04ea1775ceb2bf01147a5d1fe7d9da37da3e0a18
[mesa.git] / src / mesa / drivers / dri / i965 / brw_vec4_visitor.cpp
1 /*
2 * Copyright © 2011 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "brw_vec4.h"
25 #include "brw_cfg.h"
26 #include "glsl/ir_uniform.h"
27 #include "program/sampler.h"
28
29 namespace brw {
30
31 vec4_instruction::vec4_instruction(enum opcode opcode, const dst_reg &dst,
32 const src_reg &src0, const src_reg &src1,
33 const src_reg &src2)
34 {
35 this->opcode = opcode;
36 this->dst = dst;
37 this->src[0] = src0;
38 this->src[1] = src1;
39 this->src[2] = src2;
40 this->saturate = false;
41 this->force_writemask_all = false;
42 this->no_dd_clear = false;
43 this->no_dd_check = false;
44 this->writes_accumulator = false;
45 this->conditional_mod = BRW_CONDITIONAL_NONE;
46 this->predicate = BRW_PREDICATE_NONE;
47 this->predicate_inverse = false;
48 this->target = 0;
49 this->regs_written = (dst.file == BAD_FILE ? 0 : 1);
50 this->shadow_compare = false;
51 this->ir = NULL;
52 this->urb_write_flags = BRW_URB_WRITE_NO_FLAGS;
53 this->header_size = 0;
54 this->flag_subreg = 0;
55 this->mlen = 0;
56 this->base_mrf = 0;
57 this->offset = 0;
58 this->annotation = NULL;
59 }
60
61 vec4_instruction *
62 vec4_visitor::emit(vec4_instruction *inst)
63 {
64 inst->ir = this->base_ir;
65 inst->annotation = this->current_annotation;
66
67 this->instructions.push_tail(inst);
68
69 return inst;
70 }
71
72 vec4_instruction *
73 vec4_visitor::emit_before(bblock_t *block, vec4_instruction *inst,
74 vec4_instruction *new_inst)
75 {
76 new_inst->ir = inst->ir;
77 new_inst->annotation = inst->annotation;
78
79 inst->insert_before(block, new_inst);
80
81 return inst;
82 }
83
84 vec4_instruction *
85 vec4_visitor::emit(enum opcode opcode, const dst_reg &dst, const src_reg &src0,
86 const src_reg &src1, const src_reg &src2)
87 {
88 return emit(new(mem_ctx) vec4_instruction(opcode, dst, src0, src1, src2));
89 }
90
91
92 vec4_instruction *
93 vec4_visitor::emit(enum opcode opcode, const dst_reg &dst, const src_reg &src0,
94 const src_reg &src1)
95 {
96 return emit(new(mem_ctx) vec4_instruction(opcode, dst, src0, src1));
97 }
98
99 vec4_instruction *
100 vec4_visitor::emit(enum opcode opcode, const dst_reg &dst, const src_reg &src0)
101 {
102 return emit(new(mem_ctx) vec4_instruction(opcode, dst, src0));
103 }
104
105 vec4_instruction *
106 vec4_visitor::emit(enum opcode opcode, const dst_reg &dst)
107 {
108 return emit(new(mem_ctx) vec4_instruction(opcode, dst));
109 }
110
111 vec4_instruction *
112 vec4_visitor::emit(enum opcode opcode)
113 {
114 return emit(new(mem_ctx) vec4_instruction(opcode, dst_reg()));
115 }
116
117 #define ALU1(op) \
118 vec4_instruction * \
119 vec4_visitor::op(const dst_reg &dst, const src_reg &src0) \
120 { \
121 return new(mem_ctx) vec4_instruction(BRW_OPCODE_##op, dst, src0); \
122 }
123
124 #define ALU2(op) \
125 vec4_instruction * \
126 vec4_visitor::op(const dst_reg &dst, const src_reg &src0, \
127 const src_reg &src1) \
128 { \
129 return new(mem_ctx) vec4_instruction(BRW_OPCODE_##op, dst, \
130 src0, src1); \
131 }
132
133 #define ALU2_ACC(op) \
134 vec4_instruction * \
135 vec4_visitor::op(const dst_reg &dst, const src_reg &src0, \
136 const src_reg &src1) \
137 { \
138 vec4_instruction *inst = new(mem_ctx) vec4_instruction( \
139 BRW_OPCODE_##op, dst, src0, src1); \
140 inst->writes_accumulator = true; \
141 return inst; \
142 }
143
144 #define ALU3(op) \
145 vec4_instruction * \
146 vec4_visitor::op(const dst_reg &dst, const src_reg &src0, \
147 const src_reg &src1, const src_reg &src2) \
148 { \
149 assert(devinfo->gen >= 6); \
150 return new(mem_ctx) vec4_instruction(BRW_OPCODE_##op, dst, \
151 src0, src1, src2); \
152 }
153
154 ALU1(NOT)
155 ALU1(MOV)
156 ALU1(FRC)
157 ALU1(RNDD)
158 ALU1(RNDE)
159 ALU1(RNDZ)
160 ALU1(F32TO16)
161 ALU1(F16TO32)
162 ALU2(ADD)
163 ALU2(MUL)
164 ALU2_ACC(MACH)
165 ALU2(AND)
166 ALU2(OR)
167 ALU2(XOR)
168 ALU2(DP3)
169 ALU2(DP4)
170 ALU2(DPH)
171 ALU2(SHL)
172 ALU2(SHR)
173 ALU2(ASR)
174 ALU3(LRP)
175 ALU1(BFREV)
176 ALU3(BFE)
177 ALU2(BFI1)
178 ALU3(BFI2)
179 ALU1(FBH)
180 ALU1(FBL)
181 ALU1(CBIT)
182 ALU3(MAD)
183 ALU2_ACC(ADDC)
184 ALU2_ACC(SUBB)
185 ALU2(MAC)
186
187 /** Gen4 predicated IF. */
188 vec4_instruction *
189 vec4_visitor::IF(enum brw_predicate predicate)
190 {
191 vec4_instruction *inst;
192
193 inst = new(mem_ctx) vec4_instruction(BRW_OPCODE_IF);
194 inst->predicate = predicate;
195
196 return inst;
197 }
198
199 /** Gen6 IF with embedded comparison. */
200 vec4_instruction *
201 vec4_visitor::IF(src_reg src0, src_reg src1,
202 enum brw_conditional_mod condition)
203 {
204 assert(devinfo->gen == 6);
205
206 vec4_instruction *inst;
207
208 resolve_ud_negate(&src0);
209 resolve_ud_negate(&src1);
210
211 inst = new(mem_ctx) vec4_instruction(BRW_OPCODE_IF, dst_null_d(),
212 src0, src1);
213 inst->conditional_mod = condition;
214
215 return inst;
216 }
217
218 /**
219 * CMP: Sets the low bit of the destination channels with the result
220 * of the comparison, while the upper bits are undefined, and updates
221 * the flag register with the packed 16 bits of the result.
222 */
223 vec4_instruction *
224 vec4_visitor::CMP(dst_reg dst, src_reg src0, src_reg src1,
225 enum brw_conditional_mod condition)
226 {
227 vec4_instruction *inst;
228
229 /* Take the instruction:
230 *
231 * CMP null<d> src0<f> src1<f>
232 *
233 * Original gen4 does type conversion to the destination type before
234 * comparison, producing garbage results for floating point comparisons.
235 *
236 * The destination type doesn't matter on newer generations, so we set the
237 * type to match src0 so we can compact the instruction.
238 */
239 dst.type = src0.type;
240
241 resolve_ud_negate(&src0);
242 resolve_ud_negate(&src1);
243
244 inst = new(mem_ctx) vec4_instruction(BRW_OPCODE_CMP, dst, src0, src1);
245 inst->conditional_mod = condition;
246
247 return inst;
248 }
249
250 vec4_instruction *
251 vec4_visitor::SCRATCH_READ(const dst_reg &dst, const src_reg &index)
252 {
253 vec4_instruction *inst;
254
255 inst = new(mem_ctx) vec4_instruction(SHADER_OPCODE_GEN4_SCRATCH_READ,
256 dst, index);
257 inst->base_mrf = FIRST_SPILL_MRF(devinfo->gen) + 1;
258 inst->mlen = 2;
259
260 return inst;
261 }
262
263 vec4_instruction *
264 vec4_visitor::SCRATCH_WRITE(const dst_reg &dst, const src_reg &src,
265 const src_reg &index)
266 {
267 vec4_instruction *inst;
268
269 inst = new(mem_ctx) vec4_instruction(SHADER_OPCODE_GEN4_SCRATCH_WRITE,
270 dst, src, index);
271 inst->base_mrf = FIRST_SPILL_MRF(devinfo->gen);
272 inst->mlen = 3;
273
274 return inst;
275 }
276
277 src_reg
278 vec4_visitor::fix_3src_operand(const src_reg &src)
279 {
280 /* Using vec4 uniforms in SIMD4x2 programs is difficult. You'd like to be
281 * able to use vertical stride of zero to replicate the vec4 uniform, like
282 *
283 * g3<0;4,1>:f - [0, 4][1, 5][2, 6][3, 7]
284 *
285 * But you can't, since vertical stride is always four in three-source
286 * instructions. Instead, insert a MOV instruction to do the replication so
287 * that the three-source instruction can consume it.
