridge PRM, Vol2 Part1 7.2.1.1 STATE_GS - Output Vertex
126 * Size (p168):
127 *
128 * [0,62] indicating [1,63] 16B units
129 *
130 * Specifies the size of each vertex stored in the GS output entry
131 * (following any Control Header data) as a number of 128-bit units
132 * (minus one).
133 *
134 * Programming Restrictions: The vertex size must be programmed as a
135 * multiple of 32B units with the following exception: Rendering is
136 * disabled (as per SOL stage state) and the vertex size output by the
137 * GS thread is 16B.
138 *
139 * If rendering is enabled (as per SOL state) the vertex size must be
140 * programmed as a multiple of 32B units. In other words, the only time
141 * software can program a vertex size with an odd number of 16B units
142 * is when rendering is disabled.
143 *
144 * Note: B=bytes in the above text.
145 *
146 * It doesn't seem worth the extra trouble to optimize the case where the
147 * vertex size is 16B (especially since this would require special-casing
148 * the GEN assembly that writes to the URB). So we just set the vertex
149 * size to a multiple of 32B (2 vec4's) in all cases.
150 *
151 * The maximum output vertex size is 62*16 = 992 bytes (31 hwords). We
152 * budget that as follows:
153 *
154 * 512 bytes for varyings (a varying component is 4 bytes and
155 * gl_MaxGeometryOutputComponents = 128)
156 * 16 bytes overhead for VARYING_SLOT_PSIZ (each varying slot is 16
157 * bytes)
158 * 16 bytes overhead for gl_Position (we allocate it a slot in the VUE
159 * even if it's not used)
160 * 32 bytes overhead for gl_ClipDistance (we allocate it 2 VUE slots
161 * whenever clip planes are enabled, even if the shader doesn't
162 * write to gl_ClipDistance)
163 * 16 bytes overhead since the VUE size must be a multiple of 32 bytes
164 * (see below)--this causes up to 1 VUE slot to be wasted
165 * 400 bytes available for varying packing overhead
166 *
167 * Worst-case varying packing overhead is 3/4 of a varying slot (12 bytes)
168 * per interpolation type, so this is plenty.
169 *
170 */
171 unsigned output_vertex_size_bytes = c.prog_data.base.vue_map.num_slots * 16;
172 assert(output_vertex_size_bytes <= GEN7_MAX_GS_OUTPUT_VERTEX_SIZE_BYTES);
173 c.prog_data.output_vertex_size_hwords =
174 ALIGN(output_vertex_size_bytes, 32) / 32;
175
176 /* Compute URB entry size. The maximum allowed URB entry size is 32k.
177 * That divides up as follows:
178 *
179 * 64 bytes for the control data header (cut indices or StreamID bits)
180 * 4096 bytes for varyings (a varying component is 4 bytes and
181 * gl_MaxGeometryTotalOutputComponents = 1024)
182 * 4096 bytes overhead for VARYING_SLOT_PSIZ (each varying slot is 16
183 * bytes/vertex and gl_MaxGeometryOutputVertices is 256)
184 * 4096 bytes overhead for gl_Position (we allocate it a slot in the VUE
185 * even if it's not used)
186 * 8192 bytes overhead for gl_ClipDistance (we allocate it 2 VUE slots
187 * whenever clip planes are enabled, even if the shader doesn't
188 * write to gl_ClipDistance)
189 * 4096 bytes overhead since the VUE size must be a multiple of 32
190 * bytes (see above)--this causes up to 1 VUE slot to be wasted
191 * 8128 bytes available for varying packing overhead
192 *
193 * Worst-case varying packing overhead is 3/4 of a varying slot per
194 * interpolation type, which works out to 3072 bytes, so this would allow
195 * us to accommodate 2 interpolation types without any danger of running
196 * out of URB space.
