dri_util: Update internal_format to GL_RGB8 for MESA_FORMAT_B8G8R8X8_UNORM
[mesa.git] / src / mesa / main / arrayobj.c
1 /*
2 * Mesa 3-D graphics library
3 *
4 * Copyright (C) 1999-2008 Brian Paul All Rights Reserved.
5 * (C) Copyright IBM Corporation 2006
6 * Copyright (C) 2009 VMware, Inc. All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included
16 * in all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
22 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
23 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
24 * OTHER DEALINGS IN THE SOFTWARE.
25 */
26
27
28 /**
29 * \file arrayobj.c
30 *
31 * Implementation of Vertex Array Objects (VAOs), from OpenGL 3.1+ /
32 * the GL_ARB_vertex_array_object extension.
33 *
34 * \todo
35 * The code in this file borrows a lot from bufferobj.c. There's a certain
36 * amount of cruft left over from that origin that may be unnecessary.
37 *
38 * \author Ian Romanick <idr@us.ibm.com>
39 * \author Brian Paul
40 */
41
42
43 #include "glheader.h"
44 #include "hash.h"
45 #include "image.h"
46
47 #include "context.h"
48 #include "bufferobj.h"
49 #include "arrayobj.h"
50 #include "macros.h"
51 #include "mtypes.h"
52 #include "state.h"
53 #include "varray.h"
54 #include "util/bitscan.h"
55 #include "util/u_atomic.h"
56 #include "util/u_math.h"
57 #include "util/u_memory.h"
58
59
60 const GLubyte
61 _mesa_vao_attribute_map[ATTRIBUTE_MAP_MODE_MAX][VERT_ATTRIB_MAX] =
62 {
63 /* ATTRIBUTE_MAP_MODE_IDENTITY
64 *
65 * Grab vertex processing attribute VERT_ATTRIB_POS from
66 * the VAO attribute VERT_ATTRIB_POS, and grab vertex processing
67 * attribute VERT_ATTRIB_GENERIC0 from the VAO attribute
68 * VERT_ATTRIB_GENERIC0.
69 */
70 {
71 VERT_ATTRIB_POS, /* VERT_ATTRIB_POS */
72 VERT_ATTRIB_NORMAL, /* VERT_ATTRIB_NORMAL */
73 VERT_ATTRIB_COLOR0, /* VERT_ATTRIB_COLOR0 */
74 VERT_ATTRIB_COLOR1, /* VERT_ATTRIB_COLOR1 */
75 VERT_ATTRIB_FOG, /* VERT_ATTRIB_FOG */
76 VERT_ATTRIB_COLOR_INDEX, /* VERT_ATTRIB_COLOR_INDEX */
77 VERT_ATTRIB_EDGEFLAG, /* VERT_ATTRIB_EDGEFLAG */
78 VERT_ATTRIB_TEX0, /* VERT_ATTRIB_TEX0 */
79 VERT_ATTRIB_TEX1, /* VERT_ATTRIB_TEX1 */
80 VERT_ATTRIB_TEX2, /* VERT_ATTRIB_TEX2 */
81 VERT_ATTRIB_TEX3, /* VERT_ATTRIB_TEX3 */
82 VERT_ATTRIB_TEX4, /* VERT_ATTRIB_TEX4 */
83 VERT_ATTRIB_TEX5, /* VERT_ATTRIB_TEX5 */
84 VERT_ATTRIB_TEX6, /* VERT_ATTRIB_TEX6 */
