i965/drm: Rewrite relocation handling.
[mesa.git] / src / mesa / drivers / dri / i965 / intel_blit.c
1 /*
2 * Copyright 2003 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include "main/mtypes.h"
27 #include "main/blit.h"
28 #include "main/context.h"
29 #include "main/enums.h"
30 #include "main/fbobject.h"
31
32 #include "brw_context.h"
33 #include "brw_defines.h"
34 #include "intel_blit.h"
35 #include "intel_buffers.h"
36 #include "intel_fbo.h"
37 #include "intel_batchbuffer.h"
38 #include "intel_mipmap_tree.h"
39
40 #define FILE_DEBUG_FLAG DEBUG_BLIT
41
42 static void
43 intel_miptree_set_alpha_to_one(struct brw_context *brw,
44 struct intel_mipmap_tree *mt,
45 int x, int y, int width, int height);
46
47 static GLuint translate_raster_op(GLenum logicop)
48 {
49 switch(logicop) {
50 case GL_CLEAR: return 0x00;
51 case GL_AND: return 0x88;
52 case GL_AND_REVERSE: return 0x44;
53 case GL_COPY: return 0xCC;
54 case GL_AND_INVERTED: return 0x22;
55 case GL_NOOP: return 0xAA;
56 case GL_XOR: return 0x66;
57 case GL_OR: return 0xEE;
58 case GL_NOR: return 0x11;
59 case GL_EQUIV: return 0x99;
60 case GL_INVERT: return 0x55;
61 case GL_OR_REVERSE: return 0xDD;
62 case GL_COPY_INVERTED: return 0x33;
63 case GL_OR_INVERTED: return 0xBB;
64 case GL_NAND: return 0x77;
65 case GL_SET: return 0xFF;
66 default: return 0;
67 }
68 }
69
70 static uint32_t
71 br13_for_cpp(int cpp)
72 {
73 switch (cpp) {
74 case 16:
75 return BR13_32323232;
76 case 8:
77 return BR13_16161616;
78 case 4:
79 return BR13_8888;
80 case 2:
81 return BR13_565;
82 case 1:
83 return BR13_8;
84 default:
85 unreachable("not reached");
86 }
87 }
88
89 /**
90 * Emits the packet for switching the blitter from X to Y tiled or back.
91 *
92 * This has to be called in a single BEGIN_BATCH_BLT_TILED() /
93 * ADVANCE_BATCH_TILED(). This is because BCS_SWCTRL is saved and restored as
94 * part of the power context, not a render context, and if the batchbuffer was
95 * to get flushed between setting and blitting, or blitting and restoring, our
96 * tiling state would leak into other unsuspecting applications (like the X
97 * server).
98 */
99 static uint32_t *
100 set_blitter_tiling(struct brw_context *brw,
101 bool dst_y_tiled, bool src_y_tiled,
102 uint32_t *__map)
103 {
104 assert(brw->gen >= 6);
105
106 /* Idle the blitter before we update how tiling is interpreted. */
107 OUT_BATCH(MI_FLUSH_DW);
108 OUT_BATCH(0);
109 OUT_BATCH(0);
110 OUT_BATCH(0);
111
112 OUT_BATCH(MI_LOAD_REGISTER_IMM | (3 - 2));
113 OUT_BATCH(BCS_SWCTRL);
114 OUT_BATCH((BCS_SWCTRL_DST_Y | BCS_SWCTRL_SRC_Y) << 16 |
115 (dst_y_tiled ? BCS_SWCTRL_DST_Y : 0) |
116 (src_y_tiled ? BCS_SWCTRL_SRC_Y : 0));
117 return __map;
118 }
119 #define SET_BLITTER_TILING(...) __map = set_blitter_tiling(__VA_ARGS__, __map)
120
121 #define BEGIN_BATCH_BLT_TILED(n, dst_y_tiled, src_y_tiled) \
122 BEGIN_BATCH_BLT(n + ((dst_y_tiled || src_y_tiled) ? 14 : 0)); \
123 if (dst_y_tiled || src_y_tiled) \
124 SET_BLITTER_TILING(brw, dst_y_tiled, src_y_tiled)
125
126 #define ADVANCE_BATCH_TILED(dst_y_tiled, src_y_tiled) \
127 if (dst_y_tiled || src_y_tiled) \
128 SET_BLITTER_TILING(brw, false, false); \
129 ADVANCE_BATCH()
130
131 static int
132 blt_pitch(struct intel_mipmap_tree *mt)
133 {
134 int pitch = mt->pitch;
135 if (mt->tiling)
