i965/miptree: Share tiling_flags in miptree_create
[mesa.git] / src / mesa / drivers / dri / i965 / intel_mipmap_tree.c
1 /*
2 * Copyright 2006 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include <GL/gl.h>
27 #include <GL/internal/dri_interface.h>
28 #include <drm_fourcc.h>
29
30 #include "intel_batchbuffer.h"
31 #include "intel_image.h"
32 #include "intel_mipmap_tree.h"
33 #include "intel_tex.h"
34 #include "intel_blit.h"
35 #include "intel_fbo.h"
36
37 #include "brw_blorp.h"
38 #include "brw_context.h"
39 #include "brw_state.h"
40
41 #include "main/enums.h"
42 #include "main/fbobject.h"
43 #include "main/formats.h"
44 #include "main/glformats.h"
45 #include "main/texcompress_etc.h"
46 #include "main/teximage.h"
47 #include "main/streaming-load-memcpy.h"
48
49 #include "util/format_srgb.h"
50
51 #include "x86/common_x86_asm.h"
52
53 #define FILE_DEBUG_FLAG DEBUG_MIPTREE
54
55 static void *intel_miptree_map_raw(struct brw_context *brw,
56 struct intel_mipmap_tree *mt,
57 GLbitfield mode);
58
59 static void intel_miptree_unmap_raw(struct intel_mipmap_tree *mt);
60
61 static bool
62 intel_miptree_supports_mcs(struct brw_context *brw,
63 const struct intel_mipmap_tree *mt)
64 {
65 const struct gen_device_info *devinfo = &brw->screen->devinfo;
66
67 /* MCS compression only applies to multisampled miptrees */
68 if (mt->surf.samples <= 1)
69 return false;
70
71 /* Prior to Gen7, all MSAA surfaces used IMS layout. */
72 if (devinfo->gen < 7)
73 return false;
74
75 /* See isl_surf_get_mcs_surf for details. */
76 if (mt->surf.samples == 16 && mt->surf.logical_level0_px.width > 8192)
77 return false;
78
79 /* In Gen7, IMS layout is only used for depth and stencil buffers. */
80 switch (_mesa_get_format_base_format(mt->format)) {
81 case GL_DEPTH_COMPONENT:
82 case GL_STENCIL_INDEX:
83 case GL_DEPTH_STENCIL:
84 return false;
85 default:
86 /* From the Ivy Bridge PRM, Vol4 Part1 p77 ("MCS Enable"):
87 *
88 * This field must be set to 0 for all SINT MSRTs when all RT channels
89 * are not written
90 *
91 * In practice this means that we have to disable MCS for all signed
92 * integer MSAA buffers. The alternative, to disable MCS only when one
93 * of the render target channels is disabled, is impractical because it
94 * would require converting between CMS and UMS MSAA layouts on the fly,
95 * which is expensive.
96 */
97 if (devinfo->gen == 7 && _mesa_get_format_datatype(mt->format) == GL_INT) {
98 return false;
99 } else {
100 return true;
101 }
102 }
103 }
104
105 static bool
106 intel_tiling_supports_ccs(const struct brw_context *brw,
107 enum isl_tiling tiling)
108 {
109 const struct gen_device_info *devinfo = &brw->screen->devinfo;
110
111 /* From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render
112 * Target(s)", beneath the "Fast Color Clear" bullet (p326):
113 *
114 * - Support is limited to tiled render targets.
115 *
116 * Gen9 changes the restriction to Y-tile only.
117 */
118 if (devinfo->gen >= 9)
119 return tiling == ISL_TILING_Y0;
120 else if (devinfo->gen >= 7)
121 return tiling != ISL_TILING_LINEAR;
122 else
123 return false;
124 }
125
126 /**
127 * For a single-sampled render target ("non-MSRT"), determine if an MCS buffer
128 * can be used. This doesn't (and should not) inspect any of the properties of
129 * the miptree's BO.
130 *
131 * From the Ivy Bridge PRM, Vol2 Part1 11.7 "MCS Buffer for Render Target(s)",
132 * beneath the "Fast Color Clear" bullet (p326):
133 *
134 * - Support is for non-mip-mapped and non-array surface types only.
135 *
136 * And then later, on p327:
137 *
138 * - MCS buffer for non-MSRT is supported only for RT formats 32bpp,
139 * 64bpp, and 128bpp.
140 *
141 * From the Skylake documentation, it is made clear that X-tiling is no longer
142 * supported:
143 *
144 * - MCS and Lossless compression is supported for TiledY/TileYs/TileYf
145 * non-MSRTs only.
146 */
147 static bool
148 intel_miptree_supports_ccs(struct brw_context *brw,
149 const struct intel_mipmap_tree *mt)
150 {
151 const struct gen_device_info *devinfo = &brw->screen->devinfo;
152
153 /* MCS support does not exist prior to Gen7 */
154 if (devinfo->gen < 7)
155 return false;
156
157 /* This function applies only to non-multisampled render targets. */
158 if (mt->surf.samples > 1)
159 return false;
160
161 /* MCS is only supported for color buffers */
162 if (!_mesa_is_format_color_format(mt->format))
163 return false;
164
165 if (mt->cpp != 4 && mt->cpp != 8 && mt->cpp != 16)
166 return false;
167
168 const bool mip_mapped = mt->first_level != 0 || mt->last_level != 0;
169 const bool arrayed = mt->surf.logical_level0_px.array_len > 1 ||
170 mt->surf.logical_level0_px.depth > 1;
171
172 if (arrayed) {
173 /* Multisample surfaces with the CMS layout are not layered surfaces,
174 * yet still have physical_depth0 > 1. Assert that we don't
175 * accidentally reject a multisampled surface here. We should have
176 * rejected it earlier by explicitly checking the sample count.
177 */
178 assert(mt->surf.samples == 1);
179 }
180
181 /* Handle the hardware restrictions...
182 *
183 * All GENs have the following restriction: "MCS buffer for non-MSRT is
184 * supported only for RT formats 32bpp, 64bpp, and 128bpp."
185 *
186 * From the HSW PRM Volume 7: 3D-Media-GPGPU, page 652: (Color Clear of
187 * Non-MultiSampler Render Target Restrictions) Support is for
188 * non-mip-mapped and non-array surface types only.
189 *
190 * From the BDW PRM Volume 7: 3D-Media-GPGPU, page 649: (Color Clear of
191 * Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
192 * surfaces are supported with MCS buffer layout with these alignments in
193 * the RT space: Horizontal Alignment = 256 and Vertical Alignment = 128.
194 *
195 * From the SKL PRM Volume 7: 3D-Media-GPGPU, page 632: (Color Clear of
196 * Non-MultiSampler Render Target Restriction). Mip-mapped and arrayed
197 * surfaces are supported with MCS buffer layout with these alignments in
198 * the RT space: Horizontal Alignment = 128 and Vertical Alignment = 64.
199 */
200 if (devinfo->gen < 8 && (mip_mapped || arrayed))
201 return false;
202
203 /* The PRM doesn't say this explicitly, but fast-clears don't appear to
204 * work for 3D textures until gen9 where the layout of 3D textures changes
205 * to match 2D array textures.
206 */
207 if (devinfo->gen <= 8 && mt->surf.dim != ISL_SURF_DIM_2D)
208 return false;
209
210 /* There's no point in using an MCS buffer if the surface isn't in a
211 * renderable format.
212 */
213 if (!brw->mesa_format_supports_render[mt->format])
214 return false;
215
216 return true;
217 }
218
219 static bool
220 intel_tiling_supports_hiz(const struct brw_context *brw,
221 enum isl_tiling tiling)
222 {
223 const struct gen_device_info *devinfo = &brw->screen->devinfo;
224
225 if (devinfo->gen < 6)
226 return false;
227
228 return tiling == ISL_TILING_Y0;
229 }
230
231 static bool
232 intel_miptree_supports_hiz(const struct brw_context *brw,
233 const struct intel_mipmap_tree *mt)
234 {
235 if (!brw->has_hiz)
236 return false;
237
238 switch (mt->format) {
239 case MESA_FORMAT_Z_FLOAT32:
240 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
241 case MESA_FORMAT_Z24_UNORM_X8_UINT:
242 case MESA_FORMAT_Z24_UNORM_S8_UINT:
243 case MESA_FORMAT_Z_UNORM16:
244 return true;
245 default:
246 return false;
247 }
248 }
249
250 /**
251 * Return true if the format that will be used to access the miptree is
252 * CCS_E-compatible with the miptree's linear/non-sRGB format.
253 *
254 * Why use the linear format? Well, although the miptree may be specified with
255 * an sRGB format, the usage of that color space/format can be toggled. Since
256 * our HW tends to support more linear formats than sRGB ones, we use this
257 * format variant for check for CCS_E compatibility.
258 */
259 static bool
260 format_ccs_e_compat_with_miptree(const struct gen_device_info *devinfo,
261 const struct intel_mipmap_tree *mt,
262 enum isl_format access_format)
263 {
264 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_E);
265
266 mesa_format linear_format = _mesa_get_srgb_format_linear(mt->format);
267 enum isl_format isl_format = brw_isl_format_for_mesa_format(linear_format);
268 return isl_formats_are_ccs_e_compatible(devinfo, isl_format, access_format);
269 }
270
271 static bool
272 intel_miptree_supports_ccs_e(struct brw_context *brw,
273 const struct intel_mipmap_tree *mt)
274 {
275 const struct gen_device_info *devinfo = &brw->screen->devinfo;
276
277 if (devinfo->gen < 9)
278 return false;
279
280 /* For now compression is only enabled for integer formats even though
281 * there exist supported floating point formats also. This is a heuristic
282 * decision based on current public benchmarks. In none of the cases these
283 * formats provided any improvement but a few cases were seen to regress.
284 * Hence these are left to to be enabled in the future when they are known
285 * to improve things.
286 */
287 if (_mesa_get_format_datatype(mt->format) == GL_FLOAT)
288 return false;
289
290 if (!intel_miptree_supports_ccs(brw, mt))
291 return false;
292
293 /* Many window system buffers are sRGB even if they are never rendered as
294 * sRGB. For those, we want CCS_E for when sRGBEncode is false. When the
295 * surface is used as sRGB, we fall back to CCS_D.
296 */
297 mesa_format linear_format = _mesa_get_srgb_format_linear(mt->format);
298 enum isl_format isl_format = brw_isl_format_for_mesa_format(linear_format);
299 return isl_format_supports_ccs_e(&brw->screen->devinfo, isl_format);
300 }
301
302 /**
303 * Determine depth format corresponding to a depth+stencil format,
304 * for separate stencil.
305 */
306 mesa_format
307 intel_depth_format_for_depthstencil_format(mesa_format format) {
308 switch (format) {
309 case MESA_FORMAT_Z24_UNORM_S8_UINT:
310 return MESA_FORMAT_Z24_UNORM_X8_UINT;
311 case MESA_FORMAT_Z32_FLOAT_S8X24_UINT:
312 return MESA_FORMAT_Z_FLOAT32;
313 default:
314 return format;
315 }
316 }
317
318 static bool
319 create_mapping_table(GLenum target, unsigned first_level, unsigned last_level,
320 unsigned depth0, struct intel_mipmap_level *table)
321 {
322 for (unsigned level = first_level; level <= last_level; level++) {
323 const unsigned d =
324 target == GL_TEXTURE_3D ? minify(depth0, level) : depth0;
325
326 table[level].slice = calloc(d, sizeof(*table[0].slice));
327 if (!table[level].slice)
328 goto unwind;
329 }
330
331 return true;
332
333 unwind:
334 for (unsigned level = first_level; level <= last_level; level++)
335 free(table[level].slice);
336
337 return false;
338 }
339
340 static bool
341 needs_separate_stencil(const struct brw_context *brw,
342 struct intel_mipmap_tree *mt,
343 mesa_format format)
344 {
345 const struct gen_device_info *devinfo = &brw->screen->devinfo;
346
347 if (_mesa_get_format_base_format(format) != GL_DEPTH_STENCIL)
348 return false;
349
350 if (devinfo->must_use_separate_stencil)
351 return true;
352
353 return brw->has_separate_stencil &&
354 intel_miptree_supports_hiz(brw, mt);
355 }
356
357 /**
358 * Choose the aux usage for this miptree. This function must be called fairly
359 * late in the miptree create process after we have a tiling.
360 */
361 static void
362 intel_miptree_choose_aux_usage(struct brw_context *brw,
363 struct intel_mipmap_tree *mt)
364 {
365 assert(mt->aux_usage == ISL_AUX_USAGE_NONE);
366
367 if (intel_miptree_supports_mcs(brw, mt)) {
368 assert(mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
369 mt->aux_usage = ISL_AUX_USAGE_MCS;
370 } else if (intel_tiling_supports_ccs(brw, mt->surf.tiling) &&
371 intel_miptree_supports_ccs(brw, mt)) {
372 if (!unlikely(INTEL_DEBUG & DEBUG_NO_RBC) &&
373 intel_miptree_supports_ccs_e(brw, mt)) {
374 mt->aux_usage = ISL_AUX_USAGE_CCS_E;
375 } else {
376 mt->aux_usage = ISL_AUX_USAGE_CCS_D;
377 }
378 } else if (intel_tiling_supports_hiz(brw, mt->surf.tiling) &&
379 intel_miptree_supports_hiz(brw, mt)) {
380 mt->aux_usage = ISL_AUX_USAGE_HIZ;
381 }
382
383 /* We can do fast-clear on all auxiliary surface types that are
384 * allocated through the normal texture creation paths.
385 */
386 if (mt->aux_usage != ISL_AUX_USAGE_NONE)
387 mt->supports_fast_clear = true;
388 }
389
390
391 /**
392 * Choose an appropriate uncompressed format for a requested
393 * compressed format, if unsupported.
394 */
395 mesa_format
396 intel_lower_compressed_format(struct brw_context *brw, mesa_format format)
397 {
398 const struct gen_device_info *devinfo = &brw->screen->devinfo;
399
400 /* No need to lower ETC formats on these platforms,
401 * they are supported natively.
402 */
403 if (devinfo->gen >= 8 || devinfo->is_baytrail)
404 return format;
405
406 switch (format) {
407 case MESA_FORMAT_ETC1_RGB8:
408 return MESA_FORMAT_R8G8B8X8_UNORM;
409 case MESA_FORMAT_ETC2_RGB8:
410 return MESA_FORMAT_R8G8B8X8_UNORM;
411 case MESA_FORMAT_ETC2_SRGB8:
412 case MESA_FORMAT_ETC2_SRGB8_ALPHA8_EAC:
413 case MESA_FORMAT_ETC2_SRGB8_PUNCHTHROUGH_ALPHA1:
414 return MESA_FORMAT_B8G8R8A8_SRGB;
415 case MESA_FORMAT_ETC2_RGBA8_EAC:
416 case MESA_FORMAT_ETC2_RGB8_PUNCHTHROUGH_ALPHA1:
417 return MESA_FORMAT_R8G8B8A8_UNORM;
418 case MESA_FORMAT_ETC2_R11_EAC:
419 return MESA_FORMAT_R_UNORM16;
420 case MESA_FORMAT_ETC2_SIGNED_R11_EAC:
421 return MESA_FORMAT_R_SNORM16;
422 case MESA_FORMAT_ETC2_RG11_EAC:
423 return MESA_FORMAT_R16G16_UNORM;
424 case MESA_FORMAT_ETC2_SIGNED_RG11_EAC:
425 return MESA_FORMAT_R16G16_SNORM;
426 default:
427 /* Non ETC1 / ETC2 format */
428 return format;
429 }
430 }
431
432 unsigned
433 brw_get_num_logical_layers(const struct intel_mipmap_tree *mt, unsigned level)
434 {
435 if (mt->surf.dim == ISL_SURF_DIM_3D)
436 return minify(mt->surf.logical_level0_px.depth, level);
437 else
438 return mt->surf.logical_level0_px.array_len;
439 }
440
441 UNUSED static unsigned
442 get_num_phys_layers(const struct isl_surf *surf, unsigned level)
443 {
444 /* In case of physical dimensions one needs to consider also the layout.
445 * See isl_calc_phys_level0_extent_sa().
446 */
447 if (surf->dim != ISL_SURF_DIM_3D)
448 return surf->phys_level0_sa.array_len;
449
450 if (surf->dim_layout == ISL_DIM_LAYOUT_GEN4_2D)
451 return minify(surf->phys_level0_sa.array_len, level);
452
453 return minify(surf->phys_level0_sa.depth, level);
454 }
455
456 /** \brief Assert that the level and layer are valid for the miptree. */
457 void
458 intel_miptree_check_level_layer(const struct intel_mipmap_tree *mt,
459 uint32_t level,
460 uint32_t layer)
461 {
462 (void) mt;
463 (void) level;
464 (void) layer;
465
466 assert(level >= mt->first_level);
467 assert(level <= mt->last_level);
468 assert(layer < get_num_phys_layers(&mt->surf, level));
469 }
470
471 static enum isl_aux_state **
472 create_aux_state_map(struct intel_mipmap_tree *mt,
473 enum isl_aux_state initial)
474 {
475 const uint32_t levels = mt->last_level + 1;
476
477 uint32_t total_slices = 0;
478 for (uint32_t level = 0; level < levels; level++)
479 total_slices += brw_get_num_logical_layers(mt, level);
480
481 const size_t per_level_array_size = levels * sizeof(enum isl_aux_state *);
482
483 /* We're going to allocate a single chunk of data for both the per-level
484 * reference array and the arrays of aux_state. This makes cleanup
485 * significantly easier.
486 */
487 const size_t total_size = per_level_array_size +
488 total_slices * sizeof(enum isl_aux_state);
489 void *data = malloc(total_size);
490 if (data == NULL)
491 return NULL;
492
493 enum isl_aux_state **per_level_arr = data;
494 enum isl_aux_state *s = data + per_level_array_size;
495 for (uint32_t level = 0; level < levels; level++) {
496 per_level_arr[level] = s;
497 const unsigned level_layers = brw_get_num_logical_layers(mt, level);
498 for (uint32_t a = 0; a < level_layers; a++)
499 *(s++) = initial;
500 }
501 assert((void *)s == data + total_size);
502
503 return per_level_arr;
504 }
505
506 static void
507 free_aux_state_map(enum isl_aux_state **state)
508 {
509 free(state);
510 }
511
512 static bool
513 need_to_retile_as_linear(struct brw_context *brw, unsigned blt_pitch,
514 enum isl_tiling tiling, unsigned samples)
515 {
516 if (samples > 1)
517 return false;
518
519 if (tiling == ISL_TILING_LINEAR)
520 return false;
521
522 if (blt_pitch >= 32768) {
523 perf_debug("blt pitch %u too large to blit, falling back to untiled",
524 blt_pitch);
525 return true;
526 }
527
528 return false;
529 }
530
531 static bool
532 need_to_retile_as_x(const struct brw_context *brw, uint64_t size,
533 enum isl_tiling tiling)
534 {
535 const struct gen_device_info *devinfo = &brw->screen->devinfo;
536
537 /* If the BO is too large to fit in the aperture, we need to use the
538 * BLT engine to support it. Prior to Sandybridge, the BLT paths can't
539 * handle Y-tiling, so we need to fall back to X.
