i965/miptree: More conservatively resolve external images
[mesa.git] / src / mesa / drivers / dri / i965 / intel_mipmap_tree.c
1 /*
2 * Copyright 2006 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include <GL/gl.h>
27 #include <GL/internal/dri_interface.h>
28 #include <drm_fourcc.h>
29
30 #include "intel_batchbuffer.h"
31 #include "intel_image.h"
32 #include "intel_mipmap_tree.h"
33 #include "intel_tex.h"
34 #include "intel_blit.h"
35 #include "intel_fbo.h"
36
37 #include "brw_blorp.h"
38 #include "brw_context.h"
39 #include "brw_state.h"
40
41 #include "main/enums.h"
42 #include "main/fbobject.h"
43 #include "main/formats.h"
44 #include "main/glformats.h"
45 #include "main/texcompress_etc.h"
46 #include "main/teximage.h"
47 #include "main/streaming-load-memcpy.h"
48 #include "x86/common_x86_asm.h"
49
50 #define FILE_DEBUG_FLAG DEBUG_MIPTREE
51
52 static void *intel_miptree_map_raw(struct brw_context *brw,
53 struct intel_mipmap_tree *mt,
54 GLbitfield mode);
55
56 static void intel_miptree_unmap_raw(struct intel_mipmap_tree *mt);
57
58 static bool
59 intel_miptree_alloc_aux(struct brw_context *brw,
60 struct intel_mipmap_tree *mt);
61
62 static bool
63 intel_miptree_supports_mcs(struct brw_context *brw,
64 const struct intel_mipmap_tree *mt)
65 {
66 /* MCS compression only applies to multisampled miptrees */
67 if (mt->surf.samples <= 1)
68 return false;
69
70 /* Prior to Gen7, all MSAA surfaces used IMS layout. */
71 if (brw->gen < 7)
72 return false;
73
74 /* In Gen7, IMS layout is only used for depth and stencil buffers. */
75 switch (_mesa_get_format_base_format(mt->format)) {
76 case GL_DEPTH_COMPONENT:
77 case GL_STENCIL_INDEX:
78 case GL_DEPTH_STENCIL:
79 return false;
80 default:
81 /* From the Ivy Bridge PRM, Vol4 Part1 p77 ("MCS Enable"):
82 *
83 * This field must be set to 0 for all SINT MSRTs when all RT channels
84 * are not written
85 *
86 * In practice this means that we have to disable MCS for all signed
87 * integer MSAA buffers. The alternative, to disable MCS only when one
88 * of the render target channels is disabled, is impractical because it
89 * would require converting between CMS and UMS MSAA layouts on the fly,
90 * which is expensive.
91 */
92 if (brw->gen == 7 && _mesa_get_format_datatype(mt->format) == GL_INT) {
93 return false;
94 } else {
95 return true;
96 }
97 }
98 }
99
100 static bool
101 intel_tiling_supports_ccs(const struct brw_context *brw,
102 enum isl_tiling tiling)
103 {
104 /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
105 * Target(s)", beneath the "Fast Color Clear" bullet (p326):
106 *
107 * - Support is limited to tiled render targets.
108 *
109 * Gen9 changes the restriction to Y-tile only.
110 */
111 if (brw->gen >= 9)
112 return tiling == ISL_TILING_Y0;
113 else if (brw->gen >= 7)
114 return tiling != ISL_TILING_LINEAR;
115 else
116 return false;
117 }
118
119 /**
120 * For a single-sampled render target ("non-MSRT"), determine if an MCS buffer
121 * can be used. This doesn't (and should not) inspect any of the properties of
122 * the miptree's BO.
123 *
124 * From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render Target(s)",
125 * beneath the "Fast Color Clear" bullet (p326):
126 *
127 * - Support is for non-mip-mapped and non-array surface types only.
128 *
129 * And then later, on p327:
130 *
131 * - MCS buffer for non-MSRT is supported only for RT formats 32bpp,
132 * 64bpp, and 128bpp.
133 *
134 * From the Skylake documentation, it is made clear that X-tiling is no longer
135 * supported:
136 *
137 * - MCS and Lossless compression is supported for TiledY/TileYs/TileYf
138 * non-MSRTs only.
139 */
140 static bool
141 intel_miptree_supports_ccs(struct brw_context *brw,
142 const struct intel_mipmap_tree *mt)
143 {
144 /* MCS support does not exist prior to Gen7 */
145 if (brw->gen < 7)
146 return false;
147
148 /* This function applies only to non-multisampled render targets. */
149 if (mt->surf.samples > 1)
150 return false;
151
152 /* MCS is only supported for color buffers */
153 switch (_mesa_get_format_base_format(mt->format)) {
154 case GL_DEPTH_COMPONENT:
155 case GL_DEPTH_STENCIL:
156 case GL_STENCIL_INDEX:
157 return false;
158 }
159
160 if (mt->cpp != 4 && mt->cpp != 8 && mt->cpp != 16)
161 return false;
162
163 const bool mip_mapped = mt->first_level != 0 || mt->last_level != 0;
164 const bool arrayed = mt->surf.logical_level0_px.array_len > 1 ||
165 mt->surf.logical_level0_px.depth > 1;
166
167 if (arrayed) {
168 /* Multisample surfaces with the CMS layout are not layered surfaces,
169 * yet still have physical_depth0 > 1. Assert that we don't
170 * accidentally reject a multisampled surface here. We should have
171 * rejected it earlier by explicitly checking the sample count.
172 */
173 assert(mt->surf.samples == 1);
174 }
175
176 /* Handle the hardware restrictions...
177 *
178 * All GENs have the following restriction: "MCS buffer for non-MSRT is
179 * supported only for RT formats 32bpp, 64bpp, and 128bpp."
180 *
181 * From the HSW PRM Volume 7: 3D-Media-GPGPU, page 652: (Color Clear of
182 * Non-MultiSampler Render Target Restrictions) Support is for
183 * non-mip-mapped and non-array surface types only.
184 *
185 * From the BDW PRM Volume 7: 3D-Media-GPGPU, page 649: (Color Clear of
186 * Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
187 * surfaces are supported with MCS buffer layout with these alignments in
188 * the RT space: Horizontal Alignment = 256 and Vertical Alignment = 128.
189 *
190 * From the SKL PRM Volume 7: 3D-Media-GPGPU, page 632: (Color Clear of
191 * Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
192 * surfaces are supported with MCS buffer layout with these alignments in
193 * the RT space: Horizontal Alignment = 128 and Vertical Alignment = 64.
194 */
195 if (brw->gen < 8 && (mip_mapped || arrayed))
196 return false;
197
198 /* There's no point in using an MCS buffer if the surface isn't in a
199 * renderable format.
200 */
201 if (!brw->mesa_format_supports_render[mt->format])
202 return false;
203
204 return true;
205 }
206
207 static bool
208 intel_tiling_supports_hiz(const struct brw_context *brw,
209 enum isl_tiling tiling)
210 {
211 if (brw->gen < 6)
212 return false;
213
214 return tiling == ISL_TILING_Y0;
215 }
216
217 static bool
218 intel_miptree_supports_hiz(const struct brw_context *brw,
219 const struct intel_mipmap_tree *mt)
220 {
221 if (!brw->has_hiz)
222 return false;
223
224 switch (mt->format) {
225 case MESA_FORMAT_Z_FLOAT32:
226 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
227 case MESA_FORMAT_Z24_UNORM_X8_UINT:
228 case MESA_FORMAT_Z24_UNORM_S8_UINT:
229 case MESA_FORMAT_Z_UNORM16:
230 return true;
231 default:
232 return false;
233 }
234 }
235
236 static bool
237 intel_miptree_supports_ccs_e(struct brw_context *brw,
238 const struct intel_mipmap_tree *mt)
239 {
240 if (brw->gen < 9)
241 return false;
242
243 /* For now compression is only enabled for integer formats even though
244 * there exist supported floating point formats also. This is a heuristic
245 * decision based on current public benchmarks. In none of the cases these
246 * formats provided any improvement but a few cases were seen to regress.
247 * Hence these are left to to be enabled in the future when they are known
248 * to improve things.
249 */
250 if (_mesa_get_format_datatype(mt->format) == GL_FLOAT)
251 return false;
252
253 if (!intel_miptree_supports_ccs(brw, mt))
254 return false;
255
256 /* Many window system buffers are sRGB even if they are never rendered as
257 * sRGB. For those, we want CCS_E for when sRGBEncode is false. When the
258 * surface is used as sRGB, we fall back to CCS_D.
259 */
260 mesa_format linear_format = _mesa_get_srgb_format_linear(mt->format);
261 enum isl_format isl_format = brw_isl_format_for_mesa_format(linear_format);
262 return isl_format_supports_ccs_e(&brw->screen->devinfo, isl_format);
263 }
264
265 /**
266 * Determine depth format corresponding to a depth+stencil format,
267 * for separate stencil.
268 */
269 mesa_format
270 intel_depth_format_for_depthstencil_format(mesa_format format) {
271 switch (format) {
272 case MESA_FORMAT_Z24_UNORM_S8_UINT:
273 return MESA_FORMAT_Z24_UNORM_X8_UINT;
274 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
275 return MESA_FORMAT_Z_FLOAT32;
276 default:
277 return format;
278 }
279 }
280
281 static bool
282 create_mapping_table(GLenum target, unsigned first_level, unsigned last_level,
283 unsigned depth0, struct intel_mipmap_level *table)
284 {
285 for (unsigned level = first_level; level <= last_level; level++) {
286 const unsigned d =
287 target == GL_TEXTURE_3D ? minify(depth0, level) : depth0;
288
289 table[level].slice = calloc(d, sizeof(*table[0].slice));
290 if (!table[level].slice)
291 goto unwind;
292 }
293
294 return true;
295
296 unwind:
297 for (unsigned level = first_level; level <= last_level; level++)
298 free(table[level].slice);
299
300 return false;
301 }
302
303 static bool
304 needs_separate_stencil(const struct brw_context *brw,
305 struct intel_mipmap_tree *mt,
306 mesa_format format)
307 {
308 if (_mesa_get_format_base_format(format) != GL_DEPTH_STENCIL)
309 return false;
310
311 if (brw->must_use_separate_stencil)
312 return true;
313
314 return brw->has_separate_stencil &&
315 intel_miptree_supports_hiz(brw, mt);
316 }
317
318 /**
319 * Choose the aux usage for this miptree. This function must be called fairly
320 * late in the miptree create process after we have a tiling.
321 */
322 static void
323 intel_miptree_choose_aux_usage(struct brw_context *brw,
324 struct intel_mipmap_tree *mt)
325 {
326 assert(mt->aux_usage == ISL_AUX_USAGE_NONE);
327
328 if (intel_miptree_supports_mcs(brw, mt)) {
329 assert(mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
330 mt->aux_usage = ISL_AUX_USAGE_MCS;
331 } else if (intel_tiling_supports_ccs(brw, mt->surf.tiling) &&
332 intel_miptree_supports_ccs(brw, mt)) {
333 if (!unlikely(INTEL_DEBUG & DEBUG_NO_RBC) &&
334 intel_miptree_supports_ccs_e(brw, mt)) {
335 mt->aux_usage = ISL_AUX_USAGE_CCS_E;
336 } else {
337 mt->aux_usage = ISL_AUX_USAGE_CCS_D;
338 }
339 } else if (intel_tiling_supports_hiz(brw, mt->surf.tiling) &&
340 intel_miptree_supports_hiz(brw, mt)) {
341 mt->aux_usage = ISL_AUX_USAGE_HIZ;
342 }
343
344 /* We can do fast-clear on all auxiliary surface types that are
345 * allocated through the normal texture creation paths.
346 */
347 if (mt->aux_usage != ISL_AUX_USAGE_NONE)
348 mt->supports_fast_clear = true;
349 }
350
351
352 /**
353 * Choose an appropriate uncompressed format for a requested
354 * compressed format, if unsupported.
355 */
356 mesa_format
357 intel_lower_compressed_format(struct brw_context *brw, mesa_format format)
358 {
359 /* No need to lower ETC formats on these platforms,
360 * they are supported natively.
361 */
362 if (brw->gen >= 8 || brw->is_baytrail)
363 return format;
364
365 switch (format) {
366 case MESA_FORMAT_ETC1_RGB8:
367 return MESA_FORMAT_R8G8B8X8_UNORM;
368 case MESA_FORMAT_ETC2_RGB8:
369 return MESA_FORMAT_R8G8B8X8_UNORM;
370 case MESA_FORMAT_ETC2_SRGB8:
371 case MESA_FORMAT_ETC2_SRGB8_ALPHA8_EAC:
372 case MESA_FORMAT_ETC2_SRGB8_PUNCHTHROUGH_ALPHA1:
373 return MESA_FORMAT_B8G8R8A8_SRGB;
374 case MESA_FORMAT_ETC2_RGBA8_EAC:
375 case MESA_FORMAT_ETC2_RGB8_PUNCHTHROUGH_ALPHA1:
376 return MESA_FORMAT_R8G8B8A8_UNORM;
377 case MESA_FORMAT_ETC2_R11_EAC:
378 return MESA_FORMAT_R_UNORM16;
379 case MESA_FORMAT_ETC2_SIGNED_R11_EAC:
380 return MESA_FORMAT_R_SNORM16;
381 case MESA_FORMAT_ETC2_RG11_EAC:
382 return MESA_FORMAT_R16G16_UNORM;
383 case MESA_FORMAT_ETC2_SIGNED_RG11_EAC:
384 return MESA_FORMAT_R16G16_SNORM;
385 default:
386 /* Non ETC1 / ETC2 format */
387 return format;
388 }
389 }
390
391 unsigned
392 brw_get_num_logical_layers(const struct intel_mipmap_tree *mt, unsigned level)
393 {
394 if (mt->surf.dim == ISL_SURF_DIM_3D)
395 return minify(mt->surf.logical_level0_px.depth, level);
396 else
397 return mt->surf.logical_level0_px.array_len;
398 }
399
400 static unsigned
401 get_num_phys_layers(const struct isl_surf *surf, unsigned level)
402 {
403 /* In case of physical dimensions one needs to consider also the layout.
404 * See isl_calc_phys_level0_extent_sa().
405 */
406 if (surf->dim != ISL_SURF_DIM_3D)
407 return surf->phys_level0_sa.array_len;
408
409 if (surf->dim_layout == ISL_DIM_LAYOUT_GEN4_2D)
410 return minify(surf->phys_level0_sa.array_len, level);
411
412 return minify(surf->phys_level0_sa.depth, level);
413 }
414
415 /** \brief Assert that the level and layer are valid for the miptree. */
416 void
417 intel_miptree_check_level_layer(const struct intel_mipmap_tree *mt,
418 uint32_t level,
419 uint32_t layer)
420 {
421 (void) mt;
422 (void) level;
423 (void) layer;
424
425 assert(level >= mt->first_level);
426 assert(level <= mt->last_level);
427 assert(layer < get_num_phys_layers(&mt->surf, level));
428 }
429
430 static enum isl_aux_state **
431 create_aux_state_map(struct intel_mipmap_tree *mt,
432 enum isl_aux_state initial)
433 {
434 const uint32_t levels = mt->last_level + 1;
435
436 uint32_t total_slices = 0;
437 for (uint32_t level = 0; level < levels; level++)
438 total_slices += brw_get_num_logical_layers(mt, level);
439
440 const size_t per_level_array_size = levels * sizeof(enum isl_aux_state *);
441
442 /* We're going to allocate a single chunk of data for both the per-level
443 * reference array and the arrays of aux_state. This makes cleanup
444 * significantly easier.
445 */
446 const size_t total_size = per_level_array_size +
447 total_slices * sizeof(enum isl_aux_state);
448 void *data = malloc(total_size);
449 if (data == NULL)
450 return NULL;
451
452 enum isl_aux_state **per_level_arr = data;
453 enum isl_aux_state *s = data + per_level_array_size;
454 for (uint32_t level = 0; level < levels; level++) {
455 per_level_arr[level] = s;
456 const unsigned level_layers = brw_get_num_logical_layers(mt, level);
457 for (uint32_t a = 0; a < level_layers; a++)
458 *(s++) = initial;
459 }
460 assert((void *)s == data + total_size);
461
462 return per_level_arr;
463 }
464
465 static void
466 free_aux_state_map(enum isl_aux_state **state)
467 {
468 free(state);
469 }
470
471 static bool
472 need_to_retile_as_linear(struct brw_context *brw, unsigned row_pitch,
473 enum isl_tiling tiling, unsigned samples)
474 {
475 if (samples > 1)
476 return false;
477
478 if (tiling == ISL_TILING_LINEAR)
479 return false;
480
481 /* If the width is much smaller than a tile, don't bother tiling. */
482 if (row_pitch < 64)
483 return true;
484
485 if (ALIGN(row_pitch, 512) >= 32768) {
486 perf_debug("row pitch %u too large to blit, falling back to untiled",
487 row_pitch);
488 return true;
489 }
490
491 return false;
492 }
493
494 static bool
495 need_to_retile_as_x(const struct brw_context *brw, uint64_t size,
496 enum isl_tiling tiling)
497 {
498 /* If the BO is too large to fit in the aperture, we need to use the
499 * BLT engine to support it. Prior to Sandybridge, the BLT paths can't
500 * handle Y-tiling, so we need to fall back to X.