136 pitch /= 4;
137 return pitch;
138 }
139
140 bool
141 intel_miptree_blit_compatible_formats(mesa_format src, mesa_format dst)
142 {
143 /* The BLT doesn't handle sRGB conversion */
144 assert(src == _mesa_get_srgb_format_linear(src));
145 assert(dst == _mesa_get_srgb_format_linear(dst));
146
147 /* No swizzle or format conversions possible, except... */
148 if (src == dst)
149 return true;
150
151 /* ...we can either discard the alpha channel when going from A->X,
152 * or we can fill the alpha channel with 0xff when going from X->A
153 */
154 if (src == MESA_FORMAT_B8G8R8A8_UNORM || src == MESA_FORMAT_B8G8R8X8_UNORM)
155 return (dst == MESA_FORMAT_B8G8R8A8_UNORM ||
156 dst == MESA_FORMAT_B8G8R8X8_UNORM);
157
158 if (src == MESA_FORMAT_R8G8B8A8_UNORM || src == MESA_FORMAT_R8G8B8X8_UNORM)
159 return (dst == MESA_FORMAT_R8G8B8A8_UNORM ||
160 dst == MESA_FORMAT_R8G8B8X8_UNORM);
161
162 return false;
163 }
164
165 static void
166 get_blit_intratile_offset_el(const struct brw_context *brw,
167 struct intel_mipmap_tree *mt,
168 uint32_t total_x_offset_el,
169 uint32_t total_y_offset_el,
170 uint32_t *base_address_offset,
171 uint32_t *x_offset_el,
172 uint32_t *y_offset_el)
173 {
174 enum isl_tiling tiling = intel_miptree_get_isl_tiling(mt);
175 isl_tiling_get_intratile_offset_el(&brw->isl_dev,
176 tiling, mt->cpp, mt->pitch,
177 total_x_offset_el, total_y_offset_el,
178 base_address_offset,
179 x_offset_el, y_offset_el);
180 if (tiling == ISL_TILING_LINEAR) {
181 /* From the Broadwell PRM docs for XY_SRC_COPY_BLT::SourceBaseAddress:
182 *
183 * "Base address of the destination surface: X=0, Y=0. Lower 32bits
184 * of the 48bit addressing. When Src Tiling is enabled (Bit_15
185 * enabled), this address must be 4KB-aligned. When Tiling is not
186 * enabled, this address should be CL (64byte) aligned."
187 *
188 * The offsets we get from ISL in the tiled case are already aligned.
189 * In the linear case, we need to do some of our own aligning.
190 */
191 assert(mt->pitch % 64 == 0);
192 uint32_t delta = *base_address_offset & 63;
193 assert(delta % mt->cpp == 0);
194 *base_address_offset -= delta;
195 *x_offset_el += delta / mt->cpp;
196 } else {
197 assert(*base_address_offset % 4096 == 0);
198 }
199 }
200
201 static bool
202 emit_miptree_blit(struct brw_context *brw,
203 struct intel_mipmap_tree *src_mt,
204 uint32_t src_x, uint32_t src_y,
205 struct intel_mipmap_tree *dst_mt,
206 uint32_t dst_x, uint32_t dst_y,
207 uint32_t width, uint32_t height,
208 bool reverse, GLenum logicop)
209 {
210 /* According to the Ivy Bridge PRM, Vol1 Part4, section 1.2.1.2 (Graphics
211 * Data Size Limitations):
212 *
213 * The BLT engine is capable of transferring very large quantities of
214 * graphics data. Any graphics data read from and written to the
215 * destination is permitted to represent a number of pixels that
216 * occupies up to 65,536 scan lines and up to 32,768 bytes per scan line
217 * at the destination. The maximum number of pixels that may be
218 * represented per scan line’s worth of graphics data depends on the
219 * color depth.
220 *
221 * The blitter's pitch is a signed 16-bit integer, but measured in bytes
222 * for linear surfaces and DWords for tiled surfaces. So the maximum
223 * pitch is 32k linear and 128k tiled.