288 */
289
290 /* The MOV is only needed if the source is a uniform or immediate. */
291 if (src.file != UNIFORM && src.file != IMM)
292 return src;
293
294 if (src.file == UNIFORM && brw_is_single_value_swizzle(src.swizzle))
295 return src;
296
297 dst_reg expanded = dst_reg(this, glsl_type::vec4_type);
298 expanded.type = src.type;
299 emit(VEC4_OPCODE_UNPACK_UNIFORM, expanded, src);
300 return src_reg(expanded);
301 }
302
303 src_reg
304 vec4_visitor::resolve_source_modifiers(const src_reg &src)
305 {
306 if (!src.abs && !src.negate)
307 return src;
308
309 dst_reg resolved = dst_reg(this, glsl_type::ivec4_type);
310 resolved.type = src.type;
311 emit(MOV(resolved, src));
312
313 return src_reg(resolved);
314 }
315
316 src_reg
317 vec4_visitor::fix_math_operand(const src_reg &src)
318 {
319 if (devinfo->gen < 6 || devinfo->gen >= 8 || src.file == BAD_FILE)
320 return src;
321
322 /* The gen6 math instruction ignores the source modifiers --
323 * swizzle, abs, negate, and at least some parts of the register
324 * region description.
325 *
326 * Rather than trying to enumerate all these cases, *always* expand the
327 * operand to a temp GRF for gen6.
328 *
329 * For gen7, keep the operand as-is, except if immediate, which gen7 still
330 * can't use.
331 */
332
333 if (devinfo->gen == 7 && src.file != IMM)
334 return src;
335
336 dst_reg expanded = dst_reg(this, glsl_type::vec4_type);
337 expanded.type = src.type;
338 emit(MOV(expanded, src));
339 return src_reg(expanded);
340 }
341
342 vec4_instruction *
343 vec4_visitor::emit_math(enum opcode opcode,
344 const dst_reg &dst,
345 const src_reg &src0, const src_reg &src1)
346 {
347 vec4_instruction *math =
348 emit(opcode, dst, fix_math_operand(src0), fix_math_operand(src1));
349
350 if (devinfo->gen == 6 && dst.writemask != WRITEMASK_XYZW) {
351 /* MATH on Gen6 must be align1, so we can't do writemasks. */
352 math->dst = dst_reg(this, glsl_type::vec4_type);
353 math->dst.type = dst.type;
354 math = emit(MOV(dst, src_reg(math->dst)));
355 } else if (devinfo->gen < 6) {
356 math->base_mrf = 1;
357 math->mlen = src1.file == BAD_FILE ? 1 : 2;
358 }
359
360 return math;
361 }
362
363 void
364 vec4_visitor::emit_pack_half_2x16(dst_reg dst, src_reg src0)
365 {
366 if (devinfo->gen < 7) {
367 unreachable("ir_unop_pack_half_2x16 should be lowered");
368 }
369
370 assert(dst.type == BRW_REGISTER_TYPE_UD);
371 assert(src0.type == BRW_REGISTER_TYPE_F);
372
373 /* From the Ivybridge PRM, Vol4, Part3, Section 6.27 f32to16:
374 *
375 * Because this instruction does not have a 16-bit floating-point type,
376 * the destination data type must be Word (W).
377 *
378 * The destination must be DWord-aligned and specify a horizontal stride
379 * (HorzStride) of 2. The 16-bit result is stored in the lower word of
380 * each destination channel and the upper word is not modified.
381 *
382 * The above restriction implies that the f32to16 instruction must use
383 * align1 mode, because only in align1 mode is it possible to specify
384 * horizontal stride. We choose here to defy the hardware docs and emit
385 * align16 instructions.
386 *
387 * (I [chadv] did attempt to emit align1 instructions for VS f32to16
388 * instructions. I was partially successful in that the code passed all
389 * tests. However, the code was dubiously correct and fragile, and the
390 * tests were not harsh enough to probe that frailty. Not trusting the
391 * code, I chose instead to remain in align16 mode in defiance of the hw
392 * docs).
393 *
394 * I've [chadv] experimentally confirmed that, on gen7 hardware and the
395 * simulator, emitting a f32to16 in align16 mode with UD as destination
396 * data type is safe. The behavior differs from that specified in the PRM
397 * in that the upper word of each destination channel is cleared to 0.
398 */
399
400 dst_reg tmp_dst(this, glsl_type::uvec2_type);
401 src_reg tmp_src(tmp_dst);
402
403 #if 0
404 /* Verify the undocumented behavior on which the following instructions
405 * rely. If f32to16 fails to clear the upper word of the X and Y channels,
406 * then the result of the bit-or instruction below will be incorrect.
407 *
408 * You should inspect the disasm output in order to verify that the MOV is
409 * not optimized away.
410 */
411 emit(MOV(tmp_dst, brw_imm_ud(0x12345678u)));
412 #endif
413
414 /* Give tmp the form below, where "." means untouched.
415 *
416 * w z y x w z y x
417 * |.|.|0x0000hhhh|0x0000llll|.|.|0x0000hhhh|0x0000llll|
418 *
419 * That the upper word of each write-channel be 0 is required for the
420 * following bit-shift and bit-or instructions to work. Note that this
421 * relies on the undocumented hardware behavior mentioned above.
422 */
423 tmp_dst.writemask = WRITEMASK_XY;
424 emit(F32TO16(tmp_dst, src0));
425
426 /* Give the write-channels of dst the form:
427 * 0xhhhh0000
428 */
429 tmp_src.swizzle = BRW_SWIZZLE_YYYY;
430 emit(SHL(dst, tmp_src, brw_imm_ud(16u)));
431
432 /* Finally, give the write-channels of dst the form of packHalf2x16's
433 * output:
434 * 0xhhhhllll
435 */
436 tmp_src.swizzle = BRW_SWIZZLE_XXXX;
437 emit(OR(dst, src_reg(dst), tmp_src));
438 }
439
440 void
441 vec4_visitor::emit_unpack_half_2x16(dst_reg dst, src_reg src0)
442 {
443 if (devinfo->gen < 7) {
444 unreachable("ir_unop_unpack_half_2x16 should be lowered");
445 }
446
447 assert(dst.type == BRW_REGISTER_TYPE_F);
448 assert(src0.type == BRW_REGISTER_TYPE_UD);
449
450 /* From the Ivybridge PRM, Vol4, Part3, Section 6.26 f16to32:
451 *
452 * Because this instruction does not have a 16-bit floating-point type,
453 * the source data type must be Word (W). The destination type must be
454 * F (Float).
455 *
456 * To use W as the source data type, we must adjust horizontal strides,
457 * which is only possible in align1 mode. All my [chadv] attempts at
458 * emitting align1 instructions for unpackHalf2x16 failed to pass the
459 * Piglit tests, so I gave up.
460 *
461 * I've verified that, on gen7 hardware and the simulator, it is safe to
462 * emit f16to32 in align16 mode with UD as source data type.
463 */
464
465 dst_reg tmp_dst(this, glsl_type::uvec2_type);
466 src_reg tmp_src(tmp_dst);
467
468 tmp_dst.writemask = WRITEMASK_X;
469 emit(AND(tmp_dst, src0, brw_imm_ud(0xffffu)));
470
471 tmp_dst.writemask = WRITEMASK_Y;
472 emit(SHR(tmp_dst, src0, brw_imm_ud(16u)));
473
474 dst.writemask = WRITEMASK_XY;
475 emit(F16TO32(dst, tmp_src));
476 }
477
478 void
479 vec4_visitor::emit_unpack_unorm_4x8(const dst_reg &dst, src_reg src0)
480 {
481 /* Instead of splitting the 32-bit integer, shifting, and ORing it back
482 * together, we can shift it by <0, 8, 16, 24>. The packed integer immediate
483 * is not suitable to generate the shift values, but we can use the packed
484 * vector float and a type-converting MOV.
485 */
486 dst_reg shift(this, glsl_type::uvec4_type);
487 emit(MOV(shift, brw_imm_vf4(0x00, 0x60, 0x70, 0x78)));
488
489 dst_reg shifted(this, glsl_type::uvec4_type);
490 src0.swizzle = BRW_SWIZZLE_XXXX;
491 emit(SHR(shifted, src0, src_reg(shift)));
492
493 shifted.type = BRW_REGISTER_TYPE_UB;
494 dst_reg f(this, glsl_type::vec4_type);
495 emit(VEC4_OPCODE_MOV_BYTES, f, src_reg(shifted));
496
497 emit(MUL(dst, src_reg(f), brw_imm_f(1.0f / 255.0f)));
498 }
499
500 void
501 vec4_visitor::emit_unpack_snorm_4x8(const dst_reg &dst, src_reg src0)
502 {
503 /* Instead of splitting the 32-bit integer, shifting, and ORing it back
504 * together, we can shift it by <0, 8, 16, 24>. The packed integer immediate
505 * is not suitable to generate the shift values, but we can use the packed
506 * vector float and a type-converting MOV.