501 */
502 if (brw->gen < 6 && size >= brw->max_gtt_map_object_size &&
503 tiling == ISL_TILING_Y0)
504 return true;
505
506 return false;
507 }
508
509 static struct intel_mipmap_tree *
510 make_surface(struct brw_context *brw, GLenum target, mesa_format format,
511 unsigned first_level, unsigned last_level,
512 unsigned width0, unsigned height0, unsigned depth0,
513 unsigned num_samples, isl_tiling_flags_t tiling_flags,
514 isl_surf_usage_flags_t isl_usage_flags, uint32_t alloc_flags,
515 unsigned row_pitch, struct brw_bo *bo)
516 {
517 struct intel_mipmap_tree *mt = calloc(sizeof(*mt), 1);
518 if (!mt)
519 return NULL;
520
521 if (!create_mapping_table(target, first_level, last_level, depth0,
522 mt->level)) {
523 free(mt);
524 return NULL;
525 }
526
527 mt->refcount = 1;
528
529 if (target == GL_TEXTURE_CUBE_MAP ||
530 target == GL_TEXTURE_CUBE_MAP_ARRAY)
531 isl_usage_flags |= ISL_SURF_USAGE_CUBE_BIT;
532
533 DBG("%s: %s %s %ux %u:%u:%u %d..%d <-- %p\n",
534 __func__,
535 _mesa_enum_to_string(target),
536 _mesa_get_format_name(format),
537 num_samples, width0, height0, depth0,
538 first_level, last_level, mt);
539
540 struct isl_surf_init_info init_info = {
541 .dim = get_isl_surf_dim(target),
542 .format = translate_tex_format(brw, format, false),
543 .width = width0,
544 .height = height0,
545 .depth = target == GL_TEXTURE_3D ? depth0 : 1,
546 .levels = last_level - first_level + 1,
547 .array_len = target == GL_TEXTURE_3D ? 1 : depth0,
548 .samples = num_samples,
549 .row_pitch = row_pitch,
550 .usage = isl_usage_flags,
551 .tiling_flags = tiling_flags,
552 };
553
554 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
555 goto fail;
556
557 /* In case caller doesn't specifically request Y-tiling (needed
558 * unconditionally for depth), check for corner cases needing special
559 * treatment.
560 */
561 if (tiling_flags & ~ISL_TILING_Y0_BIT) {
562 if (need_to_retile_as_linear(brw, mt->surf.row_pitch,
563 mt->surf.tiling, mt->surf.samples)) {
564 init_info.tiling_flags = 1u << ISL_TILING_LINEAR;
565 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
566 goto fail;
567 } else if (need_to_retile_as_x(brw, mt->surf.size, mt->surf.tiling)) {
568 init_info.tiling_flags = 1u << ISL_TILING_X;
569 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
570 goto fail;
571 }
572 }
573
574 /* In case of linear the buffer gets padded by fixed 64 bytes and therefore
575 * the size may not be multiple of row_pitch.
576 * See isl_apply_surface_padding().
577 */
578 if (mt->surf.tiling != ISL_TILING_LINEAR)
579 assert(mt->surf.size % mt->surf.row_pitch == 0);
580
581 if (!bo) {
582 mt->bo = brw_bo_alloc_tiled(brw->bufmgr, "isl-miptree",
583 mt->surf.size,
584 isl_tiling_to_i915_tiling(
585 mt->surf.tiling),
586 mt->surf.row_pitch, alloc_flags);
587 if (!mt->bo)
588 goto fail;
589 } else {
590 mt->bo = bo;
591 }
592
593 mt->first_level = first_level;
594 mt->last_level = last_level;
595 mt->target = target;
596 mt->format = format;
597 mt->aux_state = NULL;
598 mt->cpp = isl_format_get_layout(mt->surf.format)->bpb / 8;
599 mt->compressed = _mesa_is_format_compressed(format);
600 mt->drm_modifier = DRM_FORMAT_MOD_INVALID;
601
602 return mt;
603
604 fail:
605 intel_miptree_release(&mt);
606 return NULL;
607 }
608
609 static bool
610 make_separate_stencil_surface(struct brw_context *brw,
611 struct intel_mipmap_tree *mt)
612 {
613 mt->stencil_mt = make_surface(brw, mt->target, MESA_FORMAT_S_UINT8,
614 0, mt->surf.levels - 1,
615 mt->surf.logical_level0_px.width,
616 mt->surf.logical_level0_px.height,
617 mt->surf.dim == ISL_SURF_DIM_3D ?
618 mt->surf.logical_level0_px.depth :
619 mt->surf.logical_level0_px.array_len,
620 mt->surf.samples, ISL_TILING_W_BIT,
621 ISL_SURF_USAGE_STENCIL_BIT |
622 ISL_SURF_USAGE_TEXTURE_BIT,
623 BO_ALLOC_FOR_RENDER, 0, NULL);
624
625 if (!mt->stencil_mt)
626 return false;
627
628 mt->stencil_mt->r8stencil_needs_update = true;
629
630 return true;
631 }
632
633 static struct intel_mipmap_tree *
634 miptree_create(struct brw_context *brw,
635 GLenum target,
636 mesa_format format,
637 GLuint first_level,
638 GLuint last_level,
639 GLuint width0,
640 GLuint height0,
641 GLuint depth0,
642 GLuint num_samples,
643 enum intel_miptree_create_flags flags)
644 {
645 if (format == MESA_FORMAT_S_UINT8)
646 return make_surface(brw, target, format, first_level, last_level,
647 width0, height0, depth0, num_samples,
648 ISL_TILING_W_BIT,
649 ISL_SURF_USAGE_STENCIL_BIT |
650 ISL_SURF_USAGE_TEXTURE_BIT,
651 BO_ALLOC_FOR_RENDER,
652 0,
653 NULL);
654
655 const GLenum base_format = _mesa_get_format_base_format(format);
656 if ((base_format == GL_DEPTH_COMPONENT ||
657 base_format == GL_DEPTH_STENCIL) &&
658 !(flags & MIPTREE_CREATE_LINEAR)) {
659 /* Fix up the Z miptree format for how we're splitting out separate
660 * stencil. Gen7 expects there to be no stencil bits in its depth buffer.
661 */
662 const mesa_format depth_only_format =
663 intel_depth_format_for_depthstencil_format(format);
664 struct intel_mipmap_tree *mt = make_surface(
665 brw, target, brw->gen >= 6 ? depth_only_format : format,
666 first_level, last_level,
667 width0, height0, depth0, num_samples, ISL_TILING_Y0_BIT,
668 ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_TEXTURE_BIT,
669 BO_ALLOC_FOR_RENDER, 0, NULL);
670
671 if (needs_separate_stencil(brw, mt, format) &&
672 !make_separate_stencil_surface(brw, mt)) {
673 intel_miptree_release(&mt);
674 return NULL;
675 }
676
677 if (!(flags & MIPTREE_CREATE_NO_AUX))
678 intel_miptree_choose_aux_usage(brw, mt);
679
680 return mt;
681 }
682
683 mesa_format tex_format = format;
684 mesa_format etc_format = MESA_FORMAT_NONE;
685 uint32_t alloc_flags = 0;
686
687 format = intel_lower_compressed_format(brw, format);
688
689 etc_format = (format != tex_format) ? tex_format : MESA_FORMAT_NONE;
690
691 if (flags & MIPTREE_CREATE_BUSY)
692 alloc_flags |= BO_ALLOC_FOR_RENDER;
693
694 isl_tiling_flags_t tiling_flags = (flags & MIPTREE_CREATE_LINEAR) ?
695 ISL_TILING_LINEAR_BIT : ISL_TILING_ANY_MASK;
696
697 /* TODO: This used to be because there wasn't BLORP to handle Y-tiling. */
698 if (brw->gen < 6)
699 tiling_flags &= ~ISL_TILING_Y0_BIT;
700
701 struct intel_mipmap_tree *mt = make_surface(
702 brw, target, format,
703 first_level, last_level,
704 width0, height0, depth0,
705 num_samples, tiling_flags,
706 ISL_SURF_USAGE_RENDER_TARGET_BIT |
707 ISL_SURF_USAGE_TEXTURE_BIT,
708 alloc_flags, 0, NULL);
709 if (!mt)
710 return NULL;
711
712 mt->etc_format = etc_format;
713
714 if (!(flags & MIPTREE_CREATE_NO_AUX))
715 intel_miptree_choose_aux_usage(brw, mt);
716
717 return mt;
718 }
719
720 struct intel_mipmap_tree *
721 intel_miptree_create(struct brw_context *brw,
722 GLenum target,
723 mesa_format format,
724 GLuint first_level,
725 GLuint last_level,
726 GLuint width0,
727 GLuint height0,
728 GLuint depth0,
729 GLuint num_samples,
730 enum intel_miptree_create_flags flags)
731 {
732 assert(num_samples > 0);
733
734 struct intel_mipmap_tree *mt = miptree_create(
735 brw, target, format,
736 first_level, last_level,
737 width0, height0, depth0, num_samples,
738 flags);
739 if (!mt)
740 return NULL;
741
742 mt->offset = 0;
743
744 if (!intel_miptree_alloc_aux(brw, mt)) {
745 intel_miptree_release(&mt);
746 return NULL;
747 }
748
749 return mt;
750 }
751
752 struct intel_mipmap_tree *
753 intel_miptree_create_for_bo(struct brw_context *brw,
754 struct brw_bo *bo,
755 mesa_format format,
756 uint32_t offset,
757 uint32_t width,
758 uint32_t height,
759 uint32_t depth,
760 int pitch,
761 enum intel_miptree_create_flags flags)
762 {
763 struct intel_mipmap_tree *mt;
764 uint32_t tiling, swizzle;
765 const GLenum target = depth > 1 ? GL_TEXTURE_2D_ARRAY : GL_TEXTURE_2D;
766 const GLenum base_format = _mesa_get_format_base_format(format);
767
768 if ((base_format == GL_DEPTH_COMPONENT ||
769 base_format == GL_DEPTH_STENCIL)) {
770 const mesa_format depth_only_format =
771 intel_depth_format_for_depthstencil_format(format);
772 mt = make_surface(brw, target,
773 brw->gen >= 6 ? depth_only_format : format,
774 0, 0, width, height, depth, 1, ISL_TILING_Y0_BIT,
775 ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_TEXTURE_BIT,
776 BO_ALLOC_FOR_RENDER, pitch, bo);
777 if (!mt)
778 return NULL;
779
780 brw_bo_reference(bo);
781
782 if (!(flags & MIPTREE_CREATE_NO_AUX))
783 intel_miptree_choose_aux_usage(brw, mt);
784
785 return mt;
786 } else if (format == MESA_FORMAT_S_UINT8) {
787 mt = make_surface(brw, target, MESA_FORMAT_S_UINT8,
788 0, 0, width, height, depth, 1,
789 ISL_TILING_W_BIT,
790 ISL_SURF_USAGE_STENCIL_BIT |
791 ISL_SURF_USAGE_TEXTURE_BIT,
792 BO_ALLOC_FOR_RENDER, pitch, bo);
793 if (!mt)
794 return NULL;
795
796 assert(bo->size >= mt->surf.size);
797
798 brw_bo_reference(bo);
799 return mt;
800 }
801
802 brw_bo_get_tiling(bo, &tiling, &swizzle);
803
804 /* Nothing will be able to use this miptree with the BO if the offset isn't
805 * aligned.
806 */
807 if (tiling != I915_TILING_NONE)
808 assert(offset % 4096 == 0);
809
810 /* miptrees can't handle negative pitch. If you need flipping of images,
811 * that's outside of the scope of the mt.
812 */
813 assert(pitch >= 0);
814
815 /* The BO already has a tiling format and we shouldn't confuse the lower
816 * layers by making it try to find a tiling format again.
817 */
818 assert((flags & MIPTREE_CREATE_LINEAR) == 0);
819
820 mt = make_surface(brw, target, format,
821 0, 0, width, height, depth, 1,
822 1lu << isl_tiling_from_i915_tiling(tiling),
823 ISL_SURF_USAGE_RENDER_TARGET_BIT |
824 ISL_SURF_USAGE_TEXTURE_BIT,
825 0, pitch, bo);
826 if (!mt)
827 return NULL;
828
829 brw_bo_reference(bo);
830 mt->bo = bo;
831 mt->offset = offset;
832
833 if (!(flags & MIPTREE_CREATE_NO_AUX)) {
834 intel_miptree_choose_aux_usage(brw, mt);
835
836 if (!intel_miptree_alloc_aux(brw, mt)) {
837 intel_miptree_release(&mt);
838 return NULL;
839 }
840 }
841
842 return mt;
843 }
844
845 static struct intel_mipmap_tree *
846 miptree_create_for_planar_image(struct brw_context *brw,
847 __DRIimage *image, GLenum target)
848 {
849 const struct intel_image_format *f = image->planar_format;
850 struct intel_mipmap_tree *planar_mt = NULL;
851
852 for (int i = 0; i < f->nplanes; i++) {
853 const int index = f->planes[i].buffer_index;
854 const uint32_t dri_format = f->planes[i].dri_format;
855 const mesa_format format = driImageFormatToGLFormat(dri_format);
856 const uint32_t width = image->width >> f->planes[i].width_shift;
857 const uint32_t height = image->height >> f->planes[i].height_shift;
858
859 /* Disable creation of the texture's aux buffers because the driver
860 * exposes no EGL API to manage them. That is, there is no API for
861 * resolving the aux buffer's content to the main buffer nor for
862 * invalidating the aux buffer's content.
863 */
864 struct intel_mipmap_tree *mt =
865 intel_miptree_create_for_bo(brw, image->bo, format,
866 image->offsets[index],
867 width, height, 1,
868 image->strides[index],
869 MIPTREE_CREATE_NO_AUX);
870 if (mt == NULL)
871 return NULL;
872
873 mt->target = target;
874
875 if (i == 0)
876 planar_mt = mt;
877 else
878 planar_mt->plane[i - 1] = mt;
879 }
880
881 planar_mt->drm_modifier = image->modifier;
882
883 return planar_mt;
884 }
885
886 static bool
887 create_ccs_buf_for_image(struct brw_context *brw,
888 __DRIimage *image,
889 struct intel_mipmap_tree *mt,
890 enum isl_aux_state initial_state)
891 {
892 struct isl_surf temp_ccs_surf;
893
894 /* CCS is only supported for very simple miptrees */
895 assert(image->aux_offset != 0 && image->aux_pitch != 0);
896 assert(image->tile_x == 0 && image->tile_y == 0);
897 assert(mt->surf.samples == 1);
898 assert(mt->surf.levels == 1);
899 assert(mt->surf.logical_level0_px.depth == 1);
900 assert(mt->surf.logical_level0_px.array_len == 1);
901 assert(mt->first_level == 0);
902 assert(mt->last_level == 0);
903
904 /* We shouldn't already have a CCS */
905 assert(!mt->mcs_buf);
906
907 if (!isl_surf_get_ccs_surf(&brw->isl_dev, &mt->surf, &temp_ccs_surf,
908 image->aux_pitch))
909 return false;
910
911 assert(image->aux_offset < image->bo->size);
912 assert(temp_ccs_surf.size <= image->bo->size - image->aux_offset);
913
914 mt->mcs_buf = calloc(sizeof(*mt->mcs_buf), 1);
915 if (mt->mcs_buf == NULL)
916 return false;
917
918 mt->aux_state = create_aux_state_map(mt, initial_state);
919 if (!mt->aux_state) {
920 free(mt->mcs_buf);
921 mt->mcs_buf = NULL;
922 return false;
923 }
924
925 mt->mcs_buf->bo = image->bo;
926 brw_bo_reference(image->bo);
927
928 mt->mcs_buf->offset = image->aux_offset;
929 mt->mcs_buf->size = image->bo->size - image->aux_offset;
930 mt->mcs_buf->pitch = image->aux_pitch;
931 mt->mcs_buf->qpitch = 0;
932 mt->mcs_buf->surf = temp_ccs_surf;
933
934 return true;
935 }
936
937 struct intel_mipmap_tree *
938 intel_miptree_create_for_dri_image(struct brw_context *brw,
939 __DRIimage *image, GLenum target,
940 enum isl_colorspace colorspace,
941 bool is_winsys_image)
942 {
943 if (image->planar_format && image->planar_format->nplanes > 1) {
944 assert(colorspace == ISL_COLORSPACE_NONE ||
945 colorspace == ISL_COLORSPACE_YUV);
946 return miptree_create_for_planar_image(brw, image, target);
947 }
948
949 if (image->planar_format)
950 assert(image->planar_format->planes[0].dri_format == image->dri_format);
951
952 mesa_format format = image->format;
953 switch (colorspace) {
954 case ISL_COLORSPACE_NONE:
955 /* Keep the image format unmodified */
956 break;
957
958 case ISL_COLORSPACE_LINEAR:
959 format =_mesa_get_srgb_format_linear(format);
960 break;
961
962 case ISL_COLORSPACE_SRGB:
963 format =_mesa_get_linear_format_srgb(format);
964 break;
965
966 default:
967 unreachable("Inalid colorspace for non-planar image");
968 }
969
970 if (!brw->ctx.TextureFormatSupported[format]) {
971 /* The texture storage paths in core Mesa detect if the driver does not
972 * support the user-requested format, and then searches for a
973 * fallback format. The DRIimage code bypasses core Mesa, though. So we
974 * do the fallbacks here for important formats.
975 *
976 * We must support DRM_FOURCC_XBGR8888 textures because the Android
977 * framework produces HAL_PIXEL_FORMAT_RGBX8888 winsys surfaces, which
978 * the Chrome OS compositor consumes as dma_buf EGLImages.
979 */
980 format = _mesa_format_fallback_rgbx_to_rgba(format);
981 }
982
983 if (!brw->ctx.TextureFormatSupported[format])
984 return NULL;
985
986 const struct isl_drm_modifier_info *mod_info =
987 isl_drm_modifier_get_info(image->modifier);
988
989 enum intel_miptree_create_flags mt_create_flags = 0;
990
991 /* If this image comes in from a window system, we have different
992 * requirements than if it comes in via an EGL import operation. Window
993 * system images can use any form of auxiliary compression we wish because
994 * they get "flushed" before being handed off to the window system and we
995 * have the opportunity to do resolves. Non window-system images, on the
996 * other hand, have no resolve point so we can't have aux without a
997 * modifier.