224 */
225 if (blt_pitch(src_mt) >= 32768 || blt_pitch(dst_mt) >= 32768) {
226 perf_debug("Falling back due to >= 32k/128k pitch\n");
227 return false;
228 }
229
230 /* We need to split the blit into chunks that each fit within the blitter's
231 * restrictions. We can't use a chunk size of 32768 because we need to
232 * ensure that src_tile_x + chunk_size fits. We choose 16384 because it's
233 * a nice round power of two, big enough that performance won't suffer, and
234 * small enough to guarantee everything fits.
235 */
236 const uint32_t max_chunk_size = 16384;
237
238 for (uint32_t chunk_x = 0; chunk_x < width; chunk_x += max_chunk_size) {
239 for (uint32_t chunk_y = 0; chunk_y < height; chunk_y += max_chunk_size) {
240 const uint32_t chunk_w = MIN2(max_chunk_size, width - chunk_x);
241 const uint32_t chunk_h = MIN2(max_chunk_size, height - chunk_y);
242
243 uint32_t src_offset, src_tile_x, src_tile_y;
244 get_blit_intratile_offset_el(brw, src_mt,
245 src_x + chunk_x, src_y + chunk_y,
246 &src_offset, &src_tile_x, &src_tile_y);
247
248 uint32_t dst_offset, dst_tile_x, dst_tile_y;
249 get_blit_intratile_offset_el(brw, dst_mt,
250 dst_x + chunk_x, dst_y + chunk_y,
251 &dst_offset, &dst_tile_x, &dst_tile_y);
252
253 if (!intelEmitCopyBlit(brw,
254 src_mt->cpp,
255 reverse ? -src_mt->pitch : src_mt->pitch,
256 src_mt->bo, src_mt->offset + src_offset,
257 src_mt->tiling,
258 dst_mt->pitch,
259 dst_mt->bo, dst_mt->offset + dst_offset,
260 dst_mt->tiling,
261 src_tile_x, src_tile_y,
262 dst_tile_x, dst_tile_y,
263 chunk_w, chunk_h,
264 logicop)) {
265 /* If this is ever going to fail, it will fail on the first chunk */
266 assert(chunk_x == 0 && chunk_y == 0);
267 return false;
268 }
269 }
270 }
271
272 return true;
273 }
274
275 /**
276 * Implements a rectangular block transfer (blit) of pixels between two
277 * miptrees.
278 *
279 * Our blitter can operate on 1, 2, or 4-byte-per-pixel data, with generous,
280 * but limited, pitches and sizes allowed.
281 *
282 * The src/dst coordinates are relative to the given level/slice of the
283 * miptree.
284 *
285 * If @src_flip or @dst_flip is set, then the rectangle within that miptree
286 * will be inverted (including scanline order) when copying. This is common
287 * in GL when copying between window system and user-created
288 * renderbuffers/textures.
289 */
290 bool
291 intel_miptree_blit(struct brw_context *brw,
292 struct intel_mipmap_tree *src_mt,
293 int src_level, int src_slice,
294 uint32_t src_x, uint32_t src_y, bool src_flip,
295 struct intel_mipmap_tree *dst_mt,
296 int dst_level, int dst_slice,
297 uint32_t dst_x, uint32_t dst_y, bool dst_flip,
298 uint32_t width, uint32_t height,
299 GLenum logicop)
300 {
301 /* The blitter doesn't understand multisampling at all. */
302 if (src_mt->num_samples > 0 || dst_mt->num_samples > 0)
303 return false;
304
305 /* No sRGB decode or encode is done by the hardware blitter, which is
306 * consistent with what we want in many callers (glCopyTexSubImage(),
307 * texture validation, etc.).
308 */
309 mesa_format src_format = _mesa_get_srgb_format_linear(src_mt->format);
310 mesa_format dst_format = _mesa_get_srgb_format_linear(dst_mt->format);
311
312 /* The blitter doesn't support doing any format conversions. We do also
313 * support blitting ARGB8888 to XRGB8888 (trivial, the values dropped into
314 * the X channel don't matter), and XRGB8888 to ARGB8888 by setting the A
315 * channel to 1.0 at the end.
316 */
317 if (!intel_miptree_blit_compatible_formats(src_format, dst_format)) {
318 perf_debug("%s: Can't use hardware blitter from %s to %s, "
319 "falling back.\n", __func__,
320 _mesa_get_format_name(src_format),
321 _mesa_get_format_name(dst_format));
322 return false;
323 }
324
325 /* The blitter has no idea about HiZ or fast color clears, so we need to
326 * resolve the miptrees before we do anything.