507 */
508 dst_reg shift(this, glsl_type::uvec4_type);
509 emit(MOV(shift, brw_imm_vf4(0x00, 0x60, 0x70, 0x78)));
510
511 dst_reg shifted(this, glsl_type::uvec4_type);
512 src0.swizzle = BRW_SWIZZLE_XXXX;
513 emit(SHR(shifted, src0, src_reg(shift)));
514
515 shifted.type = BRW_REGISTER_TYPE_B;
516 dst_reg f(this, glsl_type::vec4_type);
517 emit(VEC4_OPCODE_MOV_BYTES, f, src_reg(shifted));
518
519 dst_reg scaled(this, glsl_type::vec4_type);
520 emit(MUL(scaled, src_reg(f), brw_imm_f(1.0f / 127.0f)));
521
522 dst_reg max(this, glsl_type::vec4_type);
523 emit_minmax(BRW_CONDITIONAL_GE, max, src_reg(scaled), brw_imm_f(-1.0f));
524 emit_minmax(BRW_CONDITIONAL_L, dst, src_reg(max), brw_imm_f(1.0f));
525 }
526
527 void
528 vec4_visitor::emit_pack_unorm_4x8(const dst_reg &dst, const src_reg &src0)
529 {
530 dst_reg saturated(this, glsl_type::vec4_type);
531 vec4_instruction *inst = emit(MOV(saturated, src0));
532 inst->saturate = true;
533
534 dst_reg scaled(this, glsl_type::vec4_type);
535 emit(MUL(scaled, src_reg(saturated), brw_imm_f(255.0f)));
536
537 dst_reg rounded(this, glsl_type::vec4_type);
538 emit(RNDE(rounded, src_reg(scaled)));
539
540 dst_reg u(this, glsl_type::uvec4_type);
541 emit(MOV(u, src_reg(rounded)));
542
543 src_reg bytes(u);
544 emit(VEC4_OPCODE_PACK_BYTES, dst, bytes);
545 }
546
547 void
548 vec4_visitor::emit_pack_snorm_4x8(const dst_reg &dst, const src_reg &src0)
549 {
550 dst_reg max(this, glsl_type::vec4_type);
551 emit_minmax(BRW_CONDITIONAL_GE, max, src0, brw_imm_f(-1.0f));
552
553 dst_reg min(this, glsl_type::vec4_type);
554 emit_minmax(BRW_CONDITIONAL_L, min, src_reg(max), brw_imm_f(1.0f));
555
556 dst_reg scaled(this, glsl_type::vec4_type);
557 emit(MUL(scaled, src_reg(min), brw_imm_f(127.0f)));
558
559 dst_reg rounded(this, glsl_type::vec4_type);
560 emit(RNDE(rounded, src_reg(scaled)));
561
562 dst_reg i(this, glsl_type::ivec4_type);
563 emit(MOV(i, src_reg(rounded)));
564
565 src_reg bytes(i);
566 emit(VEC4_OPCODE_PACK_BYTES, dst, bytes);
567 }
568
569 /**
570 * Returns the minimum number of vec4 elements needed to pack a type.
571 *
572 * For simple types, it will return 1 (a single vec4); for matrices, the
573 * number of columns; for array and struct, the sum of the vec4_size of
574 * each of its elements; and for sampler and atomic, zero.
575 *
576 * This method is useful to calculate how much register space is needed to
577 * store a particular type.
578 */
579 extern "C" int
580 type_size_vec4(const struct glsl_type *type)
581 {
582 unsigned int i;
583 int size;
584
585 switch (type->base_type) {
586 case GLSL_TYPE_UINT:
587 case GLSL_TYPE_INT:
588 case GLSL_TYPE_FLOAT:
589 case GLSL_TYPE_BOOL:
590 if (type->is_matrix()) {
591 return type->matrix_columns;
592 } else {
593 /* Regardless of size of vector, it gets a vec4. This is bad
594 * packing for things like floats, but otherwise arrays become a
595 * mess. Hopefully a later pass over the code can pack scalars
596 * down if appropriate.
597 */
598 return 1;
599 }
600 case GLSL_TYPE_ARRAY:
601 assert(type->length > 0);
602 return type_size_vec4(type->fields.array) * type->length;
603 case GLSL_TYPE_STRUCT:
604 size = 0;
605 for (i = 0; i < type->length; i++) {
606 size += type_size_vec4(type->fields.structure[i].type);
607 }
608 return size;
609 case GLSL_TYPE_SUBROUTINE:
610 return 1;
611
612 case GLSL_TYPE_SAMPLER:
613 /* Samplers take up no register space, since they're baked in at
614 * link time.
615 */
616 return 0;
617 case GLSL_TYPE_ATOMIC_UINT:
618 return 0;
619 case GLSL_TYPE_IMAGE:
620 return DIV_ROUND_UP(BRW_IMAGE_PARAM_SIZE, 4);
621 case GLSL_TYPE_VOID:
622 case GLSL_TYPE_DOUBLE:
623 case GLSL_TYPE_ERROR:
624 case GLSL_TYPE_INTERFACE:
625 unreachable("not reached");
626 }
627
628 return 0;
629 }
630
631 src_reg::src_reg(class vec4_visitor *v, const struct glsl_type *type)
632 {
633 init();
634
635 this->file = VGRF;
636 this->nr = v->alloc.allocate(type_size_vec4(type));
637
638 if (type->is_array() || type->is_record()) {
639 this->swizzle = BRW_SWIZZLE_NOOP;
640 } else {
641 this->swizzle = brw_swizzle_for_size(type->vector_elements);
642 }
643
644 this->type = brw_type_for_base_type(type);
645 }
646
647 src_reg::src_reg(class vec4_visitor *v, const struct glsl_type *type, int size)
648 {
649 assert(size > 0);
650
651 init();
652
653 this->file = VGRF;
654 this->nr = v->alloc.allocate(type_size_vec4(type) * size);
655
656 this->swizzle = BRW_SWIZZLE_NOOP;
657
658 this->type = brw_type_for_base_type(type);
659 }
660
661 dst_reg::dst_reg(class vec4_visitor *v, const struct glsl_type *type)
662 {
663 init();
664
665 this->file = VGRF;
666 this->nr = v->alloc.allocate(type_size_vec4(type));
667
668 if (type->is_array() || type->is_record()) {
669 this->writemask = WRITEMASK_XYZW;
670 } else {
671 this->writemask = (1 << type->vector_elements) - 1;
672 }
673
674 this->type = brw_type_for_base_type(type);
675 }
676
677 vec4_instruction *
678 vec4_visitor::emit_minmax(enum brw_conditional_mod conditionalmod, dst_reg dst,
679 src_reg src0, src_reg src1)
680 {
681 vec4_instruction *inst;
682
683 if (devinfo->gen >= 6) {
684 inst = emit(BRW_OPCODE_SEL, dst, src0, src1);
685 inst->conditional_mod = conditionalmod;
686 } else {
687 emit(CMP(dst, src0, src1, conditionalmod));
688
689 inst = emit(BRW_OPCODE_SEL, dst, src0, src1);
690 inst->predicate = BRW_PREDICATE_NORMAL;
691 }
692
693 return inst;
694 }
695
696 vec4_instruction *
697 vec4_visitor::emit_lrp(const dst_reg &dst,
698 const src_reg &x, const src_reg &y, const src_reg &a)
699 {
700 if (devinfo->gen >= 6) {
701 /* Note that the instruction's argument order is reversed from GLSL
702 * and the IR.
703 */
704 return emit(LRP(dst, fix_3src_operand(a), fix_3src_operand(y),
705 fix_3src_operand(x)));
706 } else {
707 /* Earlier generations don't support three source operations, so we
708 * need to emit x*(1-a) + y*a.
709 */
710 dst_reg y_times_a = dst_reg(this, glsl_type::vec4_type);
711 dst_reg one_minus_a = dst_reg(this, glsl_type::vec4_type);
712 dst_reg x_times_one_minus_a = dst_reg(this, glsl_type::vec4_type);
713 y_times_a.writemask = dst.writemask;
714 one_minus_a.writemask = dst.writemask;
715 x_times_one_minus_a.writemask = dst.writemask;
716
717 emit(MUL(y_times_a, y, a));
718 emit(ADD(one_minus_a, negate(a), brw_imm_f(1.0f)));
719 emit(MUL(x_times_one_minus_a, x, src_reg(one_minus_a)));
720 return emit(ADD(dst, src_reg(x_times_one_minus_a), src_reg(y_times_a)));
721 }
722 }
723
724 /**
725 * Emits the instructions needed to perform a pull constant load. before_block
726 * and before_inst can be NULL in which case the instruction will be appended
727 * to the end of the instruction list.
