i965: replace __FUNCTION__ with __func__
[mesa.git] / src / mesa / drivers / dri / i965 / intel_blit.c
1 /**************************************************************************
2 *
3 * Copyright 2003 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28
29 #include "main/mtypes.h"
30 #include "main/context.h"
31 #include "main/enums.h"
32 #include "main/colormac.h"
33 #include "main/fbobject.h"
34
35 #include "brw_context.h"
36 #include "brw_defines.h"
37 #include "intel_blit.h"
38 #include "intel_buffers.h"
39 #include "intel_fbo.h"
40 #include "intel_reg.h"
41 #include "intel_batchbuffer.h"
42 #include "intel_mipmap_tree.h"
43
44 #define FILE_DEBUG_FLAG DEBUG_BLIT
45
46 static void
47 intel_miptree_set_alpha_to_one(struct brw_context *brw,
48 struct intel_mipmap_tree *mt,
49 int x, int y, int width, int height);
50
51 static GLuint translate_raster_op(GLenum logicop)
52 {
53 switch(logicop) {
54 case GL_CLEAR: return 0x00;
55 case GL_AND: return 0x88;
56 case GL_AND_REVERSE: return 0x44;
57 case GL_COPY: return 0xCC;
58 case GL_AND_INVERTED: return 0x22;
59 case GL_NOOP: return 0xAA;
60 case GL_XOR: return 0x66;
61 case GL_OR: return 0xEE;
62 case GL_NOR: return 0x11;
63 case GL_EQUIV: return 0x99;
64 case GL_INVERT: return 0x55;
65 case GL_OR_REVERSE: return 0xDD;
66 case GL_COPY_INVERTED: return 0x33;
67 case GL_OR_INVERTED: return 0xBB;
68 case GL_NAND: return 0x77;
69 case GL_SET: return 0xFF;
70 default: return 0;
71 }
72 }
73
74 static uint32_t
75 br13_for_cpp(int cpp)
76 {
77 switch (cpp) {
78 case 4:
79 return BR13_8888;
80 break;
81 case 2:
82 return BR13_565;
83 break;
84 case 1:
85 return BR13_8;
86 break;
87 default:
88 unreachable("not reached");
89 }
90 }
91
92 /**
93 * Emits the packet for switching the blitter from X to Y tiled or back.
94 *
95 * This has to be called in a single BEGIN_BATCH_BLT_TILED() /
96 * ADVANCE_BATCH_TILED(). This is because BCS_SWCTRL is saved and restored as
97 * part of the power context, not a render context, and if the batchbuffer was
98 * to get flushed between setting and blitting, or blitting and restoring, our
99 * tiling state would leak into other unsuspecting applications (like the X
100 * server).
101 */
102 static void
103 set_blitter_tiling(struct brw_context *brw,
104 bool dst_y_tiled, bool src_y_tiled)
105 {
106 assert(brw->gen >= 6);
107
108 /* Idle the blitter before we update how tiling is interpreted. */
109 OUT_BATCH(MI_FLUSH_DW);
110 OUT_BATCH(0);
111 OUT_BATCH(0);
112 OUT_BATCH(0);
113
114 OUT_BATCH(MI_LOAD_REGISTER_IMM | (3 - 2));
115 OUT_BATCH(BCS_SWCTRL);
116 OUT_BATCH((BCS_SWCTRL_DST_Y | BCS_SWCTRL_SRC_Y) << 16 |
117 (dst_y_tiled ? BCS_SWCTRL_DST_Y : 0) |
118 (src_y_tiled ? BCS_SWCTRL_SRC_Y : 0));
119 }
120
121 #define BEGIN_BATCH_BLT_TILED(n, dst_y_tiled, src_y_tiled) do { \
122 BEGIN_BATCH_BLT(n + ((dst_y_tiled || src_y_tiled) ? 14 : 0)); \
123 if (dst_y_tiled || src_y_tiled) \
124 set_blitter_tiling(brw, dst_y_tiled, src_y_tiled); \
125 } while (0)
126
127 #define ADVANCE_BATCH_TILED(dst_y_tiled, src_y_tiled) do { \
128 if (dst_y_tiled || src_y_tiled) \
129 set_blitter_tiling(brw, false, false); \
130 ADVANCE_BATCH(); \
131 } while (0)
132
133 /**
134 * Implements a rectangular block transfer (blit) of pixels between two
135 * miptrees.