327 */
328 intel_miptree_slice_resolve_depth(brw, src_mt, src_level, src_slice);
329 intel_miptree_slice_resolve_depth(brw, dst_mt, dst_level, dst_slice);
330 intel_miptree_resolve_color(brw, src_mt, src_level, src_slice, 1, 0);
331 intel_miptree_resolve_color(brw, dst_mt, dst_level, dst_slice, 1, 0);
332
333 if (src_flip)
334 src_y = minify(src_mt->physical_height0, src_level - src_mt->first_level) - src_y - height;
335
336 if (dst_flip)
337 dst_y = minify(dst_mt->physical_height0, dst_level - dst_mt->first_level) - dst_y - height;
338
339 uint32_t src_image_x, src_image_y, dst_image_x, dst_image_y;
340 intel_miptree_get_image_offset(src_mt, src_level, src_slice,
341 &src_image_x, &src_image_y);
342 intel_miptree_get_image_offset(dst_mt, dst_level, dst_slice,
343 &dst_image_x, &dst_image_y);
344 src_x += src_image_x;
345 src_y += src_image_y;
346 dst_x += dst_image_x;
347 dst_y += dst_image_y;
348
349 if (!emit_miptree_blit(brw, src_mt, src_x, src_y,
350 dst_mt, dst_x, dst_y, width, height,
351 src_flip != dst_flip, logicop)) {
352 return false;
353 }
354
355 /* XXX This could be done in a single pass using XY_FULL_MONO_PATTERN_BLT */
356 if (_mesa_get_format_bits(src_format, GL_ALPHA_BITS) == 0 &&
357 _mesa_get_format_bits(dst_format, GL_ALPHA_BITS) > 0) {
358 intel_miptree_set_alpha_to_one(brw, dst_mt,
359 dst_x, dst_y,
360 width, height);
361 }
362
363 return true;
364 }
365
366 bool
367 intel_miptree_copy(struct brw_context *brw,
368 struct intel_mipmap_tree *src_mt,
369 int src_level, int src_slice,
370 uint32_t src_x, uint32_t src_y,
371 struct intel_mipmap_tree *dst_mt,
372 int dst_level, int dst_slice,
373 uint32_t dst_x, uint32_t dst_y,
374 uint32_t src_width, uint32_t src_height)
375 {
376 /* The blitter doesn't understand multisampling at all. */
377 if (src_mt->num_samples > 0 || dst_mt->num_samples > 0)
378 return false;
379
380 if (src_mt->format == MESA_FORMAT_S_UINT8)
381 return false;
382
383 /* The blitter has no idea about HiZ or fast color clears, so we need to
384 * resolve the miptrees before we do anything.
385 */
386 intel_miptree_slice_resolve_depth(brw, src_mt, src_level, src_slice);
387 intel_miptree_slice_resolve_depth(brw, dst_mt, dst_level, dst_slice);
388 intel_miptree_resolve_color(brw, src_mt, src_level, src_slice, 1, 0);
389 intel_miptree_resolve_color(brw, dst_mt, dst_level, dst_slice, 1, 0);
390
391 uint32_t src_image_x, src_image_y;
392 intel_miptree_get_image_offset(src_mt, src_level, src_slice,
393 &src_image_x, &src_image_y);
394
395 if (_mesa_is_format_compressed(src_mt->format)) {
396 GLuint bw, bh;
397 _mesa_get_format_block_size(src_mt->format, &bw, &bh);
398
399 /* Compressed textures need not have dimensions that are a multiple of
400 * the block size. Rectangles in compressed textures do need to be a
401 * multiple of the block size. The one exception is that the right and
402 * bottom edges may be at the right or bottom edge of the miplevel even
403 * if it's not aligned.