540 */
541 if (devinfo->gen < 6 && size >= brw->max_gtt_map_object_size &&
542 tiling == ISL_TILING_Y0)
543 return true;
544
545 return false;
546 }
547
548 static struct intel_mipmap_tree *
549 make_surface(struct brw_context *brw, GLenum target, mesa_format format,
550 unsigned first_level, unsigned last_level,
551 unsigned width0, unsigned height0, unsigned depth0,
552 unsigned num_samples, isl_tiling_flags_t tiling_flags,
553 isl_surf_usage_flags_t isl_usage_flags, uint32_t alloc_flags,
554 unsigned row_pitch, struct brw_bo *bo)
555 {
556 struct intel_mipmap_tree *mt = calloc(sizeof(*mt), 1);
557 if (!mt)
558 return NULL;
559
560 if (!create_mapping_table(target, first_level, last_level, depth0,
561 mt->level)) {
562 free(mt);
563 return NULL;
564 }
565
566 mt->refcount = 1;
567
568 if (target == GL_TEXTURE_CUBE_MAP ||
569 target == GL_TEXTURE_CUBE_MAP_ARRAY)
570 isl_usage_flags |= ISL_SURF_USAGE_CUBE_BIT;
571
572 DBG("%s: %s %s %ux %u:%u:%u %d..%d <-- %p\n",
573 __func__,
574 _mesa_enum_to_string(target),
575 _mesa_get_format_name(format),
576 num_samples, width0, height0, depth0,
577 first_level, last_level, mt);
578
579 struct isl_surf_init_info init_info = {
580 .dim = get_isl_surf_dim(target),
581 .format = translate_tex_format(brw, format, false),
582 .width = width0,
583 .height = height0,
584 .depth = target == GL_TEXTURE_3D ? depth0 : 1,
585 .levels = last_level - first_level + 1,
586 .array_len = target == GL_TEXTURE_3D ? 1 : depth0,
587 .samples = num_samples,
588 .row_pitch = row_pitch,
589 .usage = isl_usage_flags,
590 .tiling_flags = tiling_flags,
591 };
592
593 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
594 goto fail;
595
596 /* Depth surfaces are always Y-tiled and stencil is always W-tiled, although
597 * on gen7 platforms we also need to create Y-tiled copies of stencil for
598 * texturing since the hardware can't sample from W-tiled surfaces. For
599 * everything else, check for corner cases needing special treatment.
600 */
601 bool is_depth_stencil =
602 mt->surf.usage & (ISL_SURF_USAGE_STENCIL_BIT | ISL_SURF_USAGE_DEPTH_BIT);
603 if (!is_depth_stencil) {
604 if (need_to_retile_as_linear(brw, intel_miptree_blt_pitch(mt),
605 mt->surf.tiling, mt->surf.samples)) {
606 init_info.tiling_flags = 1u << ISL_TILING_LINEAR;
607 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
608 goto fail;
609 } else if (need_to_retile_as_x(brw, mt->surf.size, mt->surf.tiling)) {
610 init_info.tiling_flags = 1u << ISL_TILING_X;
611 if (!isl_surf_init_s(&brw->isl_dev, &mt->surf, &init_info))
612 goto fail;
613 }
614 }
615
616 /* In case of linear the buffer gets padded by fixed 64 bytes and therefore
617 * the size may not be multiple of row_pitch.
618 * See isl_apply_surface_padding().
619 */
620 if (mt->surf.tiling != ISL_TILING_LINEAR)
621 assert(mt->surf.size % mt->surf.row_pitch == 0);
622
623 if (!bo) {
624 mt->bo = brw_bo_alloc_tiled(brw->bufmgr, "isl-miptree",
625 mt->surf.size,
626 BRW_MEMZONE_OTHER,
627 isl_tiling_to_i915_tiling(
628 mt->surf.tiling),
629 mt->surf.row_pitch, alloc_flags);
630 if (!mt->bo)
631 goto fail;
632 } else {
633 mt->bo = bo;
634 }
635
636 mt->first_level = first_level;
637 mt->last_level = last_level;
638 mt->target = target;
639 mt->format = format;
640 mt->aux_state = NULL;
641 mt->cpp = isl_format_get_layout(mt->surf.format)->bpb / 8;
642 mt->compressed = _mesa_is_format_compressed(format);
643 mt->drm_modifier = DRM_FORMAT_MOD_INVALID;
644
645 return mt;
646
647 fail:
648 intel_miptree_release(&mt);
649 return NULL;
650 }
651
652 static bool
653 make_separate_stencil_surface(struct brw_context *brw,
654 struct intel_mipmap_tree *mt)
655 {
656 mt->stencil_mt = make_surface(brw, mt->target, MESA_FORMAT_S_UINT8,
657 0, mt->surf.levels - 1,
658 mt->surf.logical_level0_px.width,
659 mt->surf.logical_level0_px.height,
660 mt->surf.dim == ISL_SURF_DIM_3D ?
661 mt->surf.logical_level0_px.depth :
662 mt->surf.logical_level0_px.array_len,
663 mt->surf.samples, ISL_TILING_W_BIT,
664 ISL_SURF_USAGE_STENCIL_BIT |
665 ISL_SURF_USAGE_TEXTURE_BIT,
666 BO_ALLOC_BUSY, 0, NULL);
667
668 if (!mt->stencil_mt)
669 return false;
670
671 mt->stencil_mt->r8stencil_needs_update = true;
672
673 return true;
674 }
675
676 static struct intel_mipmap_tree *
677 miptree_create(struct brw_context *brw,
678 GLenum target,
679 mesa_format format,
680 GLuint first_level,
681 GLuint last_level,
682 GLuint width0,
683 GLuint height0,
684 GLuint depth0,
685 GLuint num_samples,
686 enum intel_miptree_create_flags flags)
687 {
688 const struct gen_device_info *devinfo = &brw->screen->devinfo;
689 isl_tiling_flags_t tiling_flags = ISL_TILING_ANY_MASK;
690
691 /* TODO: This used to be because there wasn't BLORP to handle Y-tiling. */
692 if (devinfo->gen < 6 && _mesa_is_format_color_format(format))
693 tiling_flags &= ~ISL_TILING_Y0_BIT;
694
695 if (format == MESA_FORMAT_S_UINT8)
696 return make_surface(brw, target, format, first_level, last_level,
697 width0, height0, depth0, num_samples,
698 tiling_flags,
699 ISL_SURF_USAGE_STENCIL_BIT |
700 ISL_SURF_USAGE_TEXTURE_BIT,
701 BO_ALLOC_BUSY,
702 0,
703 NULL);
704
705 const GLenum base_format = _mesa_get_format_base_format(format);
706 if ((base_format == GL_DEPTH_COMPONENT ||
707 base_format == GL_DEPTH_STENCIL)) {
708 /* Fix up the Z miptree format for how we're splitting out separate
709 * stencil. Gen7 expects there to be no stencil bits in its depth buffer.
710 */
711 const mesa_format depth_only_format =
712 intel_depth_format_for_depthstencil_format(format);
713 struct intel_mipmap_tree *mt = make_surface(
714 brw, target, devinfo->gen >= 6 ? depth_only_format : format,
715 first_level, last_level,
716 width0, height0, depth0, num_samples, tiling_flags,
717 ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_TEXTURE_BIT,
718 BO_ALLOC_BUSY, 0, NULL);
719
720 if (needs_separate_stencil(brw, mt, format) &&
721 !make_separate_stencil_surface(brw, mt)) {
722 intel_miptree_release(&mt);
723 return NULL;
724 }
725
726 if (!(flags & MIPTREE_CREATE_NO_AUX))
727 intel_miptree_choose_aux_usage(brw, mt);
728
729 return mt;
730 }
731
732 mesa_format tex_format = format;
733 mesa_format etc_format = MESA_FORMAT_NONE;
734 uint32_t alloc_flags = 0;
735
736 format = intel_lower_compressed_format(brw, format);
737
738 etc_format = (format != tex_format) ? tex_format : MESA_FORMAT_NONE;
739
740 if (flags & MIPTREE_CREATE_BUSY)
741 alloc_flags |= BO_ALLOC_BUSY;
742
743 struct intel_mipmap_tree *mt = make_surface(
744 brw, target, format,
745 first_level, last_level,
746 width0, height0, depth0,
747 num_samples, tiling_flags,
748 ISL_SURF_USAGE_RENDER_TARGET_BIT |
749 ISL_SURF_USAGE_TEXTURE_BIT,
750 alloc_flags, 0, NULL);
751 if (!mt)
752 return NULL;
753
754 mt->etc_format = etc_format;
755
756 if (!(flags & MIPTREE_CREATE_NO_AUX))
757 intel_miptree_choose_aux_usage(brw, mt);
758
759 return mt;
760 }
761
762 struct intel_mipmap_tree *
763 intel_miptree_create(struct brw_context *brw,
764 GLenum target,
765 mesa_format format,
766 GLuint first_level,
767 GLuint last_level,
768 GLuint width0,
769 GLuint height0,
770 GLuint depth0,
771 GLuint num_samples,
772 enum intel_miptree_create_flags flags)
773 {
774 assert(num_samples > 0);
775
776 struct intel_mipmap_tree *mt = miptree_create(
777 brw, target, format,
778 first_level, last_level,
779 width0, height0, depth0, num_samples,
780 flags);
781 if (!mt)
782 return NULL;
783
784 mt->offset = 0;
785
786 /* Create the auxiliary surface up-front. CCS_D, on the other hand, can only
787 * compress clear color so we wait until an actual fast-clear to allocate
788 * it.
789 */
790 if (mt->aux_usage != ISL_AUX_USAGE_CCS_D &&
791 !intel_miptree_alloc_aux(brw, mt)) {
792 intel_miptree_release(&mt);
793 return NULL;
794 }
795
796 return mt;
797 }
798
799 struct intel_mipmap_tree *
800 intel_miptree_create_for_bo(struct brw_context *brw,
801 struct brw_bo *bo,
802 mesa_format format,
803 uint32_t offset,
804 uint32_t width,
805 uint32_t height,
806 uint32_t depth,
807 int pitch,
808 enum isl_tiling tiling,
809 enum intel_miptree_create_flags flags)
810 {
811 const struct gen_device_info *devinfo = &brw->screen->devinfo;
812 struct intel_mipmap_tree *mt;
813 const GLenum target = depth > 1 ? GL_TEXTURE_2D_ARRAY : GL_TEXTURE_2D;
814 const GLenum base_format = _mesa_get_format_base_format(format);
815
816 if ((base_format == GL_DEPTH_COMPONENT ||
817 base_format == GL_DEPTH_STENCIL)) {
818 const mesa_format depth_only_format =
819 intel_depth_format_for_depthstencil_format(format);
820 mt = make_surface(brw, target,
821 devinfo->gen >= 6 ? depth_only_format : format,
822 0, 0, width, height, depth, 1, ISL_TILING_Y0_BIT,
823 ISL_SURF_USAGE_DEPTH_BIT | ISL_SURF_USAGE_TEXTURE_BIT,
824 0, pitch, bo);
825 if (!mt)
826 return NULL;
827
828 brw_bo_reference(bo);
829
830 if (!(flags & MIPTREE_CREATE_NO_AUX))
831 intel_miptree_choose_aux_usage(brw, mt);
832
833 return mt;
834 } else if (format == MESA_FORMAT_S_UINT8) {
835 mt = make_surface(brw, target, MESA_FORMAT_S_UINT8,
836 0, 0, width, height, depth, 1,
837 ISL_TILING_W_BIT,
838 ISL_SURF_USAGE_STENCIL_BIT |
839 ISL_SURF_USAGE_TEXTURE_BIT,
840 0, pitch, bo);
841 if (!mt)
842 return NULL;
843
844 assert(bo->size >= mt->surf.size);
845
846 brw_bo_reference(bo);
847 return mt;
848 }
849
850 /* Nothing will be able to use this miptree with the BO if the offset isn't
851 * aligned.
852 */
853 if (tiling != ISL_TILING_LINEAR)
854 assert(offset % 4096 == 0);
855
856 /* miptrees can't handle negative pitch. If you need flipping of images,
857 * that's outside of the scope of the mt.
858 */
859 assert(pitch >= 0);
860
861 mt = make_surface(brw, target, format,
862 0, 0, width, height, depth, 1,
863 1lu << tiling,
864 ISL_SURF_USAGE_RENDER_TARGET_BIT |
865 ISL_SURF_USAGE_TEXTURE_BIT,
866 0, pitch, bo);
867 if (!mt)
868 return NULL;
869
870 brw_bo_reference(bo);
871 mt->bo = bo;
872 mt->offset = offset;
873
874 if (!(flags & MIPTREE_CREATE_NO_AUX)) {
875 intel_miptree_choose_aux_usage(brw, mt);
876
877 /* Create the auxiliary surface up-front. CCS_D, on the other hand, can
878 * only compress clear color so we wait until an actual fast-clear to
879 * allocate it.
880 */
881 if (mt->aux_usage != ISL_AUX_USAGE_CCS_D &&
882 !intel_miptree_alloc_aux(brw, mt)) {
883 intel_miptree_release(&mt);
884 return NULL;
885 }
886 }
887
888 return mt;
889 }
890
891 static struct intel_mipmap_tree *
892 miptree_create_for_planar_image(struct brw_context *brw,
893 __DRIimage *image, GLenum target,
894 enum isl_tiling tiling)
895 {
896 const struct intel_image_format *f = image->planar_format;
897 struct intel_mipmap_tree *planar_mt = NULL;
898
899 for (int i = 0; i < f->nplanes; i++) {
900 const int index = f->planes[i].buffer_index;
901 const uint32_t dri_format = f->planes[i].dri_format;
902 const mesa_format format = driImageFormatToGLFormat(dri_format);
903 const uint32_t width = image->width >> f->planes[i].width_shift;
904 const uint32_t height = image->height >> f->planes[i].height_shift;
905
906 /* Disable creation of the texture's aux buffers because the driver
907 * exposes no EGL API to manage them. That is, there is no API for
908 * resolving the aux buffer's content to the main buffer nor for
909 * invalidating the aux buffer's content.
910 */
911 struct intel_mipmap_tree *mt =
912 intel_miptree_create_for_bo(brw, image->bo, format,
913 image->offsets[index],
914 width, height, 1,
915 image->strides[index],
916 tiling,
917 MIPTREE_CREATE_NO_AUX);
918 if (mt == NULL) {
919 intel_miptree_release(&planar_mt);
920 return NULL;
921 }
922
923 mt->target = target;
924
925 if (i == 0)
926 planar_mt = mt;
927 else
928 planar_mt->plane[i - 1] = mt;
929 }
930
931 planar_mt->drm_modifier = image->modifier;
932
933 return planar_mt;
934 }
935
936 static bool
937 create_ccs_buf_for_image(struct brw_context *brw,
938 __DRIimage *image,
939 struct intel_mipmap_tree *mt,
940 enum isl_aux_state initial_state)
941 {
942 struct isl_surf temp_ccs_surf;
943
944 /* CCS is only supported for very simple miptrees */
945 assert(image->aux_offset != 0 && image->aux_pitch != 0);
946 assert(image->tile_x == 0 && image->tile_y == 0);
947 assert(mt->surf.samples == 1);
948 assert(mt->surf.levels == 1);
949 assert(mt->surf.logical_level0_px.depth == 1);
950 assert(mt->surf.logical_level0_px.array_len == 1);
951 assert(mt->first_level == 0);
952 assert(mt->last_level == 0);
953
954 /* We shouldn't already have a CCS */
955 assert(!mt->aux_buf);
956
957 if (!isl_surf_get_ccs_surf(&brw->isl_dev, &mt->surf, &temp_ccs_surf,
958 image->aux_pitch))
959 return false;
960
961 assert(image->aux_offset < image->bo->size);
962 assert(temp_ccs_surf.size <= image->bo->size - image->aux_offset);
963
964 mt->aux_buf = calloc(sizeof(*mt->aux_buf), 1);
965 if (mt->aux_buf == NULL)
966 return false;
967
968 mt->aux_state = create_aux_state_map(mt, initial_state);
969 if (!mt->aux_state) {
970 free(mt->aux_buf);
971 mt->aux_buf = NULL;
972 return false;
973 }
974
975 /* On gen10+ we start using an extra space in the aux buffer to store the
976 * indirect clear color. However, if we imported an image from the window
977 * system with CCS, we don't have the extra space at the end of the aux
978 * buffer. So create a new bo here that will store that clear color.
979 */
980 if (brw->isl_dev.ss.clear_color_state_size > 0) {
981 mt->aux_buf->clear_color_bo =
982 brw_bo_alloc_tiled(brw->bufmgr, "clear_color_bo",
983 brw->isl_dev.ss.clear_color_state_size,
984 BRW_MEMZONE_OTHER, I915_TILING_NONE, 0,
985 BO_ALLOC_ZEROED);
986 if (!mt->aux_buf->clear_color_bo) {
987 free(mt->aux_buf);
988 mt->aux_buf = NULL;
989 return false;
990 }
991 }
992
993 mt->aux_buf->bo = image->bo;
994 brw_bo_reference(image->bo);
995
996 mt->aux_buf->offset = image->aux_offset;
997 mt->aux_buf->surf = temp_ccs_surf;
998
999 return true;
1000 }
1001
1002 struct intel_mipmap_tree *
1003 intel_miptree_create_for_dri_image(struct brw_context *brw,
1004 __DRIimage *image, GLenum target,
1005 mesa_format format,
1006 bool allow_internal_aux)
1007 {
1008 uint32_t bo_tiling, bo_swizzle;
1009 brw_bo_get_tiling(image->bo, &bo_tiling, &bo_swizzle);
1010
1011 const struct isl_drm_modifier_info *mod_info =
1012 isl_drm_modifier_get_info(image->modifier);
1013
1014 const enum isl_tiling tiling =
1015 mod_info ? mod_info->tiling : isl_tiling_from_i915_tiling(bo_tiling);
1016
1017 if (image->planar_format && image->planar_format->nplanes > 1)
1018 return miptree_create_for_planar_image(brw, image, target, tiling);
1019
1020 if (image->planar_format)
1021 assert(image->planar_format->planes[0].dri_format == image->dri_format);
1022
1023 if (!brw->ctx.TextureFormatSupported[format]) {
1024 /* The texture storage paths in core Mesa detect if the driver does not
1025 * support the user-requested format, and then searches for a
1026 * fallback format. The DRIimage code bypasses core Mesa, though. So we
1027 * do the fallbacks here for important formats.