136 *
137 * Our blitter can operate on 1, 2, or 4-byte-per-pixel data, with generous,
138 * but limited, pitches and sizes allowed.
139 *
140 * The src/dst coordinates are relative to the given level/slice of the
141 * miptree.
142 *
143 * If @src_flip or @dst_flip is set, then the rectangle within that miptree
144 * will be inverted (including scanline order) when copying. This is common
145 * in GL when copying between window system and user-created
146 * renderbuffers/textures.
147 */
148 bool
149 intel_miptree_blit(struct brw_context *brw,
150 struct intel_mipmap_tree *src_mt,
151 int src_level, int src_slice,
152 uint32_t src_x, uint32_t src_y, bool src_flip,
153 struct intel_mipmap_tree *dst_mt,
154 int dst_level, int dst_slice,
155 uint32_t dst_x, uint32_t dst_y, bool dst_flip,
156 uint32_t width, uint32_t height,
157 GLenum logicop)
158 {
159 /* The blitter doesn't understand multisampling at all. */
160 if (src_mt->num_samples > 0 || dst_mt->num_samples > 0)
161 return false;
162
163 /* No sRGB decode or encode is done by the hardware blitter, which is
164 * consistent with what we want in the callers (glCopyTexSubImage(),
165 * glBlitFramebuffer(), texture validation, etc.).
166 */
167 mesa_format src_format = _mesa_get_srgb_format_linear(src_mt->format);
168 mesa_format dst_format = _mesa_get_srgb_format_linear(dst_mt->format);
169
170 /* The blitter doesn't support doing any format conversions. We do also
171 * support blitting ARGB8888 to XRGB8888 (trivial, the values dropped into
172 * the X channel don't matter), and XRGB8888 to ARGB8888 by setting the A
173 * channel to 1.0 at the end.
174 */
175 if (src_format != dst_format &&
176 ((src_format != MESA_FORMAT_B8G8R8A8_UNORM &&
177 src_format != MESA_FORMAT_B8G8R8X8_UNORM) ||
178 (dst_format != MESA_FORMAT_B8G8R8A8_UNORM &&
179 dst_format != MESA_FORMAT_B8G8R8X8_UNORM))) {
180 perf_debug("%s: Can't use hardware blitter from %s to %s, "
181 "falling back.\n", __func__,
182 _mesa_get_format_name(src_format),
183 _mesa_get_format_name(dst_format));
184 return false;
185 }
186
187 /* According to the Ivy Bridge PRM, Vol1 Part4, section 1.2.1.2 (Graphics
188 * Data Size Limitations):
189 *
190 * The BLT engine is capable of transferring very large quantities of
191 * graphics data. Any graphics data read from and written to the
192 * destination is permitted to represent a number of pixels that
193 * occupies up to 65,536 scan lines and up to 32,768 bytes per scan line
194 * at the destination. The maximum number of pixels that may be
195 * represented per scan line’s worth of graphics data depends on the
196 * color depth.
197 *
198 * Furthermore, intelEmitCopyBlit (which is called below) uses a signed
199 * 16-bit integer to represent buffer pitch, so it can only handle buffer
200 * pitches < 32k.
201 *
202 * As a result of these two limitations, we can only use the blitter to do
203 * this copy when the miptree's pitch is less than 32k.
204 */
205 if (src_mt->pitch >= 32768 ||
206 dst_mt->pitch >= 32768) {
207 perf_debug("Falling back due to >=32k pitch\n");
208 return false;
209 }
210
211 /* The blitter has no idea about HiZ or fast color clears, so we need to
212 * resolve the miptrees before we do anything.