404 */
405 assert(src_x % bw == 0);
406 assert(src_y % bh == 0);
407 assert(src_width % bw == 0 ||
408 src_x + src_width == minify(src_mt->logical_width0, src_level));
409 assert(src_height % bh == 0 ||
410 src_y + src_height == minify(src_mt->logical_height0, src_level));
411
412 src_x /= (int)bw;
413 src_y /= (int)bh;
414 src_width /= (int)bw;
415 src_height /= (int)bh;
416 }
417 src_x += src_image_x;
418 src_y += src_image_y;
419
420 uint32_t dst_image_x, dst_image_y;
421 intel_miptree_get_image_offset(dst_mt, dst_level, dst_slice,
422 &dst_image_x, &dst_image_y);
423
424 if (_mesa_is_format_compressed(dst_mt->format)) {
425 GLuint bw, bh;
426 _mesa_get_format_block_size(dst_mt->format, &bw, &bh);
427
428 assert(dst_x % bw == 0);
429 assert(dst_y % bh == 0);
430
431 dst_x /= (int)bw;
432 dst_y /= (int)bh;
433 }
434 dst_x += dst_image_x;
435 dst_y += dst_image_y;
436
437 return emit_miptree_blit(brw, src_mt, src_x, src_y,
438 dst_mt, dst_x, dst_y,
439 src_width, src_height, false, GL_COPY);
440 }
441
442 static bool
443 alignment_valid(struct brw_context *brw, unsigned offset, uint32_t tiling)
444 {
445 /* Tiled buffers must be page-aligned (4K). */
446 if (tiling != I915_TILING_NONE)
447 return (offset & 4095) == 0;
448
449 /* On Gen8+, linear buffers must be cacheline-aligned. */
450 if (brw->gen >= 8)
451 return (offset & 63) == 0;
452
453 return true;
454 }
455
456 static uint32_t
457 xy_blit_cmd(uint32_t src_tiling, uint32_t dst_tiling, uint32_t cpp)
458 {
459 uint32_t CMD = 0;
460
461 assert(cpp <= 4);
462 switch (cpp) {
463 case 1:
464 case 2:
465 CMD = XY_SRC_COPY_BLT_CMD;
466 break;
467 case 4:
468 CMD = XY_SRC_COPY_BLT_CMD | XY_BLT_WRITE_ALPHA | XY_BLT_WRITE_RGB;
469 break;
470 default:
471 unreachable("not reached");
472 }
473
474 if (dst_tiling != I915_TILING_NONE)
475 CMD |= XY_DST_TILED;
476
477 if (src_tiling != I915_TILING_NONE)
478 CMD |= XY_SRC_TILED;
479
480 return CMD;
481 }
482
483 /* Copy BitBlt
484 */
485 bool
486 intelEmitCopyBlit(struct brw_context *brw,
487 GLuint cpp,
488 int32_t src_pitch,
489 drm_bacon_bo *src_buffer,
490 GLuint src_offset,
491 uint32_t src_tiling,
492 int32_t dst_pitch,
493 drm_bacon_bo *dst_buffer,
494 GLuint dst_offset,
495 uint32_t dst_tiling,
496 GLshort src_x, GLshort src_y,
497 GLshort dst_x, GLshort dst_y,
498 GLshort w, GLshort h,
499 GLenum logic_op)
500 {
501 GLuint CMD, BR13;
502 int dst_y2 = dst_y + h;
503 int dst_x2 = dst_x + w;
504 bool dst_y_tiled = dst_tiling == I915_TILING_Y;
505 bool src_y_tiled = src_tiling == I915_TILING_Y;
506 uint32_t src_tile_w, src_tile_h;
507 uint32_t dst_tile_w, dst_tile_h;
508
509 if ((dst_y_tiled || src_y_tiled) && brw->gen < 6)
510 return false;
511
512 const unsigned bo_sizes = dst_buffer->size + src_buffer->size;
513
514 /* do space check before going any further */
515 if (!brw_batch_has_aperture_space(brw, bo_sizes))
516 intel_batchbuffer_flush(brw);
517
518 if (!brw_batch_has_aperture_space(brw, bo_sizes))
519 return false;
520
521 unsigned length = brw->gen >= 8 ? 10 : 8;
522
523 intel_batchbuffer_require_space(brw, length * 4, BLT_RING);
524 DBG("%s src:buf(%p)/%d+%d %d,%d dst:buf(%p)/%d+%d %d,%d sz:%dx%d\n",
525 __func__,
526 src_buffer, src_pitch, src_offset, src_x, src_y,
527 dst_buffer, dst_pitch, dst_offset, dst_x, dst_y, w, h);
528
529 intel_get_tile_dims(src_tiling, cpp, &src_tile_w, &src_tile_h);
530 intel_get_tile_dims(dst_tiling, cpp, &dst_tile_w, &dst_tile_h);
531
532 /* For Tiled surfaces, the pitch has to be a multiple of the Tile width
533 * (X direction width of the Tile). This is ensured while allocating the
534 * buffer object.