1028 *
1029 * We must support DRM_FOURCC_XBGR8888 textures because the Android
1030 * framework produces HAL_PIXEL_FORMAT_RGBX8888 winsys surfaces, which
1031 * the Chrome OS compositor consumes as dma_buf EGLImages.
1032 */
1033 format = _mesa_format_fallback_rgbx_to_rgba(format);
1034 }
1035
1036 if (!brw->ctx.TextureFormatSupported[format])
1037 return NULL;
1038
1039 enum intel_miptree_create_flags mt_create_flags = 0;
1040
1041 /* If this image comes in from a window system, we have different
1042 * requirements than if it comes in via an EGL import operation. Window
1043 * system images can use any form of auxiliary compression we wish because
1044 * they get "flushed" before being handed off to the window system and we
1045 * have the opportunity to do resolves. Non window-system images, on the
1046 * other hand, have no resolve point so we can't have aux without a
1047 * modifier.
1048 */
1049 if (!allow_internal_aux)
1050 mt_create_flags |= MIPTREE_CREATE_NO_AUX;
1051
1052 /* If we have a modifier which specifies aux, don't create one yet */
1053 if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE)
1054 mt_create_flags |= MIPTREE_CREATE_NO_AUX;
1055
1056 /* Disable creation of the texture's aux buffers because the driver exposes
1057 * no EGL API to manage them. That is, there is no API for resolving the aux
1058 * buffer's content to the main buffer nor for invalidating the aux buffer's
1059 * content.
1060 */
1061 struct intel_mipmap_tree *mt =
1062 intel_miptree_create_for_bo(brw, image->bo, format,
1063 image->offset, image->width, image->height, 1,
1064 image->pitch, tiling, mt_create_flags);
1065 if (mt == NULL)
1066 return NULL;
1067
1068 mt->target = target;
1069 mt->level[0].level_x = image->tile_x;
1070 mt->level[0].level_y = image->tile_y;
1071 mt->drm_modifier = image->modifier;
1072
1073 /* From "OES_EGL_image" error reporting. We report GL_INVALID_OPERATION
1074 * for EGL images from non-tile aligned sufaces in gen4 hw and earlier which has
1075 * trouble resolving back to destination image due to alignment issues.
1076 */
1077 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1078 if (!devinfo->has_surface_tile_offset) {
1079 uint32_t draw_x, draw_y;
1080 intel_miptree_get_tile_offsets(mt, 0, 0, &draw_x, &draw_y);
1081
1082 if (draw_x != 0 || draw_y != 0) {
1083 _mesa_error(&brw->ctx, GL_INVALID_OPERATION, __func__);
1084 intel_miptree_release(&mt);
1085 return NULL;
1086 }
1087 }
1088
1089 if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE) {
1090 assert(mod_info->aux_usage == ISL_AUX_USAGE_CCS_E);
1091
1092 mt->aux_usage = mod_info->aux_usage;
1093 /* If we are a window system buffer, then we can support fast-clears
1094 * even if the modifier doesn't support them by doing a partial resolve
1095 * as part of the flush operation.
1096 */
1097 mt->supports_fast_clear =
1098 allow_internal_aux || mod_info->supports_clear_color;
1099
1100 /* We don't know the actual state of the surface when we get it but we
1101 * can make a pretty good guess based on the modifier. What we do know
1102 * for sure is that it isn't in the AUX_INVALID state, so we just assume
1103 * a worst case of compression.
1104 */
1105 enum isl_aux_state initial_state =
1106 isl_drm_modifier_get_default_aux_state(image->modifier);
1107
1108 if (!create_ccs_buf_for_image(brw, image, mt, initial_state)) {
1109 intel_miptree_release(&mt);
1110 return NULL;
1111 }
1112 }
1113
1114 /* Don't assume coherency for imported EGLimages. We don't know what
1115 * external clients are going to do with it. They may scan it out.
1116 */
1117 image->bo->cache_coherent = false;
1118
1119 return mt;
1120 }
1121
1122 /**
1123 * For a singlesample renderbuffer, this simply wraps the given BO with a
1124 * miptree.
1125 *
1126 * For a multisample renderbuffer, this wraps the window system's
1127 * (singlesample) BO with a singlesample miptree attached to the
1128 * intel_renderbuffer, then creates a multisample miptree attached to irb->mt
1129 * that will contain the actual rendering (which is lazily resolved to
1130 * irb->singlesample_mt).
1131 */
1132 bool
1133 intel_update_winsys_renderbuffer_miptree(struct brw_context *intel,
1134 struct intel_renderbuffer *irb,
1135 struct intel_mipmap_tree *singlesample_mt,
1136 uint32_t width, uint32_t height,
1137 uint32_t pitch)
1138 {
1139 struct intel_mipmap_tree *multisample_mt = NULL;
1140 struct gl_renderbuffer *rb = &irb->Base.Base;
1141 mesa_format format = rb->Format;
1142 const unsigned num_samples = MAX2(rb->NumSamples, 1);
1143
1144 /* Only the front and back buffers, which are color buffers, are allocated
1145 * through the image loader.
1146 */
1147 assert(_mesa_get_format_base_format(format) == GL_RGB ||
1148 _mesa_get_format_base_format(format) == GL_RGBA);
1149
1150 assert(singlesample_mt);
1151
1152 if (num_samples == 1) {
1153 intel_miptree_release(&irb->mt);
1154 irb->mt = singlesample_mt;
1155
1156 assert(!irb->singlesample_mt);
1157 } else {
1158 intel_miptree_release(&irb->singlesample_mt);
1159 irb->singlesample_mt = singlesample_mt;
1160
1161 if (!irb->mt ||
1162 irb->mt->surf.logical_level0_px.width != width ||
1163 irb->mt->surf.logical_level0_px.height != height) {
1164 multisample_mt = intel_miptree_create_for_renderbuffer(intel,
1165 format,
1166 width,
1167 height,
1168 num_samples);
1169 if (!multisample_mt)
1170 goto fail;
1171
1172 irb->need_downsample = false;
1173 intel_miptree_release(&irb->mt);
1174 irb->mt = multisample_mt;
1175 }
1176 }
1177 return true;
1178
1179 fail:
1180 intel_miptree_release(&irb->mt);
1181 return false;
1182 }
1183
1184 struct intel_mipmap_tree*
1185 intel_miptree_create_for_renderbuffer(struct brw_context *brw,
1186 mesa_format format,
1187 uint32_t width,
1188 uint32_t height,
1189 uint32_t num_samples)
1190 {
1191 struct intel_mipmap_tree *mt;
1192 uint32_t depth = 1;
1193 GLenum target = num_samples > 1 ? GL_TEXTURE_2D_MULTISAMPLE : GL_TEXTURE_2D;
1194
1195 mt = intel_miptree_create(brw, target, format, 0, 0,
1196 width, height, depth, num_samples,
1197 MIPTREE_CREATE_BUSY);
1198 if (!mt)
1199 goto fail;
1200
1201 return mt;
1202
1203 fail:
1204 intel_miptree_release(&mt);
1205 return NULL;
1206 }
1207
1208 void
1209 intel_miptree_reference(struct intel_mipmap_tree **dst,
1210 struct intel_mipmap_tree *src)
1211 {
1212 if (*dst == src)
1213 return;
1214
1215 intel_miptree_release(dst);
1216
1217 if (src) {
1218 src->refcount++;
1219 DBG("%s %p refcount now %d\n", __func__, src, src->refcount);
1220 }
1221
1222 *dst = src;
1223 }
1224
1225 static void
1226 intel_miptree_aux_buffer_free(struct intel_miptree_aux_buffer *aux_buf)
1227 {
1228 if (aux_buf == NULL)
1229 return;
1230
1231 brw_bo_unreference(aux_buf->bo);
1232 brw_bo_unreference(aux_buf->clear_color_bo);
1233
1234 free(aux_buf);
1235 }
1236
1237 void
1238 intel_miptree_release(struct intel_mipmap_tree **mt)
1239 {
1240 if (!*mt)
1241 return;
1242
1243 DBG("%s %p refcount will be %d\n", __func__, *mt, (*mt)->refcount - 1);
1244 if (--(*mt)->refcount <= 0) {
1245 GLuint i;
1246
1247 DBG("%s deleting %p\n", __func__, *mt);
1248
1249 brw_bo_unreference((*mt)->bo);
1250 intel_miptree_release(&(*mt)->stencil_mt);
1251 intel_miptree_release(&(*mt)->r8stencil_mt);
1252 intel_miptree_aux_buffer_free((*mt)->aux_buf);
1253 free_aux_state_map((*mt)->aux_state);
1254
1255 intel_miptree_release(&(*mt)->plane[0]);
1256 intel_miptree_release(&(*mt)->plane[1]);
1257
1258 for (i = 0; i < MAX_TEXTURE_LEVELS; i++) {
1259 free((*mt)->level[i].slice);
1260 }
1261
1262 free(*mt);
1263 }
1264 *mt = NULL;
1265 }
1266
1267
1268 void
1269 intel_get_image_dims(struct gl_texture_image *image,
1270 int *width, int *height, int *depth)
1271 {
1272 switch (image->TexObject->Target) {
1273 case GL_TEXTURE_1D_ARRAY:
1274 /* For a 1D Array texture the OpenGL API will treat the image height as
1275 * the number of array slices. For Intel hardware, we treat the 1D array
1276 * as a 2D Array with a height of 1. So, here we want to swap image
1277 * height and depth.
1278 */
1279 assert(image->Depth == 1);
1280 *width = image->Width;
1281 *height = 1;
1282 *depth = image->Height;
1283 break;
1284 case GL_TEXTURE_CUBE_MAP:
1285 /* For Cube maps, the mesa/main api layer gives us a depth of 1 even
1286 * though we really have 6 slices.
1287 */
1288 assert(image->Depth == 1);
1289 *width = image->Width;
1290 *height = image->Height;
1291 *depth = 6;
1292 break;
1293 default:
1294 *width = image->Width;
1295 *height = image->Height;
1296 *depth = image->Depth;
1297 break;
1298 }
1299 }
1300
1301 /**
1302 * Can the image be pulled into a unified mipmap tree? This mirrors
1303 * the completeness test in a lot of ways.
1304 *
1305 * Not sure whether I want to pass gl_texture_image here.
1306 */
1307 bool
1308 intel_miptree_match_image(struct intel_mipmap_tree *mt,
1309 struct gl_texture_image *image)
1310 {
1311 struct intel_texture_image *intelImage = intel_texture_image(image);
1312 GLuint level = intelImage->base.Base.Level;
1313 int width, height, depth;
1314
1315 /* glTexImage* choose the texture object based on the target passed in, and
1316 * objects can't change targets over their lifetimes, so this should be
1317 * true.
1318 */
1319 assert(image->TexObject->Target == mt->target);
1320
1321 mesa_format mt_format = mt->format;
1322 if (mt->format == MESA_FORMAT_Z24_UNORM_X8_UINT && mt->stencil_mt)
1323 mt_format = MESA_FORMAT_Z24_UNORM_S8_UINT;
1324 if (mt->format == MESA_FORMAT_Z_FLOAT32 && mt->stencil_mt)
1325 mt_format = MESA_FORMAT_Z32_FLOAT_S8X24_UINT;
1326 if (mt->etc_format != MESA_FORMAT_NONE)
1327 mt_format = mt->etc_format;
1328
1329 if (_mesa_get_srgb_format_linear(image->TexFormat) !=
1330 _mesa_get_srgb_format_linear(mt_format))
1331 return false;
1332
1333 intel_get_image_dims(image, &width, &height, &depth);
1334
1335 if (mt->target == GL_TEXTURE_CUBE_MAP)
1336 depth = 6;
1337
1338 if (level >= mt->surf.levels)
1339 return false;
1340
1341 const unsigned level_depth =
1342 mt->surf.dim == ISL_SURF_DIM_3D ?
1343 minify(mt->surf.logical_level0_px.depth, level) :
1344 mt->surf.logical_level0_px.array_len;
1345
1346 return width == minify(mt->surf.logical_level0_px.width, level) &&
1347 height == minify(mt->surf.logical_level0_px.height, level) &&
1348 depth == level_depth &&
1349 MAX2(image->NumSamples, 1) == mt->surf.samples;
1350 }
1351
1352 void
1353 intel_miptree_get_image_offset(const struct intel_mipmap_tree *mt,
1354 GLuint level, GLuint slice,
1355 GLuint *x, GLuint *y)
1356 {
1357 if (level == 0 && slice == 0) {
1358 *x = mt->level[0].level_x;
1359 *y = mt->level[0].level_y;
1360 return;
1361 }
1362
1363 uint32_t x_offset_sa, y_offset_sa;
1364
1365 /* Miptree itself can have an offset only if it represents a single
1366 * slice in an imported buffer object.
1367 * See intel_miptree_create_for_dri_image().
1368 */
1369 assert(mt->level[0].level_x == 0);
1370 assert(mt->level[0].level_y == 0);
1371
1372 /* Given level is relative to level zero while the miptree may be
1373 * represent just a subset of all levels starting from 'first_level'.
1374 */
1375 assert(level >= mt->first_level);
1376 level -= mt->first_level;
1377
1378 const unsigned z = mt->surf.dim == ISL_SURF_DIM_3D ? slice : 0;
1379 slice = mt->surf.dim == ISL_SURF_DIM_3D ? 0 : slice;
1380 isl_surf_get_image_offset_el(&mt->surf, level, slice, z,
1381 &x_offset_sa, &y_offset_sa);
1382
1383 *x = x_offset_sa;
1384 *y = y_offset_sa;
1385 }
1386
1387
1388 /**
1389 * This function computes the tile_w (in bytes) and tile_h (in rows) of
1390 * different tiling patterns. If the BO is untiled, tile_w is set to cpp
1391 * and tile_h is set to 1.
1392 */
1393 void
1394 intel_get_tile_dims(enum isl_tiling tiling, uint32_t cpp,
1395 uint32_t *tile_w, uint32_t *tile_h)
1396 {
1397 switch (tiling) {
1398 case ISL_TILING_X:
1399 *tile_w = 512;
1400 *tile_h = 8;
1401 break;
1402 case ISL_TILING_Y0:
1403 *tile_w = 128;
1404 *tile_h = 32;
1405 break;
1406 case ISL_TILING_LINEAR:
1407 *tile_w = cpp;
1408 *tile_h = 1;
1409 break;
1410 default:
1411 unreachable("not reached");
1412 }
1413 }
1414
1415
1416 /**
1417 * This function computes masks that may be used to select the bits of the X
1418 * and Y coordinates that indicate the offset within a tile. If the BO is
1419 * untiled, the masks are set to 0.
1420 */
1421 void
1422 intel_get_tile_masks(enum isl_tiling tiling, uint32_t cpp,
1423 uint32_t *mask_x, uint32_t *mask_y)
1424 {
1425 uint32_t tile_w_bytes, tile_h;
1426
1427 intel_get_tile_dims(tiling, cpp, &tile_w_bytes, &tile_h);
1428
1429 *mask_x = tile_w_bytes / cpp - 1;
1430 *mask_y = tile_h - 1;
1431 }
1432
1433 /**
1434 * Compute the offset (in bytes) from the start of the BO to the given x
1435 * and y coordinate. For tiled BOs, caller must ensure that x and y are
1436 * multiples of the tile size.
1437 */
1438 uint32_t
1439 intel_miptree_get_aligned_offset(const struct intel_mipmap_tree *mt,
1440 uint32_t x, uint32_t y)
1441 {
1442 int cpp = mt->cpp;
1443 uint32_t pitch = mt->surf.row_pitch;
1444
1445 switch (mt->surf.tiling) {
1446 default:
1447 unreachable("not reached");
1448 case ISL_TILING_LINEAR:
1449 return y * pitch + x * cpp;
1450 case ISL_TILING_X:
1451 assert((x % (512 / cpp)) == 0);
1452 assert((y % 8) == 0);
1453 return y * pitch + x / (512 / cpp) * 4096;
1454 case ISL_TILING_Y0:
1455 assert((x % (128 / cpp)) == 0);
1456 assert((y % 32) == 0);
1457 return y * pitch + x / (128 / cpp) * 4096;
1458 }
1459 }
1460
1461 /**
1462 * Rendering with tiled buffers requires that the base address of the buffer
1463 * be aligned to a page boundary. For renderbuffers, and sometimes with
1464 * textures, we may want the surface to point at a texture image level that
1465 * isn't at a page boundary.
1466 *
1467 * This function returns an appropriately-aligned base offset
1468 * according to the tiling restrictions, plus any required x/y offset
1469 * from there.