728 */
729 void
730 vec4_visitor::emit_pull_constant_load_reg(dst_reg dst,
731 src_reg surf_index,
732 src_reg offset_reg,
733 bblock_t *before_block,
734 vec4_instruction *before_inst)
735 {
736 assert((before_inst == NULL && before_block == NULL) ||
737 (before_inst && before_block));
738
739 vec4_instruction *pull;
740
741 if (devinfo->gen >= 9) {
742 /* Gen9+ needs a message header in order to use SIMD4x2 mode */
743 src_reg header(this, glsl_type::uvec4_type, 2);
744
745 pull = new(mem_ctx)
746 vec4_instruction(VS_OPCODE_SET_SIMD4X2_HEADER_GEN9,
747 dst_reg(header));
748
749 if (before_inst)
750 emit_before(before_block, before_inst, pull);
751 else
752 emit(pull);
753
754 dst_reg index_reg = retype(offset(dst_reg(header), 1),
755 offset_reg.type);
756 pull = MOV(writemask(index_reg, WRITEMASK_X), offset_reg);
757
758 if (before_inst)
759 emit_before(before_block, before_inst, pull);
760 else
761 emit(pull);
762
763 pull = new(mem_ctx) vec4_instruction(VS_OPCODE_PULL_CONSTANT_LOAD_GEN7,
764 dst,
765 surf_index,
766 header);
767 pull->mlen = 2;
768 pull->header_size = 1;
769 } else if (devinfo->gen >= 7) {
770 dst_reg grf_offset = dst_reg(this, glsl_type::int_type);
771
772 grf_offset.type = offset_reg.type;
773
774 pull = MOV(grf_offset, offset_reg);
775
776 if (before_inst)
777 emit_before(before_block, before_inst, pull);
778 else
779 emit(pull);
780
781 pull = new(mem_ctx) vec4_instruction(VS_OPCODE_PULL_CONSTANT_LOAD_GEN7,
782 dst,
783 surf_index,
784 src_reg(grf_offset));
785 pull->mlen = 1;
786 } else {
787 pull = new(mem_ctx) vec4_instruction(VS_OPCODE_PULL_CONSTANT_LOAD,
788 dst,
789 surf_index,
790 offset_reg);
791 pull->base_mrf = FIRST_PULL_LOAD_MRF(devinfo->gen) + 1;
792 pull->mlen = 1;
793 }
794
795 if (before_inst)
796 emit_before(before_block, before_inst, pull);
797 else
798 emit(pull);
799 }
800
801 src_reg
802 vec4_visitor::emit_uniformize(const src_reg &src)
803 {
804 const src_reg chan_index(this, glsl_type::uint_type);
805 const dst_reg dst = retype(dst_reg(this, glsl_type::uint_type),
806 src.type);
807
808 emit(SHADER_OPCODE_FIND_LIVE_CHANNEL, dst_reg(chan_index))
809 ->force_writemask_all = true;
810 emit(SHADER_OPCODE_BROADCAST, dst, src, chan_index)
811 ->force_writemask_all = true;
812
813 return src_reg(dst);
814 }
815
816 src_reg
817 vec4_visitor::emit_mcs_fetch(const glsl_type *coordinate_type,
818 src_reg coordinate, src_reg sampler)
819 {
820 vec4_instruction *inst =
821 new(mem_ctx) vec4_instruction(SHADER_OPCODE_TXF_MCS,
822 dst_reg(this, glsl_type::uvec4_type));
823 inst->base_mrf = 2;
824 inst->src[1] = sampler;
825
826 int param_base;
827
828 if (devinfo->gen >= 9) {
829 /* Gen9+ needs a message header in order to use SIMD4x2 mode */
830 vec4_instruction *header_inst = new(mem_ctx)
831 vec4_instruction(VS_OPCODE_SET_SIMD4X2_HEADER_GEN9,
832 dst_reg(MRF, inst->base_mrf));
833
834 emit(header_inst);
835
836 inst->mlen = 2;
837 inst->header_size = 1;
838 param_base = inst->base_mrf + 1;
839 } else {
840 inst->mlen = 1;
841 param_base = inst->base_mrf;
842 }
843
844 /* parameters are: u, v, r, lod; lod will always be zero due to api restrictions */
845 int coord_mask = (1 << coordinate_type->vector_elements) - 1;
846 int zero_mask = 0xf & ~coord_mask;
847
848 emit(MOV(dst_reg(MRF, param_base, coordinate_type, coord_mask),
849 coordinate));
850
851 emit(MOV(dst_reg(MRF, param_base, coordinate_type, zero_mask),
852 brw_imm_d(0)));
853
854 emit(inst);
855 return src_reg(inst->dst);
856 }
857
858 bool
859 vec4_visitor::is_high_sampler(src_reg sampler)
860 {
861 if (devinfo->gen < 8 && !devinfo->is_haswell)
862 return false;
863
864 return sampler.file != IMM || sampler.ud >= 16;
865 }
866
867 void
868 vec4_visitor::emit_texture(ir_texture_opcode op,
869 dst_reg dest,
870 const glsl_type *dest_type,
871 src_reg coordinate,
872 int coord_components,
873 src_reg shadow_comparitor,
874 src_reg lod, src_reg lod2,
875 src_reg sample_index,
876 uint32_t constant_offset,
877 src_reg offset_value,
878 src_reg mcs,
879 bool is_cube_array,
880 uint32_t sampler,
881 src_reg sampler_reg)
882 {
883 /* The sampler can only meaningfully compute LOD for fragment shader
884 * messages. For all other stages, we change the opcode to TXL and hardcode
885 * the LOD to 0.
886 *
887 * textureQueryLevels() is implemented in terms of TXS so we need to pass a
888 * valid LOD argument.
889 */
890 if (op == ir_tex || op == ir_query_levels) {
891 assert(lod.file == BAD_FILE);
892 lod = brw_imm_f(0.0f);
893 }
894
895 enum opcode opcode;
896 switch (op) {
897 case ir_tex: opcode = SHADER_OPCODE_TXL; break;
898 case ir_txl: opcode = SHADER_OPCODE_TXL; break;
899 case ir_txd: opcode = SHADER_OPCODE_TXD; break;
900 case ir_txf: opcode = SHADER_OPCODE_TXF; break;
901 case ir_txf_ms: opcode = (devinfo->gen >= 9 ? SHADER_OPCODE_TXF_CMS_W :
902 SHADER_OPCODE_TXF_CMS); break;
903 case ir_txs: opcode = SHADER_OPCODE_TXS; break;
904 case ir_tg4: opcode = offset_value.file != BAD_FILE
905 ? SHADER_OPCODE_TG4_OFFSET : SHADER_OPCODE_TG4; break;
906 case ir_query_levels: opcode = SHADER_OPCODE_TXS; break;
907 case ir_texture_samples: opcode = SHADER_OPCODE_SAMPLEINFO; break;
908 case ir_txb:
909 unreachable("TXB is not valid for vertex shaders.");
910 case ir_lod:
911 unreachable("LOD is not valid for vertex shaders.");
912 case ir_samples_identical: {
913 /* There are some challenges implementing this for vec4, and it seems
914 * unlikely to be used anyway. For now, just return false ways.
915 */
916 emit(MOV(dest, brw_imm_ud(0u)));
917 return;
918 }
919 default:
920 unreachable("Unrecognized tex op");
921 }
922
923 vec4_instruction *inst = new(mem_ctx) vec4_instruction(opcode, dest);
924
925 inst->offset = constant_offset;
926
927 /* The message header is necessary for:
928 * - Gen4 (always)
929 * - Gen9+ for selecting SIMD4x2
930 * - Texel offsets
931 * - Gather channel selection
932 * - Sampler indices too large to fit in a 4-bit value.
933 * - Sampleinfo message - takes no parameters, but mlen = 0 is illegal
934 */
935 inst->header_size =
936 (devinfo->gen < 5 || devinfo->gen >= 9 ||
937 inst->offset != 0 || op == ir_tg4 ||
938 op == ir_texture_samples ||
939 is_high_sampler(sampler_reg)) ? 1 : 0;
940 inst->base_mrf = 2;
941 inst->mlen = inst->header_size;
942 inst->dst.writemask = WRITEMASK_XYZW;
943 inst->shadow_compare = shadow_comparitor.file != BAD_FILE;
944
945 inst->src[1] = sampler_reg;
946
947 /* MRF for the first parameter */
948 int param_base = inst->base_mrf + inst->header_size;
949
950 if (op == ir_txs || op == ir_query_levels) {
951 int writemask = devinfo->gen == 4 ? WRITEMASK_W : WRITEMASK_X;
952 emit(MOV(dst_reg(MRF, param_base, lod.type, writemask), lod));
953 inst->mlen++;
954 } else if (op == ir_texture_samples) {
955 inst->dst.writemask = WRITEMASK_X;
956 } else {
957 /* Load the coordinate */
958 /* FINISHME: gl_clamp_mask and saturate */
959 int coord_mask = (1 << coord_components) - 1;
960 int zero_mask = 0xf & ~coord_mask;
961
962 emit(MOV(dst_reg(MRF, param_base, coordinate.type, coord_mask),
963 coordinate));
964 inst->mlen++;
965
966 if (zero_mask != 0) {
967 emit(MOV(dst_reg(MRF, param_base, coordinate.type, zero_mask),
968 brw_imm_d(0)));
969 }
970 /* Load the shadow comparitor */
971 if (shadow_comparitor.file != BAD_FILE && op != ir_txd && (op != ir_tg4 || offset_value.file == BAD_FILE)) {
972 emit(MOV(dst_reg(MRF, param_base + 1, shadow_comparitor.type,
973 WRITEMASK_X),
974 shadow_comparitor));
975 inst->mlen++;
976 }
977
978 /* Load the LOD info */
979 if (op == ir_tex || op == ir_txl) {
980 int mrf, writemask;
981 if (devinfo->gen >= 5) {
982 mrf = param_base + 1;
983 if (shadow_comparitor.file != BAD_FILE) {
984 writemask = WRITEMASK_Y;
985 /* mlen already incremented */
986 } else {
987 writemask = WRITEMASK_X;
988 inst->mlen++;
989 }
990 } else /* devinfo->gen == 4 */ {
991 mrf = param_base;
992 writemask = WRITEMASK_W;
993 }
994 emit(MOV(dst_reg(MRF, mrf, lod.type, writemask), lod));
995 } else if (op == ir_txf) {
996 emit(MOV(dst_reg(MRF, param_base, lod.type, WRITEMASK_W), lod));
997 } else if (op == ir_txf_ms) {
998 emit(MOV(dst_reg(MRF, param_base + 1, sample_index.type, WRITEMASK_X),
999 sample_index));
1000 if (opcode == SHADER_OPCODE_TXF_CMS_W) {
1001 /* MCS data is stored in the first two channels of ‘mcs’, but we
1002 * need to get it into the .y and .z channels of the second vec4
1003 * of params.