197 *
198 * In practice, the risk of running out of URB space is very small, since
199 * the above figures are all worst-case, and most of them scale with the
200 * number of output vertices. So we'll just calculate the amount of space
201 * we need, and if it's too large, fail to compile.
202 */
203 unsigned output_size_bytes =
204 c.prog_data.output_vertex_size_hwords * 32 * gp->program.VerticesOut;
205 output_size_bytes += 32 * c.prog_data.control_data_header_size_hwords;
206
207 /* Broadwell stores "Vertex Count" as a full 8 DWord (32 byte) URB output,
208 * which comes before the control header.
209 */
210 if (brw->gen >= 8)
211 output_size_bytes += 32;
212
213 assert(output_size_bytes >= 1);
214 if (output_size_bytes > GEN7_MAX_GS_URB_ENTRY_SIZE_BYTES)
215 return false;
216
217 /* URB entry sizes are stored as a multiple of 64 bytes. */
218 c.prog_data.base.urb_entry_size = ALIGN(output_size_bytes, 64) / 64;
219
220 c.prog_data.output_topology =
221 get_hw_prim_for_gl_prim(gp->program.OutputType);
222
223 brw_compute_vue_map(brw, &c.input_vue_map, c.key.input_varyings);
224
225 /* GS inputs are read from the VUE 256 bits (2 vec4's) at a time, so we
226 * need to program a URB read length of ceiling(num_slots / 2).
227 */
228 c.prog_data.base.urb_read_length = (c.input_vue_map.num_slots + 1) / 2;
229
230 void *mem_ctx = ralloc_context(NULL);
231 unsigned program_size;
232 const unsigned *program =
233 brw_gs_emit(brw, prog, &c, mem_ctx, &program_size);
234 if (program == NULL) {
235 ralloc_free(mem_ctx);
236 return false;
237 }
238
239 /* Scratch space is used for register spilling */
240 if (c.base.last_scratch) {
241 perf_debug("Geometry shader triggered register spilling. "
242 "Try reducing the number of live vec4 values to "
243 "improve performance.\n");
244
245 c.prog_data.base.base.total_scratch
246 = brw_get_scratch_size(c.base.last_scratch*REG_SIZE);
247
248 brw_get_scratch_bo(brw, &stage_state->scratch_bo,
249 c.prog_data.base.base.total_scratch *
250 brw->max_gs_threads);
251 }
252
253 brw_upload_cache(&brw->cache, BRW_GS_PROG,
254 &c.key, sizeof(c.key),
255 program, program_size,
256 &c.prog_data, sizeof(c.prog_data),
257 &stage_state->prog_offset, &brw->gs.prog_data);
258 ralloc_free(mem_ctx);
259
260 return true;
261 }
262
263
264 static void
265 brw_upload_gs_prog(struct brw_context *brw)
266 {
267 struct gl_context *ctx = &brw->ctx;
268 struct brw_stage_state *stage_state = &brw->gs.base;
269 struct brw_gs_prog_key key;
270 /* BRW_NEW_GEOMETRY_PROGRAM */
271 struct brw_geometry_program *gp =
272 (struct brw_geometry_program *) brw->geometry_program;
273
274 if (gp == NULL) {
275 /* No geometry shader. Vertex data just passes straight through. */
276 if (CHECK_DIRTY_BIT(brw, BRW_NEW_VUE_MAP_VS)) {
277 brw->vue_map_geom_out = brw->vue_map_vs;
278 SET_DIRTY_BIT(brw, BRW_NEW_VUE_MAP_GEOM_OUT);
279 }
280
281 /* Other state atoms had better not try to access prog_data, since
282 * there's no GS program.