213 */
214 intel_miptree_slice_resolve_depth(brw, src_mt, src_level, src_slice);
215 intel_miptree_slice_resolve_depth(brw, dst_mt, dst_level, dst_slice);
216 intel_miptree_resolve_color(brw, src_mt);
217 intel_miptree_resolve_color(brw, dst_mt);
218
219 if (src_flip)
220 src_y = minify(src_mt->physical_height0, src_level - src_mt->first_level) - src_y - height;
221
222 if (dst_flip)
223 dst_y = minify(dst_mt->physical_height0, dst_level - dst_mt->first_level) - dst_y - height;
224
225 int src_pitch = src_mt->pitch;
226 if (src_flip != dst_flip)
227 src_pitch = -src_pitch;
228
229 uint32_t src_image_x, src_image_y, dst_image_x, dst_image_y;
230 intel_miptree_get_image_offset(src_mt, src_level, src_slice,
231 &src_image_x, &src_image_y);
232 intel_miptree_get_image_offset(dst_mt, dst_level, dst_slice,
233 &dst_image_x, &dst_image_y);
234 src_x += src_image_x;
235 src_y += src_image_y;
236 dst_x += dst_image_x;
237 dst_y += dst_image_y;
238
239 /* The blitter interprets the 16-bit destination x/y as a signed 16-bit
240 * value. The values we're working with are unsigned, so make sure we don't
241 * overflow.
242 */
243 if (src_x >= 32768 || src_y >= 32768 || dst_x >= 32768 || dst_y >= 32768) {
244 perf_debug("Falling back due to >=32k offset [src(%d, %d) dst(%d, %d)]\n",
245 src_x, src_y, dst_x, dst_y);
246 return false;
247 }
248
249 if (!intelEmitCopyBlit(brw,
250 src_mt->cpp,
251 src_pitch,
252 src_mt->bo, src_mt->offset,
253 src_mt->tiling,
254 dst_mt->pitch,
255 dst_mt->bo, dst_mt->offset,
256 dst_mt->tiling,
257 src_x, src_y,
258 dst_x, dst_y,
259 width, height,
260 logicop)) {
261 return false;
262 }
263
264 if (src_mt->format == MESA_FORMAT_B8G8R8X8_UNORM &&
265 dst_mt->format == MESA_FORMAT_B8G8R8A8_UNORM) {
266 intel_miptree_set_alpha_to_one(brw, dst_mt,
267 dst_x, dst_y,
268 width, height);
269 }
270
271 return true;
272 }
273
274 /* Copy BitBlt
275 */
276 bool
277 intelEmitCopyBlit(struct brw_context *brw,
278 GLuint cpp,
279 GLshort src_pitch,
280 drm_intel_bo *src_buffer,
281 GLuint src_offset,
282 uint32_t src_tiling,
283 GLshort dst_pitch,
284 drm_intel_bo *dst_buffer,
285 GLuint dst_offset,
286 uint32_t dst_tiling,
287 GLshort src_x, GLshort src_y,
288 GLshort dst_x, GLshort dst_y,
289 GLshort w, GLshort h,
290 GLenum logic_op)
291 {
292 GLuint CMD, BR13, pass = 0;
293 int dst_y2 = dst_y + h;
294 int dst_x2 = dst_x + w;
295 drm_intel_bo *aper_array[3];
296 bool dst_y_tiled = dst_tiling == I915_TILING_Y;
297 bool src_y_tiled = src_tiling == I915_TILING_Y;
298
299 if (dst_tiling != I915_TILING_NONE) {
300 if (dst_offset & 4095)
301 return false;
302 }
303 if (src_tiling != I915_TILING_NONE) {
304 if (src_offset & 4095)
305 return false;
306 }
307 if ((dst_y_tiled || src_y_tiled) && brw->gen < 6)
308 return false;
309
310 assert(!dst_y_tiled || (dst_pitch % 128) == 0);
311 assert(!src_y_tiled || (src_pitch % 128) == 0);
312
313 /* do space check before going any further */
314 do {
315 aper_array[0] = brw->batch.bo;
316 aper_array[1] = dst_buffer;
317 aper_array[2] = src_buffer;
318
319 if (dri_bufmgr_check_aperture_space(aper_array, 3) != 0) {
320 intel_batchbuffer_flush(brw);
321 pass++;
322 } else
323 break;
324 } while (pass < 2);
325
326 if (pass >= 2)
327 return false;
328
329 unsigned length = brw->gen >= 8 ? 10 : 8;
330
331 intel_batchbuffer_require_space(brw, length * 4, BLT_RING);
332 DBG("%s src:buf(%p)/%d+%d %d,%d dst:buf(%p)/%d+%d %d,%d sz:%dx%d\n",
333 __func__,
334 src_buffer, src_pitch, src_offset, src_x, src_y,
335 dst_buffer, dst_pitch, dst_offset, dst_x, dst_y, w, h);
336
337 /* Blit pitch must be dword-aligned. Otherwise, the hardware appears to drop
338 * the low bits. Offsets must be naturally aligned.