1004 */
1005 mcs.swizzle = BRW_SWIZZLE4(0, 0, 1, 1);
1006 emit(MOV(dst_reg(MRF, param_base + 1,
1007 glsl_type::uint_type, WRITEMASK_YZ),
1008 mcs));
1009 } else if (devinfo->gen >= 7) {
1010 /* MCS data is in the first channel of `mcs`, but we need to get it into
1011 * the .y channel of the second vec4 of params, so replicate .x across
1012 * the whole vec4 and then mask off everything except .y
1013 */
1014 mcs.swizzle = BRW_SWIZZLE_XXXX;
1015 emit(MOV(dst_reg(MRF, param_base + 1, glsl_type::uint_type, WRITEMASK_Y),
1016 mcs));
1017 }
1018 inst->mlen++;
1019 } else if (op == ir_txd) {
1020 const brw_reg_type type = lod.type;
1021
1022 if (devinfo->gen >= 5) {
1023 lod.swizzle = BRW_SWIZZLE4(SWIZZLE_X,SWIZZLE_X,SWIZZLE_Y,SWIZZLE_Y);
1024 lod2.swizzle = BRW_SWIZZLE4(SWIZZLE_X,SWIZZLE_X,SWIZZLE_Y,SWIZZLE_Y);
1025 emit(MOV(dst_reg(MRF, param_base + 1, type, WRITEMASK_XZ), lod));
1026 emit(MOV(dst_reg(MRF, param_base + 1, type, WRITEMASK_YW), lod2));
1027 inst->mlen++;
1028
1029 if (dest_type->vector_elements == 3 || shadow_comparitor.file != BAD_FILE) {
1030 lod.swizzle = BRW_SWIZZLE_ZZZZ;
1031 lod2.swizzle = BRW_SWIZZLE_ZZZZ;
1032 emit(MOV(dst_reg(MRF, param_base + 2, type, WRITEMASK_X), lod));
1033 emit(MOV(dst_reg(MRF, param_base + 2, type, WRITEMASK_Y), lod2));
1034 inst->mlen++;
1035
1036 if (shadow_comparitor.file != BAD_FILE) {
1037 emit(MOV(dst_reg(MRF, param_base + 2,
1038 shadow_comparitor.type, WRITEMASK_Z),
1039 shadow_comparitor));
1040 }
1041 }
1042 } else /* devinfo->gen == 4 */ {
1043 emit(MOV(dst_reg(MRF, param_base + 1, type, WRITEMASK_XYZ), lod));
1044 emit(MOV(dst_reg(MRF, param_base + 2, type, WRITEMASK_XYZ), lod2));
1045 inst->mlen += 2;
1046 }
1047 } else if (op == ir_tg4 && offset_value.file != BAD_FILE) {
1048 if (shadow_comparitor.file != BAD_FILE) {
1049 emit(MOV(dst_reg(MRF, param_base, shadow_comparitor.type, WRITEMASK_W),
1050 shadow_comparitor));
1051 }
1052
1053 emit(MOV(dst_reg(MRF, param_base + 1, glsl_type::ivec2_type, WRITEMASK_XY),
1054 offset_value));
1055 inst->mlen++;
1056 }
1057 }
1058
1059 emit(inst);
1060
1061 /* fixup num layers (z) for cube arrays: hardware returns faces * layers;
1062 * spec requires layers.
1063 */
1064 if (op == ir_txs && is_cube_array) {
1065 emit_math(SHADER_OPCODE_INT_QUOTIENT,
1066 writemask(inst->dst, WRITEMASK_Z),
1067 src_reg(inst->dst), brw_imm_d(6));
1068 }
1069
1070 if (devinfo->gen == 6 && op == ir_tg4) {
1071 emit_gen6_gather_wa(key_tex->gen6_gather_wa[sampler], inst->dst);
1072 }
1073
1074 if (op == ir_query_levels) {
1075 /* # levels is in .w */
1076 src_reg swizzled(dest);
1077 swizzled.swizzle = BRW_SWIZZLE4(SWIZZLE_W, SWIZZLE_W,
1078 SWIZZLE_W, SWIZZLE_W);
1079 emit(MOV(dest, swizzled));
1080 }
1081 }
1082
1083 /**
1084 * Apply workarounds for Gen6 gather with UINT/SINT
1085 */
1086 void
1087 vec4_visitor::emit_gen6_gather_wa(uint8_t wa, dst_reg dst)
1088 {
1089 if (!wa)
1090 return;
1091
1092 int width = (wa & WA_8BIT) ? 8 : 16;
1093 dst_reg dst_f = dst;
1094 dst_f.type = BRW_REGISTER_TYPE_F;
1095
1096 /* Convert from UNORM to UINT */
1097 emit(MUL(dst_f, src_reg(dst_f), brw_imm_f((float)((1 << width) - 1))));
1098 emit(MOV(dst, src_reg(dst_f)));
1099
1100 if (wa & WA_SIGN) {
1101 /* Reinterpret the UINT value as a signed INT value by
1102 * shifting the sign bit into place, then shifting back
1103 * preserving sign.
1104 */
1105 emit(SHL(dst, src_reg(dst), brw_imm_d(32 - width)));
1106 emit(ASR(dst, src_reg(dst), brw_imm_d(32 - width)));
1107 }
1108 }
1109
1110 void
1111 vec4_visitor::gs_emit_vertex(int stream_id)
1112 {
1113 unreachable("not reached");
1114 }
1115
1116 void
1117 vec4_visitor::gs_end_primitive()
1118 {
1119 unreachable("not reached");
1120 }
1121
1122 void
1123 vec4_visitor::emit_untyped_atomic(unsigned atomic_op, unsigned surf_index,
1124 dst_reg dst, src_reg surf_offset,
1125 src_reg src0, src_reg src1)
1126 {
1127 unsigned mlen = 1 + (src0.file != BAD_FILE) + (src1.file != BAD_FILE);
1128 src_reg src_payload(this, glsl_type::uint_type, mlen);
1129 dst_reg payload(src_payload);
1130 payload.writemask = WRITEMASK_X;
1131
1132 /* Set the atomic operation offset. */
1133 emit(MOV(offset(payload, 0), surf_offset));
1134 unsigned i = 1;
1135
1136 /* Set the atomic operation arguments. */
1137 if (src0.file != BAD_FILE) {
1138 emit(MOV(offset(payload, i), src0));
1139 i++;
1140 }
1141
1142 if (src1.file != BAD_FILE) {
1143 emit(MOV(offset(payload, i), src1));
1144 i++;
1145 }
1146
1147 /* Emit the instruction. Note that this maps to the normal SIMD8
1148 * untyped atomic message on Ivy Bridge, but that's OK because
1149 * unused channels will be masked out.
1150 */
1151 vec4_instruction *inst = emit(SHADER_OPCODE_UNTYPED_ATOMIC, dst,
1152 src_payload,
1153 brw_imm_ud(surf_index), brw_imm_ud(atomic_op));
1154 inst->mlen = mlen;
1155 }
1156
1157 void
1158 vec4_visitor::emit_untyped_surface_read(unsigned surf_index, dst_reg dst,
1159 src_reg surf_offset)
1160 {
1161 dst_reg offset(this, glsl_type::uint_type);
1162 offset.writemask = WRITEMASK_X;
1163
1164 /* Set the surface read offset. */
1165 emit(MOV(offset, surf_offset));
1166
1167 /* Emit the instruction. Note that this maps to the normal SIMD8
1168 * untyped surface read message, but that's OK because unused
1169 * channels will be masked out.