1470 */
1471 uint32_t
1472 intel_miptree_get_tile_offsets(const struct intel_mipmap_tree *mt,
1473 GLuint level, GLuint slice,
1474 uint32_t *tile_x,
1475 uint32_t *tile_y)
1476 {
1477 uint32_t x, y;
1478 uint32_t mask_x, mask_y;
1479
1480 intel_get_tile_masks(mt->surf.tiling, mt->cpp, &mask_x, &mask_y);
1481 intel_miptree_get_image_offset(mt, level, slice, &x, &y);
1482
1483 *tile_x = x & mask_x;
1484 *tile_y = y & mask_y;
1485
1486 return intel_miptree_get_aligned_offset(mt, x & ~mask_x, y & ~mask_y);
1487 }
1488
1489 static void
1490 intel_miptree_copy_slice_sw(struct brw_context *brw,
1491 struct intel_mipmap_tree *src_mt,
1492 unsigned src_level, unsigned src_layer,
1493 struct intel_mipmap_tree *dst_mt,
1494 unsigned dst_level, unsigned dst_layer,
1495 unsigned width, unsigned height)
1496 {
1497 void *src, *dst;
1498 ptrdiff_t src_stride, dst_stride;
1499 const unsigned cpp = (isl_format_get_layout(dst_mt->surf.format)->bpb / 8);
1500
1501 intel_miptree_map(brw, src_mt,
1502 src_level, src_layer,
1503 0, 0,
1504 width, height,
1505 GL_MAP_READ_BIT | BRW_MAP_DIRECT_BIT,
1506 &src, &src_stride);
1507
1508 intel_miptree_map(brw, dst_mt,
1509 dst_level, dst_layer,
1510 0, 0,
1511 width, height,
1512 GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_RANGE_BIT |
1513 BRW_MAP_DIRECT_BIT,
1514 &dst, &dst_stride);
1515
1516 DBG("sw blit %s mt %p %p/%"PRIdPTR" -> %s mt %p %p/%"PRIdPTR" (%dx%d)\n",
1517 _mesa_get_format_name(src_mt->format),
1518 src_mt, src, src_stride,
1519 _mesa_get_format_name(dst_mt->format),
1520 dst_mt, dst, dst_stride,
1521 width, height);
1522
1523 int row_size = cpp * width;
1524 if (src_stride == row_size &&
1525 dst_stride == row_size) {
1526 memcpy(dst, src, row_size * height);
1527 } else {
1528 for (int i = 0; i < height; i++) {
1529 memcpy(dst, src, row_size);
1530 dst += dst_stride;
1531 src += src_stride;
1532 }
1533 }
1534
1535 intel_miptree_unmap(brw, dst_mt, dst_level, dst_layer);
1536 intel_miptree_unmap(brw, src_mt, src_level, src_layer);
1537
1538 /* Don't forget to copy the stencil data over, too. We could have skipped
1539 * passing BRW_MAP_DIRECT_BIT, but that would have meant intel_miptree_map
1540 * shuffling the two data sources in/out of temporary storage instead of
1541 * the direct mapping we get this way.
1542 */
1543 if (dst_mt->stencil_mt) {
1544 assert(src_mt->stencil_mt);
1545 intel_miptree_copy_slice_sw(brw,
1546 src_mt->stencil_mt, src_level, src_layer,
1547 dst_mt->stencil_mt, dst_level, dst_layer,
1548 width, height);
1549 }
1550 }
1551
1552 void
1553 intel_miptree_copy_slice(struct brw_context *brw,
1554 struct intel_mipmap_tree *src_mt,
1555 unsigned src_level, unsigned src_layer,
1556 struct intel_mipmap_tree *dst_mt,
1557 unsigned dst_level, unsigned dst_layer)
1558
1559 {
1560 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1561 mesa_format format = src_mt->format;
1562 unsigned width = minify(src_mt->surf.phys_level0_sa.width,
1563 src_level - src_mt->first_level);
1564 unsigned height = minify(src_mt->surf.phys_level0_sa.height,
1565 src_level - src_mt->first_level);
1566
1567 assert(src_layer < get_num_phys_layers(&src_mt->surf,
1568 src_level - src_mt->first_level));
1569
1570 assert(_mesa_get_srgb_format_linear(src_mt->format) ==
1571 _mesa_get_srgb_format_linear(dst_mt->format));
1572
1573 DBG("validate blit mt %s %p %d,%d -> mt %s %p %d,%d (%dx%d)\n",
1574 _mesa_get_format_name(src_mt->format),
1575 src_mt, src_level, src_layer,
1576 _mesa_get_format_name(dst_mt->format),
1577 dst_mt, dst_level, dst_layer,
1578 width, height);
1579
1580 if (devinfo->gen >= 6) {
1581 /* On gen6 and above, we just use blorp. It's faster than the blitter
1582 * and can handle everything without software fallbacks.
1583 */
1584 brw_blorp_copy_miptrees(brw,
1585 src_mt, src_level, src_layer,
1586 dst_mt, dst_level, dst_layer,
1587 0, 0, 0, 0, width, height);
1588
1589 if (src_mt->stencil_mt) {
1590 assert(dst_mt->stencil_mt);
1591 brw_blorp_copy_miptrees(brw,
1592 src_mt->stencil_mt, src_level, src_layer,
1593 dst_mt->stencil_mt, dst_level, dst_layer,
1594 0, 0, 0, 0, width, height);
1595 }
1596 return;
1597 }
1598
1599 if (dst_mt->compressed) {
1600 unsigned int i, j;
1601 _mesa_get_format_block_size(dst_mt->format, &i, &j);
1602 height = ALIGN_NPOT(height, j) / j;
1603 width = ALIGN_NPOT(width, i) / i;
1604 }
1605
1606 /* Gen4-5 doesn't support separate stencil */
1607 assert(!src_mt->stencil_mt);
1608
1609 uint32_t dst_x, dst_y, src_x, src_y;
1610 intel_miptree_get_image_offset(dst_mt, dst_level, dst_layer,
1611 &dst_x, &dst_y);
1612 intel_miptree_get_image_offset(src_mt, src_level, src_layer,
1613 &src_x, &src_y);
1614
1615 DBG("validate blit mt %s %p %d,%d/%d -> mt %s %p %d,%d/%d (%dx%d)\n",
1616 _mesa_get_format_name(src_mt->format),
1617 src_mt, src_x, src_y, src_mt->surf.row_pitch,
1618 _mesa_get_format_name(dst_mt->format),
1619 dst_mt, dst_x, dst_y, dst_mt->surf.row_pitch,
1620 width, height);
1621
1622 if (!intel_miptree_blit(brw,
1623 src_mt, src_level, src_layer, 0, 0, false,
1624 dst_mt, dst_level, dst_layer, 0, 0, false,
1625 width, height, COLOR_LOGICOP_COPY)) {
1626 perf_debug("miptree validate blit for %s failed\n",
1627 _mesa_get_format_name(format));
1628
1629 intel_miptree_copy_slice_sw(brw,
1630 src_mt, src_level, src_layer,
1631 dst_mt, dst_level, dst_layer,
1632 width, height);
1633 }
1634 }
1635
1636 /**
1637 * Copies the image's current data to the given miptree, and associates that
1638 * miptree with the image.
1639 */
1640 void
1641 intel_miptree_copy_teximage(struct brw_context *brw,
1642 struct intel_texture_image *intelImage,
1643 struct intel_mipmap_tree *dst_mt)
1644 {
1645 struct intel_mipmap_tree *src_mt = intelImage->mt;
1646 struct intel_texture_object *intel_obj =
1647 intel_texture_object(intelImage->base.Base.TexObject);
1648 int level = intelImage->base.Base.Level;
1649 const unsigned face = intelImage->base.Base.Face;
1650 unsigned start_layer, end_layer;
1651
1652 if (intel_obj->base.Target == GL_TEXTURE_1D_ARRAY) {
1653 assert(face == 0);
1654 assert(intelImage->base.Base.Height);
1655 start_layer = 0;
1656 end_layer = intelImage->base.Base.Height - 1;
1657 } else if (face > 0) {
1658 start_layer = face;
1659 end_layer = face;
1660 } else {
1661 assert(intelImage->base.Base.Depth);
1662 start_layer = 0;
1663 end_layer = intelImage->base.Base.Depth - 1;
1664 }
1665
1666 for (unsigned i = start_layer; i <= end_layer; i++) {
1667 intel_miptree_copy_slice(brw,
1668 src_mt, level, i,
1669 dst_mt, level, i);
1670 }
1671
1672 intel_miptree_reference(&intelImage->mt, dst_mt);
1673 intel_obj->needs_validate = true;
1674 }
1675
1676 static struct intel_miptree_aux_buffer *
1677 intel_alloc_aux_buffer(struct brw_context *brw,
1678 const struct isl_surf *aux_surf,
1679 bool wants_memset,
1680 uint8_t memset_value)
1681 {
1682 struct intel_miptree_aux_buffer *buf = calloc(sizeof(*buf), 1);
1683 if (!buf)
1684 return false;
1685
1686 uint64_t size = aux_surf->size;
1687
1688 const bool has_indirect_clear = brw->isl_dev.ss.clear_color_state_size > 0;
1689 if (has_indirect_clear) {
1690 /* On CNL+, instead of setting the clear color in the SURFACE_STATE, we
1691 * will set a pointer to a dword somewhere that contains the color. So,
1692 * allocate the space for the clear color value here on the aux buffer.
1693 */
1694 buf->clear_color_offset = size;
1695 size += brw->isl_dev.ss.clear_color_state_size;
1696 }
1697
1698 /* If the buffer needs to be initialised (requiring the buffer to be
1699 * immediately mapped to cpu space for writing), do not use the gpu access
1700 * flag which can cause an unnecessary delay if the backing pages happened
1701 * to be just used by the GPU.
1702 */
1703 const bool alloc_zeroed = wants_memset && memset_value == 0;
1704 const bool needs_memset =
1705 !alloc_zeroed && (wants_memset || has_indirect_clear);
1706 const uint32_t alloc_flags =
1707 alloc_zeroed ? BO_ALLOC_ZEROED : (needs_memset ? 0 : BO_ALLOC_BUSY);
1708
1709 /* ISL has stricter set of alignment rules then the drm allocator.
1710 * Therefore one can pass the ISL dimensions in terms of bytes instead of
1711 * trying to recalculate based on different format block sizes.
1712 */
1713 buf->bo = brw_bo_alloc_tiled(brw->bufmgr, "aux-miptree", size,
1714 BRW_MEMZONE_OTHER, I915_TILING_Y,
1715 aux_surf->row_pitch, alloc_flags);
1716 if (!buf->bo) {
1717 free(buf);
1718 return NULL;
1719 }
1720
1721 /* Initialize the bo to the desired value */
1722 if (needs_memset) {
1723 assert(!(alloc_flags & BO_ALLOC_BUSY));
1724
1725 void *map = brw_bo_map(brw, buf->bo, MAP_WRITE | MAP_RAW);
1726 if (map == NULL) {
1727 intel_miptree_aux_buffer_free(buf);
1728 return NULL;
1729 }
1730
1731 /* Memset the aux_surf portion of the BO. */
1732 if (wants_memset)
1733 memset(map, memset_value, aux_surf->size);
1734
1735 /* Zero the indirect clear color to match ::fast_clear_color. */
1736 if (has_indirect_clear) {
1737 memset((char *)map + buf->clear_color_offset, 0,
1738 brw->isl_dev.ss.clear_color_state_size);
1739 }
1740
1741 brw_bo_unmap(buf->bo);
1742 }
1743
1744 if (has_indirect_clear) {
1745 buf->clear_color_bo = buf->bo;
1746 brw_bo_reference(buf->clear_color_bo);
1747 }
1748
1749 buf->surf = *aux_surf;
1750
1751 return buf;
1752 }
1753
1754
1755 /**
1756 * Helper for intel_miptree_alloc_aux() that sets
1757 * \c mt->level[level].has_hiz. Return true if and only if
1758 * \c has_hiz was set.
1759 */
1760 static bool
1761 intel_miptree_level_enable_hiz(struct brw_context *brw,
1762 struct intel_mipmap_tree *mt,
1763 uint32_t level)
1764 {
1765 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1766
1767 assert(mt->aux_buf);
1768 assert(mt->surf.size > 0);
1769
1770 if (devinfo->gen >= 8 || devinfo->is_haswell) {
1771 uint32_t width = minify(mt->surf.phys_level0_sa.width, level);
1772 uint32_t height = minify(mt->surf.phys_level0_sa.height, level);
1773
1774 /* Disable HiZ for LOD > 0 unless the width is 8 aligned
1775 * and the height is 4 aligned. This allows our HiZ support
1776 * to fulfill Haswell restrictions for HiZ ops. For LOD == 0,
1777 * we can grow the width & height to allow the HiZ op to
1778 * force the proper size alignments.
1779 */
1780 if (level > 0 && ((width & 7) || (height & 3))) {
1781 DBG("mt %p level %d: HiZ DISABLED\n", mt, level);
1782 return false;
1783 }
1784 }
1785
1786 DBG("mt %p level %d: HiZ enabled\n", mt, level);
1787 mt->level[level].has_hiz = true;
1788 return true;
1789 }
1790
1791
1792 /**
1793 * Allocate the initial aux surface for a miptree based on mt->aux_usage
1794 *
1795 * Since MCS, HiZ, and CCS_E can compress more than just clear color, we
1796 * create the auxiliary surfaces up-front. CCS_D, on the other hand, can only
1797 * compress clear color so we wait until an actual fast-clear to allocate it.
1798 */
1799 bool
1800 intel_miptree_alloc_aux(struct brw_context *brw,
1801 struct intel_mipmap_tree *mt)
1802 {
1803 assert(mt->aux_buf == NULL);
1804
1805 /* Get the aux buf allocation parameters for this miptree. */
1806 enum isl_aux_state initial_state;
1807 uint8_t memset_value;
1808 struct isl_surf aux_surf;
1809 MAYBE_UNUSED bool aux_surf_ok;
1810
1811 switch (mt->aux_usage) {
1812 case ISL_AUX_USAGE_NONE:
1813 aux_surf.size = 0;
1814 aux_surf_ok = true;
1815 break;
1816 case ISL_AUX_USAGE_HIZ:
1817 initial_state = ISL_AUX_STATE_AUX_INVALID;
1818 aux_surf_ok = isl_surf_get_hiz_surf(&brw->isl_dev, &mt->surf, &aux_surf);
1819 break;
1820 case ISL_AUX_USAGE_MCS:
1821 /* From the Ivy Bridge PRM, Vol 2 Part 1 p326:
1822 *
1823 * When MCS buffer is enabled and bound to MSRT, it is required that
1824 * it is cleared prior to any rendering.
1825 *
1826 * Since we don't use the MCS buffer for any purpose other than
1827 * rendering, it makes sense to just clear it immediately upon
1828 * allocation.
1829 *
1830 * Note: the clear value for MCS buffers is all 1's, so we memset to
1831 * 0xff.
1832 */
1833 initial_state = ISL_AUX_STATE_CLEAR;
1834 memset_value = 0xFF;
1835 aux_surf_ok = isl_surf_get_mcs_surf(&brw->isl_dev, &mt->surf, &aux_surf);
1836 break;
1837 case ISL_AUX_USAGE_CCS_D:
1838 case ISL_AUX_USAGE_CCS_E:
1839 /* When CCS_E is used, we need to ensure that the CCS starts off in a
1840 * valid state. From the Sky Lake PRM, "MCS Buffer for Render
1841 * Target(s)":
1842 *
1843 * "If Software wants to enable Color Compression without Fast
1844 * clear, Software needs to initialize MCS with zeros."
1845 *
1846 * A CCS value of 0 indicates that the corresponding block is in the
1847 * pass-through state which is what we want.
1848 *
1849 * For CCS_D, do the same thing. On gen9+, this avoids having any
1850 * undefined bits in the aux buffer.
1851 */
1852 initial_state = ISL_AUX_STATE_PASS_THROUGH;
1853 memset_value = 0;
1854 aux_surf_ok =
1855 isl_surf_get_ccs_surf(&brw->isl_dev, &mt->surf, &aux_surf, 0);
1856 break;
1857 }
1858
1859 /* We should have a valid aux_surf. */
1860 assert(aux_surf_ok);
1861
1862 /* No work is needed for a zero-sized auxiliary buffer. */
1863 if (aux_surf.size == 0)
1864 return true;
1865
1866 /* Create the aux_state for the auxiliary buffer. */
1867 mt->aux_state = create_aux_state_map(mt, initial_state);
1868 if (mt->aux_state == NULL)
1869 return false;
1870
1871 /* Allocate the auxiliary buffer. */
1872 const bool needs_memset = initial_state != ISL_AUX_STATE_AUX_INVALID;
1873 mt->aux_buf = intel_alloc_aux_buffer(brw, &aux_surf, needs_memset,
1874 memset_value);
1875 if (mt->aux_buf == NULL) {
1876 free_aux_state_map(mt->aux_state);
1877 mt->aux_state = NULL;
1878 return false;
1879 }
1880
1881 /* Perform aux_usage-specific initialization. */
1882 if (mt->aux_usage == ISL_AUX_USAGE_HIZ) {
1883 for (unsigned level = mt->first_level; level <= mt->last_level; ++level)
1884 intel_miptree_level_enable_hiz(brw, mt, level);
1885 }
1886
1887 return true;
1888 }
1889
1890
1891 /**
1892 * Can the miptree sample using the hiz buffer?
1893 */
1894 bool
1895 intel_miptree_sample_with_hiz(struct brw_context *brw,
1896 struct intel_mipmap_tree *mt)
1897 {
1898 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1899
1900 if (!devinfo->has_sample_with_hiz) {
1901 return false;
1902 }
1903
1904 if (!mt->aux_buf) {
1905 return false;
1906 }
1907
1908 /* It seems the hardware won't fallback to the depth buffer if some of the
1909 * mipmap levels aren't available in the HiZ buffer. So we need all levels
1910 * of the texture to be HiZ enabled.
1911 */
1912 for (unsigned level = 0; level < mt->surf.levels; ++level) {
1913 if (!intel_miptree_level_has_hiz(mt, level))
1914 return false;
1915 }
1916
1917 /* If compressed multisampling is enabled, then we use it for the auxiliary
1918 * buffer instead.
1919 *
1920 * From the BDW PRM (Volume 2d: Command Reference: Structures
1921 * RENDER_SURFACE_STATE.AuxiliarySurfaceMode):
1922 *
1923 * "If this field is set to AUX_HIZ, Number of Multisamples must be
1924 * MULTISAMPLECOUNT_1, and Surface Type cannot be SURFTYPE_3D.
1925 *
1926 * There is no such blurb for 1D textures, but there is sufficient evidence
1927 * that this is broken on SKL+.
1928 */
1929 return (mt->surf.samples == 1 &&
1930 mt->target != GL_TEXTURE_3D &&
1931 mt->target != GL_TEXTURE_1D /* gen9+ restriction */);
1932 }
1933
1934 /**
1935 * Does the miptree slice have hiz enabled?