85 VERT_ATTRIB_TEX7, /* VERT_ATTRIB_TEX7 */
86 VERT_ATTRIB_POINT_SIZE, /* VERT_ATTRIB_POINT_SIZE */
87 VERT_ATTRIB_GENERIC0, /* VERT_ATTRIB_GENERIC0 */
88 VERT_ATTRIB_GENERIC1, /* VERT_ATTRIB_GENERIC1 */
89 VERT_ATTRIB_GENERIC2, /* VERT_ATTRIB_GENERIC2 */
90 VERT_ATTRIB_GENERIC3, /* VERT_ATTRIB_GENERIC3 */
91 VERT_ATTRIB_GENERIC4, /* VERT_ATTRIB_GENERIC4 */
92 VERT_ATTRIB_GENERIC5, /* VERT_ATTRIB_GENERIC5 */
93 VERT_ATTRIB_GENERIC6, /* VERT_ATTRIB_GENERIC6 */
94 VERT_ATTRIB_GENERIC7, /* VERT_ATTRIB_GENERIC7 */
95 VERT_ATTRIB_GENERIC8, /* VERT_ATTRIB_GENERIC8 */
96 VERT_ATTRIB_GENERIC9, /* VERT_ATTRIB_GENERIC9 */
97 VERT_ATTRIB_GENERIC10, /* VERT_ATTRIB_GENERIC10 */
98 VERT_ATTRIB_GENERIC11, /* VERT_ATTRIB_GENERIC11 */
99 VERT_ATTRIB_GENERIC12, /* VERT_ATTRIB_GENERIC12 */
100 VERT_ATTRIB_GENERIC13, /* VERT_ATTRIB_GENERIC13 */
101 VERT_ATTRIB_GENERIC14, /* VERT_ATTRIB_GENERIC14 */
102 VERT_ATTRIB_GENERIC15 /* VERT_ATTRIB_GENERIC15 */
103 },
104
105 /* ATTRIBUTE_MAP_MODE_POSITION
106 *
107 * Grab vertex processing attribute VERT_ATTRIB_POS as well as
108 * vertex processing attribute VERT_ATTRIB_GENERIC0 from the
109 * VAO attribute VERT_ATTRIB_POS.
110 */
111 {
112 VERT_ATTRIB_POS, /* VERT_ATTRIB_POS */
113 VERT_ATTRIB_NORMAL, /* VERT_ATTRIB_NORMAL */
114 VERT_ATTRIB_COLOR0, /* VERT_ATTRIB_COLOR0 */
115 VERT_ATTRIB_COLOR1, /* VERT_ATTRIB_COLOR1 */
116 VERT_ATTRIB_FOG, /* VERT_ATTRIB_FOG */
117 VERT_ATTRIB_COLOR_INDEX, /* VERT_ATTRIB_COLOR_INDEX */
118 VERT_ATTRIB_EDGEFLAG, /* VERT_ATTRIB_EDGEFLAG */
119 VERT_ATTRIB_TEX0, /* VERT_ATTRIB_TEX0 */
120 VERT_ATTRIB_TEX1, /* VERT_ATTRIB_TEX1 */
121 VERT_ATTRIB_TEX2, /* VERT_ATTRIB_TEX2 */
122 VERT_ATTRIB_TEX3, /* VERT_ATTRIB_TEX3 */
123 VERT_ATTRIB_TEX4, /* VERT_ATTRIB_TEX4 */
124 VERT_ATTRIB_TEX5, /* VERT_ATTRIB_TEX5 */
125 VERT_ATTRIB_TEX6, /* VERT_ATTRIB_TEX6 */
126 VERT_ATTRIB_TEX7, /* VERT_ATTRIB_TEX7 */
127 VERT_ATTRIB_POINT_SIZE, /* VERT_ATTRIB_POINT_SIZE */
128 VERT_ATTRIB_POS, /* VERT_ATTRIB_GENERIC0 */
129 VERT_ATTRIB_GENERIC1, /* VERT_ATTRIB_GENERIC1 */
130 VERT_ATTRIB_GENERIC2, /* VERT_ATTRIB_GENERIC2 */
131 VERT_ATTRIB_GENERIC3, /* VERT_ATTRIB_GENERIC3 */
132 VERT_ATTRIB_GENERIC4, /* VERT_ATTRIB_GENERIC4 */
133 VERT_ATTRIB_GENERIC5, /* VERT_ATTRIB_GENERIC5 */
134 VERT_ATTRIB_GENERIC6, /* VERT_ATTRIB_GENERIC6 */
135 VERT_ATTRIB_GENERIC7, /* VERT_ATTRIB_GENERIC7 */