998 */
999 if (!is_winsys_image)
1000 mt_create_flags |= MIPTREE_CREATE_NO_AUX;
1001
1002 /* If we have a modifier which specifies aux, don't create one yet */
1003 if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE)
1004 mt_create_flags |= MIPTREE_CREATE_NO_AUX;
1005
1006 /* Disable creation of the texture's aux buffers because the driver exposes
1007 * no EGL API to manage them. That is, there is no API for resolving the aux
1008 * buffer's content to the main buffer nor for invalidating the aux buffer's
1009 * content.
1010 */
1011 struct intel_mipmap_tree *mt =
1012 intel_miptree_create_for_bo(brw, image->bo, format,
1013 image->offset, image->width, image->height, 1,
1014 image->pitch, mt_create_flags);
1015 if (mt == NULL)
1016 return NULL;
1017
1018 mt->target = target;
1019 mt->level[0].level_x = image->tile_x;
1020 mt->level[0].level_y = image->tile_y;
1021 mt->drm_modifier = image->modifier;
1022
1023 /* From "OES_EGL_image" error reporting. We report GL_INVALID_OPERATION
1024 * for EGL images from non-tile aligned sufaces in gen4 hw and earlier which has
1025 * trouble resolving back to destination image due to alignment issues.
1026 */
1027 if (!brw->has_surface_tile_offset) {
1028 uint32_t draw_x, draw_y;
1029 intel_miptree_get_tile_offsets(mt, 0, 0, &draw_x, &draw_y);
1030
1031 if (draw_x != 0 || draw_y != 0) {
1032 _mesa_error(&brw->ctx, GL_INVALID_OPERATION, __func__);
1033 intel_miptree_release(&mt);
1034 return NULL;
1035 }
1036 }
1037
1038 if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE) {
1039 assert(mod_info->aux_usage == ISL_AUX_USAGE_CCS_E);
1040
1041 mt->aux_usage = mod_info->aux_usage;
1042 /* If we are a window system buffer, then we can support fast-clears
1043 * even if the modifier doesn't support them by doing a partial resolve
1044 * as part of the flush operation.
1045 */
1046 mt->supports_fast_clear =
1047 is_winsys_image || mod_info->supports_clear_color;
1048
1049 /* We don't know the actual state of the surface when we get it but we
1050 * can make a pretty good guess based on the modifier. What we do know
1051 * for sure is that it isn't in the AUX_INVALID state, so we just assume
1052 * a worst case of compression.
1053 */
1054 enum isl_aux_state initial_state =
1055 mod_info->supports_clear_color ? ISL_AUX_STATE_COMPRESSED_CLEAR :
1056 ISL_AUX_STATE_COMPRESSED_NO_CLEAR;
1057
1058 if (!create_ccs_buf_for_image(brw, image, mt, initial_state)) {
1059 intel_miptree_release(&mt);
1060 return NULL;
1061 }
1062 }
1063
1064 /* If this is a window-system image, then we can no longer assume it's
1065 * cache-coherent because it may suddenly get scanned out which destroys
1066 * coherency.
1067 */
1068 if (is_winsys_image)
1069 image->bo->cache_coherent = false;
1070
1071 return mt;
1072 }
1073
1074 /**
1075 * For a singlesample renderbuffer, this simply wraps the given BO with a
1076 * miptree.
1077 *
1078 * For a multisample renderbuffer, this wraps the window system's
1079 * (singlesample) BO with a singlesample miptree attached to the
1080 * intel_renderbuffer, then creates a multisample miptree attached to irb->mt
1081 * that will contain the actual rendering (which is lazily resolved to
1082 * irb->singlesample_mt).
1083 */
1084 bool
1085 intel_update_winsys_renderbuffer_miptree(struct brw_context *intel,
1086 struct intel_renderbuffer *irb,
1087 struct intel_mipmap_tree *singlesample_mt,
1088 uint32_t width, uint32_t height,
1089 uint32_t pitch)
1090 {
1091 struct intel_mipmap_tree *multisample_mt = NULL;
1092 struct gl_renderbuffer *rb = &irb->Base.Base;
1093 mesa_format format = rb->Format;
1094 const unsigned num_samples = MAX2(rb->NumSamples, 1);
1095
1096 /* Only the front and back buffers, which are color buffers, are allocated
1097 * through the image loader.
1098 */
1099 assert(_mesa_get_format_base_format(format) == GL_RGB ||
1100 _mesa_get_format_base_format(format) == GL_RGBA);
1101
1102 assert(singlesample_mt);
1103
1104 if (num_samples == 1) {
1105 intel_miptree_release(&irb->mt);
1106 irb->mt = singlesample_mt;
1107
1108 assert(!irb->singlesample_mt);
1109 } else {
1110 intel_miptree_release(&irb->singlesample_mt);
1111 irb->singlesample_mt = singlesample_mt;
1112
1113 if (!irb->mt ||
1114 irb->mt->surf.logical_level0_px.width != width ||
1115 irb->mt->surf.logical_level0_px.height != height) {
1116 multisample_mt = intel_miptree_create_for_renderbuffer(intel,
1117 format,
1118 width,
1119 height,
1120 num_samples);
1121 if (!multisample_mt)
1122 goto fail;
1123
1124 irb->need_downsample = false;
1125 intel_miptree_release(&irb->mt);
1126 irb->mt = multisample_mt;
1127 }
1128 }
1129 return true;
1130
1131 fail:
1132 intel_miptree_release(&irb->mt);
1133 return false;
1134 }
1135
1136 struct intel_mipmap_tree*
1137 intel_miptree_create_for_renderbuffer(struct brw_context *brw,
1138 mesa_format format,
1139 uint32_t width,
1140 uint32_t height,
1141 uint32_t num_samples)
1142 {
1143 struct intel_mipmap_tree *mt;
1144 uint32_t depth = 1;
1145 GLenum target = num_samples > 1 ? GL_TEXTURE_2D_MULTISAMPLE : GL_TEXTURE_2D;
1146
1147 mt = intel_miptree_create(brw, target, format, 0, 0,
1148 width, height, depth, num_samples,
1149 MIPTREE_CREATE_BUSY);
1150 if (!mt)
1151 goto fail;
1152
1153 return mt;
1154
1155 fail:
1156 intel_miptree_release(&mt);
1157 return NULL;
1158 }
1159
1160 void
1161 intel_miptree_reference(struct intel_mipmap_tree **dst,
1162 struct intel_mipmap_tree *src)
1163 {
1164 if (*dst == src)
1165 return;
1166
1167 intel_miptree_release(dst);
1168
1169 if (src) {
1170 src->refcount++;
1171 DBG("%s %p refcount now %d\n", __func__, src, src->refcount);
1172 }
1173
1174 *dst = src;
1175 }
1176
1177 static void
1178 intel_miptree_aux_buffer_free(struct intel_miptree_aux_buffer *aux_buf)
1179 {
1180 if (aux_buf == NULL)
1181 return;
1182
1183 brw_bo_unreference(aux_buf->bo);
1184
1185 free(aux_buf);
1186 }
1187
1188 void
1189 intel_miptree_release(struct intel_mipmap_tree **mt)
1190 {
1191 if (!*mt)
1192 return;
1193
1194 DBG("%s %p refcount will be %d\n", __func__, *mt, (*mt)->refcount - 1);
1195 if (--(*mt)->refcount <= 0) {
1196 GLuint i;
1197
1198 DBG("%s deleting %p\n", __func__, *mt);
1199
1200 brw_bo_unreference((*mt)->bo);
1201 intel_miptree_release(&(*mt)->stencil_mt);
1202 intel_miptree_release(&(*mt)->r8stencil_mt);
1203 intel_miptree_aux_buffer_free((*mt)->hiz_buf);
1204 intel_miptree_aux_buffer_free((*mt)->mcs_buf);
1205 free_aux_state_map((*mt)->aux_state);
1206
1207 intel_miptree_release(&(*mt)->plane[0]);
1208 intel_miptree_release(&(*mt)->plane[1]);
1209
1210 for (i = 0; i < MAX_TEXTURE_LEVELS; i++) {
1211 free((*mt)->level[i].slice);
1212 }
1213
1214 free(*mt);
1215 }
1216 *mt = NULL;
1217 }
1218
1219
1220 void
1221 intel_get_image_dims(struct gl_texture_image *image,
1222 int *width, int *height, int *depth)
1223 {
1224 switch (image->TexObject->Target) {
1225 case GL_TEXTURE_1D_ARRAY:
1226 /* For a 1D Array texture the OpenGL API will treat the image height as
1227 * the number of array slices. For Intel hardware, we treat the 1D array
1228 * as a 2D Array with a height of 1. So, here we want to swap image
1229 * height and depth.
1230 */
1231 assert(image->Depth == 1);
1232 *width = image->Width;
1233 *height = 1;
1234 *depth = image->Height;
1235 break;
1236 case GL_TEXTURE_CUBE_MAP:
1237 /* For Cube maps, the mesa/main api layer gives us a depth of 1 even
1238 * though we really have 6 slices.
1239 */
1240 assert(image->Depth == 1);
1241 *width = image->Width;
1242 *height = image->Height;
1243 *depth = 6;
1244 break;
1245 default:
1246 *width = image->Width;
1247 *height = image->Height;
1248 *depth = image->Depth;
1249 break;
1250 }
1251 }
1252
1253 /**
1254 * Can the image be pulled into a unified mipmap tree? This mirrors
1255 * the completeness test in a lot of ways.
1256 *
1257 * Not sure whether I want to pass gl_texture_image here.
1258 */
1259 bool
1260 intel_miptree_match_image(struct intel_mipmap_tree *mt,
1261 struct gl_texture_image *image)
1262 {
1263 struct intel_texture_image *intelImage = intel_texture_image(image);
1264 GLuint level = intelImage->base.Base.Level;
1265 int width, height, depth;
1266
1267 /* glTexImage* choose the texture object based on the target passed in, and
1268 * objects can't change targets over their lifetimes, so this should be
1269 * true.
1270 */
1271 assert(image->TexObject->Target == mt->target);
1272
1273 mesa_format mt_format = mt->format;
1274 if (mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT && mt->stencil_mt)
1275 mt_format = MESA_FORMAT_Z24_UNORM_S8_UINT;
1276 if (mt->format == MESA_FORMAT_Z_FLOAT32 && mt->stencil_mt)
1277 mt_format = MESA_FORMAT_Z32_FLOAT_S8X24_UINT;
1278 if (mt->etc_format != MESA_FORMAT_NONE)
1279 mt_format = mt->etc_format;
1280
1281 if (image->TexFormat != mt_format)
1282 return false;
1283
1284 intel_get_image_dims(image, &width, &height, &depth);
1285
1286 if (mt->target == GL_TEXTURE_CUBE_MAP)
1287 depth = 6;
1288
1289 if (level >= mt->surf.levels)
1290 return false;
1291
1292 const unsigned level_depth =
1293 mt->surf.dim == ISL_SURF_DIM_3D ?
1294 minify(mt->surf.logical_level0_px.depth, level) :
1295 mt->surf.logical_level0_px.array_len;
1296
1297 return width == minify(mt->surf.logical_level0_px.width, level) &&
1298 height == minify(mt->surf.logical_level0_px.height, level) &&
1299 depth == level_depth &&
1300 MAX2(image->NumSamples, 1) == mt->surf.samples;
1301 }
1302
1303 void
1304 intel_miptree_get_image_offset(const struct intel_mipmap_tree *mt,
1305 GLuint level, GLuint slice,
1306 GLuint *x, GLuint *y)
1307 {
1308 if (level == 0 && slice == 0) {
1309 *x = mt->level[0].level_x;
1310 *y = mt->level[0].level_y;
1311 return;
1312 }
1313
1314 uint32_t x_offset_sa, y_offset_sa;
1315
1316 /* Miptree itself can have an offset only if it represents a single
1317 * slice in an imported buffer object.
1318 * See intel_miptree_create_for_dri_image().
1319 */
1320 assert(mt->level[0].level_x == 0);
1321 assert(mt->level[0].level_y == 0);
1322
1323 /* Given level is relative to level zero while the miptree may be
1324 * represent just a subset of all levels starting from 'first_level'.
1325 */
1326 assert(level >= mt->first_level);
1327 level -= mt->first_level;
1328
1329 const unsigned z = mt->surf.dim == ISL_SURF_DIM_3D ? slice : 0;
1330 slice = mt->surf.dim == ISL_SURF_DIM_3D ? 0 : slice;
1331 isl_surf_get_image_offset_el(&mt->surf, level, slice, z,
1332 &x_offset_sa, &y_offset_sa);
1333
1334 *x = x_offset_sa;
1335 *y = y_offset_sa;
1336 }
1337
1338
1339 /**
1340 * This function computes the tile_w (in bytes) and tile_h (in rows) of
1341 * different tiling patterns. If the BO is untiled, tile_w is set to cpp
1342 * and tile_h is set to 1.
1343 */
1344 void
1345 intel_get_tile_dims(enum isl_tiling tiling, uint32_t cpp,
1346 uint32_t *tile_w, uint32_t *tile_h)
1347 {
1348 switch (tiling) {
1349 case ISL_TILING_X:
1350 *tile_w = 512;
1351 *tile_h = 8;
1352 break;
1353 case ISL_TILING_Y0:
1354 *tile_w = 128;
1355 *tile_h = 32;
1356 break;
1357 case ISL_TILING_LINEAR:
1358 *tile_w = cpp;
1359 *tile_h = 1;
1360 break;
1361 default:
1362 unreachable("not reached");
1363 }
1364 }
1365
1366
1367 /**
1368 * This function computes masks that may be used to select the bits of the X
1369 * and Y coordinates that indicate the offset within a tile. If the BO is
1370 * untiled, the masks are set to 0.
1371 */
1372 void
1373 intel_get_tile_masks(enum isl_tiling tiling, uint32_t cpp,
1374 uint32_t *mask_x, uint32_t *mask_y)
1375 {
1376 uint32_t tile_w_bytes, tile_h;
1377
1378 intel_get_tile_dims(tiling, cpp, &tile_w_bytes, &tile_h);
1379
1380 *mask_x = tile_w_bytes / cpp - 1;
1381 *mask_y = tile_h - 1;
1382 }
1383
1384 /**
1385 * Compute the offset (in bytes) from the start of the BO to the given x
1386 * and y coordinate. For tiled BOs, caller must ensure that x and y are
1387 * multiples of the tile size.
1388 */
1389 uint32_t
1390 intel_miptree_get_aligned_offset(const struct intel_mipmap_tree *mt,
1391 uint32_t x, uint32_t y)
1392 {
1393 int cpp = mt->cpp;
1394 uint32_t pitch = mt->surf.row_pitch;
1395
1396 switch (mt->surf.tiling) {
1397 default:
1398 unreachable("not reached");
1399 case ISL_TILING_LINEAR:
1400 return y * pitch + x * cpp;
1401 case ISL_TILING_X:
1402 assert((x % (512 / cpp)) == 0);
1403 assert((y % 8) == 0);
1404 return y * pitch + x / (512 / cpp) * 4096;
1405 case ISL_TILING_Y0:
1406 assert((x % (128 / cpp)) == 0);
1407 assert((y % 32) == 0);
1408 return y * pitch + x / (128 / cpp) * 4096;
1409 }
1410 }
1411
1412 /**
1413 * Rendering with tiled buffers requires that the base address of the buffer
1414 * be aligned to a page boundary. For renderbuffers, and sometimes with
1415 * textures, we may want the surface to point at a texture image level that
1416 * isn't at a page boundary.
1417 *
1418 * This function returns an appropriately-aligned base offset
1419 * according to the tiling restrictions, plus any required x/y offset
1420 * from there.
1421 */
1422 uint32_t
1423 intel_miptree_get_tile_offsets(const struct intel_mipmap_tree *mt,
1424 GLuint level, GLuint slice,
1425 uint32_t *tile_x,
1426 uint32_t *tile_y)
1427 {
1428 uint32_t x, y;
1429 uint32_t mask_x, mask_y;
1430
1431 intel_get_tile_masks(mt->surf.tiling, mt->cpp, &mask_x, &mask_y);
1432 intel_miptree_get_image_offset(mt, level, slice, &x, &y);
1433
1434 *tile_x = x & mask_x;
1435 *tile_y = y & mask_y;
1436
1437 return intel_miptree_get_aligned_offset(mt, x & ~mask_x, y & ~mask_y);
1438 }
1439
1440 static void
1441 intel_miptree_copy_slice_sw(struct brw_context *brw,
1442 struct intel_mipmap_tree *src_mt,
1443 unsigned src_level, unsigned src_layer,
1444 struct intel_mipmap_tree *dst_mt,
1445 unsigned dst_level, unsigned dst_layer,
1446 unsigned width, unsigned height)
1447 {
1448 void *src, *dst;
1449 ptrdiff_t src_stride, dst_stride;
1450 const unsigned cpp = (isl_format_get_layout(dst_mt->surf.format)->bpb / 8);
1451
1452 intel_miptree_map(brw, src_mt,
1453 src_level, src_layer,
1454 0, 0,
1455 width, height,
1456 GL_MAP_READ_BIT | BRW_MAP_DIRECT_BIT,
1457 &src, &src_stride);
1458
1459 intel_miptree_map(brw, dst_mt,
1460 dst_level, dst_layer,
1461 0, 0,
1462 width, height,
1463 GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_RANGE_BIT |
1464 BRW_MAP_DIRECT_BIT,
1465 &dst, &dst_stride);
1466
1467 DBG("sw blit %s mt %p %p/%"PRIdPTR" -> %s mt %p %p/%"PRIdPTR" (%dx%d)\n",
1468 _mesa_get_format_name(src_mt->format),
1469 src_mt, src, src_stride,
1470 _mesa_get_format_name(dst_mt->format),
1471 dst_mt, dst, dst_stride,
1472 width, height);
1473
1474 int row_size = cpp * width;
1475 if (src_stride == row_size &&
1476 dst_stride == row_size) {
1477 memcpy(dst, src, row_size * height);
1478 } else {
1479 for (int i = 0; i < height; i++) {
1480 memcpy(dst, src, row_size);
1481 dst += dst_stride;
1482 src += src_stride;
1483 }
1484 }
1485
1486 intel_miptree_unmap(brw, dst_mt, dst_level, dst_layer);
1487 intel_miptree_unmap(brw, src_mt, src_level, src_layer);
1488
1489 /* Don't forget to copy the stencil data over, too. We could have skipped
1490 * passing BRW_MAP_DIRECT_BIT, but that would have meant intel_miptree_map
1491 * shuffling the two data sources in/out of temporary storage instead of
1492 * the direct mapping we get this way.