1936 */
1937 bool
1938 intel_miptree_level_has_hiz(const struct intel_mipmap_tree *mt, uint32_t level)
1939 {
1940 intel_miptree_check_level_layer(mt, level, 0);
1941 return mt->level[level].has_hiz;
1942 }
1943
1944 static inline uint32_t
1945 miptree_level_range_length(const struct intel_mipmap_tree *mt,
1946 uint32_t start_level, uint32_t num_levels)
1947 {
1948 assert(start_level >= mt->first_level);
1949 assert(start_level <= mt->last_level);
1950
1951 if (num_levels == INTEL_REMAINING_LAYERS)
1952 num_levels = mt->last_level - start_level + 1;
1953 /* Check for overflow */
1954 assert(start_level + num_levels >= start_level);
1955 assert(start_level + num_levels <= mt->last_level + 1);
1956
1957 return num_levels;
1958 }
1959
1960 static inline uint32_t
1961 miptree_layer_range_length(const struct intel_mipmap_tree *mt, uint32_t level,
1962 uint32_t start_layer, uint32_t num_layers)
1963 {
1964 assert(level <= mt->last_level);
1965
1966 const uint32_t total_num_layers = brw_get_num_logical_layers(mt, level);
1967 assert(start_layer < total_num_layers);
1968 if (num_layers == INTEL_REMAINING_LAYERS)
1969 num_layers = total_num_layers - start_layer;
1970 /* Check for overflow */
1971 assert(start_layer + num_layers >= start_layer);
1972 assert(start_layer + num_layers <= total_num_layers);
1973
1974 return num_layers;
1975 }
1976
1977 bool
1978 intel_miptree_has_color_unresolved(const struct intel_mipmap_tree *mt,
1979 unsigned start_level, unsigned num_levels,
1980 unsigned start_layer, unsigned num_layers)
1981 {
1982 assert(_mesa_is_format_color_format(mt->format));
1983
1984 if (!mt->aux_buf)
1985 return false;
1986
1987 /* Clamp the level range to fit the miptree */
1988 num_levels = miptree_level_range_length(mt, start_level, num_levels);
1989
1990 for (uint32_t l = 0; l < num_levels; l++) {
1991 const uint32_t level = start_level + l;
1992 const uint32_t level_layers =
1993 miptree_layer_range_length(mt, level, start_layer, num_layers);
1994 for (unsigned a = 0; a < level_layers; a++) {
1995 enum isl_aux_state aux_state =
1996 intel_miptree_get_aux_state(mt, level, start_layer + a);
1997 assert(aux_state != ISL_AUX_STATE_AUX_INVALID);
1998 if (aux_state != ISL_AUX_STATE_PASS_THROUGH)
1999 return true;
2000 }
2001 }
2002
2003 return false;
2004 }
2005
2006 static void
2007 intel_miptree_check_color_resolve(const struct brw_context *brw,
2008 const struct intel_mipmap_tree *mt,
2009 unsigned level, unsigned layer)
2010 {
2011 if (!mt->aux_buf)
2012 return;
2013
2014 /* Fast color clear is supported for mipmapped surfaces only on Gen8+. */
2015 assert(brw->screen->devinfo.gen >= 8 ||
2016 (level == 0 && mt->first_level == 0 && mt->last_level == 0));
2017
2018 /* Compression of arrayed msaa surfaces is supported. */
2019 if (mt->surf.samples > 1)
2020 return;
2021
2022 /* Fast color clear is supported for non-msaa arrays only on Gen8+. */
2023 assert(brw->screen->devinfo.gen >= 8 ||
2024 (layer == 0 &&
2025 mt->surf.logical_level0_px.depth == 1 &&
2026 mt->surf.logical_level0_px.array_len == 1));
2027
2028 (void)level;
2029 (void)layer;
2030 }
2031
2032 static enum isl_aux_op
2033 get_ccs_d_resolve_op(enum isl_aux_state aux_state,
2034 enum isl_aux_usage aux_usage,
2035 bool fast_clear_supported)
2036 {
2037 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_CCS_D);
2038
2039 const bool ccs_supported = aux_usage == ISL_AUX_USAGE_CCS_D;
2040
2041 assert(ccs_supported == fast_clear_supported);
2042
2043 switch (aux_state) {
2044 case ISL_AUX_STATE_CLEAR:
2045 case ISL_AUX_STATE_PARTIAL_CLEAR:
2046 if (!ccs_supported)
2047 return ISL_AUX_OP_FULL_RESOLVE;
2048 else
2049 return ISL_AUX_OP_NONE;
2050
2051 case ISL_AUX_STATE_PASS_THROUGH:
2052 return ISL_AUX_OP_NONE;
2053
2054 case ISL_AUX_STATE_RESOLVED:
2055 case ISL_AUX_STATE_AUX_INVALID:
2056 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2057 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2058 break;
2059 }
2060
2061 unreachable("Invalid aux state for CCS_D");
2062 }
2063
2064 static enum isl_aux_op
2065 get_ccs_e_resolve_op(enum isl_aux_state aux_state,
2066 enum isl_aux_usage aux_usage,
2067 bool fast_clear_supported)
2068 {
2069 /* CCS_E surfaces can be accessed as CCS_D if we're careful. */
2070 assert(aux_usage == ISL_AUX_USAGE_NONE ||
2071 aux_usage == ISL_AUX_USAGE_CCS_D ||
2072 aux_usage == ISL_AUX_USAGE_CCS_E);
2073
2074 if (aux_usage == ISL_AUX_USAGE_CCS_D)
2075 assert(fast_clear_supported);
2076
2077 switch (aux_state) {
2078 case ISL_AUX_STATE_CLEAR:
2079 case ISL_AUX_STATE_PARTIAL_CLEAR:
2080 if (fast_clear_supported)
2081 return ISL_AUX_OP_NONE;
2082 else if (aux_usage == ISL_AUX_USAGE_CCS_E)
2083 return ISL_AUX_OP_PARTIAL_RESOLVE;
2084 else
2085 return ISL_AUX_OP_FULL_RESOLVE;
2086
2087 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2088 if (aux_usage != ISL_AUX_USAGE_CCS_E)
2089 return ISL_AUX_OP_FULL_RESOLVE;
2090 else if (!fast_clear_supported)
2091 return ISL_AUX_OP_PARTIAL_RESOLVE;
2092 else
2093 return ISL_AUX_OP_NONE;
2094
2095 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2096 if (aux_usage != ISL_AUX_USAGE_CCS_E)
2097 return ISL_AUX_OP_FULL_RESOLVE;
2098 else
2099 return ISL_AUX_OP_NONE;
2100
2101 case ISL_AUX_STATE_PASS_THROUGH:
2102 return ISL_AUX_OP_NONE;
2103
2104 case ISL_AUX_STATE_RESOLVED:
2105 case ISL_AUX_STATE_AUX_INVALID:
2106 break;
2107 }
2108
2109 unreachable("Invalid aux state for CCS_E");
2110 }
2111
2112 static void
2113 intel_miptree_prepare_ccs_access(struct brw_context *brw,
2114 struct intel_mipmap_tree *mt,
2115 uint32_t level, uint32_t layer,
2116 enum isl_aux_usage aux_usage,
2117 bool fast_clear_supported)
2118 {
2119 enum isl_aux_state aux_state = intel_miptree_get_aux_state(mt, level, layer);
2120
2121 enum isl_aux_op resolve_op;
2122 if (mt->aux_usage == ISL_AUX_USAGE_CCS_E) {
2123 resolve_op = get_ccs_e_resolve_op(aux_state, aux_usage,
2124 fast_clear_supported);
2125 } else {
2126 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2127 resolve_op = get_ccs_d_resolve_op(aux_state, aux_usage,
2128 fast_clear_supported);
2129 }
2130
2131 if (resolve_op != ISL_AUX_OP_NONE) {
2132 intel_miptree_check_color_resolve(brw, mt, level, layer);
2133 brw_blorp_resolve_color(brw, mt, level, layer, resolve_op);
2134
2135 switch (resolve_op) {
2136 case ISL_AUX_OP_FULL_RESOLVE:
2137 /* The CCS full resolve operation destroys the CCS and sets it to the
2138 * pass-through state. (You can also think of this as being both a
2139 * resolve and an ambiguate in one operation.)
2140 */
2141 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2142 ISL_AUX_STATE_PASS_THROUGH);
2143 break;
2144
2145 case ISL_AUX_OP_PARTIAL_RESOLVE:
2146 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2147 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2148 break;
2149
2150 default:
2151 unreachable("Invalid resolve op");
2152 }
2153 }
2154 }
2155
2156 static void
2157 intel_miptree_finish_ccs_write(struct brw_context *brw,
2158 struct intel_mipmap_tree *mt,
2159 uint32_t level, uint32_t layer,
2160 enum isl_aux_usage aux_usage)
2161 {
2162 assert(aux_usage == ISL_AUX_USAGE_NONE ||
2163 aux_usage == ISL_AUX_USAGE_CCS_D ||
2164 aux_usage == ISL_AUX_USAGE_CCS_E);
2165
2166 enum isl_aux_state aux_state = intel_miptree_get_aux_state(mt, level, layer);
2167
2168 if (mt->aux_usage == ISL_AUX_USAGE_CCS_E) {
2169 switch (aux_state) {
2170 case ISL_AUX_STATE_CLEAR:
2171 case ISL_AUX_STATE_PARTIAL_CLEAR:
2172 assert(aux_usage == ISL_AUX_USAGE_CCS_E ||
2173 aux_usage == ISL_AUX_USAGE_CCS_D);
2174
2175 if (aux_usage == ISL_AUX_USAGE_CCS_E) {
2176 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2177 ISL_AUX_STATE_COMPRESSED_CLEAR);
2178 } else if (aux_state != ISL_AUX_STATE_PARTIAL_CLEAR) {
2179 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2180 ISL_AUX_STATE_PARTIAL_CLEAR);
2181 }
2182 break;
2183
2184 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2185 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2186 assert(aux_usage == ISL_AUX_USAGE_CCS_E);
2187 break; /* Nothing to do */
2188
2189 case ISL_AUX_STATE_PASS_THROUGH:
2190 if (aux_usage == ISL_AUX_USAGE_CCS_E) {
2191 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2192 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2193 } else {
2194 /* Nothing to do */
2195 }
2196 break;
2197
2198 case ISL_AUX_STATE_RESOLVED:
2199 case ISL_AUX_STATE_AUX_INVALID:
2200 unreachable("Invalid aux state for CCS_E");
2201 }
2202 } else {
2203 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2204 /* CCS_D is a bit simpler */
2205 switch (aux_state) {
2206 case ISL_AUX_STATE_CLEAR:
2207 assert(aux_usage == ISL_AUX_USAGE_CCS_D);
2208 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2209 ISL_AUX_STATE_PARTIAL_CLEAR);
2210 break;
2211
2212 case ISL_AUX_STATE_PARTIAL_CLEAR:
2213 assert(aux_usage == ISL_AUX_USAGE_CCS_D);
2214 break; /* Nothing to do */
2215
2216 case ISL_AUX_STATE_PASS_THROUGH:
2217 /* Nothing to do */
2218 break;
2219
2220 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2221 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2222 case ISL_AUX_STATE_RESOLVED:
2223 case ISL_AUX_STATE_AUX_INVALID:
2224 unreachable("Invalid aux state for CCS_D");
2225 }
2226 }
2227 }
2228
2229 static void
2230 intel_miptree_prepare_mcs_access(struct brw_context *brw,
2231 struct intel_mipmap_tree *mt,
2232 uint32_t layer,
2233 enum isl_aux_usage aux_usage,
2234 bool fast_clear_supported)
2235 {
2236 assert(aux_usage == ISL_AUX_USAGE_MCS);
2237
2238 switch (intel_miptree_get_aux_state(mt, 0, layer)) {
2239 case ISL_AUX_STATE_CLEAR:
2240 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2241 if (!fast_clear_supported) {
2242 brw_blorp_mcs_partial_resolve(brw, mt, layer, 1);
2243 intel_miptree_set_aux_state(brw, mt, 0, layer, 1,
2244 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2245 }
2246 break;
2247
2248 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2249 break; /* Nothing to do */
2250
2251 case ISL_AUX_STATE_RESOLVED:
2252 case ISL_AUX_STATE_PASS_THROUGH:
2253 case ISL_AUX_STATE_AUX_INVALID:
2254 case ISL_AUX_STATE_PARTIAL_CLEAR:
2255 unreachable("Invalid aux state for MCS");
2256 }
2257 }
2258
2259 static void
2260 intel_miptree_finish_mcs_write(struct brw_context *brw,
2261 struct intel_mipmap_tree *mt,
2262 uint32_t layer,
2263 enum isl_aux_usage aux_usage)
2264 {
2265 assert(aux_usage == ISL_AUX_USAGE_MCS);
2266
2267 switch (intel_miptree_get_aux_state(mt, 0, layer)) {
2268 case ISL_AUX_STATE_CLEAR:
2269 intel_miptree_set_aux_state(brw, mt, 0, layer, 1,
2270 ISL_AUX_STATE_COMPRESSED_CLEAR);
2271 break;
2272
2273 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2274 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2275 break; /* Nothing to do */
2276
2277 case ISL_AUX_STATE_RESOLVED:
2278 case ISL_AUX_STATE_PASS_THROUGH:
2279 case ISL_AUX_STATE_AUX_INVALID:
2280 case ISL_AUX_STATE_PARTIAL_CLEAR:
2281 unreachable("Invalid aux state for MCS");
2282 }
2283 }
2284
2285 static void
2286 intel_miptree_prepare_hiz_access(struct brw_context *brw,
2287 struct intel_mipmap_tree *mt,
2288 uint32_t level, uint32_t layer,
2289 enum isl_aux_usage aux_usage,
2290 bool fast_clear_supported)
2291 {
2292 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_HIZ);
2293
2294 enum isl_aux_op hiz_op = ISL_AUX_OP_NONE;
2295 switch (intel_miptree_get_aux_state(mt, level, layer)) {
2296 case ISL_AUX_STATE_CLEAR:
2297 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2298 if (aux_usage != ISL_AUX_USAGE_HIZ || !fast_clear_supported)
2299 hiz_op = ISL_AUX_OP_FULL_RESOLVE;
2300 break;
2301
2302 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2303 if (aux_usage != ISL_AUX_USAGE_HIZ)
2304 hiz_op = ISL_AUX_OP_FULL_RESOLVE;
2305 break;
2306
2307 case ISL_AUX_STATE_PASS_THROUGH:
2308 case ISL_AUX_STATE_RESOLVED:
2309 break;
2310
2311 case ISL_AUX_STATE_AUX_INVALID:
2312 if (aux_usage == ISL_AUX_USAGE_HIZ)
2313 hiz_op = ISL_AUX_OP_AMBIGUATE;
2314 break;
2315
2316 case ISL_AUX_STATE_PARTIAL_CLEAR:
2317 unreachable("Invalid HiZ state");
2318 }
2319
2320 if (hiz_op != ISL_AUX_OP_NONE) {
2321 intel_hiz_exec(brw, mt, level, layer, 1, hiz_op);
2322
2323 switch (hiz_op) {
2324 case ISL_AUX_OP_FULL_RESOLVE:
2325 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2326 ISL_AUX_STATE_RESOLVED);
2327 break;
2328
2329 case ISL_AUX_OP_AMBIGUATE:
2330 /* The HiZ resolve operation is actually an ambiguate */
2331 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2332 ISL_AUX_STATE_PASS_THROUGH);
2333 break;
2334
2335 default:
2336 unreachable("Invalid HiZ op");
2337 }
2338 }
2339 }
2340
2341 static void
2342 intel_miptree_finish_hiz_write(struct brw_context *brw,
2343 struct intel_mipmap_tree *mt,
2344 uint32_t level, uint32_t layer,
2345 enum isl_aux_usage aux_usage)
2346 {
2347 assert(aux_usage == ISL_AUX_USAGE_NONE || aux_usage == ISL_AUX_USAGE_HIZ);
2348
2349 switch (intel_miptree_get_aux_state(mt, level, layer)) {
2350 case ISL_AUX_STATE_CLEAR:
2351 assert(aux_usage == ISL_AUX_USAGE_HIZ);
2352 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2353 ISL_AUX_STATE_COMPRESSED_CLEAR);
2354 break;
2355
2356 case ISL_AUX_STATE_COMPRESSED_NO_CLEAR:
2357 case ISL_AUX_STATE_COMPRESSED_CLEAR:
2358 assert(aux_usage == ISL_AUX_USAGE_HIZ);
2359 break; /* Nothing to do */
2360
2361 case ISL_AUX_STATE_RESOLVED:
2362 if (aux_usage == ISL_AUX_USAGE_HIZ) {
2363 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2364 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2365 } else {
2366 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2367 ISL_AUX_STATE_AUX_INVALID);
2368 }
2369 break;
2370
2371 case ISL_AUX_STATE_PASS_THROUGH:
2372 if (aux_usage == ISL_AUX_USAGE_HIZ) {
2373 intel_miptree_set_aux_state(brw, mt, level, layer, 1,
2374 ISL_AUX_STATE_COMPRESSED_NO_CLEAR);
2375 }
2376 break;
2377
2378 case ISL_AUX_STATE_AUX_INVALID:
2379 assert(aux_usage != ISL_AUX_USAGE_HIZ);
2380 break;
2381
2382 case ISL_AUX_STATE_PARTIAL_CLEAR:
2383 unreachable("Invalid HiZ state");
2384 }
2385 }
2386
2387 void
2388 intel_miptree_prepare_access(struct brw_context *brw,
2389 struct intel_mipmap_tree *mt,
2390 uint32_t start_level, uint32_t num_levels,
2391 uint32_t start_layer, uint32_t num_layers,
2392 enum isl_aux_usage aux_usage,
2393 bool fast_clear_supported)
2394 {
2395 num_levels = miptree_level_range_length(mt, start_level, num_levels);
2396
2397 switch (mt->aux_usage) {
2398 case ISL_AUX_USAGE_NONE:
2399 /* Nothing to do */
2400 break;
2401
2402 case ISL_AUX_USAGE_MCS:
2403 assert(mt->aux_buf);
2404 assert(start_level == 0 && num_levels == 1);
2405 const uint32_t level_layers =
2406 miptree_layer_range_length(mt, 0, start_layer, num_layers);
2407 for (uint32_t a = 0; a < level_layers; a++) {
2408 intel_miptree_prepare_mcs_access(brw, mt, start_layer + a,
2409 aux_usage, fast_clear_supported);
2410 }
2411 break;
2412
2413 case ISL_AUX_USAGE_CCS_D:
2414 case ISL_AUX_USAGE_CCS_E:
2415 if (!mt->aux_buf)
2416 return;
2417
2418 for (uint32_t l = 0; l < num_levels; l++) {
2419 const uint32_t level = start_level + l;
2420 const uint32_t level_layers =
2421 miptree_layer_range_length(mt, level, start_layer, num_layers);
2422 for (uint32_t a = 0; a < level_layers; a++) {
2423 intel_miptree_prepare_ccs_access(brw, mt, level,
2424 start_layer + a,
2425 aux_usage, fast_clear_supported);
2426 }
2427 }
2428 break;
2429
2430 case ISL_AUX_USAGE_HIZ:
2431 assert(mt->aux_buf);
2432 for (uint32_t l = 0; l < num_levels; l++) {
2433 const uint32_t level = start_level + l;
2434 if (!intel_miptree_level_has_hiz(mt, level))
2435 continue;
2436
2437 const uint32_t level_layers =
2438 miptree_layer_range_length(mt, level, start_layer, num_layers);
2439 for (uint32_t a = 0; a < level_layers; a++) {
2440 intel_miptree_prepare_hiz_access(brw, mt, level, start_layer + a,
2441 aux_usage, fast_clear_supported);
2442 }
2443 }
2444 break;
2445
2446 default:
2447 unreachable("Invalid aux usage");
2448 }
2449 }
2450
2451 void
2452 intel_miptree_finish_write(struct brw_context *brw,
2453 struct intel_mipmap_tree *mt, uint32_t level,
2454 uint32_t start_layer, uint32_t num_layers,
2455 enum isl_aux_usage aux_usage)
2456 {
2457 const struct gen_device_info *devinfo = &brw->screen->devinfo;
2458 num_layers = miptree_layer_range_length(mt, level, start_layer, num_layers);
2459
2460 switch (mt->aux_usage) {
2461 case ISL_AUX_USAGE_NONE:
2462 if (mt->format == MESA_FORMAT_S_UINT8 && devinfo->gen <= 7)
2463 mt->r8stencil_needs_update = true;
2464 break;
2465
2466 case ISL_AUX_USAGE_MCS:
2467 assert(mt->aux_buf);
2468 for (uint32_t a = 0; a < num_layers; a++) {
2469 intel_miptree_finish_mcs_write(brw, mt, start_layer + a,
2470 aux_usage);
2471 }
2472 break;
2473
2474 case ISL_AUX_USAGE_CCS_D:
2475 case ISL_AUX_USAGE_CCS_E:
2476 if (!mt->aux_buf)
2477 return;
2478
2479 for (uint32_t a = 0; a < num_layers; a++) {
2480 intel_miptree_finish_ccs_write(brw, mt, level, start_layer + a,
2481 aux_usage);
2482 }
2483 break;
2484
2485 case ISL_AUX_USAGE_HIZ:
2486 if (!intel_miptree_level_has_hiz(mt, level))
2487 return;
2488
2489 for (uint32_t a = 0; a < num_layers; a++) {
2490 intel_miptree_finish_hiz_write(brw, mt, level, start_layer + a,
2491 aux_usage);
2492 }
2493 break;
2494
2495 default:
2496 unreachable("Invavlid aux usage");
2497 }
2498 }
2499
2500 enum isl_aux_state
2501 intel_miptree_get_aux_state(const struct intel_mipmap_tree *mt,
2502 uint32_t level, uint32_t layer)
2503 {
2504 intel_miptree_check_level_layer(mt, level, layer);
2505
2506 if (_mesa_is_format_color_format(mt->format)) {
2507 assert(mt->aux_buf != NULL);
2508 assert(mt->surf.samples == 1 ||
2509 mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
2510 } else if (mt->format == MESA_FORMAT_S_UINT8) {
2511 unreachable("Cannot get aux state for stencil");
2512 } else {
2513 assert(intel_miptree_level_has_hiz(mt, level));
2514 }
2515
2516 return mt->aux_state[level][layer];
2517 }
2518
2519 void
2520 intel_miptree_set_aux_state(struct brw_context *brw,
2521 struct intel_mipmap_tree *mt, uint32_t level,
2522 uint32_t start_layer, uint32_t num_layers,
2523 enum isl_aux_state aux_state)
2524 {
2525 num_layers = miptree_layer_range_length(mt, level, start_layer, num_layers);
2526
2527 if (_mesa_is_format_color_format(mt->format)) {
2528 assert(mt->aux_buf != NULL);
2529 assert(mt->surf.samples == 1 ||
2530 mt->surf.msaa_layout == ISL_MSAA_LAYOUT_ARRAY);
2531 } else if (mt->format == MESA_FORMAT_S_UINT8) {
2532 unreachable("Cannot get aux state for stencil");
2533 } else {
2534 assert(intel_miptree_level_has_hiz(mt, level));
2535 }
2536
2537 for (unsigned a = 0; a < num_layers; a++) {
2538 if (mt->aux_state[level][start_layer + a] != aux_state) {
2539 mt->aux_state[level][start_layer + a] = aux_state;
2540 brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
2541 }
2542 }
2543 }
2544
2545 /* On Gen9 color buffers may be compressed by the hardware (lossless
2546 * compression). There are, however, format restrictions and care needs to be
2547 * taken that the sampler engine is capable for re-interpreting a buffer with
2548 * format different the buffer was originally written with.