136 VERT_ATTRIB_GENERIC8, /* VERT_ATTRIB_GENERIC8 */
137 VERT_ATTRIB_GENERIC9, /* VERT_ATTRIB_GENERIC9 */
138 VERT_ATTRIB_GENERIC10, /* VERT_ATTRIB_GENERIC10 */
139 VERT_ATTRIB_GENERIC11, /* VERT_ATTRIB_GENERIC11 */
140 VERT_ATTRIB_GENERIC12, /* VERT_ATTRIB_GENERIC12 */
141 VERT_ATTRIB_GENERIC13, /* VERT_ATTRIB_GENERIC13 */
142 VERT_ATTRIB_GENERIC14, /* VERT_ATTRIB_GENERIC14 */
143 VERT_ATTRIB_GENERIC15 /* VERT_ATTRIB_GENERIC15 */
144 },
145
146 /* ATTRIBUTE_MAP_MODE_GENERIC0
147 *
148 * Grab vertex processing attribute VERT_ATTRIB_POS as well as
149 * vertex processing attribute VERT_ATTRIB_GENERIC0 from the
150 * VAO attribute VERT_ATTRIB_GENERIC0.
151 */
152 {
153 VERT_ATTRIB_GENERIC0, /* VERT_ATTRIB_POS */
154 VERT_ATTRIB_NORMAL, /* VERT_ATTRIB_NORMAL */
155 VERT_ATTRIB_COLOR0, /* VERT_ATTRIB_COLOR0 */
156 VERT_ATTRIB_COLOR1, /* VERT_ATTRIB_COLOR1 */
157 VERT_ATTRIB_FOG, /* VERT_ATTRIB_FOG */
158 VERT_ATTRIB_COLOR_INDEX, /* VERT_ATTRIB_COLOR_INDEX */
159 VERT_ATTRIB_EDGEFLAG, /* VERT_ATTRIB_EDGEFLAG */
160 VERT_ATTRIB_TEX0, /* VERT_ATTRIB_TEX0 */
161 VERT_ATTRIB_TEX1, /* VERT_ATTRIB_TEX1 */
162 VERT_ATTRIB_TEX2, /* VERT_ATTRIB_TEX2 */
163 VERT_ATTRIB_TEX3, /* VERT_ATTRIB_TEX3 */
164 VERT_ATTRIB_TEX4, /* VERT_ATTRIB_TEX4 */
165 VERT_ATTRIB_TEX5, /* VERT_ATTRIB_TEX5 */
166 VERT_ATTRIB_TEX6, /* VERT_ATTRIB_TEX6 */
167 VERT_ATTRIB_TEX7, /* VERT_ATTRIB_TEX7 */
168 VERT_ATTRIB_POINT_SIZE, /* VERT_ATTRIB_POINT_SIZE */
169 VERT_ATTRIB_GENERIC0, /* VERT_ATTRIB_GENERIC0 */
170 VERT_ATTRIB_GENERIC1, /* VERT_ATTRIB_GENERIC1 */
171 VERT_ATTRIB_GENERIC2, /* VERT_ATTRIB_GENERIC2 */
172 VERT_ATTRIB_GENERIC3, /* VERT_ATTRIB_GENERIC3 */
173 VERT_ATTRIB_GENERIC4, /* VERT_ATTRIB_GENERIC4 */
174 VERT_ATTRIB_GENERIC5, /* VERT_ATTRIB_GENERIC5 */
175 VERT_ATTRIB_GENERIC6, /* VERT_ATTRIB_GENERIC6 */
176 VERT_ATTRIB_GENERIC7, /* VERT_ATTRIB_GENERIC7 */
177 VERT_ATTRIB_GENERIC8, /* VERT_ATTRIB_GENERIC8 */
178 VERT_ATTRIB_GENERIC9, /* VERT_ATTRIB_GENERIC9 */
179 VERT_ATTRIB_GENERIC10, /* VERT_ATTRIB_GENERIC10 */
180 VERT_ATTRIB_GENERIC11, /* VERT_ATTRIB_GENERIC11 */
181 VERT_ATTRIB_GENERIC12, /* VERT_ATTRIB_GENERIC12 */
182 VERT_ATTRIB_GENERIC13, /* VERT_ATTRIB_GENERIC13 */
183 VERT_ATTRIB_GENERIC14, /* VERT_ATTRIB_GENERIC14 */
184 VERT_ATTRIB_GENERIC15 /* VERT_ATTRIB_GENERIC15 */
185 }
186 };
187
188
189 /**
190 * Look up the array object for the given ID.