535 */
536 assert(src_tiling == I915_TILING_NONE || (src_pitch % src_tile_w) == 0);
537 assert(dst_tiling == I915_TILING_NONE || (dst_pitch % dst_tile_w) == 0);
538
539 /* For big formats (such as floating point), do the copy using 16 or
540 * 32bpp and multiply the coordinates.
541 */
542 if (cpp > 4) {
543 if (cpp % 4 == 2) {
544 dst_x *= cpp / 2;
545 dst_x2 *= cpp / 2;
546 src_x *= cpp / 2;
547 cpp = 2;
548 } else {
549 assert(cpp % 4 == 0);
550 dst_x *= cpp / 4;
551 dst_x2 *= cpp / 4;
552 src_x *= cpp / 4;
553 cpp = 4;
554 }
555 }
556
557 if (!alignment_valid(brw, dst_offset, dst_tiling))
558 return false;
559 if (!alignment_valid(brw, src_offset, src_tiling))
560 return false;
561
562 /* Blit pitch must be dword-aligned. Otherwise, the hardware appears to drop
563 * the low bits. Offsets must be naturally aligned.
564 */
565 if (src_pitch % 4 != 0 || src_offset % cpp != 0 ||
566 dst_pitch % 4 != 0 || dst_offset % cpp != 0)
567 return false;
568
569 assert(cpp <= 4);
570 BR13 = br13_for_cpp(cpp) | translate_raster_op(logic_op) << 16;
571
572 CMD = xy_blit_cmd(src_tiling, dst_tiling, cpp);
573
574 /* For tiled source and destination, pitch value should be specified
575 * as a number of Dwords.
576 */
577 if (dst_tiling != I915_TILING_NONE)
578 dst_pitch /= 4;
579
580 if (src_tiling != I915_TILING_NONE)
581 src_pitch /= 4;
582
583 if (dst_y2 <= dst_y || dst_x2 <= dst_x)
584 return true;
585
586 assert(dst_x < dst_x2);
587 assert(dst_y < dst_y2);
588
589 BEGIN_BATCH_BLT_TILED(length, dst_y_tiled, src_y_tiled);
590 OUT_BATCH(CMD | (length - 2));
591 OUT_BATCH(BR13 | (uint16_t)dst_pitch);
592 OUT_BATCH(SET_FIELD(dst_y, BLT_Y) | SET_FIELD(dst_x, BLT_X));
593 OUT_BATCH(SET_FIELD(dst_y2, BLT_Y) | SET_FIELD(dst_x2, BLT_X));
594 if (brw->gen >= 8) {
595 OUT_RELOC64(dst_buffer,
596 I915_GEM_DOMAIN_RENDER, I915_GEM_DOMAIN_RENDER,
597 dst_offset);
598 } else {
599 OUT_RELOC(dst_buffer,
600 I915_GEM_DOMAIN_RENDER, I915_GEM_DOMAIN_RENDER,
601 dst_offset);
602 }
603 OUT_BATCH(SET_FIELD(src_y, BLT_Y) | SET_FIELD(src_x, BLT_X));
604 OUT_BATCH((uint16_t)src_pitch);
605 if (brw->gen >= 8) {
606 OUT_RELOC64(src_buffer,
607 I915_GEM_DOMAIN_RENDER, 0,
608 src_offset);
609 } else {
610 OUT_RELOC(src_buffer,
611 I915_GEM_DOMAIN_RENDER, 0,
612 src_offset);
613 }
614
615 ADVANCE_BATCH_TILED(dst_y_tiled, src_y_tiled);
616
617 brw_emit_mi_flush(brw);
618
619 return true;
620 }
621
622 bool
623 intelEmitImmediateColorExpandBlit(struct brw_context *brw,
624 GLuint cpp,
625 GLubyte *src_bits, GLuint src_size,
626 GLuint fg_color,
627 GLshort dst_pitch,
628 drm_bacon_bo *dst_buffer,
629 GLuint dst_offset,
630 uint32_t dst_tiling,
631 GLshort x, GLshort y,
632 GLshort w, GLshort h,
633 GLenum logic_op)
634 {
635 int dwords = ALIGN(src_size, 8) / 4;
636 uint32_t opcode, br13, blit_cmd;
637
638 if (dst_tiling != I915_TILING_NONE) {
639 if (dst_offset & 4095)
640 return false;
641 if (dst_tiling == I915_TILING_Y)
642 return false;
643 }
644
645 assert((logic_op >= GL_CLEAR) && (logic_op <= (GL_CLEAR + 0x0f)));
646 assert(dst_pitch > 0);
647
648 if (w < 0 || h < 0)
649 return true;
650
651 DBG("%s dst:buf(%p)/%d+%d %d,%d sz:%dx%d, %d bytes %d dwords\n",
652 __func__,
653 dst_buffer, dst_pitch, dst_offset, x, y, w, h, src_size, dwords);