339 */
340 if (src_pitch % 4 != 0 || src_offset % cpp != 0 ||
341 dst_pitch % 4 != 0 || dst_offset % cpp != 0)
342 return false;
343
344 /* For big formats (such as floating point), do the copy using 16 or 32bpp
345 * and multiply the coordinates.
346 */
347 if (cpp > 4) {
348 if (cpp % 4 == 2) {
349 dst_x *= cpp / 2;
350 dst_x2 *= cpp / 2;
351 src_x *= cpp / 2;
352 cpp = 2;
353 } else {
354 assert(cpp % 4 == 0);
355 dst_x *= cpp / 4;
356 dst_x2 *= cpp / 4;
357 src_x *= cpp / 4;
358 cpp = 4;
359 }
360 }
361
362 BR13 = br13_for_cpp(cpp) | translate_raster_op(logic_op) << 16;
363
364 switch (cpp) {
365 case 1:
366 case 2:
367 CMD = XY_SRC_COPY_BLT_CMD;
368 break;
369 case 4:
370 CMD = XY_SRC_COPY_BLT_CMD | XY_BLT_WRITE_ALPHA | XY_BLT_WRITE_RGB;
371 break;
372 default:
373 return false;
374 }
375
376 if (dst_tiling != I915_TILING_NONE) {
377 CMD |= XY_DST_TILED;
378 dst_pitch /= 4;
379 }
380 if (src_tiling != I915_TILING_NONE) {
381 CMD |= XY_SRC_TILED;
382 src_pitch /= 4;
383 }
384
385 if (dst_y2 <= dst_y || dst_x2 <= dst_x) {
386 return true;
387 }
388
389 assert(dst_x < dst_x2);
390 assert(dst_y < dst_y2);
391 assert(src_offset + (src_y + h - 1) * abs(src_pitch) +
392 (w * cpp) <= src_buffer->size);
393 assert(dst_offset + (dst_y + h - 1) * abs(dst_pitch) +
394 (w * cpp) <= dst_buffer->size);
395
396 BEGIN_BATCH_BLT_TILED(length, dst_y_tiled, src_y_tiled);
397 OUT_BATCH(CMD | (length - 2));
398 OUT_BATCH(BR13 | (uint16_t)dst_pitch);
399 OUT_BATCH(SET_FIELD(dst_y, BLT_Y) | SET_FIELD(dst_x, BLT_X));
400 OUT_BATCH(SET_FIELD(dst_y2, BLT_Y) | SET_FIELD(dst_x2, BLT_X));
401 if (brw->gen >= 8) {
402 OUT_RELOC64(dst_buffer,
403 I915_GEM_DOMAIN_RENDER, I915_GEM_DOMAIN_RENDER,
404 dst_offset);
405 } else {
406 OUT_RELOC(dst_buffer,
407 I915_GEM_DOMAIN_RENDER, I915_GEM_DOMAIN_RENDER,
408 dst_offset);
409 }
410 OUT_BATCH(SET_FIELD(src_y, BLT_Y) | SET_FIELD(src_x, BLT_X));
411 OUT_BATCH((uint16_t)src_pitch);
412 if (brw->gen >= 8) {
413 OUT_RELOC64(src_buffer,
414 I915_GEM_DOMAIN_RENDER, 0,
415 src_offset);
416 } else {
417 OUT_RELOC(src_buffer,
418 I915_GEM_DOMAIN_RENDER, 0,
419 src_offset);
420 }
421
422 ADVANCE_BATCH_TILED(dst_y_tiled, src_y_tiled);
423
424 intel_batchbuffer_emit_mi_flush(brw);
425
426 return true;
427 }
428
429 bool
430 intelEmitImmediateColorExpandBlit(struct brw_context *brw,
431 GLuint cpp,
432 GLubyte *src_bits, GLuint src_size,
433 GLuint fg_color,
434 GLshort dst_pitch,
435 drm_intel_bo *dst_buffer,