191 *
192 * \returns
193 * Either a pointer to the array object with the specified ID or \c NULL for
194 * a non-existent ID. The spec defines ID 0 as being technically
195 * non-existent.
196 */
197
198 struct gl_vertex_array_object *
199 _mesa_lookup_vao(struct gl_context *ctx, GLuint id)
200 {
201 /* The ARB_direct_state_access specification says:
202 *
203 * "<vaobj> is [compatibility profile:
204 * zero, indicating the default vertex array object, or]
205 * the name of the vertex array object."
206 */
207 if (id == 0) {
208 if (ctx->API == API_OPENGL_COMPAT)
209 return ctx->Array.DefaultVAO;
210
211 return NULL;
212 } else {
213 struct gl_vertex_array_object *vao;
214
215 if (ctx->Array.LastLookedUpVAO &&
216 ctx->Array.LastLookedUpVAO->Name == id) {
217 vao = ctx->Array.LastLookedUpVAO;
218 } else {
219 vao = (struct gl_vertex_array_object *)
220 _mesa_HashLookupLocked(ctx->Array.Objects, id);
221
222 _mesa_reference_vao(ctx, &ctx->Array.LastLookedUpVAO, vao);
223 }
224
225 return vao;
226 }
227 }
228
229
230 /**
231 * Looks up the array object for the given ID.
232 *
233 * While _mesa_lookup_vao doesn't generate an error if the object does not
234 * exist, this function comes in two variants.
235 * If is_ext_dsa is false, this function generates a GL_INVALID_OPERATION
236 * error if the array object does not exist. It also returns the default
237 * array object when ctx is a compatibility profile context and id is zero.
238 * If is_ext_dsa is true, 0 is not a valid name. If the name exists but
239 * the object has never been bound, it is initialized.
240 */
241 struct gl_vertex_array_object *
242 _mesa_lookup_vao_err(struct gl_context *ctx, GLuint id,
243 bool is_ext_dsa, const char *caller)
244 {
245 /* The ARB_direct_state_access specification says:
246 *
247 * "<vaobj> is [compatibility profile:
248 * zero, indicating the default vertex array object, or]
249 * the name of the vertex array object."
250 */
251 if (id == 0) {
252 if (is_ext_dsa || ctx->API == API_OPENGL_CORE) {
253 _mesa_error(ctx, GL_INVALID_OPERATION,
254 "%s(zero is not valid vaobj name%s)",
255 caller,
256 is_ext_dsa ? "" : " in a core profile context");
257 return NULL;
258 }
259
260 return ctx->Array.DefaultVAO;
261 } else {
262 struct gl_vertex_array_object *vao;
263
264 if (ctx->Array.LastLookedUpVAO &&
265 ctx->Array.LastLookedUpVAO->Name == id) {
266 vao = ctx->Array.LastLookedUpVAO;
267 } else {
268 vao = (struct gl_vertex_array_object *)
269 _mesa_HashLookupLocked(ctx->Array.Objects, id);
270
271 /* The ARB_direct_state_access specification says:
272 *
273 * "An INVALID_OPERATION error is generated if <vaobj> is not
274 * [compatibility profile: zero or] the name of an existing
275 * vertex array object."