654
655 unsigned xy_setup_blt_length = brw->gen >= 8 ? 10 : 8;
656 intel_batchbuffer_require_space(brw, (xy_setup_blt_length * 4) +
657 (3 * 4) + dwords * 4, BLT_RING);
658
659 opcode = XY_SETUP_BLT_CMD;
660 if (cpp == 4)
661 opcode |= XY_BLT_WRITE_ALPHA | XY_BLT_WRITE_RGB;
662 if (dst_tiling != I915_TILING_NONE) {
663 opcode |= XY_DST_TILED;
664 dst_pitch /= 4;
665 }
666
667 br13 = dst_pitch | (translate_raster_op(logic_op) << 16) | (1 << 29);
668 br13 |= br13_for_cpp(cpp);
669
670 blit_cmd = XY_TEXT_IMMEDIATE_BLIT_CMD | XY_TEXT_BYTE_PACKED; /* packing? */
671 if (dst_tiling != I915_TILING_NONE)
672 blit_cmd |= XY_DST_TILED;
673
674 BEGIN_BATCH_BLT(xy_setup_blt_length + 3);
675 OUT_BATCH(opcode | (xy_setup_blt_length - 2));
676 OUT_BATCH(br13);
677 OUT_BATCH((0 << 16) | 0); /* clip x1, y1 */
678 OUT_BATCH((100 << 16) | 100); /* clip x2, y2 */
679 if (brw->gen >= 8) {
680 OUT_RELOC64(dst_buffer,
681 I915_GEM_DOMAIN_RENDER, I915_GEM_DOMAIN_RENDER,
682 dst_offset);
683 } else {
684 OUT_RELOC(dst_buffer,
685 I915_GEM_DOMAIN_RENDER, I915_GEM_DOMAIN_RENDER,
686 dst_offset);
687 }
688 OUT_BATCH(0); /* bg */
689 OUT_BATCH(fg_color); /* fg */
690 OUT_BATCH(0); /* pattern base addr */
691 if (brw->gen >= 8)
692 OUT_BATCH(0);
693
694 OUT_BATCH(blit_cmd | ((3 - 2) + dwords));
695 OUT_BATCH(SET_FIELD(y, BLT_Y) | SET_FIELD(x, BLT_X));
696 OUT_BATCH(SET_FIELD(y + h, BLT_Y) | SET_FIELD(x + w, BLT_X));
697 ADVANCE_BATCH();
698
699 intel_batchbuffer_data(brw, src_bits, dwords * 4, BLT_RING);
700
701 brw_emit_mi_flush(brw);
702
703 return true;
704 }
705
706 /* We don't have a memmove-type blit like some other hardware, so we'll do a
707 * rectangular blit covering a large space, then emit 1-scanline blit at the
708 * end to cover the last if we need.
709 */
710 void
711 intel_emit_linear_blit(struct brw_context *brw,
712 drm_bacon_bo *dst_bo,
713 unsigned int dst_offset,
714 drm_bacon_bo *src_bo,
715 unsigned int src_offset,
716 unsigned int size)
717 {
718 struct gl_context *ctx = &brw->ctx;
719 GLuint pitch, height;
720 int16_t src_x, dst_x;
721 bool ok;
722
723 do {
724 /* The pitch given to the GPU must be DWORD aligned, and
725 * we want width to match pitch. Max width is (1 << 15 - 1),
726 * rounding that down to the nearest DWORD is 1 << 15 - 4
727 */
728 pitch = ROUND_DOWN_TO(MIN2(size, (1 << 15) - 64), 4);
729 height = (size < pitch || pitch == 0) ? 1 : size / pitch;
730
731 src_x = src_offset % 64;
732 dst_x = dst_offset % 64;
733 pitch = ALIGN(MIN2(size, (1 << 15) - 64), 4);
734 assert(src_x + pitch < 1 << 15);
735 assert(dst_x + pitch < 1 << 15);
736
737 ok = intelEmitCopyBlit(brw, 1,
738 pitch, src_bo, src_offset - src_x, I915_TILING_NONE,
739 pitch, dst_bo, dst_offset - dst_x, I915_TILING_NONE,
740 src_x, 0, /* src x/y */
741 dst_x, 0, /* dst x/y */
742 MIN2(size, pitch), height, /* w, h */
743 GL_COPY);
744 if (!ok) {
745 _mesa_problem(ctx, "Failed to linear blit %dx%d\n",
746 MIN2(size, pitch), height);
747 return;
748 }
749
750 pitch *= height;
751 if (size <= pitch)
752 return;
753
754 src_offset += pitch;
755 dst_offset += pitch;
756 size -= pitch;
757 } while (1);
758 }
759
760 /**
761 * Used to initialize the alpha value of an ARGB8888 miptree after copying
762 * into it from an XRGB8888 source.