436 GLuint dst_offset,
437 uint32_t dst_tiling,
438 GLshort x, GLshort y,
439 GLshort w, GLshort h,
440 GLenum logic_op)
441 {
442 int dwords = ALIGN(src_size, 8) / 4;
443 uint32_t opcode, br13, blit_cmd;
444
445 if (dst_tiling != I915_TILING_NONE) {
446 if (dst_offset & 4095)
447 return false;
448 if (dst_tiling == I915_TILING_Y)
449 return false;
450 }
451
452 assert((logic_op >= GL_CLEAR) && (logic_op <= (GL_CLEAR + 0x0f)));
453 assert(dst_pitch > 0);
454
455 if (w < 0 || h < 0)
456 return true;
457
458 DBG("%s dst:buf(%p)/%d+%d %d,%d sz:%dx%d, %d bytes %d dwords\n",
459 __func__,
460 dst_buffer, dst_pitch, dst_offset, x, y, w, h, src_size, dwords);
461
462 unsigned xy_setup_blt_length = brw->gen >= 8 ? 10 : 8;
463 intel_batchbuffer_require_space(brw, (xy_setup_blt_length * 4) +
464 (3 * 4) + dwords * 4, BLT_RING);
465
466 opcode = XY_SETUP_BLT_CMD;
467 if (cpp == 4)
468 opcode |= XY_BLT_WRITE_ALPHA | XY_BLT_WRITE_RGB;
469 if (dst_tiling != I915_TILING_NONE) {
470 opcode |= XY_DST_TILED;
471 dst_pitch /= 4;
472 }
473
474 br13 = dst_pitch | (translate_raster_op(logic_op) << 16) | (1 << 29);
475 br13 |= br13_for_cpp(cpp);
476
477 blit_cmd = XY_TEXT_IMMEDIATE_BLIT_CMD | XY_TEXT_BYTE_PACKED; /* packing? */
478 if (dst_tiling != I915_TILING_NONE)
479 blit_cmd |= XY_DST_TILED;
480
481 BEGIN_BATCH_BLT(xy_setup_blt_length + 3);
482 OUT_BATCH(opcode | (xy_setup_blt_length - 2));
483 OUT_BATCH(br13);
484 OUT_BATCH((0 << 16) | 0); /* clip x1, y1 */
485 OUT_BATCH((100 << 16) | 100); /* clip x2, y2 */
486 if (brw->gen >= 8) {
487 OUT_RELOC64(dst_buffer,
488 I915_GEM_DOMAIN_RENDER, I915_GEM_DOMAIN_RENDER,
489 dst_offset);
490 } else {
491 OUT_RELOC(dst_buffer,
492 I915_GEM_DOMAIN_RENDER, I915_GEM_DOMAIN_RENDER,
493 dst_offset);
494 }
495 OUT_BATCH(0); /* bg */
496 OUT_BATCH(fg_color); /* fg */
497 OUT_BATCH(0); /* pattern base addr */
498 if (brw->gen >= 8)
499 OUT_BATCH(0);
500
501 OUT_BATCH(blit_cmd | ((3 - 2) + dwords));
502 OUT_BATCH(SET_FIELD(y, BLT_Y) | SET_FIELD(x, BLT_X));
503 OUT_BATCH(SET_FIELD(y + h, BLT_Y) | SET_FIELD(x + w, BLT_X));
504 ADVANCE_BATCH();
505
506 intel_batchbuffer_data(brw, src_bits, dwords * 4, BLT_RING);
507
508 intel_batchbuffer_emit_mi_flush(brw);
509
510 return true;
511 }
512
513 /* We don't have a memmove-type blit like some other hardware, so we'll do a
514 * rectangular blit covering a large space, then emit 1-scanline blit at the
515 * end to cover the last if we need.