1170 */
1171 vec4_instruction *inst = emit(SHADER_OPCODE_UNTYPED_SURFACE_READ, dst,
1172 src_reg(offset),
1173 brw_imm_ud(surf_index), brw_imm_d(1));
1174 inst->mlen = 1;
1175 }
1176
1177 void
1178 vec4_visitor::emit_ndc_computation()
1179 {
1180 if (output_reg[VARYING_SLOT_POS].file == BAD_FILE)
1181 return;
1182
1183 /* Get the position */
1184 src_reg pos = src_reg(output_reg[VARYING_SLOT_POS]);
1185
1186 /* Build ndc coords, which are (x/w, y/w, z/w, 1/w) */
1187 dst_reg ndc = dst_reg(this, glsl_type::vec4_type);
1188 output_reg[BRW_VARYING_SLOT_NDC] = ndc;
1189
1190 current_annotation = "NDC";
1191 dst_reg ndc_w = ndc;
1192 ndc_w.writemask = WRITEMASK_W;
1193 src_reg pos_w = pos;
1194 pos_w.swizzle = BRW_SWIZZLE4(SWIZZLE_W, SWIZZLE_W, SWIZZLE_W, SWIZZLE_W);
1195 emit_math(SHADER_OPCODE_RCP, ndc_w, pos_w);
1196
1197 dst_reg ndc_xyz = ndc;
1198 ndc_xyz.writemask = WRITEMASK_XYZ;
1199
1200 emit(MUL(ndc_xyz, pos, src_reg(ndc_w)));
1201 }
1202
1203 void
1204 vec4_visitor::emit_psiz_and_flags(dst_reg reg)
1205 {
1206 if (devinfo->gen < 6 &&
1207 ((prog_data->vue_map.slots_valid & VARYING_BIT_PSIZ) ||
1208 output_reg[VARYING_SLOT_CLIP_DIST0].file != BAD_FILE ||
1209 devinfo->has_negative_rhw_bug)) {
1210 dst_reg header1 = dst_reg(this, glsl_type::uvec4_type);
1211 dst_reg header1_w = header1;
1212 header1_w.writemask = WRITEMASK_W;
1213
1214 emit(MOV(header1, brw_imm_ud(0u)));
1215
1216 if (prog_data->vue_map.slots_valid & VARYING_BIT_PSIZ) {
1217 src_reg psiz = src_reg(output_reg[VARYING_SLOT_PSIZ]);
1218
1219 current_annotation = "Point size";
1220 emit(MUL(header1_w, psiz, brw_imm_f((float)(1 << 11))));
1221 emit(AND(header1_w, src_reg(header1_w), brw_imm_d(0x7ff << 8)));
1222 }
1223
1224 if (output_reg[VARYING_SLOT_CLIP_DIST0].file != BAD_FILE) {
1225 current_annotation = "Clipping flags";
1226 dst_reg flags0 = dst_reg(this, glsl_type::uint_type);
1227 dst_reg flags1 = dst_reg(this, glsl_type::uint_type);
1228
1229 emit(CMP(dst_null_f(), src_reg(output_reg[VARYING_SLOT_CLIP_DIST0]), brw_imm_f(0.0f), BRW_CONDITIONAL_L));
1230 emit(VS_OPCODE_UNPACK_FLAGS_SIMD4X2, flags0, brw_imm_d(0));
1231 emit(OR(header1_w, src_reg(header1_w), src_reg(flags0)));
1232
1233 emit(CMP(dst_null_f(), src_reg(output_reg[VARYING_SLOT_CLIP_DIST1]), brw_imm_f(0.0f), BRW_CONDITIONAL_L));
1234 emit(VS_OPCODE_UNPACK_FLAGS_SIMD4X2, flags1, brw_imm_d(0));
1235 emit(SHL(flags1, src_reg(flags1), brw_imm_d(4)));
1236 emit(OR(header1_w, src_reg(header1_w), src_reg(flags1)));
1237 }
1238
1239 /* i965 clipping workaround:
1240 * 1) Test for -ve rhw
1241 * 2) If set,
1242 * set ndc = (0,0,0,0)
1243 * set ucp[6] = 1
1244 *
1245 * Later, clipping will detect ucp[6] and ensure the primitive is
1246 * clipped against all fixed planes.
1247 */
1248 if (devinfo->has_negative_rhw_bug &&
1249 output_reg[BRW_VARYING_SLOT_NDC].file != BAD_FILE) {
1250 src_reg ndc_w = src_reg(output_reg[BRW_VARYING_SLOT_NDC]);
1251 ndc_w.swizzle = BRW_SWIZZLE_WWWW;
1252 emit(CMP(dst_null_f(), ndc_w, brw_imm_f(0.0f), BRW_CONDITIONAL_L));
1253 vec4_instruction *inst;
1254 inst = emit(OR(header1_w, src_reg(header1_w), brw_imm_ud(1u << 6)));
1255 inst->predicate = BRW_PREDICATE_NORMAL;
1256 output_reg[BRW_VARYING_SLOT_NDC].type = BRW_REGISTER_TYPE_F;
1257 inst = emit(MOV(output_reg[BRW_VARYING_SLOT_NDC], brw_imm_f(0.0f)));
1258 inst->predicate = BRW_PREDICATE_NORMAL;
1259 }
1260
1261 emit(MOV(retype(reg, BRW_REGISTER_TYPE_UD), src_reg(header1)));
1262 } else if (devinfo->gen < 6) {
1263 emit(MOV(retype(reg, BRW_REGISTER_TYPE_UD), brw_imm_ud(0u)));
1264 } else {
1265 emit(MOV(retype(reg, BRW_REGISTER_TYPE_D), brw_imm_d(0)));
1266 if (prog_data->vue_map.slots_valid & VARYING_BIT_PSIZ) {
1267 dst_reg reg_w = reg;
1268 reg_w.writemask = WRITEMASK_W;
1269 src_reg reg_as_src = src_reg(output_reg[VARYING_SLOT_PSIZ]);
1270 reg_as_src.type = reg_w.type;
1271 reg_as_src.swizzle = brw_swizzle_for_size(1);
1272 emit(MOV(reg_w, reg_as_src));
1273 }
1274 if (prog_data->vue_map.slots_valid & VARYING_BIT_LAYER) {
1275 dst_reg reg_y = reg;
1276 reg_y.writemask = WRITEMASK_Y;
1277 reg_y.type = BRW_REGISTER_TYPE_D;
1278 output_reg[VARYING_SLOT_LAYER].type = reg_y.type;
1279 emit(MOV(reg_y, src_reg(output_reg[VARYING_SLOT_LAYER])));
1280 }
1281 if (prog_data->vue_map.slots_valid & VARYING_BIT_VIEWPORT) {
1282 dst_reg reg_z = reg;
1283 reg_z.writemask = WRITEMASK_Z;
1284 reg_z.type = BRW_REGISTER_TYPE_D;
1285 output_reg[VARYING_SLOT_VIEWPORT].type = reg_z.type;
1286 emit(MOV(reg_z, src_reg(output_reg[VARYING_SLOT_VIEWPORT])));
1287 }
1288 }
1289 }
1290
1291 vec4_instruction *
1292 vec4_visitor::emit_generic_urb_slot(dst_reg reg, int varying)
1293 {
1294 assert(varying < VARYING_SLOT_MAX);
1295 assert(output_reg[varying].type == reg.type);
1296 current_annotation = output_reg_annotation[varying];
1297 if (output_reg[varying].file != BAD_FILE)
1298 return emit(MOV(reg, src_reg(output_reg[varying])));
1299 else
1300 return NULL;
1301 }
1302
1303 void
1304 vec4_visitor::emit_urb_slot(dst_reg reg, int varying)
1305 {
1306 reg.type = BRW_REGISTER_TYPE_F;
1307 output_reg[varying].type = reg.type;
1308
1309 switch (varying) {
1310 case VARYING_SLOT_PSIZ:
1311 {
1312 /* PSIZ is always in slot 0, and is coupled with other flags. */
1313 current_annotation = "indices, point width, clip flags";
1314 emit_psiz_and_flags(reg);
1315 break;
1316 }
1317 case BRW_VARYING_SLOT_NDC:
1318 current_annotation = "NDC";
1319 if (output_reg[BRW_VARYING_SLOT_NDC].file != BAD_FILE)
1320 emit(MOV(reg, src_reg(output_reg[BRW_VARYING_SLOT_NDC])));
1321 break;
1322 case VARYING_SLOT_POS:
1323 current_annotation = "gl_Position";
1324 if (output_reg[VARYING_SLOT_POS].file != BAD_FILE)
1325 emit(MOV(reg, src_reg(output_reg[VARYING_SLOT_POS])));
1326 break;
1327 case VARYING_SLOT_EDGE:
1328 /* This is present when doing unfilled polygons. We're supposed to copy
1329 * the edge flag from the user-provided vertex array
1330 * (glEdgeFlagPointer), or otherwise we'll copy from the current value
1331 * of that attribute (starts as 1.0f). This is then used in clipping to
1332 * determine which edges should be drawn as wireframe.
1333 */
1334 current_annotation = "edge flag";
1335 emit(MOV(reg, src_reg(dst_reg(ATTR, VERT_ATTRIB_EDGEFLAG,
1336 glsl_type::float_type, WRITEMASK_XYZW))));
1337 break;
1338 case BRW_VARYING_SLOT_PAD:
1339 /* No need to write to this slot */
1340 break;
1341 default:
1342 emit_generic_urb_slot(reg, varying);
1343 break;
1344 }
1345 }
1346
1347 static int
1348 align_interleaved_urb_mlen(const struct brw_device_info *devinfo, int mlen)
1349 {
1350 if (devinfo->gen >= 6) {
1351 /* URB data written (does not include the message header reg) must
1352 * be a multiple of 256 bits, or 2 VS registers. See vol5c.5,
1353 * section 5.4.3.2.2: URB_INTERLEAVED.
1354 *
1355 * URB entries are allocated on a multiple of 1024 bits, so an
1356 * extra 128 bits written here to make the end align to 256 is
1357 * no problem.
1358 */
1359 if ((mlen % 2) != 1)
1360 mlen++;
1361 }
1362
1363 return mlen;
1364 }
1365
1366
1367 /**
1368 * Generates the VUE payload plus the necessary URB write instructions to
1369 * output it.
1370 *
1371 * The VUE layout is documented in Volume 2a.
1372 */
1373 void
1374 vec4_visitor::emit_vertex()
1375 {
1376 /* MRF 0 is reserved for the debugger, so start with message header
1377 * in MRF 1.