1493 */
1494 if (dst_mt->stencil_mt) {
1495 assert(src_mt->stencil_mt);
1496 intel_miptree_copy_slice_sw(brw,
1497 src_mt->stencil_mt, src_level, src_layer,
1498 dst_mt->stencil_mt, dst_level, dst_layer,
1499 width, height);
1500 }
1501 }
1502
1503 void
1504 intel_miptree_copy_slice(struct brw_context *brw,
1505 struct intel_mipmap_tree *src_mt,
1506 unsigned src_level, unsigned src_layer,
1507 struct intel_mipmap_tree *dst_mt,
1508 unsigned dst_level, unsigned dst_layer)
1509
1510 {
1511 mesa_format format = src_mt->format;
1512 unsigned width = minify(src_mt->surf.phys_level0_sa.width,
1513 src_level - src_mt->first_level);
1514 unsigned height = minify(src_mt->surf.phys_level0_sa.height,
1515 src_level - src_mt->first_level);
1516
1517 assert(src_layer < get_num_phys_layers(&src_mt->surf,
1518 src_level - src_mt->first_level));
1519
1520 assert(src_mt->format == dst_mt->format);
1521
1522 if (dst_mt->compressed) {
1523 unsigned int i, j;
1524 _mesa_get_format_block_size(dst_mt->format, &i, &j);
1525 height = ALIGN_NPOT(height, j) / j;
1526 width = ALIGN_NPOT(width, i) / i;
1527 }
1528
1529 /* If it's a packed depth/stencil buffer with separate stencil, the blit
1530 * below won't apply since we can't do the depth's Y tiling or the
1531 * stencil's W tiling in the blitter.
1532 */
1533 if (src_mt->stencil_mt) {
1534 intel_miptree_copy_slice_sw(brw,
1535 src_mt, src_level, src_layer,
1536 dst_mt, dst_level, dst_layer,
1537 width, height);
1538 return;
1539 }
1540
1541 uint32_t dst_x, dst_y, src_x, src_y;
1542 intel_miptree_get_image_offset(dst_mt, dst_level, dst_layer,
1543 &dst_x, &dst_y);
1544 intel_miptree_get_image_offset(src_mt, src_level, src_layer,
1545 &src_x, &src_y);
1546
1547 DBG("validate blit mt %s %p %d,%d/%d -> mt %s %p %d,%d/%d (%dx%d)\n",
1548 _mesa_get_format_name(src_mt->format),
1549 src_mt, src_x, src_y, src_mt->surf.row_pitch,
1550 _mesa_get_format_name(dst_mt->format),
1551 dst_mt, dst_x, dst_y, dst_mt->surf.row_pitch,
1552 width, height);
1553
1554 if (!intel_miptree_blit(brw,
1555 src_mt, src_level, src_layer, 0, 0, false,
1556 dst_mt, dst_level, dst_layer, 0, 0, false,
1557 width, height, GL_COPY)) {
1558 perf_debug("miptree validate blit for %s failed\n",
1559 _mesa_get_format_name(format));
1560
1561 intel_miptree_copy_slice_sw(brw,
1562 src_mt, src_level, src_layer,
1563 dst_mt, dst_level, dst_layer,
1564 width, height);
1565 }
1566 }
1567
1568 /**
1569 * Copies the image's current data to the given miptree, and associates that
1570 * miptree with the image.
1571 *
1572 * If \c invalidate is true, then the actual image data does not need to be
1573 * copied, but the image still needs to be associated to the new miptree (this
1574 * is set to true if we're about to clear the image).
1575 */
1576 void
1577 intel_miptree_copy_teximage(struct brw_context *brw,
1578 struct intel_texture_image *intelImage,
1579 struct intel_mipmap_tree *dst_mt,
1580 bool invalidate)
1581 {
1582 struct intel_mipmap_tree *src_mt = intelImage->mt;
1583 struct intel_texture_object *intel_obj =
1584 intel_texture_object(intelImage->base.Base.TexObject);
1585 int level = intelImage->base.Base.Level;
1586 const unsigned face = intelImage->base.Base.Face;
1587 unsigned start_layer, end_layer;
1588
1589 if (intel_obj->base.Target == GL_TEXTURE_1D_ARRAY) {
1590 assert(face == 0);
1591 assert(intelImage->base.Base.Height);
1592 start_layer = 0;
1593 end_layer = intelImage->base.Base.Height - 1;
1594 } else if (face > 0) {
1595 start_layer = face;
1596 end_layer = face;
1597 } else {
1598 assert(intelImage->base.Base.Depth);
1599 start_layer = 0;
1600 end_layer = intelImage->base.Base.Depth - 1;
1601 }
1602
1603 if (!invalidate) {
1604 for (unsigned i = start_layer; i <= end_layer; i++) {
1605 intel_miptree_copy_slice(brw,
1606 src_mt, level, i,
1607 dst_mt, level, i);
1608 }
1609 }
1610
1611 intel_miptree_reference(&intelImage->mt, dst_mt);
1612 intel_obj->needs_validate = true;
1613 }
1614
1615 static void
1616 intel_miptree_init_mcs(struct brw_context *brw,
1617 struct intel_mipmap_tree *mt,
1618 int init_value)
1619 {
1620 assert(mt->mcs_buf != NULL);
1621
1622 /* From the Ivy Bridge PRM, Vol 2 Part 1 p326:
1623 *
1624 * When MCS buffer is enabled and bound to MSRT, it is required that it
1625 * is cleared prior to any rendering.
1626 *
1627 * Since we don't use the MCS buffer for any purpose other than rendering,
1628 * it makes sense to just clear it immediately upon allocation.
1629 *
1630 * Note: the clear value for MCS buffers is all 1's, so we memset to 0xff.
1631 */
1632 void *map = brw_bo_map(brw, mt->mcs_buf->bo, MAP_WRITE);
1633 if (unlikely(map == NULL)) {
1634 fprintf(stderr, "Failed to map mcs buffer into GTT\n");
1635 brw_bo_unreference(mt->mcs_buf->bo);
1636 free(mt->mcs_buf);
1637 return;
1638 }
1639 void *data = map;
1640 memset(data, init_value, mt->mcs_buf->size);
1641 brw_bo_unmap(mt->mcs_buf->bo);
1642 }
1643
1644 static struct intel_miptree_aux_buffer *
1645 intel_alloc_aux_buffer(struct brw_context *brw,
1646 const char *name,
1647 const struct isl_surf *aux_surf,
1648 uint32_t alloc_flags,
1649 struct intel_mipmap_tree *mt)
1650 {
1651 struct intel_miptree_aux_buffer *buf = calloc(sizeof(*buf), 1);
1652 if (!buf)
1653 return false;
1654
1655 buf->size = aux_surf->size;
1656 buf->pitch = aux_surf->row_pitch;
1657 buf->qpitch = isl_surf_get_array_pitch_sa_rows(aux_surf);
1658
1659 /* ISL has stricter set of alignment rules then the drm allocator.
1660 * Therefore one can pass the ISL dimensions in terms of bytes instead of
1661 * trying to recalculate based on different format block sizes.
1662 */
1663 buf->bo = brw_bo_alloc_tiled(brw->bufmgr, name, buf->size,
1664 I915_TILING_Y, buf->pitch, alloc_flags);
1665 if (!buf->bo) {
1666 free(buf);
1667 return NULL;
1668 }
1669
1670 buf->surf = *aux_surf;
1671
1672 return buf;
1673 }
1674
1675 static bool
1676 intel_miptree_alloc_mcs(struct brw_context *brw,
1677 struct intel_mipmap_tree *mt,
1678 GLuint num_samples)
1679 {
1680 assert(brw->gen >= 7); /* MCS only used on Gen7+ */
1681 assert(mt->mcs_buf == NULL);
1682 assert(mt->aux_usage == ISL_AUX_USAGE_MCS);
1683
1684 /* Multisampled miptrees are only supported for single level. */
1685 assert(mt->first_level == 0);
1686 enum isl_aux_state **aux_state =
1687 create_aux_state_map(mt, ISL_AUX_STATE_CLEAR);
1688 if (!aux_state)
1689 return false;
1690
1691 struct isl_surf temp_mcs_surf;
1692
1693 MAYBE_UNUSED bool ok =
1694 isl_surf_get_mcs_surf(&brw->isl_dev, &mt->surf, &temp_mcs_surf);
1695 assert(ok);
1696
1697 /* Buffer needs to be initialised requiring the buffer to be immediately
1698 * mapped to cpu space for writing. Therefore do not use the gpu access
1699 * flag which can cause an unnecessary delay if the backing pages happened
1700 * to be just used by the GPU.
1701 */
1702 const uint32_t alloc_flags = 0;
1703 mt->mcs_buf = intel_alloc_aux_buffer(brw, "mcs-miptree",
1704 &temp_mcs_surf, alloc_flags, mt);
1705 if (!mt->mcs_buf) {
1706 free(aux_state);
1707 return false;
1708 }
1709
1710 mt->aux_state = aux_state;
1711
1712 intel_miptree_init_mcs(brw, mt, 0xFF);
1713
1714 return true;
1715 }
1716
1717 bool
1718 intel_miptree_alloc_ccs(struct brw_context *brw,
1719 struct intel_mipmap_tree *mt)
1720 {
1721 assert(mt->mcs_buf == NULL);
1722 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_E ||
1723 mt->aux_usage == ISL_AUX_USAGE_CCS_D);
1724
1725 struct isl_surf temp_ccs_surf;
1726
1727 if (!isl_surf_get_ccs_surf(&brw->isl_dev, &mt->surf, &temp_ccs_surf, 0))
1728 return false;
1729
1730 assert(temp_ccs_surf.size &&
1731 (temp_ccs_surf.size % temp_ccs_surf.row_pitch == 0));
1732
1733 enum isl_aux_state **aux_state =
1734 create_aux_state_map(mt, ISL_AUX_STATE_PASS_THROUGH);
1735 if (!aux_state)
1736 return false;
1737
1738 /* When CCS_E is used, we need to ensure that the CCS starts off in a valid
1739 * state. From the Sky Lake PRM, "MCS Buffer for Render Target(s)":
1740 *
1741 * "If Software wants to enable Color Compression without Fast clear,
1742 * Software needs to initialize MCS with zeros."
1743 *
1744 * A CCS value of 0 indicates that the corresponding block is in the
1745 * pass-through state which is what we want.
1746 *
1747 * For CCS_D, on the other hand, we don't care as we're about to perform a
1748 * fast-clear operation. In that case, being hot in caches more useful.
1749 */
1750 const uint32_t alloc_flags = mt->aux_usage == ISL_AUX_USAGE_CCS_E ?
1751 BO_ALLOC_ZEROED : BO_ALLOC_FOR_RENDER;
1752 mt->mcs_buf = intel_alloc_aux_buffer(brw, "ccs-miptree",
1753 &temp_ccs_surf, alloc_flags, mt);
1754 if (!mt->mcs_buf) {
1755 free(aux_state);
1756 return false;
1757 }
1758
1759 mt->aux_state = aux_state;
1760
1761 return true;
1762 }
1763
1764 /**
1765 * Helper for intel_miptree_alloc_hiz() that sets
1766 * \c mt->level[level].has_hiz. Return true if and only if
1767 * \c has_hiz was set.
1768 */
1769 static bool
1770 intel_miptree_level_enable_hiz(struct brw_context *brw,
1771 struct intel_mipmap_tree *mt,
1772 uint32_t level)
1773 {
1774 assert(mt->hiz_buf);
1775 assert(mt->surf.size > 0);
1776
1777 if (brw->gen >= 8 || brw->is_haswell) {
1778 uint32_t width = minify(mt->surf.phys_level0_sa.width, level);
1779 uint32_t height = minify(mt->surf.phys_level0_sa.height, level);
1780
1781 /* Disable HiZ for LOD > 0 unless the width is 8 aligned
1782 * and the height is 4 aligned. This allows our HiZ support
1783 * to fulfill Haswell restrictions for HiZ ops. For LOD == 0,
1784 * we can grow the width & height to allow the HiZ op to
1785 * force the proper size alignments.
1786 */
1787 if (level > 0 && ((width & 7) || (height & 3))) {
1788 DBG("mt %p level %d: HiZ DISABLED\n", mt, level);
1789 return false;
1790 }
1791 }
1792
1793 DBG("mt %p level %d: HiZ enabled\n", mt, level);
1794 mt->level[level].has_hiz = true;
1795 return true;
1796 }
1797
1798 bool
1799 intel_miptree_alloc_hiz(struct brw_context *brw,
1800 struct intel_mipmap_tree *mt)
1801 {
1802 assert(mt->hiz_buf == NULL);
1803 assert(mt->aux_usage == ISL_AUX_USAGE_HIZ);
1804
1805 enum isl_aux_state **aux_state =
1806 create_aux_state_map(mt, ISL_AUX_STATE_AUX_INVALID);
1807 if (!aux_state)
1808 return false;
1809
1810 struct isl_surf temp_hiz_surf;
1811
1812 MAYBE_UNUSED bool ok =
1813 isl_surf_get_hiz_surf(&brw->isl_dev, &mt->surf, &temp_hiz_surf);
1814 assert(ok);
1815
1816 const uint32_t alloc_flags = BO_ALLOC_FOR_RENDER;
1817 mt->hiz_buf = intel_alloc_aux_buffer(brw, "hiz-miptree",
1818 &temp_hiz_surf, alloc_flags, mt);
1819
1820 if (!mt->hiz_buf) {
1821 free(aux_state);
1822 return false;
1823 }
1824
1825 for (unsigned level = mt->first_level; level <= mt->last_level; ++level)
1826 intel_miptree_level_enable_hiz(brw, mt, level);
1827
1828 mt->aux_state = aux_state;
1829
1830 return true;
1831 }
1832
1833
1834 /**
1835 * Allocate the initial aux surface for a miptree based on mt->aux_usage
1836 *
1837 * Since MCS, HiZ, and CCS_E can compress more than just clear color, we
1838 * create the auxiliary surfaces up-front. CCS_D, on the other hand, can only
1839 * compress clear color so we wait until an actual fast-clear to allocate it.
1840 */
1841 static bool
1842 intel_miptree_alloc_aux(struct brw_context *brw,
1843 struct intel_mipmap_tree *mt)
1844 {
1845 switch (mt->aux_usage) {
1846 case ISL_AUX_USAGE_NONE:
1847 return true;
1848
1849 case ISL_AUX_USAGE_HIZ:
1850 assert(!_mesa_is_format_color_format(mt->format));
1851 if (!intel_miptree_alloc_hiz(brw, mt))
1852 return false;
1853 return true;
1854
1855 case ISL_AUX_USAGE_MCS:
1856 assert(_mesa_is_format_color_format(mt->format));
1857 assert(mt->surf.samples > 1);
1858 if (!intel_miptree_alloc_mcs(brw, mt, mt->surf.samples))
1859 return false;
1860 return true;
1861
1862 case ISL_AUX_USAGE_CCS_D:
1863 /* Since CCS_D can only compress clear color so we wait until an actual
1864 * fast-clear to allocate it.
1865 */
1866 return true;
1867
1868 case ISL_AUX_USAGE_CCS_E:
1869 assert(_mesa_is_format_color_format(mt->format));
1870 assert(mt->surf.samples == 1);
1871 if (!intel_miptree_alloc_ccs(brw, mt))
1872 return false;
1873 return true;
1874 }
1875
1876 unreachable("Invalid aux usage");
1877 }
1878
1879
1880 /**
1881 * Can the miptree sample using the hiz buffer?
1882 */
1883 bool
1884 intel_miptree_sample_with_hiz(struct brw_context *brw,
1885 struct intel_mipmap_tree *mt)
1886 {
1887 /* It's unclear how well supported sampling from the hiz buffer is on GEN8,
1888 * so keep things conservative for now and never enable it unless we're SKL+.
1889 */
1890 if (brw->gen < 9) {
1891 return false;
1892 }
1893
1894 if (!mt->hiz_buf) {
1895 return false;
1896 }
1897
1898 /* It seems the hardware won't fallback to the depth buffer if some of the
1899 * mipmap levels aren't available in the HiZ buffer. So we need all levels
1900 * of the texture to be HiZ enabled.
1901 */
1902 for (unsigned level = 0; level < mt->surf.levels; ++level) {
1903 if (!intel_miptree_level_has_hiz(mt, level))
1904 return false;
1905 }
1906
1907 /* If compressed multisampling is enabled, then we use it for the auxiliary
1908 * buffer instead.