2549 *
2550 * For example, SRGB formats are not compressible and the sampler engine isn't
2551 * capable of treating RGBA_UNORM as SRGB_ALPHA. In such a case the underlying
2552 * color buffer needs to be resolved so that the sampling surface can be
2553 * sampled as non-compressed (i.e., without the auxiliary MCS buffer being
2554 * set).
2555 */
2556 static bool
2557 can_texture_with_ccs(struct brw_context *brw,
2558 struct intel_mipmap_tree *mt,
2559 enum isl_format view_format)
2560 {
2561 if (mt->aux_usage != ISL_AUX_USAGE_CCS_E)
2562 return false;
2563
2564 if (!format_ccs_e_compat_with_miptree(&brw->screen->devinfo,
2565 mt, view_format)) {
2566 perf_debug("Incompatible sampling format (%s) for rbc (%s)\n",
2567 isl_format_get_layout(view_format)->name,
2568 _mesa_get_format_name(mt->format));
2569 return false;
2570 }
2571
2572 return true;
2573 }
2574
2575 enum isl_aux_usage
2576 intel_miptree_texture_aux_usage(struct brw_context *brw,
2577 struct intel_mipmap_tree *mt,
2578 enum isl_format view_format)
2579 {
2580 switch (mt->aux_usage) {
2581 case ISL_AUX_USAGE_HIZ:
2582 if (intel_miptree_sample_with_hiz(brw, mt))
2583 return ISL_AUX_USAGE_HIZ;
2584 break;
2585
2586 case ISL_AUX_USAGE_MCS:
2587 return ISL_AUX_USAGE_MCS;
2588
2589 case ISL_AUX_USAGE_CCS_D:
2590 case ISL_AUX_USAGE_CCS_E:
2591 if (!mt->aux_buf) {
2592 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2593 return ISL_AUX_USAGE_NONE;
2594 }
2595
2596 /* If we don't have any unresolved color, report an aux usage of
2597 * ISL_AUX_USAGE_NONE. This way, texturing won't even look at the
2598 * aux surface and we can save some bandwidth.
2599 */
2600 if (!intel_miptree_has_color_unresolved(mt, 0, INTEL_REMAINING_LEVELS,
2601 0, INTEL_REMAINING_LAYERS))
2602 return ISL_AUX_USAGE_NONE;
2603
2604 if (can_texture_with_ccs(brw, mt, view_format))
2605 return ISL_AUX_USAGE_CCS_E;
2606 break;
2607
2608 default:
2609 break;
2610 }
2611
2612 return ISL_AUX_USAGE_NONE;
2613 }
2614
2615 static bool
2616 isl_formats_are_fast_clear_compatible(enum isl_format a, enum isl_format b)
2617 {
2618 /* On gen8 and earlier, the hardware was only capable of handling 0/1 clear
2619 * values so sRGB curve application was a no-op for all fast-clearable
2620 * formats.
2621 *
2622 * On gen9+, the hardware supports arbitrary clear values. For sRGB clear
2623 * values, the hardware interprets the floats, not as what would be
2624 * returned from the sampler (or written by the shader), but as being
2625 * between format conversion and sRGB curve application. This means that
2626 * we can switch between sRGB and UNORM without having to whack the clear
2627 * color.
2628 */
2629 return isl_format_srgb_to_linear(a) == isl_format_srgb_to_linear(b);
2630 }
2631
2632 void
2633 intel_miptree_prepare_texture(struct brw_context *brw,
2634 struct intel_mipmap_tree *mt,
2635 enum isl_format view_format,
2636 uint32_t start_level, uint32_t num_levels,
2637 uint32_t start_layer, uint32_t num_layers)
2638 {
2639 enum isl_aux_usage aux_usage =
2640 intel_miptree_texture_aux_usage(brw, mt, view_format);
2641 bool clear_supported = aux_usage != ISL_AUX_USAGE_NONE;
2642
2643 /* Clear color is specified as ints or floats and the conversion is done by
2644 * the sampler. If we have a texture view, we would have to perform the
2645 * clear color conversion manually. Just disable clear color.
2646 */
2647 if (!isl_formats_are_fast_clear_compatible(mt->surf.format, view_format))
2648 clear_supported = false;
2649
2650 intel_miptree_prepare_access(brw, mt, start_level, num_levels,
2651 start_layer, num_layers,
2652 aux_usage, clear_supported);
2653 }
2654
2655 void
2656 intel_miptree_prepare_image(struct brw_context *brw,
2657 struct intel_mipmap_tree *mt)
2658 {
2659 /* The data port doesn't understand any compression */
2660 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2661 0, INTEL_REMAINING_LAYERS,
2662 ISL_AUX_USAGE_NONE, false);
2663 }
2664
2665 enum isl_aux_usage
2666 intel_miptree_render_aux_usage(struct brw_context *brw,
2667 struct intel_mipmap_tree *mt,
2668 enum isl_format render_format,
2669 bool blend_enabled,
2670 bool draw_aux_disabled)
2671 {
2672 struct gen_device_info *devinfo = &brw->screen->devinfo;
2673
2674 if (draw_aux_disabled)
2675 return ISL_AUX_USAGE_NONE;
2676
2677 switch (mt->aux_usage) {
2678 case ISL_AUX_USAGE_MCS:
2679 assert(mt->aux_buf);
2680 return ISL_AUX_USAGE_MCS;
2681
2682 case ISL_AUX_USAGE_CCS_D:
2683 case ISL_AUX_USAGE_CCS_E:
2684 if (!mt->aux_buf) {
2685 assert(mt->aux_usage == ISL_AUX_USAGE_CCS_D);
2686 return ISL_AUX_USAGE_NONE;
2687 }
2688
2689 /* gen9+ hardware technically supports non-0/1 clear colors with sRGB
2690 * formats. However, there are issues with blending where it doesn't
2691 * properly apply the sRGB curve to the clear color when blending.
2692 */
2693 if (devinfo->gen >= 9 && blend_enabled &&
2694 isl_format_is_srgb(render_format) &&
2695 !isl_color_value_is_zero_one(mt->fast_clear_color, render_format))
2696 return ISL_AUX_USAGE_NONE;
2697
2698 if (mt->aux_usage == ISL_AUX_USAGE_CCS_E &&
2699 format_ccs_e_compat_with_miptree(&brw->screen->devinfo,
2700 mt, render_format))
2701 return ISL_AUX_USAGE_CCS_E;
2702
2703 /* Otherwise, we have to fall back to CCS_D */
2704 return ISL_AUX_USAGE_CCS_D;
2705
2706 default:
2707 return ISL_AUX_USAGE_NONE;
2708 }
2709 }
2710
2711 void
2712 intel_miptree_prepare_render(struct brw_context *brw,
2713 struct intel_mipmap_tree *mt, uint32_t level,
2714 uint32_t start_layer, uint32_t layer_count,
2715 enum isl_aux_usage aux_usage)
2716 {
2717 intel_miptree_prepare_access(brw, mt, level, 1, start_layer, layer_count,
2718 aux_usage, aux_usage != ISL_AUX_USAGE_NONE);
2719 }
2720
2721 void
2722 intel_miptree_finish_render(struct brw_context *brw,
2723 struct intel_mipmap_tree *mt, uint32_t level,
2724 uint32_t start_layer, uint32_t layer_count,
2725 enum isl_aux_usage aux_usage)
2726 {
2727 assert(_mesa_is_format_color_format(mt->format));
2728
2729 intel_miptree_finish_write(brw, mt, level, start_layer, layer_count,
2730 aux_usage);
2731 }
2732
2733 void
2734 intel_miptree_prepare_depth(struct brw_context *brw,
2735 struct intel_mipmap_tree *mt, uint32_t level,
2736 uint32_t start_layer, uint32_t layer_count)
2737 {
2738 intel_miptree_prepare_access(brw, mt, level, 1, start_layer, layer_count,
2739 mt->aux_usage, mt->aux_buf != NULL);
2740 }
2741
2742 void
2743 intel_miptree_finish_depth(struct brw_context *brw,
2744 struct intel_mipmap_tree *mt, uint32_t level,
2745 uint32_t start_layer, uint32_t layer_count,
2746 bool depth_written)
2747 {
2748 if (depth_written) {
2749 intel_miptree_finish_write(brw, mt, level, start_layer, layer_count,
2750 mt->aux_buf != NULL);
2751 }
2752 }
2753
2754 void
2755 intel_miptree_prepare_external(struct brw_context *brw,
2756 struct intel_mipmap_tree *mt)
2757 {
2758 enum isl_aux_usage aux_usage = ISL_AUX_USAGE_NONE;
2759 bool supports_fast_clear = false;
2760
2761 const struct isl_drm_modifier_info *mod_info =
2762 isl_drm_modifier_get_info(mt->drm_modifier);
2763
2764 if (mod_info && mod_info->aux_usage != ISL_AUX_USAGE_NONE) {
2765 /* CCS_E is the only supported aux for external images and it's only
2766 * supported on very simple images.
2767 */
2768 assert(mod_info->aux_usage == ISL_AUX_USAGE_CCS_E);
2769 assert(_mesa_is_format_color_format(mt->format));
2770 assert(mt->first_level == 0 && mt->last_level == 0);
2771 assert(mt->surf.logical_level0_px.depth == 1);
2772 assert(mt->surf.logical_level0_px.array_len == 1);
2773 assert(mt->surf.samples == 1);
2774 assert(mt->aux_buf != NULL);
2775
2776 aux_usage = mod_info->aux_usage;
2777 supports_fast_clear = mod_info->supports_clear_color;
2778 }
2779
2780 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2781 0, INTEL_REMAINING_LAYERS,
2782 aux_usage, supports_fast_clear);
2783 }
2784
2785 void
2786 intel_miptree_finish_external(struct brw_context *brw,
2787 struct intel_mipmap_tree *mt)
2788 {
2789 if (!mt->aux_buf)
2790 return;
2791
2792 /* We don't know the actual aux state of the aux surface. The previous
2793 * owner could have given it to us in a number of different states.
2794 * Because we don't know the aux state, we reset the aux state to the
2795 * least common denominator of possible valid states.
2796 */
2797 enum isl_aux_state default_aux_state =
2798 isl_drm_modifier_get_default_aux_state(mt->drm_modifier);
2799 assert(mt->last_level == mt->first_level);
2800 intel_miptree_set_aux_state(brw, mt, 0, 0, INTEL_REMAINING_LAYERS,
2801 default_aux_state);
2802 }
2803
2804 /**
2805 * Make it possible to share the BO backing the given miptree with another
2806 * process or another miptree.
2807 *
2808 * Fast color clears are unsafe with shared buffers, so we need to resolve and
2809 * then discard the MCS buffer, if present. We also set the no_ccs flag to
2810 * ensure that no MCS buffer gets allocated in the future.
2811 *
2812 * HiZ is similarly unsafe with shared buffers.
2813 */
2814 void
2815 intel_miptree_make_shareable(struct brw_context *brw,
2816 struct intel_mipmap_tree *mt)
2817 {
2818 /* MCS buffers are also used for multisample buffers, but we can't resolve
2819 * away a multisample MCS buffer because it's an integral part of how the
2820 * pixel data is stored. Fortunately this code path should never be
2821 * reached for multisample buffers.
2822 */
2823 assert(mt->surf.msaa_layout == ISL_MSAA_LAYOUT_NONE ||
2824 mt->surf.samples == 1);
2825
2826 intel_miptree_prepare_access(brw, mt, 0, INTEL_REMAINING_LEVELS,
2827 0, INTEL_REMAINING_LAYERS,
2828 ISL_AUX_USAGE_NONE, false);
2829
2830 if (mt->aux_buf) {
2831 intel_miptree_aux_buffer_free(mt->aux_buf);
2832 mt->aux_buf = NULL;
2833
2834 /* Make future calls of intel_miptree_level_has_hiz() return false. */
2835 for (uint32_t l = mt->first_level; l <= mt->last_level; ++l) {
2836 mt->level[l].has_hiz = false;
2837 }
2838
2839 free(mt->aux_state);
2840 mt->aux_state = NULL;
2841 brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
2842 }
2843
2844 mt->aux_usage = ISL_AUX_USAGE_NONE;
2845 mt->supports_fast_clear = false;
2846 }
2847
2848
2849 /**
2850 * \brief Get pointer offset into stencil buffer.
2851 *
2852 * The stencil buffer is W tiled. Since the GTT is incapable of W fencing, we
2853 * must decode the tile's layout in software.
2854 *
2855 * See
2856 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.2.1 W-Major Tile
2857 * Format.