1378 */
1379 int base_mrf = 1;
1380 int mrf = base_mrf;
1381 /* In the process of generating our URB write message contents, we
1382 * may need to unspill a register or load from an array. Those
1383 * reads would use MRFs 14-15.
1384 */
1385 int max_usable_mrf = FIRST_SPILL_MRF(devinfo->gen);
1386
1387 /* The following assertion verifies that max_usable_mrf causes an
1388 * even-numbered amount of URB write data, which will meet gen6's
1389 * requirements for length alignment.
1390 */
1391 assert ((max_usable_mrf - base_mrf) % 2 == 0);
1392
1393 /* First mrf is the g0-based message header containing URB handles and
1394 * such.
1395 */
1396 emit_urb_write_header(mrf++);
1397
1398 if (devinfo->gen < 6) {
1399 emit_ndc_computation();
1400 }
1401
1402 /* We may need to split this up into several URB writes, so do them in a
1403 * loop.
1404 */
1405 int slot = 0;
1406 bool complete = false;
1407 do {
1408 /* URB offset is in URB row increments, and each of our MRFs is half of
1409 * one of those, since we're doing interleaved writes.
1410 */
1411 int offset = slot / 2;
1412
1413 mrf = base_mrf + 1;
1414 for (; slot < prog_data->vue_map.num_slots; ++slot) {
1415 emit_urb_slot(dst_reg(MRF, mrf++),
1416 prog_data->vue_map.slot_to_varying[slot]);
1417
1418 /* If this was max_usable_mrf, we can't fit anything more into this
1419 * URB WRITE. Same thing if we reached the maximum length available.
1420 */
1421 if (mrf > max_usable_mrf ||
1422 align_interleaved_urb_mlen(devinfo, mrf - base_mrf + 1) > BRW_MAX_MSG_LENGTH) {
1423 slot++;
1424 break;
1425 }
1426 }
1427
1428 complete = slot >= prog_data->vue_map.num_slots;
1429 current_annotation = "URB write";
1430 vec4_instruction *inst = emit_urb_write_opcode(complete);
1431 inst->base_mrf = base_mrf;
1432 inst->mlen = align_interleaved_urb_mlen(devinfo, mrf - base_mrf);
1433 inst->offset += offset;
1434 } while(!complete);
1435 }
1436
1437
1438 src_reg
1439 vec4_visitor::get_scratch_offset(bblock_t *block, vec4_instruction *inst,
1440 src_reg *reladdr, int reg_offset)
1441 {
1442 /* Because we store the values to scratch interleaved like our
1443 * vertex data, we need to scale the vec4 index by 2.
1444 */
1445 int message_header_scale = 2;
1446
1447 /* Pre-gen6, the message header uses byte offsets instead of vec4
1448 * (16-byte) offset units.
1449 */
1450 if (devinfo->gen < 6)
1451 message_header_scale *= 16;
1452
1453 if (reladdr) {
1454 src_reg index = src_reg(this, glsl_type::int_type);
1455
1456 emit_before(block, inst, ADD(dst_reg(index), *reladdr,
1457 brw_imm_d(reg_offset)));
1458 emit_before(block, inst, MUL(dst_reg(index), index,
1459 brw_imm_d(message_header_scale)));
1460
1461 return index;
1462 } else {
1463 return brw_imm_d(reg_offset * message_header_scale);
1464 }
1465 }
1466
1467 src_reg
1468 vec4_visitor::get_pull_constant_offset(bblock_t * block, vec4_instruction *inst,
1469 src_reg *reladdr, int reg_offset)
1470 {
1471 if (reladdr) {
1472 src_reg index = src_reg(this, glsl_type::int_type);
1473
1474 emit_before(block, inst, ADD(dst_reg(index), *reladdr,
1475 brw_imm_d(reg_offset)));
1476
1477 /* Pre-gen6, the message header uses byte offsets instead of vec4
1478 * (16-byte) offset units.
1479 */
1480 if (devinfo->gen < 6) {
1481 emit_before(block, inst, MUL(dst_reg(index), index, brw_imm_d(16)));
1482 }
1483
1484 return index;
1485 } else if (devinfo->gen >= 8) {
1486 /* Store the offset in a GRF so we can send-from-GRF. */
1487 src_reg offset = src_reg(this, glsl_type::int_type);
1488 emit_before(block, inst, MOV(dst_reg(offset), brw_imm_d(reg_offset)));
1489 return offset;
1490 } else {
1491 int message_header_scale = devinfo->gen < 6 ? 16 : 1;
1492 return brw_imm_d(reg_offset * message_header_scale);
1493 }
1494 }
1495
1496 /**
1497 * Emits an instruction before @inst to load the value named by @orig_src
1498 * from scratch space at @base_offset to @temp.
1499 *
1500 * @base_offset is measured in 32-byte units (the size of a register).
1501 */
1502 void
1503 vec4_visitor::emit_scratch_read(bblock_t *block, vec4_instruction *inst,
1504 dst_reg temp, src_reg orig_src,
1505 int base_offset)
1506 {
1507 int reg_offset = base_offset + orig_src.reg_offset;
1508 src_reg index = get_scratch_offset(block, inst, orig_src.reladdr,
1509 reg_offset);
1510
1511 emit_before(block, inst, SCRATCH_READ(temp, index));
1512 }
1513
1514 /**
1515 * Emits an instruction after @inst to store the value to be written
1516 * to @orig_dst to scratch space at @base_offset, from @temp.
1517 *
1518 * @base_offset is measured in 32-byte units (the size of a register).
1519 */
1520 void
1521 vec4_visitor::emit_scratch_write(bblock_t *block, vec4_instruction *inst,
1522 int base_offset)
1523 {
1524 int reg_offset = base_offset + inst->dst.reg_offset;
1525 src_reg index = get_scratch_offset(block, inst, inst->dst.reladdr,
1526 reg_offset);
1527
1528 /* Create a temporary register to store *inst's result in.
1529 *
1530 * We have to be careful in MOVing from our temporary result register in
1531 * the scratch write. If we swizzle from channels of the temporary that
1532 * weren't initialized, it will confuse live interval analysis, which will
1533 * make spilling fail to make progress.
1534 */
1535 const src_reg temp = swizzle(retype(src_reg(this, glsl_type::vec4_type),
1536 inst->dst.type),
1537 brw_swizzle_for_mask(inst->dst.writemask));
1538 dst_reg dst = dst_reg(brw_writemask(brw_vec8_grf(0, 0),
1539 inst->dst.writemask));
1540 vec4_instruction *write = SCRATCH_WRITE(dst, temp, index);
1541 if (inst->opcode != BRW_OPCODE_SEL)
1542 write->predicate = inst->predicate;
1543 write->ir = inst->ir;
1544 write->annotation = inst->annotation;
1545 inst->insert_after(block, write);
1546
1547 inst->dst.file = temp.file;
1548 inst->dst.nr = temp.nr;
1549 inst->dst.reg_offset = temp.reg_offset;
1550 inst->dst.reladdr = NULL;
1551 }
1552
1553 /**
1554 * Checks if \p src and/or \p src.reladdr require a scratch read, and if so,
1555 * adds the scratch read(s) before \p inst. The function also checks for
1556 * recursive reladdr scratch accesses, issuing the corresponding scratch
1557 * loads and rewriting reladdr references accordingly.
1558 *
1559 * \return \p src if it did not require a scratch load, otherwise, the
1560 * register holding the result of the scratch load that the caller should
1561 * use to rewrite src.
1562 */
1563 src_reg
1564 vec4_visitor::emit_resolve_reladdr(int scratch_loc[], bblock_t *block,
1565 vec4_instruction *inst, src_reg src)
1566 {
1567 /* Resolve recursive reladdr scratch access by calling ourselves
1568 * with src.reladdr
1569 */
1570 if (src.reladdr)
1571 *src.reladdr = emit_resolve_reladdr(scratch_loc, block, inst,
1572 *src.reladdr);
1573
1574 /* Now handle scratch access on src */
1575 if (src.file == VGRF && scratch_loc[src.nr] != -1) {
1576 dst_reg temp = dst_reg(this, glsl_type::vec4_type);
1577 emit_scratch_read(block, inst, temp, src, scratch_loc[src.nr]);
1578 src.nr = temp.nr;
1579 src.reg_offset = temp.reg_offset;
1580 src.reladdr = NULL;
1581 }
1582
1583 return src;
1584 }
1585
1586 /**
1587 * We can't generally support array access in GRF space, because a
1588 * single instruction's destination can only span 2 contiguous
1589 * registers. So, we send all GRF arrays that get variable index
1590 * access to scratch space.
1591 */
1592 void
1593 vec4_visitor::move_grf_array_access_to_scratch()
1594 {
1595 int scratch_loc[this->alloc.count];
1596 memset(scratch_loc, -1, sizeof(scratch_loc));
1597
1598 /* First, calculate the set of virtual GRFs that need to be punted
1599 * to scratch due to having any array access on them, and where in
1600 * scratch.