1909 *
1910 * From the BDW PRM (Volume 2d: Command Reference: Structures
1911 * RENDER_SURFACE_STATE.AuxiliarySurfaceMode):
1912 *
1913 * "If this field is set to AUX_HIZ, Number of Multisamples must be
1914 * MULTISAMPLECOUNT_1, and Surface Type cannot be SURFTYPE_3D.
1915 *
1916 * There is no such blurb for 1D textures, but there is sufficient evidence
1917 * that this is broken on SKL+.
1918 */
1919 return (mt->surf.samples == 1 &&
1920 mt->target != GL_TEXTURE_3D &&
1921 mt->target != GL_TEXTURE_1D /* gen9+ restriction */);
1922 }
1923
1924 /**
1925 * Does the miptree slice have hiz enabled?
1926 */
1927 bool
1928 intel_miptree_level_has_hiz(const struct intel_mipmap_tree *mt, uint32_t level)
1929 {
1930 intel_miptree_check_level_layer(mt, level, 0);
1931 return mt->level[level].has_hiz;
1932 }
1933
1934 static inline uint32_t
1935 miptree_level_range_length(const struct intel_mipmap_tree *mt,
1936 uint32_t start_level, uint32_t num_levels)
1937 {
1938 assert(start_level >= mt->first_level);
1939 assert(start_level <= mt->last_level);
1940
1941 if (num_levels == INTEL_REMAINING_LAYERS)
1942 num_levels = mt->last_level - start_level + 1;
1943 /* Check for overflow */
1944 assert(start_level + num_levels >= start_level);
1945 assert(start_level + num_levels <= mt->last_level + 1);
1946
1947 return num_levels;
1948 }
1949
1950 static inline uint32_t
1951 miptree_layer_range_length(const struct intel_mipmap_tree *mt, uint32_t level,
1952 uint32_t start_layer, uint32_t num_layers)
1953 {
1954 assert(level <= mt->last_level);
1955
1956 const uint32_t total_num_layers = brw_get_num_logical_layers(mt, level);
1957 assert(start_layer < total_num_layers);
1958 if (num_layers == INTEL_REMAINING_LAYERS)
1959 num_layers = total_num_layers - start_layer;
1960 /* Check for overflow */
1961 assert(start_layer + num_layers >= start_layer);
1962 assert(start_layer + num_layers <= total_num_layers);
1963
1964 return num_layers;
1965 }
1966
1967 bool
1968 intel_miptree_has_color_unresolved(const struct intel_mipmap_tree *mt,
1969 unsigned start_level, unsigned num_levels,
1970 unsigned start_layer, unsigned num_layers)
1971 {
1972 assert(_mesa_is_format_color_format(mt->format));
1973
1974 if (!mt->mcs_buf)
1975 return false;
1976
1977 /* Clamp the level range to fit the miptree */
1978 num_levels = miptree_level_range_length(mt, start_level, num_levels);
1979
1980 for (uint32_t l = 0; l < num_levels; l++) {
1981 const uint32_t level = start_level + l;
1982 const uint32_t level_layers =
1983 miptree_layer_range_length(mt, level, start_layer, num_layers);
1984 for (unsigned a = 0; a < level_layers; a++) {
1985 enum isl_aux_state aux_state =
1986 intel_miptree_get_aux_state(mt, level, start_layer + a);
1987 assert(aux_state != ISL_AUX_STATE_AUX_INVALID);
1988 if (aux_state != ISL_AUX_STATE_PASS_THROUGH)
1989 return true;
1990 }
1991 }
1992
1993 return false;
1994 }
1995
1996 static void
1997 intel_miptree_check_color_resolve(const struct brw_context *brw,
1998 const struct intel_mipmap_tree *mt,
1999 unsigned level, unsigned layer)
2000 {
2001
2002 if (!mt->mcs_buf)
2003 return;
2004
2005 /* Fast color clear is supported for mipmapped surfaces only on Gen8+. */
2006 assert(brw->gen >= 8 ||
2007 (level == 0 && mt->first_level == 0 && mt->last_level == 0));
2008
2009 /* Compression of arrayed msaa surfaces is supported. */
2010 if (mt->surf.samples > 1)
2011 return;
2012
2013 /* Fast color clear is supported for non-msaa arrays only on Gen8+. */
2014 assert(brw->gen >= 8 ||
2015 (layer == 0 &&
2016 mt->surf.logical_level0_px.depth == 1 &&
2017 mt->surf.logical_level0_px.array_len == 1));
2018
2019 (void)level;
2020 (void)layer;
2021 }
2022
2023 static enum blorp_fast_clear_op
2024 get_ccs_d_resolve_op(enum isl_aux_state aux_state,
2025 enum isl_aux_usage aux_usage,
2026 bool fast_clear_supported)
2027 {
2028 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_CCS_D);
2029
2030 const bool ccs_supported = aux_usage == ISL_AUX_USAGE_CCS_D;
2031
2032 assert(ccs_supported == fast_clear_supported);
2033
2034 switch (aux_state) {
2035 case ISL_AUX_STATE_CLEAR:
2036 case ISL_AUX_STATE_PARTIAL_CLEAR:
2037 if (!ccs_supported)
2038 return BLORP_FAST_CLEAR_OP_RESOLVE_FULL;
2039 else
2040 return BLORP_FAST_CLEAR_OP_NONE;
2041
2042 case ISL_AUX_STATE_PASS_THROUGH:
2043 return BLORP_FAST_CLEAR_OP_NONE;
2044
2045 case ISL_AUX_STATE_RESOLVED:
2046 case ISL_AUX_STATE_AUX_INVALID:
2047 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2048 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2049 break;
2050 }
2051
2052 unreachable("Invalid aux state for CCS_D");
2053 }
2054
2055 static enum blorp_fast_clear_op
2056 get_ccs_e_resolve_op(enum isl_aux_state aux_state,
2057 enum isl_aux_usage aux_usage,
2058 bool fast_clear_supported)
2059 {
2060 /* CCS_E surfaces can be accessed as CCS_D if we're careful. */
2061 assert(aux_usage == ISL_AUX_USAGE_NONE ||
2062 aux_usage == ISL_AUX_USAGE_CCS_D ||
2063 aux_usage == ISL_AUX_USAGE_CCS_E);
2064
2065 if (aux_usage == ISL_AUX_USAGE_CCS_D)
2066 assert(fast_clear_supported);
2067
2068 switch (aux_state) {
2069 case ISL_AUX_STATE_CLEAR:
2070 case ISL_AUX_STATE_PARTIAL_CLEAR:
2071 if (fast_clear_supported)
2072 return BLORP_FAST_CLEAR_OP_NONE;
2073 else if (aux_usage == ISL_AUX_USAGE_CCS_E)
2074 return BLORP_FAST_CLEAR_OP_RESOLVE_PARTIAL;
2075 else
2076 return BLORP_FAST_CLEAR_OP_RESOLVE_FULL;
2077
2078 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2079 if (aux_usage != ISL_AUX_USAGE_CCS_E)
2080 return BLORP_FAST_CLEAR_OP_RESOLVE_FULL;
2081 else if (!fast_clear_supported)
2082 return BLORP_FAST_CLEAR_OP_RESOLVE_PARTIAL;
2083 else
2084 return BLORP_FAST_CLEAR_OP_NONE;
2085
2086 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2087 if (aux_usage != ISL_AUX_USAGE_CCS_E)
2088 return BLORP_FAST_CLEAR_OP_RESOLVE_FULL;
2089 else
2090 return BLORP_FAST_CLEAR_OP_NONE;
2091
2092 case ISL_AUX_STATE_PASS_THROUGH:
2093 return BLORP_FAST_CLEAR_OP_NONE;
2094
2095 case ISL_AUX_STATE_RESOLVED:
2096 case ISL_AUX_STATE_AUX_INVALID:
2097 break;
2098 }
2099
2100 unreachable("Invalid aux state for CCS_E");
2101 }
2102
2103 static void
2104 intel_miptree_prepare_ccs_access(struct brw_context *brw,
2105 struct intel_mipmap_tree *mt,
2106 uint32_t level, uint32_t layer,
2107 enum isl_aux_usage aux_usage,
2108 bool fast_clear_supported)
2109 {
2110 enum isl_aux_state aux_state = intel_miptree_get_aux_state(mt, level, layer);
2111
2112 enum blorp_fast_clear_op resolve_op;
2113 if (mt->aux_usage == ISL_AUX_USAGE_CCS_E) {
2114 resolve_op = get_ccs_e_resolve_op(aux_state, aux_usage,
2115 fast_clear_supported);
2116 } else {
2117 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2118 resolve_op = get_ccs_d_resolve_op(aux_state, aux_usage,
2119 fast_clear_supported);
2120 }
2121
2122 if (resolve_op != BLORP_FAST_CLEAR_OP_NONE) {
2123 intel_miptree_check_color_resolve(brw, mt, level, layer);
2124 brw_blorp_resolve_color(brw, mt, level, layer, resolve_op);
2125
2126 switch (resolve_op) {
2127 case BLORP_FAST_CLEAR_OP_RESOLVE_FULL:
2128 /* The CCS full resolve operation destroys the CCS and sets it to the
2129 * pass-through state. (You can also think of this as being both a
2130 * resolve and an ambiguate in one operation.)
2131 */
2132 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2133 ISL_AUX_STATE_PASS_THROUGH);
2134 break;
2135
2136 case BLORP_FAST_CLEAR_OP_RESOLVE_PARTIAL:
2137 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2138 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2139 break;
2140
2141 default:
2142 unreachable("Invalid resolve op");
2143 }
2144 }
2145 }
2146
2147 static void
2148 intel_miptree_finish_ccs_write(struct brw_context *brw,
2149 struct intel_mipmap_tree *mt,
2150 uint32_t level, uint32_t layer,
2151 enum isl_aux_usage aux_usage)
2152 {
2153 assert(aux_usage == ISL_AUX_USAGE_NONE ||
2154 aux_usage == ISL_AUX_USAGE_CCS_D ||
2155 aux_usage == ISL_AUX_USAGE_CCS_E);
2156
2157 enum isl_aux_state aux_state = intel_miptree_get_aux_state(mt, level, layer);
2158
2159 if (mt->aux_usage == ISL_AUX_USAGE_CCS_E) {
2160 switch (aux_state) {
2161 case ISL_AUX_STATE_CLEAR:
2162 case ISL_AUX_STATE_PARTIAL_CLEAR:
2163 assert(aux_usage == ISL_AUX_USAGE_CCS_E ||
2164 aux_usage == ISL_AUX_USAGE_CCS_D);
2165
2166 if (aux_usage == ISL_AUX_USAGE_CCS_E) {
2167 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2168 ISL_AUX_STATE_COMPRESSED_CLEAR);
2169 } else if (aux_state != ISL_AUX_STATE_PARTIAL_CLEAR) {
2170 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2171 ISL_AUX_STATE_PARTIAL_CLEAR);
2172 }
2173 break;
2174
2175 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2176 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2177 assert(aux_usage == ISL_AUX_USAGE_CCS_E);
2178 break; /* Nothing to do */
2179
2180 case ISL_AUX_STATE_PASS_THROUGH:
2181 if (aux_usage == ISL_AUX_USAGE_CCS_E) {
2182 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2183 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2184 } else {
2185 /* Nothing to do */
2186 }
2187 break;
2188
2189 case ISL_AUX_STATE_RESOLVED:
2190 case ISL_AUX_STATE_AUX_INVALID:
2191 unreachable("Invalid aux state for CCS_E");
2192 }
2193 } else {
2194 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2195 /* CCS_D is a bit simpler */
2196 switch (aux_state) {
2197 case ISL_AUX_STATE_CLEAR:
2198 assert(aux_usage == ISL_AUX_USAGE_CCS_D);
2199 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2200 ISL_AUX_STATE_PARTIAL_CLEAR);
2201 break;
2202
2203 case ISL_AUX_STATE_PARTIAL_CLEAR:
2204 assert(aux_usage == ISL_AUX_USAGE_CCS_D);
2205 break; /* Nothing to do */
2206
2207 case ISL_AUX_STATE_PASS_THROUGH:
2208 /* Nothing to do */
2209 break;
2210
2211 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2212 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2213 case ISL_AUX_STATE_RESOLVED:
2214 case ISL_AUX_STATE_AUX_INVALID:
2215 unreachable("Invalid aux state for CCS_D");
2216 }
2217 }
2218 }
2219
2220 static void
2221 intel_miptree_prepare_mcs_access(struct brw_context *brw,
2222 struct intel_mipmap_tree *mt,
2223 uint32_t layer,
2224 enum isl_aux_usage aux_usage,
2225 bool fast_clear_supported)
2226 {
2227 assert(aux_usage == ISL_AUX_USAGE_MCS);
2228
2229 switch (intel_miptree_get_aux_state(mt, 0, layer)) {
2230 case ISL_AUX_STATE_CLEAR:
2231 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2232 if (!fast_clear_supported) {
2233 brw_blorp_mcs_partial_resolve(brw, mt, layer, 1);
2234 intel_miptree_set_aux_state(brw, mt, 0, layer, 1,
2235 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2236 }
2237 break;
2238
2239 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2240 break; /* Nothing to do */
2241
2242 case ISL_AUX_STATE_RESOLVED:
2243 case ISL_AUX_STATE_PASS_THROUGH:
2244 case ISL_AUX_STATE_AUX_INVALID:
2245 case ISL_AUX_STATE_PARTIAL_CLEAR:
2246 unreachable("Invalid aux state for MCS");
2247 }
2248 }
2249
2250 static void
2251 intel_miptree_finish_mcs_write(struct brw_context *brw,
2252 struct intel_mipmap_tree *mt,
2253 uint32_t layer,
2254 enum isl_aux_usage aux_usage)
2255 {
2256 assert(aux_usage == ISL_AUX_USAGE_MCS);
2257
2258 switch (intel_miptree_get_aux_state(mt, 0, layer)) {
2259 case ISL_AUX_STATE_CLEAR:
2260 intel_miptree_set_aux_state(brw, mt, 0, layer, 1,
2261 ISL_AUX_STATE_COMPRESSED_CLEAR);
2262 break;
2263
2264 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2265 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2266 break; /* Nothing to do */
2267
2268 case ISL_AUX_STATE_RESOLVED:
2269 case ISL_AUX_STATE_PASS_THROUGH:
2270 case ISL_AUX_STATE_AUX_INVALID:
2271 case ISL_AUX_STATE_PARTIAL_CLEAR:
2272 unreachable("Invalid aux state for MCS");
2273 }
2274 }
2275
2276 static void
2277 intel_miptree_prepare_hiz_access(struct brw_context *brw,
2278 struct intel_mipmap_tree *mt,
2279 uint32_t level, uint32_t layer,
2280 enum isl_aux_usage aux_usage,
2281 bool fast_clear_supported)
2282 {
2283 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_HIZ);
2284
2285 enum blorp_hiz_op hiz_op = BLORP_HIZ_OP_NONE;
2286 switch (intel_miptree_get_aux_state(mt, level, layer)) {
2287 case ISL_AUX_STATE_CLEAR:
2288 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2289 if (aux_usage != ISL_AUX_USAGE_HIZ || !fast_clear_supported)
2290 hiz_op = BLORP_HIZ_OP_DEPTH_RESOLVE;
2291 break;
2292
2293 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2294 if (aux_usage != ISL_AUX_USAGE_HIZ)
2295 hiz_op = BLORP_HIZ_OP_DEPTH_RESOLVE;
2296 break;
2297
2298 case ISL_AUX_STATE_PASS_THROUGH:
2299 case ISL_AUX_STATE_RESOLVED:
2300 break;
2301
2302 case ISL_AUX_STATE_AUX_INVALID:
2303 if (aux_usage == ISL_AUX_USAGE_HIZ)
2304 hiz_op = BLORP_HIZ_OP_HIZ_RESOLVE;
2305 break;
2306
2307 case ISL_AUX_STATE_PARTIAL_CLEAR:
2308 unreachable("Invalid HiZ state");
2309 }
2310
2311 if (hiz_op != BLORP_HIZ_OP_NONE) {
2312 intel_hiz_exec(brw, mt, level, layer, 1, hiz_op);
2313
2314 switch (hiz_op) {
2315 case BLORP_HIZ_OP_DEPTH_RESOLVE:
2316 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2317 ISL_AUX_STATE_RESOLVED);
2318 break;
2319
2320 case BLORP_HIZ_OP_HIZ_RESOLVE:
2321 /* The HiZ resolve operation is actually an ambiguate */
2322 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2323 ISL_AUX_STATE_PASS_THROUGH);
2324 break;
2325
2326 default:
2327 unreachable("Invalid HiZ op");
2328 }
2329 }
2330 }
2331
2332 static void
2333 intel_miptree_finish_hiz_write(struct brw_context *brw,
2334 struct intel_mipmap_tree *mt,
2335 uint32_t level, uint32_t layer,
2336 enum isl_aux_usage aux_usage)
2337 {
2338 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_HIZ);
2339
2340 switch (intel_miptree_get_aux_state(mt, level, layer)) {
2341 case ISL_AUX_STATE_CLEAR:
2342 assert(aux_usage == ISL_AUX_USAGE_HIZ);
2343 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2344 ISL_AUX_STATE_COMPRESSED_CLEAR);
2345 break;
2346
2347 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2348 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2349 assert(aux_usage == ISL_AUX_USAGE_HIZ);
2350 break; /* Nothing to do */
2351
2352 case ISL_AUX_STATE_RESOLVED:
2353 if (aux_usage == ISL_AUX_USAGE_HIZ) {
2354 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2355 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2356 } else {
2357 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2358 ISL_AUX_STATE_AUX_INVALID);
2359 }
2360 break;
2361
2362 case ISL_AUX_STATE_PASS_THROUGH:
2363 if (aux_usage == ISL_AUX_USAGE_HIZ) {
2364 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2365 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2366 }
2367 break;
2368
2369 case ISL_AUX_STATE_AUX_INVALID:
2370 assert(aux_usage != ISL_AUX_USAGE_HIZ);
2371 break;
2372
2373 case ISL_AUX_STATE_PARTIAL_CLEAR:
2374 unreachable("Invalid HiZ state");
2375 }
2376 }
2377
2378 void
2379 intel_miptree_prepare_access(struct brw_context *brw,
2380 struct intel_mipmap_tree *mt,
2381 uint32_t start_level, uint32_t num_levels,
2382 uint32_t start_layer, uint32_t num_layers,
2383 enum isl_aux_usage aux_usage,
2384 bool fast_clear_supported)
2385 {
2386 num_levels = miptree_level_range_length(mt, start_level, num_levels);
2387
2388 switch (mt->aux_usage) {
2389 case ISL_AUX_USAGE_NONE:
2390 /* Nothing to do */
2391 break;
2392
2393 case ISL_AUX_USAGE_MCS:
2394 assert(mt->mcs_buf);
2395 assert(start_level == 0 && num_levels == 1);
2396 const uint32_t level_layers =
2397 miptree_layer_range_length(mt, 0, start_layer, num_layers);
2398 for (uint32_t a = 0; a < level_layers; a++) {
2399 intel_miptree_prepare_mcs_access(brw, mt, start_layer + a,
2400 aux_usage, fast_clear_supported);
2401 }
2402 break;
2403
2404 case ISL_AUX_USAGE_CCS_D:
2405 case ISL_AUX_USAGE_CCS_E:
2406 if (!mt->mcs_buf)
2407 return;
2408
2409 for (uint32_t l = 0; l < num_levels; l++) {
2410 const uint32_t level = start_level + l;
2411 const uint32_t level_layers =
2412 miptree_layer_range_length(mt, level, start_layer, num_layers);
2413 for (uint32_t a = 0; a < level_layers; a++) {
2414 intel_miptree_prepare_ccs_access(brw, mt, level,
2415 start_layer + a,
2416 aux_usage, fast_clear_supported);
2417 }
2418 }
2419 break;
2420
2421 case ISL_AUX_USAGE_HIZ:
2422 assert(mt->hiz_buf);
2423 for (uint32_t l = 0; l < num_levels; l++) {
2424 const uint32_t level = start_level + l;
2425 if (!intel_miptree_level_has_hiz(mt, level))
2426 continue;
2427
2428 const uint32_t level_layers =
2429 miptree_layer_range_length(mt, level, start_layer, num_layers);
2430 for (uint32_t a = 0; a < level_layers; a++) {
2431 intel_miptree_prepare_hiz_access(brw, mt, level, start_layer + a,
2432 aux_usage, fast_clear_supported);
2433 }
2434 }
2435 break;
2436
2437 default:
2438 unreachable("Invalid aux usage");
2439 }
2440 }
2441
2442 void
2443 intel_miptree_finish_write(struct brw_context *brw,
2444 struct intel_mipmap_tree *mt, uint32_t level,
2445 uint32_t start_layer, uint32_t num_layers,
2446 enum isl_aux_usage aux_usage)
2447 {
2448 num_layers = miptree_layer_range_length(mt, level, start_layer, num_layers);
2449
2450 switch (mt->aux_usage) {
2451 case ISL_AUX_USAGE_NONE:
2452 /* Nothing to do */
2453 break;
2454
2455 case ISL_AUX_USAGE_MCS:
2456 assert(mt->mcs_buf);
2457 for (uint32_t a = 0; a < num_layers; a++) {
2458 intel_miptree_finish_mcs_write(brw, mt, start_layer + a,
2459 aux_usage);
2460 }
2461 break;
2462
2463 case ISL_AUX_USAGE_CCS_D:
2464 case ISL_AUX_USAGE_CCS_E:
2465 if (!mt->mcs_buf)
2466 return;
2467
2468 for (uint32_t a = 0; a < num_layers; a++) {
2469 intel_miptree_finish_ccs_write(brw, mt, level, start_layer + a,
2470 aux_usage);
2471 }
2472 break;
2473
2474 case ISL_AUX_USAGE_HIZ:
2475 if (!intel_miptree_level_has_hiz(mt, level))
2476 return;
2477
2478 for (uint32_t a = 0; a < num_layers; a++) {
2479 intel_miptree_finish_hiz_write(brw, mt, level, start_layer + a,
2480 aux_usage);
2481 }
2482 break;
2483
2484 default:
2485 unreachable("Invavlid aux usage");
2486 }
2487 }
2488
2489 enum isl_aux_state
2490 intel_miptree_get_aux_state(const struct intel_mipmap_tree *mt,
2491 uint32_t level, uint32_t layer)
2492 {
2493 intel_miptree_check_level_layer(mt, level, layer);
2494
2495 if (_mesa_is_format_color_format(mt->format)) {
2496 assert(mt->mcs_buf != NULL);
2497 assert(mt->surf.samples == 1 ||
2498 mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
2499 } else if (mt->format == MESA_FORMAT_S_UINT8) {
2500 unreachable("Cannot get aux state for stencil");
2501 } else {
2502 assert(intel_miptree_level_has_hiz(mt, level));
2503 }
2504
2505 return mt->aux_state[level][layer];
2506 }
2507
2508 void
2509 intel_miptree_set_aux_state(struct brw_context *brw,
2510 struct intel_mipmap_tree *mt, uint32_t level,
2511 uint32_t start_layer, uint32_t num_layers,
2512 enum isl_aux_state aux_state)
2513 {
2514 num_layers = miptree_layer_range_length(mt, level, start_layer, num_layers);
2515
2516 if (_mesa_is_format_color_format(mt->format)) {
2517 assert(mt->mcs_buf != NULL);
2518 assert(mt->surf.samples == 1 ||
2519 mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
2520 } else if (mt->format == MESA_FORMAT_S_UINT8) {
2521 unreachable("Cannot get aux state for stencil");
2522 } else {
2523 assert(intel_miptree_level_has_hiz(mt, level));
2524 }
2525
2526 for (unsigned a = 0; a < num_layers; a++)
2527 mt->aux_state[level][start_layer + a] = aux_state;
2528 }
2529
2530 /* On Gen9 color buffers may be compressed by the hardware (lossless
2531 * compression). There are, however, format restrictions and care needs to be
2532 * taken that the sampler engine is capable for re-interpreting a buffer with
2533 * format different the buffer was originally written with.
2534 *
2535 * For example, SRGB formats are not compressible and the sampler engine isn't
2536 * capable of treating RGBA_UNORM as SRGB_ALPHA. In such a case the underlying
2537 * color buffer needs to be resolved so that the sampling surface can be
2538 * sampled as non-compressed (i.e., without the auxiliary MCS buffer being
2539 * set).
2540 */
2541 static bool
2542 can_texture_with_ccs(struct brw_context *brw,
2543 struct intel_mipmap_tree *mt,
2544 enum isl_format view_format)
2545 {
2546 if (mt->aux_usage != ISL_AUX_USAGE_CCS_E)
2547 return false;
2548
2549 if (!isl_formats_are_ccs_e_compatible(&brw->screen->devinfo,
2550 mt->surf.format, view_format)) {
2551 perf_debug("Incompatible sampling format (%s) for rbc (%s)\n",
2552 isl_format_get_layout(view_format)->name,
2553 _mesa_get_format_name(mt->format));
2554 return false;
2555 }
2556
2557 return true;
2558 }
2559
2560 enum isl_aux_usage
2561 intel_miptree_texture_aux_usage(struct brw_context *brw,
2562 struct intel_mipmap_tree *mt,
2563 enum isl_format view_format)
2564 {
2565 switch (mt->aux_usage) {
2566 case ISL_AUX_USAGE_HIZ:
2567 if (intel_miptree_sample_with_hiz(brw, mt))
2568 return ISL_AUX_USAGE_HIZ;
2569 break;
2570
2571 case ISL_AUX_USAGE_MCS:
2572 return ISL_AUX_USAGE_MCS;
2573
2574 case ISL_AUX_USAGE_CCS_D:
2575 case ISL_AUX_USAGE_CCS_E:
2576 if (mt->mcs_buf && can_texture_with_ccs(brw, mt, view_format))
2577 return ISL_AUX_USAGE_CCS_E;
2578 break;
2579
2580 default:
2581 break;
2582 }
2583
2584 return ISL_AUX_USAGE_NONE;
2585 }
2586
2587 static bool
2588 isl_formats_are_fast_clear_compatible(enum isl_format a, enum isl_format b)
2589 {
2590 /* On gen8 and earlier, the hardware was only capable of handling 0/1 clear
2591 * values so sRGB curve application was a no-op for all fast-clearable
2592 * formats.
2593 *
2594 * On gen9+, the hardware supports arbitrary clear values. For sRGB clear
2595 * values, the hardware interprets the floats, not as what would be
2596 * returned from the sampler (or written by the shader), but as being
2597 * between format conversion and sRGB curve application. This means that
2598 * we can switch between sRGB and UNORM without having to whack the clear
2599 * color.
2600 */
2601 return isl_format_srgb_to_linear(a) == isl_format_srgb_to_linear(b);
2602 }
2603
2604 static void
2605 intel_miptree_prepare_texture_slices(struct brw_context *brw,
2606 struct intel_mipmap_tree *mt,
2607 enum isl_format view_format,
2608 uint32_t start_level, uint32_t num_levels,
2609 uint32_t start_layer, uint32_t num_layers,
2610 bool *aux_supported_out)
2611 {
2612 enum isl_aux_usage aux_usage =
2613 intel_miptree_texture_aux_usage(brw, mt, view_format);
2614 bool clear_supported = aux_usage != ISL_AUX_USAGE_NONE;
2615
2616 /* Clear color is specified as ints or floats and the conversion is done by
2617 * the sampler. If we have a texture view, we would have to perform the
2618 * clear color conversion manually. Just disable clear color.
2619 */
2620 if (!isl_formats_are_fast_clear_compatible(mt->surf.format, view_format))
2621 clear_supported = false;
2622
2623 intel_miptree_prepare_access(brw, mt, start_level, num_levels,
2624 start_layer, num_layers,
2625 aux_usage, clear_supported);
2626 if (aux_supported_out)
2627 *aux_supported_out = aux_usage != ISL_AUX_USAGE_NONE;
2628 }
2629
2630 void
2631 intel_miptree_prepare_texture(struct brw_context *brw,
2632 struct intel_mipmap_tree *mt,
2633 enum isl_format view_format,
2634 bool *aux_supported_out)
2635 {
2636 intel_miptree_prepare_texture_slices(brw, mt, view_format,
2637 0, INTEL_REMAINING_LEVELS,
2638 0, INTEL_REMAINING_LAYERS,
2639 aux_supported_out);
2640 }
2641
2642 void
2643 intel_miptree_prepare_image(struct brw_context *brw,
2644 struct intel_mipmap_tree *mt)
2645 {
2646 /* The data port doesn't understand any compression */
2647 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2648 0, INTEL_REMAINING_LAYERS,
2649 ISL_AUX_USAGE_NONE, false);
2650 }
2651
2652 void
2653 intel_miptree_prepare_fb_fetch(struct brw_context *brw,
2654 struct intel_mipmap_tree *mt, uint32_t level,
2655 uint32_t start_layer, uint32_t num_layers)
2656 {
2657 intel_miptree_prepare_texture_slices(brw, mt, mt->surf.format, level, 1,
2658 start_layer, num_layers, NULL);
2659 }
2660
2661 enum isl_aux_usage
2662 intel_miptree_render_aux_usage(struct brw_context *brw,
2663 struct intel_mipmap_tree *mt,
2664 bool srgb_enabled, bool blend_enabled)
2665 {
2666 switch (mt->aux_usage) {
2667 case ISL_AUX_USAGE_MCS:
2668 assert(mt->mcs_buf);
2669 return ISL_AUX_USAGE_MCS;
2670
2671 case ISL_AUX_USAGE_CCS_D:
2672 return mt->mcs_buf ? ISL_AUX_USAGE_CCS_D : ISL_AUX_USAGE_NONE;
2673
2674 case ISL_AUX_USAGE_CCS_E: {
2675 mesa_format mesa_format =
2676 srgb_enabled ? mt->format :_mesa_get_srgb_format_linear(mt->format);
2677 enum isl_format isl_format = brw_isl_format_for_mesa_format(mesa_format);
2678
2679 /* If the format supports CCS_E, then we can just use it */
2680 if (isl_format_supports_ccs_e(&brw->screen->devinfo, isl_format))
2681 return ISL_AUX_USAGE_CCS_E;
2682
2683 /* Otherwise, we have to fall back to CCS_D */
2684
2685 /* gen9 hardware technically supports non-0/1 clear colors with sRGB
2686 * formats. However, there are issues with blending where it doesn't
2687 * properly apply the sRGB curve to the clear color when blending.
2688 */
2689 if (blend_enabled && isl_format_is_srgb(isl_format) &&
2690 !isl_color_value_is_zero_one(mt->fast_clear_color, isl_format))
2691 return ISL_AUX_USAGE_NONE;
2692
2693 return ISL_AUX_USAGE_CCS_D;
2694 }
2695
2696 default:
2697 return ISL_AUX_USAGE_NONE;
2698 }
2699 }
2700
2701 void
2702 intel_miptree_prepare_render(struct brw_context *brw,
2703 struct intel_mipmap_tree *mt, uint32_t level,
2704 uint32_t start_layer, uint32_t layer_count,
2705 bool srgb_enabled, bool blend_enabled)
2706 {
2707 enum isl_aux_usage aux_usage =
2708 intel_miptree_render_aux_usage(brw, mt, srgb_enabled, blend_enabled);
2709 intel_miptree_prepare_access(brw, mt, level, 1, start_layer, layer_count,
2710 aux_usage, aux_usage != ISL_AUX_USAGE_NONE);
2711 }
2712
2713 void
2714 intel_miptree_finish_render(struct brw_context *brw,
2715 struct intel_mipmap_tree *mt, uint32_t level,
2716 uint32_t start_layer, uint32_t layer_count,
2717 bool srgb_enabled, bool blend_enabled)
2718 {
2719 assert(_mesa_is_format_color_format(mt->format));
2720
2721 enum isl_aux_usage aux_usage =
2722 intel_miptree_render_aux_usage(brw, mt, srgb_enabled, blend_enabled);
2723 intel_miptree_finish_write(brw, mt, level, start_layer, layer_count,
2724 aux_usage);
2725 }
2726
2727 void
2728 intel_miptree_prepare_depth(struct brw_context *brw,
2729 struct intel_mipmap_tree *mt, uint32_t level,
2730 uint32_t start_layer, uint32_t layer_count)
2731 {
2732 intel_miptree_prepare_access(brw, mt, level, 1, start_layer, layer_count,
2733 mt->aux_usage, mt->hiz_buf != NULL);
2734 }
2735
2736 void
2737 intel_miptree_finish_depth(struct brw_context *brw,
2738 struct intel_mipmap_tree *mt, uint32_t level,
2739 uint32_t start_layer, uint32_t layer_count,
2740 bool depth_written)
2741 {
2742 if (depth_written) {
2743 intel_miptree_finish_write(brw, mt, level, start_layer, layer_count,
2744 mt->hiz_buf != NULL);
2745 }
2746 }
2747
2748 void
2749 intel_miptree_prepare_external(struct brw_context *brw,
2750 struct intel_mipmap_tree *mt)
2751 {
2752 enum isl_aux_usage aux_usage = ISL_AUX_USAGE_NONE;
2753 bool supports_fast_clear = false;
2754
2755 const struct isl_drm_modifier_info *mod_info =
2756 isl_drm_modifier_get_info(mt->drm_modifier);
2757
2758 if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE) {
2759 /* CCS_E is the only supported aux for external images and it's only
2760 * supported on very simple images.
2761 */
2762 assert(mod_info->aux_usage == ISL_AUX_USAGE_CCS_E);
2763 assert(_mesa_is_format_color_format(mt->format));
2764 assert(mt->first_level == 0 && mt->last_level == 0);
2765 assert(mt->surf.logical_level0_px.depth == 1);
2766 assert(mt->surf.logical_level0_px.array_len == 1);
2767 assert(mt->surf.samples == 1);
2768 assert(mt->mcs_buf != NULL);
2769
2770 aux_usage = mod_info->aux_usage;
2771 supports_fast_clear = mod_info->supports_clear_color;
2772 }
2773
2774 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2775 0, INTEL_REMAINING_LAYERS,
2776 aux_usage, supports_fast_clear);
2777 }
2778
2779 /**
2780 * Make it possible to share the BO backing the given miptree with another
2781 * process or another miptree.
2782 *
2783 * Fast color clears are unsafe with shared buffers, so we need to resolve and
2784 * then discard the MCS buffer, if present. We also set the no_ccs flag to
2785 * ensure that no MCS buffer gets allocated in the future.
2786 *
2787 * HiZ is similarly unsafe with shared buffers.
2788 */
2789 void
2790 intel_miptree_make_shareable(struct brw_context *brw,
2791 struct intel_mipmap_tree *mt)
2792 {
2793 /* MCS buffers are also used for multisample buffers, but we can't resolve
2794 * away a multisample MCS buffer because it's an integral part of how the
2795 * pixel data is stored. Fortunately this code path should never be
2796 * reached for multisample buffers.
2797 */
2798 assert(mt->surf.msaa_layout == ISL_MSAA_LAYOUT_NONE ||
2799 mt->surf.samples == 1);
2800
2801 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2802 0, INTEL_REMAINING_LAYERS,
2803 ISL_AUX_USAGE_NONE, false);
2804
2805 if (mt->mcs_buf) {
2806 brw_bo_unreference(mt->mcs_buf->bo);
2807 free(mt->mcs_buf);
2808 mt->mcs_buf = NULL;
2809
2810 /* Any pending MCS/CCS operations are no longer needed. Trying to
2811 * execute any will likely crash due to the missing aux buffer. So let's
2812 * delete all pending ops.