276 */
277 if (!vao || (!is_ext_dsa && !vao->EverBound)) {
278 _mesa_error(ctx, GL_INVALID_OPERATION,
279 "%s(non-existent vaobj=%u)", caller, id);
280 return NULL;
281 }
282
283 /* The EXT_direct_state_access specification says:
284 *
285 * "If the vertex array object named by the vaobj parameter has not
286 * been previously bound but has been generated (without subsequent
287 * deletion) by GenVertexArrays, the GL first creates a new state
288 * vector in the same manner as when BindVertexArray creates a new
289 * vertex array object."
290 */
291 if (vao && is_ext_dsa && !vao->EverBound)
292 vao->EverBound = true;
293
294 _mesa_reference_vao(ctx, &ctx->Array.LastLookedUpVAO, vao);
295 }
296
297 return vao;
298 }
299 }
300
301
302 /**
303 * For all the vertex binding points in the array object, unbind any pointers
304 * to any buffer objects (VBOs).
305 * This is done just prior to array object destruction.
306 */
307 void
308 _mesa_unbind_array_object_vbos(struct gl_context *ctx,
309 struct gl_vertex_array_object *obj)
310 {
311 GLuint i;
312
313 for (i = 0; i < ARRAY_SIZE(obj->BufferBinding); i++)
314 _mesa_reference_buffer_object(ctx, &obj->BufferBinding[i].BufferObj, NULL);
315 }
316
317
318 /**
319 * Allocate and initialize a new vertex array object.
320 */
321 struct gl_vertex_array_object *
322 _mesa_new_vao(struct gl_context *ctx, GLuint name)
323 {
324 struct gl_vertex_array_object *obj = MALLOC_STRUCT(gl_vertex_array_object);
325 if (obj)
326 _mesa_initialize_vao(ctx, obj, name);
327 return obj;
328 }
329
330
331 /**
332 * Delete an array object.
333 */
334 void
335 _mesa_delete_vao(struct gl_context *ctx, struct gl_vertex_array_object *obj)
336 {
337 _mesa_unbind_array_object_vbos(ctx, obj);
338 _mesa_reference_buffer_object(ctx, &obj->IndexBufferObj, NULL);
339 free(obj->Label);
340 free(obj);
341 }
342
343
344 /**
345 * Set ptr to vao w/ reference counting.
346 * Note: this should only be called from the _mesa_reference_vao()
347 * inline function.
348 */
349 void
350 _mesa_reference_vao_(struct gl_context *ctx,
351 struct gl_vertex_array_object **ptr,
352 struct gl_vertex_array_object *vao)
353 {
354 assert(*ptr != vao);
355
356 if (*ptr) {
357 /* Unreference the old array object */
358 struct gl_vertex_array_object *oldObj = *ptr;
359
360 bool deleteFlag;
361 if (oldObj->SharedAndImmutable) {
362 deleteFlag = p_atomic_dec_zero(&oldObj->RefCount);
363 } else {
364 assert(oldObj->RefCount > 0);
365 oldObj->RefCount--;
366 deleteFlag = (oldObj->RefCount == 0);
367 }
368
369 if (deleteFlag)
370 _mesa_delete_vao(ctx, oldObj);
371
372 *ptr = NULL;
373 }
374 assert(!*ptr);
375
376 if (vao) {
377 /* reference new array object */
378 if (vao->SharedAndImmutable) {
379 p_atomic_inc(&vao->RefCount);
380 } else {
381 assert(vao->RefCount > 0);
382 vao->RefCount++;
383 }
384
385 *ptr = vao;
386 }
387 }
388
389
390 /**
391 * Initialize a gl_vertex_array_object's arrays.
392 */
393 void
394 _mesa_initialize_vao(struct gl_context *ctx,
395 struct gl_vertex_array_object *vao,
396 GLuint name)
397 {
398 memcpy(vao, &ctx->Array.DefaultVAOState, sizeof(*vao));
399 vao->Name = name;
400 }
401
402
403 /**
404 * Compute the offset range for the provided binding.