516 */
517 void
518 intel_emit_linear_blit(struct brw_context *brw,
519 drm_intel_bo *dst_bo,
520 unsigned int dst_offset,
521 drm_intel_bo *src_bo,
522 unsigned int src_offset,
523 unsigned int size)
524 {
525 struct gl_context *ctx = &brw->ctx;
526 GLuint pitch, height;
527 bool ok;
528
529 /* The pitch given to the GPU must be DWORD aligned, and
530 * we want width to match pitch. Max width is (1 << 15 - 1),
531 * rounding that down to the nearest DWORD is 1 << 15 - 4
532 */
533 pitch = ROUND_DOWN_TO(MIN2(size, (1 << 15) - 1), 4);
534 height = (pitch == 0) ? 1 : size / pitch;
535 ok = intelEmitCopyBlit(brw, 1,
536 pitch, src_bo, src_offset, I915_TILING_NONE,
537 pitch, dst_bo, dst_offset, I915_TILING_NONE,
538 0, 0, /* src x/y */
539 0, 0, /* dst x/y */
540 pitch, height, /* w, h */
541 GL_COPY);
542 if (!ok)
543 _mesa_problem(ctx, "Failed to linear blit %dx%d\n", pitch, height);
544
545 src_offset += pitch * height;
546 dst_offset += pitch * height;
547 size -= pitch * height;
548 assert (size < (1 << 15));
549 pitch = ALIGN(size, 4);
550 if (size != 0) {
551 ok = intelEmitCopyBlit(brw, 1,
552 pitch, src_bo, src_offset, I915_TILING_NONE,
553 pitch, dst_bo, dst_offset, I915_TILING_NONE,
554 0, 0, /* src x/y */
555 0, 0, /* dst x/y */
556 size, 1, /* w, h */
557 GL_COPY);
558 if (!ok)
559 _mesa_problem(ctx, "Failed to linear blit %dx%d\n", size, 1);
560 }
561 }
562
563 /**
564 * Used to initialize the alpha value of an ARGB8888 miptree after copying
565 * into it from an XRGB8888 source.
566 *
567 * This is very common with glCopyTexImage2D(). Note that the coordinates are
568 * relative to the start of the miptree, not relative to a slice within the
569 * miptree.
570 */
571 static void
572 intel_miptree_set_alpha_to_one(struct brw_context *brw,
573 struct intel_mipmap_tree *mt,
574 int x, int y, int width, int height)
575 {
576 uint32_t BR13, CMD;
577 int pitch, cpp;
578 drm_intel_bo *aper_array[2];
579
580 pitch = mt->pitch;
581 cpp = mt->cpp;
582
583 DBG("%s dst:buf(%p)/%d %d,%d sz:%dx%d\n",
584 __func__, mt->bo, pitch, x, y, width, height);
585
586 BR13 = br13_for_cpp(cpp) | 0xf0 << 16;
587 CMD = XY_COLOR_BLT_CMD;
588 CMD |= XY_BLT_WRITE_ALPHA;
589
590 if (mt->tiling != I915_TILING_NONE) {
591 CMD |= XY_DST_TILED;
592 pitch /= 4;
593 }
594 BR13 |= pitch;
595
596 /* do space check before going any further */
597 aper_array[0] = brw->batch.bo;
598 aper_array[1] = mt->bo;
599
600 if (drm_intel_bufmgr_check_aperture_space(aper_array,
601 ARRAY_SIZE(aper_array)) != 0) {
602 intel_batchbuffer_flush(brw);
603 }
604
605 unsigned length = brw->gen >= 8 ? 7 : 6;
606 bool dst_y_tiled = mt->tiling == I915_TILING_Y;
607
608 BEGIN_BATCH_BLT_TILED(length, dst_y_tiled, false);
609 OUT_BATCH(CMD | (length - 2));
610 OUT_BATCH(BR13);
611 OUT_BATCH(SET_FIELD(y, BLT_Y) | SET_FIELD(x, BLT_X));
612 OUT_BATCH(SET_FIELD(y + height, BLT_Y) | SET_FIELD(x + width, BLT_X));
613 if (brw->gen >= 8) {
614 OUT_RELOC64(mt->bo,
615 I915_GEM_DOMAIN_RENDER, I915_GEM_DOMAIN_RENDER,
616 0);
617 } else {
618 OUT_RELOC(mt->bo,
619 I915_GEM_DOMAIN_RENDER, I915_GEM_DOMAIN_RENDER,
620 0);
621 }
622 OUT_BATCH(0xffffffff); /* white, but only alpha gets written */
623 ADVANCE_BATCH_TILED(dst_y_tiled, false);
624
625 intel_batchbuffer_emit_mi_flush(brw);
626 }