2813 */
2814 free(mt->aux_state);
2815 mt->aux_state = NULL;
2816 }
2817
2818 if (mt->hiz_buf) {
2819 intel_miptree_aux_buffer_free(mt->hiz_buf);
2820 mt->hiz_buf = NULL;
2821
2822 for (uint32_t l = mt->first_level; l <= mt->last_level; ++l) {
2823 mt->level[l].has_hiz = false;
2824 }
2825
2826 /* Any pending HiZ operations are no longer needed. Trying to execute
2827 * any will likely crash due to the missing aux buffer. So let's delete
2828 * all pending ops.
2829 */
2830 free(mt->aux_state);
2831 mt->aux_state = NULL;
2832 }
2833
2834 mt->aux_usage = ISL_AUX_USAGE_NONE;
2835 mt->supports_fast_clear = false;
2836 }
2837
2838
2839 /**
2840 * \brief Get pointer offset into stencil buffer.
2841 *
2842 * The stencil buffer is W tiled. Since the GTT is incapable of W fencing, we
2843 * must decode the tile's layout in software.
2844 *
2845 * See
2846 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.2.1 W-Major Tile
2847 * Format.
2848 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.3 Tiling Algorithm
2849 *
2850 * Even though the returned offset is always positive, the return type is
2851 * signed due to
2852 * commit e8b1c6d6f55f5be3bef25084fdd8b6127517e137
2853 * mesa: Fix return type of _mesa_get_format_bytes() (#37351)
2854 */
2855 static intptr_t
2856 intel_offset_S8(uint32_t stride, uint32_t x, uint32_t y, bool swizzled)
2857 {
2858 uint32_t tile_size = 4096;
2859 uint32_t tile_width = 64;
2860 uint32_t tile_height = 64;
2861 uint32_t row_size = 64 * stride / 2; /* Two rows are interleaved. */
2862
2863 uint32_t tile_x = x / tile_width;
2864 uint32_t tile_y = y / tile_height;
2865
2866 /* The byte's address relative to the tile's base addres. */
2867 uint32_t byte_x = x % tile_width;
2868 uint32_t byte_y = y % tile_height;
2869
2870 uintptr_t u = tile_y * row_size
2871 + tile_x * tile_size
2872 + 512 * (byte_x / 8)
2873 + 64 * (byte_y / 8)
2874 + 32 * ((byte_y / 4) % 2)
2875 + 16 * ((byte_x / 4) % 2)
2876 + 8 * ((byte_y / 2) % 2)
2877 + 4 * ((byte_x / 2) % 2)
2878 + 2 * (byte_y % 2)
2879 + 1 * (byte_x % 2);
2880
2881 if (swizzled) {
2882 /* adjust for bit6 swizzling */
2883 if (((byte_x / 8) % 2) == 1) {
2884 if (((byte_y / 8) % 2) == 0) {
2885 u += 64;
2886 } else {
2887 u -= 64;
2888 }
2889 }
2890 }
2891
2892 return u;
2893 }
2894
2895 void
2896 intel_miptree_updownsample(struct brw_context *brw,
2897 struct intel_mipmap_tree *src,
2898 struct intel_mipmap_tree *dst)
2899 {
2900 unsigned src_w = src->surf.logical_level0_px.width;
2901 unsigned src_h = src->surf.logical_level0_px.height;
2902 unsigned dst_w = dst->surf.logical_level0_px.width;
2903 unsigned dst_h = dst->surf.logical_level0_px.height;
2904
2905 brw_blorp_blit_miptrees(brw,
2906 src, 0 /* level */, 0 /* layer */,
2907 src->format, SWIZZLE_XYZW,
2908 dst, 0 /* level */, 0 /* layer */, dst->format,
2909 0, 0, src_w, src_h,
2910 0, 0, dst_w, dst_h,
2911 GL_NEAREST, false, false /*mirror x, y*/,
2912 false, false);
2913
2914 if (src->stencil_mt) {
2915 src_w = src->stencil_mt->surf.logical_level0_px.width;
2916 src_h = src->stencil_mt->surf.logical_level0_px.height;
2917 dst_w = dst->stencil_mt->surf.logical_level0_px.width;
2918 dst_h = dst->stencil_mt->surf.logical_level0_px.height;
2919
2920 brw_blorp_blit_miptrees(brw,
2921 src->stencil_mt, 0 /* level */, 0 /* layer */,
2922 src->stencil_mt->format, SWIZZLE_XYZW,
2923 dst->stencil_mt, 0 /* level */, 0 /* layer */,
2924 dst->stencil_mt->format,
2925 0, 0, src_w, src_h,
2926 0, 0, dst_w, dst_h,
2927 GL_NEAREST, false, false /*mirror x, y*/,
2928 false, false /* decode/encode srgb */);
2929 }
2930 }
2931
2932 void
2933 intel_update_r8stencil(struct brw_context *brw,
2934 struct intel_mipmap_tree *mt)
2935 {
2936 assert(brw->gen >= 7);
2937 struct intel_mipmap_tree *src =
2938 mt->format == MESA_FORMAT_S_UINT8 ? mt : mt->stencil_mt;
2939 if (!src || brw->gen >= 8 || !src->r8stencil_needs_update)
2940 return;
2941
2942 assert(src->surf.size > 0);
2943
2944 if (!mt->r8stencil_mt) {
2945 assert(brw->gen > 6); /* Handle MIPTREE_LAYOUT_GEN6_HIZ_STENCIL */
2946 mt->r8stencil_mt = make_surface(
2947 brw,
2948 src->target,
2949 MESA_FORMAT_R_UINT8,
2950 src->first_level, src->last_level,
2951 src->surf.logical_level0_px.width,
2952 src->surf.logical_level0_px.height,
2953 src->surf.dim == ISL_SURF_DIM_3D ?
2954 src->surf.logical_level0_px.depth :
2955 src->surf.logical_level0_px.array_len,
2956 src->surf.samples,
2957 ISL_TILING_Y0_BIT,
2958 ISL_SURF_USAGE_TEXTURE_BIT,
2959 BO_ALLOC_FOR_RENDER, 0, NULL);
2960 assert(mt->r8stencil_mt);
2961 }
2962
2963 struct intel_mipmap_tree *dst = mt->r8stencil_mt;
2964
2965 for (int level = src->first_level; level <= src->last_level; level++) {
2966 const unsigned depth = src->surf.dim == ISL_SURF_DIM_3D ?
2967 minify(src->surf.phys_level0_sa.depth, level) :
2968 src->surf.phys_level0_sa.array_len;
2969
2970 for (unsigned layer = 0; layer < depth; layer++) {
2971 brw_blorp_copy_miptrees(brw,
2972 src, level, layer,
2973 dst, level, layer,
2974 0, 0, 0, 0,
2975 minify(src->surf.logical_level0_px.width,
2976 level),
2977 minify(src->surf.logical_level0_px.height,
2978 level));
2979 }
2980 }
2981
2982 brw_render_cache_set_check_flush(brw, dst->bo);
2983 src->r8stencil_needs_update = false;
2984 }
2985
2986 static void *
2987 intel_miptree_map_raw(struct brw_context *brw,
2988 struct intel_mipmap_tree *mt,
2989 GLbitfield mode)
2990 {
2991 struct brw_bo *bo = mt->bo;
2992
2993 if (brw_batch_references(&brw->batch, bo))
2994 intel_batchbuffer_flush(brw);
2995
2996 return brw_bo_map(brw, bo, mode);
2997 }
2998
2999 static void
3000 intel_miptree_unmap_raw(struct intel_mipmap_tree *mt)
3001 {
3002 brw_bo_unmap(mt->bo);
3003 }
3004
3005 static void
3006 intel_miptree_map_gtt(struct brw_context *brw,
3007 struct intel_mipmap_tree *mt,
3008 struct intel_miptree_map *map,
3009 unsigned int level, unsigned int slice)
3010 {
3011 unsigned int bw, bh;
3012 void *base;
3013 unsigned int image_x, image_y;
3014 intptr_t x = map->x;
3015 intptr_t y = map->y;
3016
3017 /* For compressed formats, the stride is the number of bytes per
3018 * row of blocks. intel_miptree_get_image_offset() already does
3019 * the divide.
3020 */
3021 _mesa_get_format_block_size(mt->format, &bw, &bh);
3022 assert(y % bh == 0);
3023 assert(x % bw == 0);
3024 y /= bh;
3025 x /= bw;
3026
3027 base = intel_miptree_map_raw(brw, mt, map->mode);
3028
3029 if (base == NULL)
3030 map->ptr = NULL;
3031 else {
3032 base += mt->offset;
3033
3034 /* Note that in the case of cube maps, the caller must have passed the
3035 * slice number referencing the face.
3036 */
3037 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3038 x += image_x;
3039 y += image_y;
3040
3041 map->stride = mt->surf.row_pitch;
3042 map->ptr = base + y * map->stride + x * mt->cpp;
3043 }
3044
3045 DBG("%s: %d,%d %dx%d from mt %p (%s) "
3046 "%"PRIiPTR",%"PRIiPTR" = %p/%d\n", __func__,
3047 map->x, map->y, map->w, map->h,
3048 mt, _mesa_get_format_name(mt->format),
3049 x, y, map->ptr, map->stride);
3050 }
3051
3052 static void
3053 intel_miptree_unmap_gtt(struct intel_mipmap_tree *mt)
3054 {
3055 intel_miptree_unmap_raw(mt);
3056 }
3057
3058 static void
3059 intel_miptree_map_blit(struct brw_context *brw,
3060 struct intel_mipmap_tree *mt,
3061 struct intel_miptree_map *map,
3062 unsigned int level, unsigned int slice)
3063 {
3064 map->linear_mt = intel_miptree_create(brw, GL_TEXTURE_2D, mt->format,
3065 /* first_level */ 0,
3066 /* last_level */ 0,
3067 map->w, map->h, 1,
3068 /* samples */ 1,
3069 MIPTREE_CREATE_LINEAR);
3070
3071 if (!map->linear_mt) {
3072 fprintf(stderr, "Failed to allocate blit temporary\n");
3073 goto fail;
3074 }
3075 map->stride = map->linear_mt->surf.row_pitch;
3076
3077 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3078 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3079 * invalidate is set, since we'll be writing the whole rectangle from our
3080 * temporary buffer back out.
3081 */
3082 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3083 if (!intel_miptree_copy(brw,
3084 mt, level, slice, map->x, map->y,
3085 map->linear_mt, 0, 0, 0, 0,
3086 map->w, map->h)) {
3087 fprintf(stderr, "Failed to blit\n");
3088 goto fail;
3089 }
3090 }
3091
3092 map->ptr = intel_miptree_map_raw(brw, map->linear_mt, map->mode);
3093
3094 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
3095 map->x, map->y, map->w, map->h,
3096 mt, _mesa_get_format_name(mt->format),
3097 level, slice, map->ptr, map->stride);
3098
3099 return;
3100
3101 fail:
3102 intel_miptree_release(&map->linear_mt);
3103 map->ptr = NULL;
3104 map->stride = 0;
3105 }
3106
3107 static void
3108 intel_miptree_unmap_blit(struct brw_context *brw,
3109 struct intel_mipmap_tree *mt,
3110 struct intel_miptree_map *map,
3111 unsigned int level,
3112 unsigned int slice)
3113 {
3114 struct gl_context *ctx = &brw->ctx;
3115
3116 intel_miptree_unmap_raw(map->linear_mt);
3117
3118 if (map->mode & GL_MAP_WRITE_BIT) {
3119 bool ok = intel_miptree_copy(brw,
3120 map->linear_mt, 0, 0, 0, 0,
3121 mt, level, slice, map->x, map->y,
3122 map->w, map->h);
3123 WARN_ONCE(!ok, "Failed to blit from linear temporary mapping");
3124 }
3125
3126 intel_miptree_release(&map->linear_mt);
3127 }
3128
3129 /**
3130 * "Map" a buffer by copying it to an untiled temporary using MOVNTDQA.
3131 */
3132 #if defined(USE_SSE41)
3133 static void
3134 intel_miptree_map_movntdqa(struct brw_context *brw,
3135 struct intel_mipmap_tree *mt,
3136 struct intel_miptree_map *map,
3137 unsigned int level, unsigned int slice)
3138 {
3139 assert(map->mode & GL_MAP_READ_BIT);
3140 assert(!(map->mode & GL_MAP_WRITE_BIT));
3141
3142 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
3143 map->x, map->y, map->w, map->h,
3144 mt, _mesa_get_format_name(mt->format),
3145 level, slice, map->ptr, map->stride);
3146
3147 /* Map the original image */
3148 uint32_t image_x;
3149 uint32_t image_y;
3150 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3151 image_x += map->x;
3152 image_y += map->y;
3153
3154 void *src = intel_miptree_map_raw(brw, mt, map->mode);
3155 if (!src)
3156 return;
3157
3158 src += mt->offset;
3159
3160 src += image_y * mt->surf.row_pitch;
3161 src += image_x * mt->cpp;
3162
3163 /* Due to the pixel offsets for the particular image being mapped, our
3164 * src pointer may not be 16-byte aligned. However, if the pitch is
3165 * divisible by 16, then the amount by which it's misaligned will remain
3166 * consistent from row to row.
3167 */
3168 assert((mt->surf.row_pitch % 16) == 0);
3169 const int misalignment = ((uintptr_t) src) & 15;
3170
3171 /* Create an untiled temporary buffer for the mapping. */
3172 const unsigned width_bytes = _mesa_format_row_stride(mt->format, map->w);
3173
3174 map->stride = ALIGN(misalignment + width_bytes, 16);
3175
3176 map->buffer = _mesa_align_malloc(map->stride * map->h, 16);
3177 /* Offset the destination so it has the same misalignment as src. */
3178 map->ptr = map->buffer + misalignment;
3179
3180 assert((((uintptr_t) map->ptr) & 15) == misalignment);
3181
3182 for (uint32_t y = 0; y < map->h; y++) {
3183 void *dst_ptr = map->ptr + y * map->stride;
3184 void *src_ptr = src + y * mt->surf.row_pitch;
3185
3186 _mesa_streaming_load_memcpy(dst_ptr, src_ptr, width_bytes);
3187 }
3188
3189 intel_miptree_unmap_raw(mt);
3190 }
3191
3192 static void
3193 intel_miptree_unmap_movntdqa(struct brw_context *brw,
3194 struct intel_mipmap_tree *mt,
3195 struct intel_miptree_map *map,
3196 unsigned int level,
3197 unsigned int slice)
3198 {
3199 _mesa_align_free(map->buffer);
3200 map->buffer = NULL;
3201 map->ptr = NULL;
3202 }
3203 #endif
3204
3205 static void
3206 intel_miptree_map_s8(struct brw_context *brw,
3207 struct intel_mipmap_tree *mt,
3208 struct intel_miptree_map *map,
3209 unsigned int level, unsigned int slice)
3210 {
3211 map->stride = map->w;
3212 map->buffer = map->ptr = malloc(map->stride * map->h);
3213 if (!map->buffer)
3214 return;
3215
3216 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3217 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3218 * invalidate is set, since we'll be writing the whole rectangle from our
3219 * temporary buffer back out.
3220 */
3221 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3222 uint8_t *untiled_s8_map = map->ptr;
3223 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt, GL_MAP_READ_BIT);
3224 unsigned int image_x, image_y;
3225
3226 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3227
3228 for (uint32_t y = 0; y < map->h; y++) {
3229 for (uint32_t x = 0; x < map->w; x++) {
3230 ptrdiff_t offset = intel_offset_S8(mt->surf.row_pitch,
3231 x + image_x + map->x,
3232 y + image_y + map->y,
3233 brw->has_swizzling);
3234 untiled_s8_map[y * map->w + x] = tiled_s8_map[offset];
3235 }
3236 }
3237
3238 intel_miptree_unmap_raw(mt);
3239
3240 DBG("%s: %d,%d %dx%d from mt %p %d,%d = %p/%d\n", __func__,
3241 map->x, map->y, map->w, map->h,
3242 mt, map->x + image_x, map->y + image_y, map->ptr, map->stride);
3243 } else {
3244 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
3245 map->x, map->y, map->w, map->h,
3246 mt, map->ptr, map->stride);
3247 }
3248 }
3249
3250 static void
3251 intel_miptree_unmap_s8(struct brw_context *brw,
3252 struct intel_mipmap_tree *mt,
3253 struct intel_miptree_map *map,
3254 unsigned int level,
3255 unsigned int slice)
3256 {
3257 if (map->mode & GL_MAP_WRITE_BIT) {
3258 unsigned int image_x, image_y;
3259 uint8_t *untiled_s8_map = map->ptr;
3260 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt, GL_MAP_WRITE_BIT);
3261
3262 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3263
3264 for (uint32_t y = 0; y < map->h; y++) {
3265 for (uint32_t x = 0; x < map->w; x++) {
3266 ptrdiff_t offset = intel_offset_S8(mt->surf.row_pitch,
3267 image_x + x + map->x,
3268 image_y + y + map->y,
3269 brw->has_swizzling);
3270 tiled_s8_map[offset] = untiled_s8_map[y * map->w + x];
3271 }
3272 }
3273
3274 intel_miptree_unmap_raw(mt);
3275 }
3276
3277 free(map->buffer);
3278 }
3279
3280 static void
3281 intel_miptree_map_etc(struct brw_context *brw,
3282 struct intel_mipmap_tree *mt,
3283 struct intel_miptree_map *map,
3284 unsigned int level,
3285 unsigned int slice)
3286 {
3287 assert(mt->etc_format != MESA_FORMAT_NONE);
3288 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8) {
3289 assert(mt->format == MESA_FORMAT_R8G8B8X8_UNORM);
3290 }
3291
3292 assert(map->mode & GL_MAP_WRITE_BIT);
3293 assert(map->mode & GL_MAP_INVALIDATE_RANGE_BIT);
3294
3295 map->stride = _mesa_format_row_stride(mt->etc_format, map->w);
3296 map->buffer = malloc(_mesa_format_image_size(mt->etc_format,
3297 map->w, map->h, 1));
3298 map->ptr = map->buffer;
3299 }
3300
3301 static void
3302 intel_miptree_unmap_etc(struct brw_context *brw,
3303 struct intel_mipmap_tree *mt,
3304 struct intel_miptree_map *map,
3305 unsigned int level,
3306 unsigned int slice)
3307 {
3308 uint32_t image_x;
3309 uint32_t image_y;
3310 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3311
3312 image_x += map->x;
3313 image_y += map->y;
3314
3315 uint8_t *dst = intel_miptree_map_raw(brw, mt, GL_MAP_WRITE_BIT)
3316 + image_y * mt->surf.row_pitch
3317 + image_x * mt->cpp;
3318
3319 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8)
3320 _mesa_etc1_unpack_rgba8888(dst, mt->surf.row_pitch,
3321 map->ptr, map->stride,
3322 map->w, map->h);
3323 else
3324 _mesa_unpack_etc2_format(dst, mt->surf.row_pitch,
3325 map->ptr, map->stride,
3326 map->w, map->h, mt->etc_format);
3327
3328 intel_miptree_unmap_raw(mt);
3329 free(map->buffer);
3330 }
3331
3332 /**
3333 * Mapping function for packed depth/stencil miptrees backed by real separate
3334 * miptrees for depth and stencil.