405 *
406 * This is a helper function for the below.
407 */
408 static void
409 compute_vbo_offset_range(const struct gl_vertex_array_object *vao,
410 const struct gl_vertex_buffer_binding *binding,
411 GLsizeiptr* min, GLsizeiptr* max)
412 {
413 /* The function is meant to work on VBO bindings */
414 assert(binding->BufferObj);
415
416 /* Start with an inverted range of relative offsets. */
417 GLuint min_offset = ~(GLuint)0;
418 GLuint max_offset = 0;
419
420 /* We work on the unmapped originaly VAO array entries. */
421 GLbitfield mask = vao->Enabled & binding->_BoundArrays;
422 /* The binding should be active somehow, not to return inverted ranges */
423 assert(mask);
424 while (mask) {
425 const int i = u_bit_scan(&mask);
426 const GLuint off = vao->VertexAttrib[i].RelativeOffset;
427 min_offset = MIN2(off, min_offset);
428 max_offset = MAX2(off, max_offset);
429 }
430
431 *min = binding->Offset + (GLsizeiptr)min_offset;
432 *max = binding->Offset + (GLsizeiptr)max_offset;
433 }
434
435
436 /**
437 * Update the unique binding and pos/generic0 map tracking in the vao.
438 *
439 * The idea is to build up information in the vao so that a consuming
440 * backend can execute the following to set up buffer and vertex element
441 * information:
442 *
443 * const GLbitfield inputs_read = VERT_BIT_ALL; // backend vp inputs
444 *
445 * // Attribute data is in a VBO.
446 * GLbitfield vbomask = inputs_read & _mesa_draw_vbo_array_bits(ctx);
447 * while (vbomask) {
448 * // The attribute index to start pulling a binding
449 * const gl_vert_attrib i = ffs(vbomask) - 1;
450 * const struct gl_vertex_buffer_binding *const binding
451 * = _mesa_draw_buffer_binding(vao, i);
452 *
453 * <insert code to handle the vertex buffer object at binding>
454 *
455 * const GLbitfield boundmask = _mesa_draw_bound_attrib_bits(binding);
456 * GLbitfield attrmask = vbomask & boundmask;
457 * assert(attrmask);
458 * // Walk attributes belonging to the binding
459 * while (attrmask) {
460 * const gl_vert_attrib attr = u_bit_scan(&attrmask);
461 * const struct gl_array_attributes *const attrib
462 * = _mesa_draw_array_attrib(vao, attr);
463 *
464 * <insert code to handle the vertex element refering to the binding>
465 * }
466 * vbomask &= ~boundmask;
467 * }
468 *
469 * // Process user space buffers
470 * GLbitfield usermask = inputs_read & _mesa_draw_user_array_bits(ctx);
471 * while (usermask) {
472 * // The attribute index to start pulling a binding
473 * const gl_vert_attrib i = ffs(usermask) - 1;
474 * const struct gl_vertex_buffer_binding *const binding
475 * = _mesa_draw_buffer_binding(vao, i);
476 *
477 * <insert code to handle a set of interleaved user space arrays at binding>
478 *
479 * const GLbitfield boundmask = _mesa_draw_bound_attrib_bits(binding);
480 * GLbitfield attrmask = usermask & boundmask;
481 * assert(attrmask);
482 * // Walk interleaved attributes with a common stride and instance divisor
483 * while (attrmask) {
484 * const gl_vert_attrib attr = u_bit_scan(&attrmask);
485 * const struct gl_array_attributes *const attrib
486 * = _mesa_draw_array_attrib(vao, attr);
487 *
488 * <insert code to handle non vbo vertex arrays>
489 * }
490 * usermask &= ~boundmask;
491 * }
492 *
493 * // Process values that should have better been uniforms in the application
494 * GLbitfield curmask = inputs_read & _mesa_draw_current_bits(ctx);
495 * while (curmask) {
496 * const gl_vert_attrib attr = u_bit_scan(&curmask);
497 * const struct gl_array_attributes *const attrib
498 * = _mesa_draw_current_attrib(ctx, attr);
499 *
500 * <insert code to handle current values>
501 * }
502 *
503 *
504 * Note that the scan below must not incoporate any context state.