2858 * - PRM, 2011 Sandy Bridge, Volume 1, Part 2, Section 4.5.3 Tiling Algorithm
2859 *
2860 * Even though the returned offset is always positive, the return type is
2861 * signed due to
2862 * commit e8b1c6d6f55f5be3bef25084fdd8b6127517e137
2863 * mesa: Fix return type of _mesa_get_format_bytes() (#37351)
2864 */
2865 static intptr_t
2866 intel_offset_S8(uint32_t stride, uint32_t x, uint32_t y, bool swizzled)
2867 {
2868 uint32_t tile_size = 4096;
2869 uint32_t tile_width = 64;
2870 uint32_t tile_height = 64;
2871 uint32_t row_size = 64 * stride / 2; /* Two rows are interleaved. */
2872
2873 uint32_t tile_x = x / tile_width;
2874 uint32_t tile_y = y / tile_height;
2875
2876 /* The byte's address relative to the tile's base addres. */
2877 uint32_t byte_x = x % tile_width;
2878 uint32_t byte_y = y % tile_height;
2879
2880 uintptr_t u = tile_y * row_size
2881 + tile_x * tile_size
2882 + 512 * (byte_x / 8)
2883 + 64 * (byte_y / 8)
2884 + 32 * ((byte_y / 4) % 2)
2885 + 16 * ((byte_x / 4) % 2)
2886 + 8 * ((byte_y / 2) % 2)
2887 + 4 * ((byte_x / 2) % 2)
2888 + 2 * (byte_y % 2)
2889 + 1 * (byte_x % 2);
2890
2891 if (swizzled) {
2892 /* adjust for bit6 swizzling */
2893 if (((byte_x / 8) % 2) == 1) {
2894 if (((byte_y / 8) % 2) == 0) {
2895 u += 64;
2896 } else {
2897 u -= 64;
2898 }
2899 }
2900 }
2901
2902 return u;
2903 }
2904
2905 void
2906 intel_miptree_updownsample(struct brw_context *brw,
2907 struct intel_mipmap_tree *src,
2908 struct intel_mipmap_tree *dst)
2909 {
2910 unsigned src_w = src->surf.logical_level0_px.width;
2911 unsigned src_h = src->surf.logical_level0_px.height;
2912 unsigned dst_w = dst->surf.logical_level0_px.width;
2913 unsigned dst_h = dst->surf.logical_level0_px.height;
2914
2915 brw_blorp_blit_miptrees(brw,
2916 src, 0 /* level */, 0 /* layer */,
2917 src->format, SWIZZLE_XYZW,
2918 dst, 0 /* level */, 0 /* layer */, dst->format,
2919 0, 0, src_w, src_h,
2920 0, 0, dst_w, dst_h,
2921 GL_NEAREST, false, false /*mirror x, y*/,
2922 false, false);
2923
2924 if (src->stencil_mt) {
2925 src_w = src->stencil_mt->surf.logical_level0_px.width;
2926 src_h = src->stencil_mt->surf.logical_level0_px.height;
2927 dst_w = dst->stencil_mt->surf.logical_level0_px.width;
2928 dst_h = dst->stencil_mt->surf.logical_level0_px.height;
2929
2930 brw_blorp_blit_miptrees(brw,
2931 src->stencil_mt, 0 /* level */, 0 /* layer */,
2932 src->stencil_mt->format, SWIZZLE_XYZW,
2933 dst->stencil_mt, 0 /* level */, 0 /* layer */,
2934 dst->stencil_mt->format,
2935 0, 0, src_w, src_h,
2936 0, 0, dst_w, dst_h,
2937 GL_NEAREST, false, false /*mirror x, y*/,
2938 false, false /* decode/encode srgb */);
2939 }
2940 }
2941
2942 void
2943 intel_update_r8stencil(struct brw_context *brw,
2944 struct intel_mipmap_tree *mt)
2945 {
2946 const struct gen_device_info *devinfo = &brw->screen->devinfo;
2947
2948 assert(devinfo->gen >= 7);
2949 struct intel_mipmap_tree *src =
2950 mt->format == MESA_FORMAT_S_UINT8 ? mt : mt->stencil_mt;
2951 if (!src || devinfo->gen >= 8 || !src->r8stencil_needs_update)
2952 return;
2953
2954 assert(src->surf.size > 0);
2955
2956 if (!mt->r8stencil_mt) {
2957 assert(devinfo->gen > 6); /* Handle MIPTREE_LAYOUT_GEN6_HIZ_STENCIL */
2958 mt->r8stencil_mt = make_surface(
2959 brw,
2960 src->target,
2961 MESA_FORMAT_R_UINT8,
2962 src->first_level, src->last_level,
2963 src->surf.logical_level0_px.width,
2964 src->surf.logical_level0_px.height,
2965 src->surf.dim == ISL_SURF_DIM_3D ?
2966 src->surf.logical_level0_px.depth :
2967 src->surf.logical_level0_px.array_len,
2968 src->surf.samples,
2969 ISL_TILING_Y0_BIT,
2970 ISL_SURF_USAGE_TEXTURE_BIT,
2971 BO_ALLOC_BUSY, 0, NULL);
2972 assert(mt->r8stencil_mt);
2973 }
2974
2975 struct intel_mipmap_tree *dst = mt->r8stencil_mt;
2976
2977 for (int level = src->first_level; level <= src->last_level; level++) {
2978 const unsigned depth = src->surf.dim == ISL_SURF_DIM_3D ?
2979 minify(src->surf.phys_level0_sa.depth, level) :
2980 src->surf.phys_level0_sa.array_len;
2981
2982 for (unsigned layer = 0; layer < depth; layer++) {
2983 brw_blorp_copy_miptrees(brw,
2984 src, level, layer,
2985 dst, level, layer,
2986 0, 0, 0, 0,
2987 minify(src->surf.logical_level0_px.width,
2988 level),
2989 minify(src->surf.logical_level0_px.height,
2990 level));
2991 }
2992 }
2993
2994 brw_cache_flush_for_read(brw, dst->bo);
2995 src->r8stencil_needs_update = false;
2996 }
2997
2998 static void *
2999 intel_miptree_map_raw(struct brw_context *brw,
3000 struct intel_mipmap_tree *mt,
3001 GLbitfield mode)
3002 {
3003 struct brw_bo *bo = mt->bo;
3004
3005 if (brw_batch_references(&brw->batch, bo))
3006 intel_batchbuffer_flush(brw);
3007
3008 return brw_bo_map(brw, bo, mode);
3009 }
3010
3011 static void
3012 intel_miptree_unmap_raw(struct intel_mipmap_tree *mt)
3013 {
3014 brw_bo_unmap(mt->bo);
3015 }
3016
3017 static void
3018 intel_miptree_unmap_gtt(struct brw_context *brw,
3019 struct intel_mipmap_tree *mt,
3020 struct intel_miptree_map *map,
3021 unsigned int level, unsigned int slice)
3022 {
3023 intel_miptree_unmap_raw(mt);
3024 }
3025
3026 static void
3027 intel_miptree_map_gtt(struct brw_context *brw,
3028 struct intel_mipmap_tree *mt,
3029 struct intel_miptree_map *map,
3030 unsigned int level, unsigned int slice)
3031 {
3032 unsigned int bw, bh;
3033 void *base;
3034 unsigned int image_x, image_y;
3035 intptr_t x = map->x;
3036 intptr_t y = map->y;
3037
3038 /* For compressed formats, the stride is the number of bytes per
3039 * row of blocks. intel_miptree_get_image_offset() already does
3040 * the divide.
3041 */
3042 _mesa_get_format_block_size(mt->format, &bw, &bh);
3043 assert(y % bh == 0);
3044 assert(x % bw == 0);
3045 y /= bh;
3046 x /= bw;
3047
3048 intel_miptree_access_raw(brw, mt, level, slice,
3049 map->mode & GL_MAP_WRITE_BIT);
3050
3051 base = intel_miptree_map_raw(brw, mt, map->mode);
3052
3053 if (base == NULL)
3054 map->ptr = NULL;
3055 else {
3056 base += mt->offset;
3057
3058 /* Note that in the case of cube maps, the caller must have passed the
3059 * slice number referencing the face.
3060 */
3061 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3062 x += image_x;
3063 y += image_y;
3064
3065 map->stride = mt->surf.row_pitch;
3066 map->ptr = base + y * map->stride + x * mt->cpp;
3067 }
3068
3069 DBG("%s: %d,%d %dx%d from mt %p (%s) "
3070 "%"PRIiPTR",%"PRIiPTR" = %p/%d\n", __func__,
3071 map->x, map->y, map->w, map->h,
3072 mt, _mesa_get_format_name(mt->format),
3073 x, y, map->ptr, map->stride);
3074
3075 map->unmap = intel_miptree_unmap_gtt;
3076 }
3077
3078 static void
3079 intel_miptree_unmap_blit(struct brw_context *brw,
3080 struct intel_mipmap_tree *mt,
3081 struct intel_miptree_map *map,
3082 unsigned int level,
3083 unsigned int slice)
3084 {
3085 const struct gen_device_info *devinfo = &brw->screen->devinfo;
3086 struct gl_context *ctx = &brw->ctx;
3087
3088 intel_miptree_unmap_raw(map->linear_mt);
3089
3090 if (map->mode & GL_MAP_WRITE_BIT) {
3091 if (devinfo->gen >= 6) {
3092 brw_blorp_copy_miptrees(brw, map->linear_mt, 0, 0,
3093 mt, level, slice,
3094 0, 0, map->x, map->y, map->w, map->h);
3095 } else {
3096 bool ok = intel_miptree_copy(brw,
3097 map->linear_mt, 0, 0, 0, 0,
3098 mt, level, slice, map->x, map->y,
3099 map->w, map->h);
3100 WARN_ONCE(!ok, "Failed to blit from linear temporary mapping");
3101 }
3102 }
3103
3104 intel_miptree_release(&map->linear_mt);
3105 }
3106
3107 static void
3108 intel_miptree_map_blit(struct brw_context *brw,
3109 struct intel_mipmap_tree *mt,
3110 struct intel_miptree_map *map,
3111 unsigned int level, unsigned int slice)
3112 {
3113 const struct gen_device_info *devinfo = &brw->screen->devinfo;
3114 map->linear_mt = make_surface(brw, GL_TEXTURE_2D, mt->format,
3115 0, 0, map->w, map->h, 1, 1,
3116 ISL_TILING_LINEAR_BIT,
3117 ISL_SURF_USAGE_RENDER_TARGET_BIT |
3118 ISL_SURF_USAGE_TEXTURE_BIT,
3119 0, 0, NULL);
3120
3121 if (!map->linear_mt) {
3122 fprintf(stderr, "Failed to allocate blit temporary\n");
3123 goto fail;
3124 }
3125 map->stride = map->linear_mt->surf.row_pitch;
3126
3127 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3128 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3129 * invalidate is set, since we'll be writing the whole rectangle from our
3130 * temporary buffer back out.
3131 */
3132 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3133 if (devinfo->gen >= 6) {
3134 brw_blorp_copy_miptrees(brw, mt, level, slice,
3135 map->linear_mt, 0, 0,
3136 map->x, map->y, 0, 0, map->w, map->h);
3137 } else {
3138 if (!intel_miptree_copy(brw,
3139 mt, level, slice, map->x, map->y,
3140 map->linear_mt, 0, 0, 0, 0,
3141 map->w, map->h)) {
3142 fprintf(stderr, "Failed to blit\n");
3143 goto fail;
3144 }
3145 }
3146 }
3147
3148 map->ptr = intel_miptree_map_raw(brw, map->linear_mt, map->mode);
3149
3150 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
3151 map->x, map->y, map->w, map->h,
3152 mt, _mesa_get_format_name(mt->format),
3153 level, slice, map->ptr, map->stride);
3154
3155 map->unmap = intel_miptree_unmap_blit;
3156 return;
3157
3158 fail:
3159 intel_miptree_release(&map->linear_mt);
3160 map->ptr = NULL;
3161 map->stride = 0;
3162 }
3163
3164 /**
3165 * "Map" a buffer by copying it to an untiled temporary using MOVNTDQA.
3166 */
3167 #if defined(USE_SSE41)
3168 static void
3169 intel_miptree_unmap_movntdqa(struct brw_context *brw,
3170 struct intel_mipmap_tree *mt,
3171 struct intel_miptree_map *map,
3172 unsigned int level,
3173 unsigned int slice)
3174 {
3175 _mesa_align_free(map->buffer);
3176 map->buffer = NULL;
3177 map->ptr = NULL;
3178 }
3179
3180 static void
3181 intel_miptree_map_movntdqa(struct brw_context *brw,
3182 struct intel_mipmap_tree *mt,
3183 struct intel_miptree_map *map,
3184 unsigned int level, unsigned int slice)
3185 {
3186 assert(map->mode & GL_MAP_READ_BIT);
3187 assert(!(map->mode & GL_MAP_WRITE_BIT));
3188
3189 intel_miptree_access_raw(brw, mt, level, slice, false);
3190
3191 DBG("%s: %d,%d %dx%d from mt %p (%s) %d,%d = %p/%d\n", __func__,
3192 map->x, map->y, map->w, map->h,
3193 mt, _mesa_get_format_name(mt->format),
3194 level, slice, map->ptr, map->stride);
3195
3196 /* Map the original image */
3197 uint32_t image_x;
3198 uint32_t image_y;
3199 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3200 image_x += map->x;
3201 image_y += map->y;
3202
3203 void *src = intel_miptree_map_raw(brw, mt, map->mode);
3204 if (!src)
3205 return;
3206
3207 src += mt->offset;
3208
3209 src += image_y * mt->surf.row_pitch;
3210 src += image_x * mt->cpp;
3211
3212 /* Due to the pixel offsets for the particular image being mapped, our
3213 * src pointer may not be 16-byte aligned. However, if the pitch is
3214 * divisible by 16, then the amount by which it's misaligned will remain
3215 * consistent from row to row.
3216 */
3217 assert((mt->surf.row_pitch % 16) == 0);
3218 const int misalignment = ((uintptr_t) src) & 15;
3219
3220 /* Create an untiled temporary buffer for the mapping. */
3221 const unsigned width_bytes = _mesa_format_row_stride(mt->format, map->w);
3222
3223 map->stride = ALIGN(misalignment + width_bytes, 16);
3224
3225 map->buffer = _mesa_align_malloc(map->stride * map->h, 16);
3226 /* Offset the destination so it has the same misalignment as src. */
3227 map->ptr = map->buffer + misalignment;
3228
3229 assert((((uintptr_t) map->ptr) & 15) == misalignment);
3230
3231 for (uint32_t y = 0; y < map->h; y++) {
3232 void *dst_ptr = map->ptr + y * map->stride;
3233 void *src_ptr = src + y * mt->surf.row_pitch;
3234
3235 _mesa_streaming_load_memcpy(dst_ptr, src_ptr, width_bytes);
3236 }
3237
3238 intel_miptree_unmap_raw(mt);
3239
3240 map->unmap = intel_miptree_unmap_movntdqa;
3241 }
3242 #endif
3243
3244 static void
3245 intel_miptree_unmap_s8(struct brw_context *brw,
3246 struct intel_mipmap_tree *mt,
3247 struct intel_miptree_map *map,
3248 unsigned int level,
3249 unsigned int slice)
3250 {
3251 if (map->mode & GL_MAP_WRITE_BIT) {
3252 unsigned int image_x, image_y;
3253 uint8_t *untiled_s8_map = map->ptr;
3254 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt, GL_MAP_WRITE_BIT);
3255
3256 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3257
3258 for (uint32_t y = 0; y < map->h; y++) {
3259 for (uint32_t x = 0; x < map->w; x++) {
3260 ptrdiff_t offset = intel_offset_S8(mt->surf.row_pitch,
3261 image_x + x + map->x,
3262 image_y + y + map->y,
3263 brw->has_swizzling);
3264 tiled_s8_map[offset] = untiled_s8_map[y * map->w + x];
3265 }
3266 }
3267
3268 intel_miptree_unmap_raw(mt);
3269 }
3270
3271 free(map->buffer);
3272 }
3273
3274 static void
3275 intel_miptree_map_s8(struct brw_context *brw,
3276 struct intel_mipmap_tree *mt,
3277 struct intel_miptree_map *map,
3278 unsigned int level, unsigned int slice)
3279 {
3280 map->stride = map->w;
3281 map->buffer = map->ptr = malloc(map->stride * map->h);
3282 if (!map->buffer)
3283 return;
3284
3285 intel_miptree_access_raw(brw, mt, level, slice,
3286 map->mode & GL_MAP_WRITE_BIT);
3287
3288 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3289 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3290 * invalidate is set, since we'll be writing the whole rectangle from our
3291 * temporary buffer back out.
3292 */
3293 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3294 uint8_t *untiled_s8_map = map->ptr;
3295 uint8_t *tiled_s8_map = intel_miptree_map_raw(brw, mt, GL_MAP_READ_BIT);
3296 unsigned int image_x, image_y;
3297
3298 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3299
3300 for (uint32_t y = 0; y < map->h; y++) {
3301 for (uint32_t x = 0; x < map->w; x++) {
3302 ptrdiff_t offset = intel_offset_S8(mt->surf.row_pitch,
3303 x + image_x + map->x,
3304 y + image_y + map->y,
3305 brw->has_swizzling);
3306 untiled_s8_map[y * map->w + x] = tiled_s8_map[offset];
3307 }
3308 }
3309
3310 intel_miptree_unmap_raw(mt);
3311
3312 DBG("%s: %d,%d %dx%d from mt %p %d,%d = %p/%d\n", __func__,
3313 map->x, map->y, map->w, map->h,
3314 mt, map->x + image_x, map->y + image_y, map->ptr, map->stride);
3315 } else {
3316 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
3317 map->x, map->y, map->w, map->h,
3318 mt, map->ptr, map->stride);
3319 }
3320
3321 map->unmap = intel_miptree_unmap_s8;
3322 }
3323
3324 static void
3325 intel_miptree_unmap_etc(struct brw_context *brw,
3326 struct intel_mipmap_tree *mt,
3327 struct intel_miptree_map *map,
3328 unsigned int level,
3329 unsigned int slice)
3330 {
3331 uint32_t image_x;
3332 uint32_t image_y;
3333 intel_miptree_get_image_offset(mt, level, slice, &image_x, &image_y);
3334
3335 image_x += map->x;
3336 image_y += map->y;
3337
3338 uint8_t *dst = intel_miptree_map_raw(brw, mt, GL_MAP_WRITE_BIT)
3339 + image_y * mt->surf.row_pitch
3340 + image_x * mt->cpp;
3341
3342 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8)
3343 _mesa_etc1_unpack_rgba8888(dst, mt->surf.row_pitch,
3344 map->ptr, map->stride,
3345 map->w, map->h);
3346 else
3347 _mesa_unpack_etc2_format(dst, mt->surf.row_pitch,
3348 map->ptr, map->stride,
3349 map->w, map->h, mt->etc_format, true);
3350
3351 intel_miptree_unmap_raw(mt);
3352 free(map->buffer);
3353 }
3354
3355 static void
3356 intel_miptree_map_etc(struct brw_context *brw,
3357 struct intel_mipmap_tree *mt,
3358 struct intel_miptree_map *map,
3359 unsigned int level,
3360 unsigned int slice)
3361 {
3362 assert(mt->etc_format != MESA_FORMAT_NONE);
3363 if (mt->etc_format == MESA_FORMAT_ETC1_RGB8) {
3364 assert(mt->format == MESA_FORMAT_R8G8B8X8_UNORM);
3365 }
3366
3367 assert(map->mode & GL_MAP_WRITE_BIT);
3368 assert(map->mode & GL_MAP_INVALIDATE_RANGE_BIT);
3369
3370 intel_miptree_access_raw(brw, mt, level, slice, true);
3371
3372 map->stride = _mesa_format_row_stride(mt->etc_format, map->w);
3373 map->buffer = malloc(_mesa_format_image_size(mt->etc_format,
3374 map->w, map->h, 1));
3375 map->ptr = map->buffer;
3376 map->unmap = intel_miptree_unmap_etc;
3377 }
3378
3379 /**
3380 * Mapping functions for packed depth/stencil miptrees backed by real separate
3381 * miptrees for depth and stencil.