763 *
764 * This is very common with glCopyTexImage2D(). Note that the coordinates are
765 * relative to the start of the miptree, not relative to a slice within the
766 * miptree.
767 */
768 static void
769 intel_miptree_set_alpha_to_one(struct brw_context *brw,
770 struct intel_mipmap_tree *mt,
771 int x, int y, int width, int height)
772 {
773 uint32_t BR13, CMD;
774 int pitch, cpp;
775
776 pitch = mt->pitch;
777 cpp = mt->cpp;
778
779 DBG("%s dst:buf(%p)/%d %d,%d sz:%dx%d\n",
780 __func__, mt->bo, pitch, x, y, width, height);
781
782 BR13 = br13_for_cpp(cpp) | 0xf0 << 16;
783 CMD = XY_COLOR_BLT_CMD;
784 CMD |= XY_BLT_WRITE_ALPHA;
785
786 if (mt->tiling != I915_TILING_NONE) {
787 CMD |= XY_DST_TILED;
788 pitch /= 4;
789 }
790 BR13 |= pitch;
791
792 /* do space check before going any further */
793 if (!brw_batch_has_aperture_space(brw, mt->bo->size))
794 intel_batchbuffer_flush(brw);
795
796 unsigned length = brw->gen >= 8 ? 7 : 6;
797 bool dst_y_tiled = mt->tiling == I915_TILING_Y;
798
799 /* We need to split the blit into chunks that each fit within the blitter's
800 * restrictions. We can't use a chunk size of 32768 because we need to
801 * ensure that src_tile_x + chunk_size fits. We choose 16384 because it's
802 * a nice round power of two, big enough that performance won't suffer, and
803 * small enough to guarantee everything fits.
804 */
805 const uint32_t max_chunk_size = 16384;
806
807 for (uint32_t chunk_x = 0; chunk_x < width; chunk_x += max_chunk_size) {
808 for (uint32_t chunk_y = 0; chunk_y < height; chunk_y += max_chunk_size) {
809 const uint32_t chunk_w = MIN2(max_chunk_size, width - chunk_x);
810 const uint32_t chunk_h = MIN2(max_chunk_size, height - chunk_y);
811
812 uint32_t offset, tile_x, tile_y;
813 get_blit_intratile_offset_el(brw, mt,
814 x + chunk_x, y + chunk_y,
815 &offset, &tile_x, &tile_y);
816
817 BEGIN_BATCH_BLT_TILED(length, dst_y_tiled, false);
818 OUT_BATCH(CMD | (length - 2));
819 OUT_BATCH(BR13);
820 OUT_BATCH(SET_FIELD(y + chunk_y, BLT_Y) |
821 SET_FIELD(x + chunk_x, BLT_X));
822 OUT_BATCH(SET_FIELD(y + chunk_y + chunk_h, BLT_Y) |
823 SET_FIELD(x + chunk_x + chunk_w, BLT_X));
824 if (brw->gen >= 8) {
825 OUT_RELOC64(mt->bo,
826 I915_GEM_DOMAIN_RENDER, I915_GEM_DOMAIN_RENDER,
827 offset);
828 } else {
829 OUT_RELOC(mt->bo,
830 I915_GEM_DOMAIN_RENDER, I915_GEM_DOMAIN_RENDER,
831 offset);
832 }
833 OUT_BATCH(0xffffffff); /* white, but only alpha gets written */
834 ADVANCE_BATCH_TILED(dst_y_tiled, false);
835 }
836 }
837
838 brw_emit_mi_flush(brw);
839 }