283 */
284 brw->gs.prog_data = NULL;
285 brw->gs.base.prog_data = NULL;
286
287 return;
288 }
289
290 struct gl_program *prog = &gp->program.Base;
291
292 memset(&key, 0, sizeof(key));
293
294 key.base.program_string_id = gp->id;
295 brw_setup_vec4_key_clip_info(brw, &key.base,
296 gp->program.Base.UsesClipDistanceOut);
297
298 /* _NEW_LIGHT | _NEW_BUFFERS */
299 key.base.clamp_vertex_color = ctx->Light._ClampVertexColor;
300
301 /* _NEW_TEXTURE */
302 brw_populate_sampler_prog_key_data(ctx, prog, stage_state->sampler_count,
303 &key.base.tex);
304
305 /* BRW_NEW_VUE_MAP_VS */
306 key.input_varyings = brw->vue_map_vs.slots_valid;
307
308 if (!brw_search_cache(&brw->cache, BRW_GS_PROG,
309 &key, sizeof(key),
310 &stage_state->prog_offset, &brw->gs.prog_data)) {
311 bool success =
312 do_gs_prog(brw, ctx->_Shader->CurrentProgram[MESA_SHADER_GEOMETRY], gp,
313 &key);
314 assert(success);
315 (void)success;
316 }
317 brw->gs.base.prog_data = &brw->gs.prog_data->base.base;
318
319 if (memcmp(&brw->vs.prog_data->base.vue_map, &brw->vue_map_geom_out,
320 sizeof(brw->vue_map_geom_out)) != 0) {
321 brw->vue_map_geom_out = brw->gs.prog_data->base.vue_map;
322 SET_DIRTY_BIT(brw, BRW_NEW_VUE_MAP_GEOM_OUT);
323 }
324 }
325
326
327 const struct brw_tracked_state brw_gs_prog = {
328 .dirty = {
329 .mesa = (_NEW_LIGHT | _NEW_BUFFERS | _NEW_TEXTURE),
330 .brw = BRW_NEW_GEOMETRY_PROGRAM | BRW_NEW_VUE_MAP_VS,
331 },
332 .emit = brw_upload_gs_prog
333 };
334
335
336 bool
337 brw_gs_precompile(struct gl_context *ctx, struct gl_shader_program *prog)
338 {
339 struct brw_context *brw = brw_context(ctx);
340 struct brw_gs_prog_key key;
341 uint32_t old_prog_offset = brw->gs.base.prog_offset;
342 struct brw_gs_prog_data *old_prog_data = brw->gs.prog_data;
343 bool success;
344
345 if (!prog->_LinkedShaders[MESA_SHADER_GEOMETRY])
346 return true;
347
348 struct gl_geometry_program *gp = (struct gl_geometry_program *)
349 prog->_LinkedShaders[MESA_SHADER_GEOMETRY]->Program;
350 struct brw_geometry_program *bgp = brw_geometry_program(gp);
351
352 memset(&key, 0, sizeof(key));
353
354 brw_vec4_setup_prog_key_for_precompile(ctx, &key.base, bgp->id, &gp->Base);
355
356 /* Assume that the set of varyings coming in from the vertex shader exactly
357 * matches what the geometry shader requires.
358 */
359 key.input_varyings = gp->Base.InputsRead;
360
361 success = do_gs_prog(brw, prog, bgp, &key);
362
363 brw->gs.base.prog_offset = old_prog_offset;
364 brw->gs.prog_data = old_prog_data;
365
366 return success;
367 }
368
369
370 bool
371 brw_gs_prog_data_compare(const void *in_a, const void *in_b)
372 {
373 const struct brw_gs_prog_data *a = in_a;
374 const struct brw_gs_prog_data *b = in_b;
375
376 /* Compare the base structure. */
377 if (!brw_stage_prog_data_compare(&a->base.base, &b->base.base))
378 return false;
379
380 /* Compare the rest of the struct. */
381 const unsigned offset = sizeof(struct brw_stage_prog_data);
382 if (memcmp(((char *) a) + offset, ((char *) b) + offset,
383 sizeof(struct brw_gs_prog_data) - offset)) {
384 return false;
385 }
386
387 return true;
388 }