3382 *
3383 * On gen7, and to support HiZ pre-gen7, we have to have the stencil buffer
3384 * separate from the depth buffer. Yet at the GL API level, we have to expose
3385 * packed depth/stencil textures and FBO attachments, and Mesa core expects to
3386 * be able to map that memory for texture storage and glReadPixels-type
3387 * operations. We give Mesa core that access by mallocing a temporary and
3388 * copying the data between the actual backing store and the temporary.
3389 */
3390 static void
3391 intel_miptree_unmap_depthstencil(struct brw_context *brw,
3392 struct intel_mipmap_tree *mt,
3393 struct intel_miptree_map *map,
3394 unsigned int level,
3395 unsigned int slice)
3396 {
3397 struct intel_mipmap_tree *z_mt = mt;
3398 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
3399 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
3400
3401 if (map->mode & GL_MAP_WRITE_BIT) {
3402 uint32_t *packed_map = map->ptr;
3403 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt, GL_MAP_WRITE_BIT);
3404 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt, GL_MAP_WRITE_BIT);
3405 unsigned int s_image_x, s_image_y;
3406 unsigned int z_image_x, z_image_y;
3407
3408 intel_miptree_get_image_offset(s_mt, level, slice,
3409 &s_image_x, &s_image_y);
3410 intel_miptree_get_image_offset(z_mt, level, slice,
3411 &z_image_x, &z_image_y);
3412
3413 for (uint32_t y = 0; y < map->h; y++) {
3414 for (uint32_t x = 0; x < map->w; x++) {
3415 ptrdiff_t s_offset = intel_offset_S8(s_mt->surf.row_pitch,
3416 x + s_image_x + map->x,
3417 y + s_image_y + map->y,
3418 brw->has_swizzling);
3419 ptrdiff_t z_offset = ((y + z_image_y + map->y) *
3420 (z_mt->surf.row_pitch / 4) +
3421 (x + z_image_x + map->x));
3422
3423 if (map_z32f_x24s8) {
3424 z_map[z_offset] = packed_map[(y * map->w + x) * 2 + 0];
3425 s_map[s_offset] = packed_map[(y * map->w + x) * 2 + 1];
3426 } else {
3427 uint32_t packed = packed_map[y * map->w + x];
3428 s_map[s_offset] = packed >> 24;
3429 z_map[z_offset] = packed;
3430 }
3431 }
3432 }
3433
3434 intel_miptree_unmap_raw(s_mt);
3435 intel_miptree_unmap_raw(z_mt);
3436
3437 DBG("%s: %d,%d %dx%d from z mt %p (%s) %d,%d, s mt %p %d,%d = %p/%d\n",
3438 __func__,
3439 map->x, map->y, map->w, map->h,
3440 z_mt, _mesa_get_format_name(z_mt->format),
3441 map->x + z_image_x, map->y + z_image_y,
3442 s_mt, map->x + s_image_x, map->y + s_image_y,
3443 map->ptr, map->stride);
3444 }
3445
3446 free(map->buffer);
3447 }
3448
3449 static void
3450 intel_miptree_map_depthstencil(struct brw_context *brw,
3451 struct intel_mipmap_tree *mt,
3452 struct intel_miptree_map *map,
3453 unsigned int level, unsigned int slice)
3454 {
3455 struct intel_mipmap_tree *z_mt = mt;
3456 struct intel_mipmap_tree *s_mt = mt->stencil_mt;
3457 bool map_z32f_x24s8 = mt->format == MESA_FORMAT_Z_FLOAT32;
3458 int packed_bpp = map_z32f_x24s8 ? 8 : 4;
3459
3460 map->stride = map->w * packed_bpp;
3461 map->buffer = map->ptr = malloc(map->stride * map->h);
3462 if (!map->buffer)
3463 return;
3464
3465 intel_miptree_access_raw(brw, z_mt, level, slice,
3466 map->mode & GL_MAP_WRITE_BIT);
3467 intel_miptree_access_raw(brw, s_mt, level, slice,
3468 map->mode & GL_MAP_WRITE_BIT);
3469
3470 /* One of either READ_BIT or WRITE_BIT or both is set. READ_BIT implies no
3471 * INVALIDATE_RANGE_BIT. WRITE_BIT needs the original values read in unless
3472 * invalidate is set, since we'll be writing the whole rectangle from our
3473 * temporary buffer back out.
3474 */
3475 if (!(map->mode & GL_MAP_INVALIDATE_RANGE_BIT)) {
3476 uint32_t *packed_map = map->ptr;
3477 uint8_t *s_map = intel_miptree_map_raw(brw, s_mt, GL_MAP_READ_BIT);
3478 uint32_t *z_map = intel_miptree_map_raw(brw, z_mt, GL_MAP_READ_BIT);
3479 unsigned int s_image_x, s_image_y;
3480 unsigned int z_image_x, z_image_y;
3481
3482 intel_miptree_get_image_offset(s_mt, level, slice,
3483 &s_image_x, &s_image_y);
3484 intel_miptree_get_image_offset(z_mt, level, slice,
3485 &z_image_x, &z_image_y);
3486
3487 for (uint32_t y = 0; y < map->h; y++) {
3488 for (uint32_t x = 0; x < map->w; x++) {
3489 int map_x = map->x + x, map_y = map->y + y;
3490 ptrdiff_t s_offset = intel_offset_S8(s_mt->surf.row_pitch,
3491 map_x + s_image_x,
3492 map_y + s_image_y,
3493 brw->has_swizzling);
3494 ptrdiff_t z_offset = ((map_y + z_image_y) *
3495 (z_mt->surf.row_pitch / 4) +
3496 (map_x + z_image_x));
3497 uint8_t s = s_map[s_offset];
3498 uint32_t z = z_map[z_offset];
3499
3500 if (map_z32f_x24s8) {
3501 packed_map[(y * map->w + x) * 2 + 0] = z;
3502 packed_map[(y * map->w + x) * 2 + 1] = s;
3503 } else {
3504 packed_map[y * map->w + x] = (s << 24) | (z & 0x00ffffff);
3505 }
3506 }
3507 }
3508
3509 intel_miptree_unmap_raw(s_mt);
3510 intel_miptree_unmap_raw(z_mt);
3511
3512 DBG("%s: %d,%d %dx%d from z mt %p %d,%d, s mt %p %d,%d = %p/%d\n",
3513 __func__,
3514 map->x, map->y, map->w, map->h,
3515 z_mt, map->x + z_image_x, map->y + z_image_y,
3516 s_mt, map->x + s_image_x, map->y + s_image_y,
3517 map->ptr, map->stride);
3518 } else {
3519 DBG("%s: %d,%d %dx%d from mt %p = %p/%d\n", __func__,
3520 map->x, map->y, map->w, map->h,
3521 mt, map->ptr, map->stride);
3522 }
3523
3524 map->unmap = intel_miptree_unmap_depthstencil;
3525 }
3526
3527 /**
3528 * Create and attach a map to the miptree at (level, slice). Return the
3529 * attached map.
3530 */
3531 static struct intel_miptree_map*
3532 intel_miptree_attach_map(struct intel_mipmap_tree *mt,
3533 unsigned int level,
3534 unsigned int slice,
3535 unsigned int x,
3536 unsigned int y,
3537 unsigned int w,
3538 unsigned int h,
3539 GLbitfield mode)
3540 {
3541 struct intel_miptree_map *map = calloc(1, sizeof(*map));
3542
3543 if (!map)
3544 return NULL;
3545
3546 assert(mt->level[level].slice[slice].map == NULL);
3547 mt->level[level].slice[slice].map = map;
3548
3549 map->mode = mode;
3550 map->x = x;
3551 map->y = y;
3552 map->w = w;
3553 map->h = h;
3554
3555 return map;
3556 }
3557
3558 /**
3559 * Release the map at (level, slice).
3560 */
3561 static void
3562 intel_miptree_release_map(struct intel_mipmap_tree *mt,
3563 unsigned int level,
3564 unsigned int slice)
3565 {
3566 struct intel_miptree_map **map;
3567
3568 map = &mt->level[level].slice[slice].map;
3569 free(*map);
3570 *map = NULL;
3571 }
3572
3573 static bool
3574 can_blit_slice(struct intel_mipmap_tree *mt,
3575 unsigned int level, unsigned int slice)
3576 {
3577 /* See intel_miptree_blit() for details on the 32k pitch limit. */
3578 if (intel_miptree_blt_pitch(mt) >= 32768)
3579 return false;
3580
3581 return true;
3582 }
3583
3584 static bool
3585 use_intel_mipree_map_blit(struct brw_context *brw,
3586 struct intel_mipmap_tree *mt,
3587 GLbitfield mode,
3588 unsigned int level,
3589 unsigned int slice)
3590 {
3591 const struct gen_device_info *devinfo = &brw->screen->devinfo;
3592
3593 if (devinfo->has_llc &&
3594 /* It's probably not worth swapping to the blit ring because of
3595 * all the overhead involved.
3596 */
3597 !(mode & GL_MAP_WRITE_BIT) &&
3598 !mt->compressed &&
3599 (mt->surf.tiling == ISL_TILING_X ||
3600 /* Prior to Sandybridge, the blitter can't handle Y tiling */
3601 (devinfo->gen >= 6 && mt->surf.tiling == ISL_TILING_Y0) ||
3602 /* Fast copy blit on skl+ supports all tiling formats. */
3603 devinfo->gen >= 9) &&
3604 can_blit_slice(mt, level, slice))
3605 return true;
3606
3607 if (mt->surf.tiling != ISL_TILING_LINEAR &&
3608 mt->bo->size >= brw->max_gtt_map_object_size) {
3609 assert(can_blit_slice(mt, level, slice));
3610 return true;
3611 }
3612
3613 return false;
3614 }
3615
3616 /**
3617 * Parameter \a out_stride has type ptrdiff_t not because the buffer stride may
3618 * exceed 32 bits but to diminish the likelihood subtle bugs in pointer
3619 * arithmetic overflow.
3620 *
3621 * If you call this function and use \a out_stride, then you're doing pointer
3622 * arithmetic on \a out_ptr. The type of \a out_stride doesn't prevent all
3623 * bugs. The caller must still take care to avoid 32-bit overflow errors in
3624 * all arithmetic expressions that contain buffer offsets and pixel sizes,
3625 * which usually have type uint32_t or GLuint.
3626 */
3627 void
3628 intel_miptree_map(struct brw_context *brw,
3629 struct intel_mipmap_tree *mt,
3630 unsigned int level,
3631 unsigned int slice,
3632 unsigned int x,
3633 unsigned int y,
3634 unsigned int w,
3635 unsigned int h,
3636 GLbitfield mode,
3637 void **out_ptr,
3638 ptrdiff_t *out_stride)
3639 {
3640 struct intel_miptree_map *map;
3641
3642 assert(mt->surf.samples == 1);
3643
3644 map = intel_miptree_attach_map(mt, level, slice, x, y, w, h, mode);
3645 if (!map){
3646 *out_ptr = NULL;
3647 *out_stride = 0;
3648 return;
3649 }
3650
3651 if (mt->format == MESA_FORMAT_S_UINT8) {
3652 intel_miptree_map_s8(brw, mt, map, level, slice);
3653 } else if (mt->etc_format != MESA_FORMAT_NONE &&
3654 !(mode & BRW_MAP_DIRECT_BIT)) {
3655 intel_miptree_map_etc(brw, mt, map, level, slice);
3656 } else if (mt->stencil_mt && !(mode & BRW_MAP_DIRECT_BIT)) {
3657 intel_miptree_map_depthstencil(brw, mt, map, level, slice);
3658 } else if (use_intel_mipree_map_blit(brw, mt, mode, level, slice)) {
3659 intel_miptree_map_blit(brw, mt, map, level, slice);
3660 #if defined(USE_SSE41)
3661 } else if (!(mode & GL_MAP_WRITE_BIT) &&
3662 !mt->compressed && cpu_has_sse4_1 &&
3663 (mt->surf.row_pitch % 16 == 0)) {
3664 intel_miptree_map_movntdqa(brw, mt, map, level, slice);
3665 #endif
3666 } else {
3667 intel_miptree_map_gtt(brw, mt, map, level, slice);
3668 }
3669
3670 *out_ptr = map->ptr;
3671 *out_stride = map->stride;
3672
3673 if (map->ptr == NULL)
3674 intel_miptree_release_map(mt, level, slice);
3675 }
3676
3677 void
3678 intel_miptree_unmap(struct brw_context *brw,
3679 struct intel_mipmap_tree *mt,
3680 unsigned int level,
3681 unsigned int slice)
3682 {
3683 struct intel_miptree_map *map = mt->level[level].slice[slice].map;
3684
3685 assert(mt->surf.samples == 1);
3686
3687 if (!map)
3688 return;
3689
3690 DBG("%s: mt %p (%s) level %d slice %d\n", __func__,
3691 mt, _mesa_get_format_name(mt->format), level, slice);
3692
3693 if (map->unmap)
3694 map->unmap(brw, mt, map, level, slice);
3695
3696 intel_miptree_release_map(mt, level, slice);
3697 }
3698
3699 enum isl_surf_dim
3700 get_isl_surf_dim(GLenum target)
3701 {
3702 switch (target) {
3703 case GL_TEXTURE_1D:
3704 case GL_TEXTURE_1D_ARRAY:
3705 return ISL_SURF_DIM_1D;
3706
3707 case GL_TEXTURE_2D:
3708 case GL_TEXTURE_2D_ARRAY:
3709 case GL_TEXTURE_RECTANGLE:
3710 case GL_TEXTURE_CUBE_MAP:
3711 case GL_TEXTURE_CUBE_MAP_ARRAY:
3712 case GL_TEXTURE_2D_MULTISAMPLE:
3713 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
3714 case GL_TEXTURE_EXTERNAL_OES:
3715 return ISL_SURF_DIM_2D;
3716
3717 case GL_TEXTURE_3D:
3718 return ISL_SURF_DIM_3D;
3719 }
3720
3721 unreachable("Invalid texture target");
3722 }
3723
3724 enum isl_dim_layout
3725 get_isl_dim_layout(const struct gen_device_info *devinfo,
3726 enum isl_tiling tiling, GLenum target)
3727 {
3728 switch (target) {
3729 case GL_TEXTURE_1D:
3730 case GL_TEXTURE_1D_ARRAY:
3731 return (devinfo->gen >= 9 && tiling == ISL_TILING_LINEAR ?
3732 ISL_DIM_LAYOUT_GEN9_1D : ISL_DIM_LAYOUT_GEN4_2D);
3733
3734 case GL_TEXTURE_2D:
3735 case GL_TEXTURE_2D_ARRAY:
3736 case GL_TEXTURE_RECTANGLE:
3737 case GL_TEXTURE_2D_MULTISAMPLE:
3738 case GL_TEXTURE_2D_MULTISAMPLE_ARRAY:
3739 case GL_TEXTURE_EXTERNAL_OES:
3740 return ISL_DIM_LAYOUT_GEN4_2D;
3741
3742 case GL_TEXTURE_CUBE_MAP:
3743 case GL_TEXTURE_CUBE_MAP_ARRAY:
3744 return (devinfo->gen == 4 ? ISL_DIM_LAYOUT_GEN4_3D :
3745 ISL_DIM_LAYOUT_GEN4_2D);
3746
3747 case GL_TEXTURE_3D:
3748 return (devinfo->gen >= 9 ?
3749 ISL_DIM_LAYOUT_GEN4_2D : ISL_DIM_LAYOUT_GEN4_3D);
3750 }
3751
3752 unreachable("Invalid texture target");
3753 }
3754
3755 bool
3756 intel_miptree_set_clear_color(struct brw_context *brw,
3757 struct intel_mipmap_tree *mt,
3758 union isl_color_value clear_color)
3759 {
3760 if (memcmp(&mt->fast_clear_color, &clear_color, sizeof(clear_color)) != 0) {
3761 mt->fast_clear_color = clear_color;
3762 if (mt->aux_buf->clear_color_bo) {
3763 /* We can't update the clear color while the hardware is still using
3764 * the previous one for a resolve or sampling from it. Make sure that
3765 * there are no pending commands at this point.
3766 */
3767 brw_emit_pipe_control_flush(brw, PIPE_CONTROL_CS_STALL);
3768 for (int i = 0; i < 4; i++) {
3769 brw_store_data_imm32(brw, mt->aux_buf->clear_color_bo,
3770 mt->aux_buf->clear_color_offset + i * 4,
3771 mt->fast_clear_color.u32[i]);
3772 }
3773 brw_emit_pipe_control_flush(brw, PIPE_CONTROL_STATE_CACHE_INVALIDATE);
3774 }
3775 brw->ctx.NewDriverState |= BRW_NEW_AUX_STATE;
3776 return true;
3777 }
3778 return false;
3779 }
3780
3781 union isl_color_value
3782 intel_miptree_get_clear_color(const struct gen_device_info *devinfo,
3783 const struct intel_mipmap_tree *mt,
3784 enum isl_format view_format, bool sampling,
3785 struct brw_bo **clear_color_bo,
3786 uint32_t *clear_color_offset)
3787 {
3788 assert(mt->aux_buf);
3789
3790 if (devinfo->gen == 10 && isl_format_is_srgb(view_format) && sampling) {
3791 /* The gen10 sampler doesn't gamma-correct the clear color. In this case,
3792 * we switch to using the inline clear color and do the sRGB color
3793 * conversion process defined in the OpenGL spec. The red, green, and
3794 * blue channels take part in gamma correction, while the alpha channel
3795 * is unchanged.
3796 */
3797 union isl_color_value srgb_decoded_value = mt->fast_clear_color;
3798 for (unsigned i = 0; i < 3; i++) {
3799 srgb_decoded_value.f32[i] =
3800 util_format_srgb_to_linear_float(mt->fast_clear_color.f32[i]);
3801 }
3802 *clear_color_bo = 0;
3803 *clear_color_offset = 0;
3804 return srgb_decoded_value;
3805 } else {
3806 *clear_color_bo = mt->aux_buf->clear_color_bo;
3807 *clear_color_offset = mt->aux_buf->clear_color_offset;
3808 return mt->fast_clear_color;
3809 }
3810 }