1601 */
1602 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
1603 if (inst->dst.file == VGRF && inst->dst.reladdr) {
1604 if (scratch_loc[inst->dst.nr] == -1) {
1605 scratch_loc[inst->dst.nr] = last_scratch;
1606 last_scratch += this->alloc.sizes[inst->dst.nr];
1607 }
1608
1609 for (src_reg *iter = inst->dst.reladdr;
1610 iter->reladdr;
1611 iter = iter->reladdr) {
1612 if (iter->file == VGRF && scratch_loc[iter->nr] == -1) {
1613 scratch_loc[iter->nr] = last_scratch;
1614 last_scratch += this->alloc.sizes[iter->nr];
1615 }
1616 }
1617 }
1618
1619 for (int i = 0 ; i < 3; i++) {
1620 for (src_reg *iter = &inst->src[i];
1621 iter->reladdr;
1622 iter = iter->reladdr) {
1623 if (iter->file == VGRF && scratch_loc[iter->nr] == -1) {
1624 scratch_loc[iter->nr] = last_scratch;
1625 last_scratch += this->alloc.sizes[iter->nr];
1626 }
1627 }
1628 }
1629 }
1630
1631 /* Now, for anything that will be accessed through scratch, rewrite
1632 * it to load/store. Note that this is a _safe list walk, because
1633 * we may generate a new scratch_write instruction after the one
1634 * we're processing.
1635 */
1636 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
1637 /* Set up the annotation tracking for new generated instructions. */
1638 base_ir = inst->ir;
1639 current_annotation = inst->annotation;
1640
1641 /* First handle scratch access on the dst. Notice we have to handle
1642 * the case where the dst's reladdr also points to scratch space.
1643 */
1644 if (inst->dst.reladdr)
1645 *inst->dst.reladdr = emit_resolve_reladdr(scratch_loc, block, inst,
1646 *inst->dst.reladdr);
1647
1648 /* Now that we have handled any (possibly recursive) reladdr scratch
1649 * accesses for dst we can safely do the scratch write for dst itself
1650 */
1651 if (inst->dst.file == VGRF && scratch_loc[inst->dst.nr] != -1)
1652 emit_scratch_write(block, inst, scratch_loc[inst->dst.nr]);
1653
1654 /* Now handle scratch access on any src. In this case, since inst->src[i]
1655 * already is a src_reg, we can just call emit_resolve_reladdr with
1656 * inst->src[i] and it will take care of handling scratch loads for
1657 * both src and src.reladdr (recursively).
1658 */
1659 for (int i = 0 ; i < 3; i++) {
1660 inst->src[i] = emit_resolve_reladdr(scratch_loc, block, inst,
1661 inst->src[i]);
1662 }
1663 }
1664 }
1665
1666 /**
1667 * Emits an instruction before @inst to load the value named by @orig_src
1668 * from the pull constant buffer (surface) at @base_offset to @temp.
1669 */
1670 void
1671 vec4_visitor::emit_pull_constant_load(bblock_t *block, vec4_instruction *inst,
1672 dst_reg temp, src_reg orig_src,
1673 int base_offset)
1674 {
1675 int reg_offset = base_offset + orig_src.reg_offset;
1676 const unsigned index = prog_data->base.binding_table.pull_constants_start;
1677 src_reg offset = get_pull_constant_offset(block, inst, orig_src.reladdr,
1678 reg_offset);
1679
1680 emit_pull_constant_load_reg(temp,
1681 brw_imm_ud(index),
1682 offset,
1683 block, inst);
1684
1685 brw_mark_surface_used(&prog_data->base, index);
1686 }
1687
1688 /**
1689 * Implements array access of uniforms by inserting a
1690 * PULL_CONSTANT_LOAD instruction.
1691 *
1692 * Unlike temporary GRF array access (where we don't support it due to
1693 * the difficulty of doing relative addressing on instruction
1694 * destinations), we could potentially do array access of uniforms
1695 * that were loaded in GRF space as push constants. In real-world
1696 * usage we've seen, though, the arrays being used are always larger
1697 * than we could load as push constants, so just always move all
1698 * uniform array access out to a pull constant buffer.
1699 */
1700 void
1701 vec4_visitor::move_uniform_array_access_to_pull_constants()
1702 {
1703 int pull_constant_loc[this->uniforms];
1704 memset(pull_constant_loc, -1, sizeof(pull_constant_loc));
1705 bool nested_reladdr;
1706
1707 /* Walk through and find array access of uniforms. Put a copy of that
1708 * uniform in the pull constant buffer.
1709 *
1710 * Note that we don't move constant-indexed accesses to arrays. No
1711 * testing has been done of the performance impact of this choice.
1712 */
1713 do {
1714 nested_reladdr = false;
1715
1716 foreach_block_and_inst_safe(block, vec4_instruction, inst, cfg) {
1717 for (int i = 0 ; i < 3; i++) {
1718 if (inst->src[i].file != UNIFORM || !inst->src[i].reladdr)
1719 continue;
1720
1721 int uniform = inst->src[i].nr;
1722
1723 if (inst->src[i].reladdr->reladdr)
1724 nested_reladdr = true; /* will need another pass */
1725
1726 /* If this array isn't already present in the pull constant buffer,
1727 * add it.
1728 */
1729 if (pull_constant_loc[uniform] == -1) {
1730 const gl_constant_value **values =
1731 &stage_prog_data->param[uniform * 4];
1732
1733 pull_constant_loc[uniform] = stage_prog_data->nr_pull_params / 4;
1734
1735 assert(uniform < uniform_array_size);
1736 for (int j = 0; j < uniform_size[uniform] * 4; j++) {
1737 stage_prog_data->pull_param[stage_prog_data->nr_pull_params++]
1738 = values[j];
1739 }
1740 }
1741
1742 /* Set up the annotation tracking for new generated instructions. */
1743 base_ir = inst->ir;
1744 current_annotation = inst->annotation;
1745
1746 dst_reg temp = dst_reg(this, glsl_type::vec4_type);
1747
1748 emit_pull_constant_load(block, inst, temp, inst->src[i],
1749 pull_constant_loc[uniform]);
1750
1751 inst->src[i].file = temp.file;
1752 inst->src[i].nr = temp.nr;
1753 inst->src[i].reg_offset = temp.reg_offset;
1754 inst->src[i].reladdr = NULL;
1755 }
1756 }
1757 } while (nested_reladdr);
1758
1759 /* Now there are no accesses of the UNIFORM file with a reladdr, so
1760 * no need to track them as larger-than-vec4 objects. This will be
1761 * relied on in cutting out unused uniform vectors from push
1762 * constants.
1763 */
1764 split_uniform_registers();
1765 }
1766
1767 void
1768 vec4_visitor::resolve_ud_negate(src_reg *reg)
1769 {
1770 if (reg->type != BRW_REGISTER_TYPE_UD ||
1771 !reg->negate)
1772 return;
1773
1774 src_reg temp = src_reg(this, glsl_type::uvec4_type);
1775 emit(BRW_OPCODE_MOV, dst_reg(temp), *reg);
1776 *reg = temp;
1777 }
1778
1779 vec4_visitor::vec4_visitor(const struct brw_compiler *compiler,
1780 void *log_data,
1781 const struct brw_sampler_prog_key_data *key_tex,
1782 struct brw_vue_prog_data *prog_data,
1783 const nir_shader *shader,
1784 void *mem_ctx,
1785 bool no_spills,
1786 int shader_time_index)
1787 : backend_shader(compiler, log_data, mem_ctx, shader, &prog_data->base),
1788 key_tex(key_tex),
1789 prog_data(prog_data),
1790 fail_msg(NULL),
1791 first_non_payload_grf(0),
1792 need_all_constants_in_pull_buffer(false),
1793 no_spills(no_spills),
1794 shader_time_index(shader_time_index),
1795 last_scratch(0)
1796 {
1797 this->failed = false;
1798
1799 this->base_ir = NULL;
1800 this->current_annotation = NULL;
1801 memset(this->output_reg_annotation, 0, sizeof(this->output_reg_annotation));
1802
1803 this->virtual_grf_start = NULL;
1804 this->virtual_grf_end = NULL;
1805 this->live_intervals = NULL;
1806
1807 this->max_grf = devinfo->gen >= 7 ? GEN7_MRF_HACK_START : BRW_MAX_GRF;
1808
1809 this->uniforms = 0;
1810
1811 /* Initialize uniform_array_size to at least 1 because pre-gen6 VS requires
1812 * at least one. See setup_uniforms() in brw_vec4.cpp.
1813 */
1814 this->uniform_array_size = 1;
1815 if (prog_data) {
1816 this->uniform_array_size =
1817 MAX2(DIV_ROUND_UP(stage_prog_data->nr_params, 4), 1);
1818 }
1819
1820 this->uniform_size = rzalloc_array(mem_ctx, int, this->uniform_array_size);
1821 }
1822
1823 vec4_visitor::~vec4_visitor()
1824 {
1825 }
1826
1827
1828 void
1829 vec4_visitor::fail(const char *format, ...)
1830 {
1831 va_list va;
1832 char *msg;
1833
1834 if (failed)
1835 return;
1836
1837 failed = true;
1838
1839 va_start(va, format);
1840 msg = ralloc_vasprintf(mem_ctx, format, va);
1841 va_end(va);
1842 msg = ralloc_asprintf(mem_ctx, "%s compile failed: %s\n", stage_abbrev, msg);
1843
1844 this->fail_msg = msg;
1845
1846 if (debug_enabled) {
1847 fprintf(stderr, "%s", msg);
1848 }
1849 }
1850
1851 } /* namespace brw */