3335 *
3336 * On gen7, and to support HiZ pre-gen7, we have to have the stencil buffer
3337 * separate from the depth buffer. Yet at the GL API level, we have to expose
3338 * packed depth/stencil textures and FBO attachments, and Mesa core expects to
3339 * be able to map that memory for texture storage and glReadPixels-type
3340 * operations. We give Mesa core that access by mallocing a temporary and
3341 * copying the data between the actual backing store and the temporary.
3342 */
3343 static void
3344 intel_miptree_map_depthstencil(struct brw_context *brw,
3345 struct intel_mipmap_tree *mt,
3346 struct intel_miptree_map *map,
3347 unsigned int level, unsigned int slice)
3348 {
3349 struct intel_mipmap_tree *z_mt = mt;
3350 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
3351 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
3352 int packed_bpp = map_z32f_x24s8 ? 8 : 4;
3353
3354 map->stride = map->w * packed_bpp;
3355 map->buffer = map->ptr = malloc(map->stride * map->h);
3356 if (!map->buffer)
3357 return;
3358
3359 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3360 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3361 * invalidate is set, since we'll be writing the whole rectangle from our
3362 * temporary buffer back out.
3363 */
3364 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3365 uint32_t *packed_map = map->ptr;
3366 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt, GL_MAP_READ_BIT);
3367 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt, GL_MAP_READ_BIT);
3368 unsigned int s_image_x, s_image_y;
3369 unsigned int z_image_x, z_image_y;
3370
3371 intel_miptree_get_image_offset(s_mt, level, slice,
3372 &s_image_x, &s_image_y);
3373 intel_miptree_get_image_offset(z_mt, level, slice,
3374 &z_image_x, &z_image_y);
3375
3376 for (uint32_t y = 0; y < map->h; y++) {
3377 for (uint32_t x = 0; x < map->w; x++) {
3378 int map_x = map->x + x, map_y = map->y + y;
3379 ptrdiff_t s_offset = intel_offset_S8(s_mt->surf.row_pitch,
3380 map_x + s_image_x,
3381 map_y + s_image_y,
3382 brw->has_swizzling);
3383 ptrdiff_t z_offset = ((map_y + z_image_y) *
3384 (z_mt->surf.row_pitch / 4) +
3385 (map_x + z_image_x));
3386 uint8_t s = s_map[s_offset];
3387 uint32_t z = z_map[z_offset];
3388
3389 if (map_z32f_x24s8) {
3390 packed_map[(y * map->w + x) * 2 + 0] = z;
3391 packed_map[(y * map->w + x) * 2 + 1] = s;
3392 } else {
3393 packed_map[y * map->w + x] = (s << 24) | (z & 0x00ffffff);
3394 }
3395 }
3396 }
3397
3398 intel_miptree_unmap_raw(s_mt);
3399 intel_miptree_unmap_raw(z_mt);
3400
3401 DBG("%s: %d,%d %dx%d from z mt %p %d,%d, s mt %p %d,%d = %p/%d\n",
3402 __func__,
3403 map->x, map->y, map->w, map->h,
3404 z_mt, map->x + z_image_x, map->y + z_image_y,
3405 s_mt, map->x + s_image_x, map->y + s_image_y,
3406 map->ptr, map->stride);
3407 } else {
3408 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
3409 map->x, map->y, map->w, map->h,
3410 mt, map->ptr, map->stride);
3411 }
3412 }
3413
3414 static void
3415 intel_miptree_unmap_depthstencil(struct brw_context *brw,
3416 struct intel_mipmap_tree *mt,
3417 struct intel_miptree_map *map,
3418 unsigned int level,
3419 unsigned int slice)
3420 {
3421 struct intel_mipmap_tree *z_mt = mt;
3422 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
3423 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
3424
3425 if (map->mode & GL_MAP_WRITE_BIT) {
3426 uint32_t *packed_map = map->ptr;
3427 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt, GL_MAP_WRITE_BIT);
3428 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt, GL_MAP_WRITE_BIT);
3429 unsigned int s_image_x, s_image_y;
3430 unsigned int z_image_x, z_image_y;
3431
3432 intel_miptree_get_image_offset(s_mt, level, slice,
3433 &s_image_x, &s_image_y);
3434 intel_miptree_get_image_offset(z_mt, level, slice,
3435 &z_image_x, &z_image_y);
3436
3437 for (uint32_t y = 0; y < map->h; y++) {
3438 for (uint32_t x = 0; x < map->w; x++) {
3439 ptrdiff_t s_offset = intel_offset_S8(s_mt->surf.row_pitch,
3440 x + s_image_x + map->x,
3441 y + s_image_y + map->y,
3442 brw->has_swizzling);
3443 ptrdiff_t z_offset = ((y + z_image_y + map->y) *
3444 (z_mt->surf.row_pitch / 4) +
3445 (x + z_image_x + map->x));
3446
3447 if (map_z32f_x24s8) {
3448 z_map[z_offset] = packed_map[(y * map->w + x) * 2 + 0];
3449 s_map[s_offset] = packed_map[(y * map->w + x) * 2 + 1];
3450 } else {
3451 uint32_t packed = packed_map[y * map->w + x];
3452 s_map[s_offset] = packed >> 24;
3453 z_map[z_offset] = packed;
3454 }
3455 }
3456 }
3457
3458 intel_miptree_unmap_raw(s_mt);
3459 intel_miptree_unmap_raw(z_mt);
3460
3461 DBG("%s: %d,%d %dx%d from z mt %p (%s) %d,%d, s mt %p %d,%d = %p/%d\n",
3462 __func__,
3463 map->x, map->y, map->w, map->h,
3464 z_mt, _mesa_get_format_name(z_mt->format),
3465 map->x + z_image_x, map->y + z_image_y,
3466 s_mt, map->x + s_image_x, map->y + s_image_y,
3467 map->ptr, map->stride);
3468 }
3469
3470 free(map->buffer);
3471 }
3472
3473 /**
3474 * Create and attach a map to the miptree at (level, slice). Return the
3475 * attached map.
3476 */
3477 static struct intel_miptree_map*
3478 intel_miptree_attach_map(struct intel_mipmap_tree *mt,
3479 unsigned int level,
3480 unsigned int slice,
3481 unsigned int x,
3482 unsigned int y,
3483 unsigned int w,
3484 unsigned int h,
3485 GLbitfield mode)
3486 {
3487 struct intel_miptree_map *map = calloc(1, sizeof(*map));
3488
3489 if (!map)
3490 return NULL;
3491
3492 assert(mt->level[level].slice[slice].map == NULL);
3493 mt->level[level].slice[slice].map = map;
3494
3495 map->mode = mode;
3496 map->x = x;
3497 map->y = y;
3498 map->w = w;
3499 map->h = h;
3500
3501 return map;
3502 }
3503
3504 /**
3505 * Release the map at (level, slice).
3506 */
3507 static void
3508 intel_miptree_release_map(struct intel_mipmap_tree *mt,
3509 unsigned int level,
3510 unsigned int slice)
3511 {
3512 struct intel_miptree_map **map;
3513
3514 map = &mt->level[level].slice[slice].map;
3515 free(*map);
3516 *map = NULL;
3517 }
3518
3519 static bool
3520 can_blit_slice(struct intel_mipmap_tree *mt,
3521 unsigned int level, unsigned int slice)
3522 {
3523 /* See intel_miptree_blit() for details on the 32k pitch limit. */
3524 if (mt->surf.row_pitch >= 32768)
3525 return false;
3526
3527 return true;
3528 }
3529
3530 static bool
3531 use_intel_mipree_map_blit(struct brw_context *brw,
3532 struct intel_mipmap_tree *mt,
3533 GLbitfield mode,
3534 unsigned int level,
3535 unsigned int slice)
3536 {
3537 if (brw->has_llc &&
3538 /* It's probably not worth swapping to the blit ring because of
3539 * all the overhead involved.
3540 */
3541 !(mode & GL_MAP_WRITE_BIT) &&
3542 !mt->compressed &&
3543 (mt->surf.tiling == ISL_TILING_X ||
3544 /* Prior to Sandybridge, the blitter can't handle Y tiling */
3545 (brw->gen >= 6 && mt->surf.tiling == ISL_TILING_Y0) ||
3546 /* Fast copy blit on skl+ supports all tiling formats. */
3547 brw->gen >= 9) &&
3548 can_blit_slice(mt, level, slice))
3549 return true;
3550
3551 if (mt->surf.tiling != ISL_TILING_LINEAR &&
3552 mt->bo->size >= brw->max_gtt_map_object_size) {
3553 assert(can_blit_slice(mt, level, slice));
3554 return true;
3555 }
3556
3557 return false;
3558 }
3559
3560 /**
3561 * Parameter \a out_stride has type ptrdiff_t not because the buffer stride may
3562 * exceed 32 bits but to diminish the likelihood subtle bugs in pointer
3563 * arithmetic overflow.
3564 *
3565 * If you call this function and use \a out_stride, then you're doing pointer
3566 * arithmetic on \a out_ptr. The type of \a out_stride doesn't prevent all
3567 * bugs. The caller must still take care to avoid 32-bit overflow errors in
3568 * all arithmetic expressions that contain buffer offsets and pixel sizes,
3569 * which usually have type uint32_t or GLuint.
3570 */
3571 void
3572 intel_miptree_map(struct brw_context *brw,
3573 struct intel_mipmap_tree *mt,
3574 unsigned int level,
3575 unsigned int slice,
3576 unsigned int x,
3577 unsigned int y,
3578 unsigned int w,
3579 unsigned int h,
3580 GLbitfield mode,
3581 void **out_ptr,
3582 ptrdiff_t *out_stride)
3583 {
3584 struct intel_miptree_map *map;
3585
3586 assert(mt->surf.samples == 1);
3587
3588 map = intel_miptree_attach_map(mt, level, slice, x, y, w, h, mode);
3589 if (!map){
3590 *out_ptr = NULL;
3591 *out_stride = 0;
3592 return;
3593 }
3594
3595 intel_miptree_access_raw(brw, mt, level, slice,
3596 map->mode & GL_MAP_WRITE_BIT);
3597
3598 if (mt->format == MESA_FORMAT_S_UINT8) {
3599 intel_miptree_map_s8(brw, mt, map, level, slice);
3600 } else if (mt->etc_format != MESA_FORMAT_NONE &&
3601 !(mode & BRW_MAP_DIRECT_BIT)) {
3602 intel_miptree_map_etc(brw, mt, map, level, slice);
3603 } else if (mt->stencil_mt && !(mode & BRW_MAP_DIRECT_BIT)) {
3604 intel_miptree_map_depthstencil(brw, mt, map, level, slice);
3605 } else if (use_intel_mipree_map_blit(brw, mt, mode, level, slice)) {
3606 intel_miptree_map_blit(brw, mt, map, level, slice);
3607 #if defined(USE_SSE41)
3608 } else if (!(mode & GL_MAP_WRITE_BIT) &&
3609 !mt->compressed && cpu_has_sse4_1 &&
3610 (mt->surf.row_pitch % 16 == 0)) {
3611 intel_miptree_map_movntdqa(brw, mt, map, level, slice);
3612 #endif
3613 } else {
3614 intel_miptree_map_gtt(brw, mt, map, level, slice);
3615 }
3616
3617 *out_ptr = map->ptr;
3618 *out_stride = map->stride;
3619
3620 if (map->ptr == NULL)
3621 intel_miptree_release_map(mt, level, slice);
3622 }
3623
3624 void
3625 intel_miptree_unmap(struct brw_context *brw,
3626 struct intel_mipmap_tree *mt,
3627 unsigned int level,
3628 unsigned int slice)
3629 {
3630 struct intel_miptree_map *map = mt->level[level].slice[slice].map;
3631
3632 assert(mt->surf.samples == 1);
3633
3634 if (!map)
3635 return;
3636
3637 DBG("%s: mt %p (%s) level %d slice %d\n", __func__,
3638 mt, _mesa_get_format_name(mt->format), level, slice);
3639
3640 if (mt->format == MESA_FORMAT_S_UINT8) {
3641 intel_miptree_unmap_s8(brw, mt, map, level, slice);
3642 } else if (mt->etc_format != MESA_FORMAT_NONE &&
3643 !(map->mode & BRW_MAP_DIRECT_BIT)) {
3644 intel_miptree_unmap_etc(brw, mt, map, level, slice);
3645 } else if (mt->stencil_mt && !(map->mode & BRW_MAP_DIRECT_BIT)) {
3646 intel_miptree_unmap_depthstencil(brw, mt, map, level, slice);
3647 } else if (map->linear_mt) {
3648 intel_miptree_unmap_blit(brw, mt, map, level, slice);
3649 #if defined(USE_SSE41)
3650 } else if (map->buffer && cpu_has_sse4_1) {
3651 intel_miptree_unmap_movntdqa(brw, mt, map, level, slice);
3652 #endif
3653 } else {
3654 intel_miptree_unmap_gtt(mt);
3655 }
3656
3657 intel_miptree_release_map(mt, level, slice);
3658 }
3659
3660 enum isl_surf_dim
3661 get_isl_surf_dim(GLenum target)
3662 {
3663 switch (target) {
3664 case GL_TEXTURE_1D:
3665 case GL_TEXTURE_1D_ARRAY:
3666 return ISL_SURF_DIM_1D;
3667
3668 case GL_TEXTURE_2D:
3669 case GL_TEXTURE_2D_ARRAY:
3670 case GL_TEXTURE_RECTANGLE:
3671 case GL_TEXTURE_CUBE_MAP:
3672 case GL_TEXTURE_CUBE_MAP_ARRAY:
3673 case GL_TEXTURE_2D_MULTISAMPLE:
3674 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
3675 case GL_TEXTURE_EXTERNAL_OES:
3676 return ISL_SURF_DIM_2D;
3677
3678 case GL_TEXTURE_3D:
3679 return ISL_SURF_DIM_3D;
3680 }
3681
3682 unreachable("Invalid texture target");
3683 }
3684
3685 enum isl_dim_layout
3686 get_isl_dim_layout(const struct gen_device_info *devinfo,
3687 enum isl_tiling tiling, GLenum target)
3688 {
3689 switch (target) {
3690 case GL_TEXTURE_1D:
3691 case GL_TEXTURE_1D_ARRAY:
3692 return (devinfo->gen >= 9 && tiling == ISL_TILING_LINEAR ?
3693 ISL_DIM_LAYOUT_GEN9_1D : ISL_DIM_LAYOUT_GEN4_2D);
3694
3695 case GL_TEXTURE_2D:
3696 case GL_TEXTURE_2D_ARRAY:
3697 case GL_TEXTURE_RECTANGLE:
3698 case GL_TEXTURE_2D_MULTISAMPLE:
3699 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
3700 case GL_TEXTURE_EXTERNAL_OES:
3701 return ISL_DIM_LAYOUT_GEN4_2D;
3702
3703 case GL_TEXTURE_CUBE_MAP:
3704 case GL_TEXTURE_CUBE_MAP_ARRAY:
3705 return (devinfo->gen == 4 ? ISL_DIM_LAYOUT_GEN4_3D :
3706 ISL_DIM_LAYOUT_GEN4_2D);
3707
3708 case GL_TEXTURE_3D:
3709 return (devinfo->gen >= 9 ?
3710 ISL_DIM_LAYOUT_GEN4_2D : ISL_DIM_LAYOUT_GEN4_3D);
3711 }
3712
3713 unreachable("Invalid texture target");
3714 }
3715
3716 enum isl_aux_usage
3717 intel_miptree_get_aux_isl_usage(const struct brw_context *brw,
3718 const struct intel_mipmap_tree *mt)
3719 {
3720 if (mt->hiz_buf)
3721 return ISL_AUX_USAGE_HIZ;
3722
3723 if (!mt->mcs_buf)
3724 return ISL_AUX_USAGE_NONE;
3725
3726 return mt->aux_usage;
3727 }