505 * The rationale is that once a VAO is finalized it should not
506 * be touched anymore. That means, do not incorporate the
507 * gl_context::Array._DrawVAOEnabledAttribs bitmask into this scan.
508 * A backend driver may further reduce the handled vertex processing
509 * inputs based on their vertex shader inputs. But scanning for
510 * collapsable binding points to reduce relocs is done based on the
511 * enabled arrays.
512 * Also VAOs may be shared between contexts due to their use in dlists
513 * thus no context state should bleed into the VAO.
514 */
515 void
516 _mesa_update_vao_derived_arrays(struct gl_context *ctx,
517 struct gl_vertex_array_object *vao)
518 {
519 /* Make sure we do not run into problems with shared objects */
520 assert(!vao->SharedAndImmutable || vao->NewArrays == 0);
521
522 /* Limit used for common binding scanning below. */
523 const GLsizeiptr MaxRelativeOffset =
524 ctx->Const.MaxVertexAttribRelativeOffset;
525
526 /* The gl_vertex_array_object::_AttributeMapMode denotes the way
527 * VERT_ATTRIB_{POS,GENERIC0} mapping is done.
528 *
529 * This mapping is used to map between the OpenGL api visible
530 * VERT_ATTRIB_* arrays to mesa driver arrayinputs or shader inputs.
531 * The mapping only depends on the enabled bits of the
532 * VERT_ATTRIB_{POS,GENERIC0} arrays and is tracked in the VAO.
533 *
534 * This map needs to be applied when finally translating to the bitmasks
535 * as consumed by the driver backends. The duplicate scanning is here
536 * can as well be done in the OpenGL API numbering without this map.
537 */
538 const gl_attribute_map_mode mode = vao->_AttributeMapMode;
539 /* Enabled array bits. */
540 const GLbitfield enabled = vao->Enabled;
541 /* VBO array bits. */
542 const GLbitfield vbos = vao->VertexAttribBufferMask;
543 const GLbitfield divisor_is_nonzero = vao->NonZeroDivisorMask;
544
545 /* Compute and store effectively enabled and mapped vbo arrays */
546 vao->_EffEnabledVBO = _mesa_vao_enable_to_vp_inputs(mode, enabled & vbos);
547 vao->_EffEnabledNonZeroDivisor =
548 _mesa_vao_enable_to_vp_inputs(mode, enabled & divisor_is_nonzero);
549
550 /* Fast path when the VAO is updated too often. */
551 if (vao->IsDynamic)
552 return;
553
554 /* More than 4 updates turn the VAO to dynamic. */
555 if (ctx->Const.AllowDynamicVAOFastPath && ++vao->NumUpdates > 4) {
556 vao->IsDynamic = true;
557 return;
558 }
559
560 /* Walk those enabled arrays that have a real vbo attached */
561 GLbitfield mask = enabled;
562 while (mask) {
563 /* Do not use u_bit_scan as we can walk multiple attrib arrays at once */
564 const int i = ffs(mask) - 1;
565 /* The binding from the first to be processed attribute. */
566 const GLuint bindex = vao->VertexAttrib[i].BufferBindingIndex;
567 struct gl_vertex_buffer_binding *binding = &vao->BufferBinding[bindex];
568
569 /* The scan goes different for user space arrays than vbos */
570 if (binding->BufferObj) {
571 /* The bound arrays. */
572 const GLbitfield bound = enabled & binding->_BoundArrays;
573
574 /* Start this current effective binding with the actual bound arrays */
575 GLbitfield eff_bound_arrays = bound;
576
577 /*
578 * If there is nothing left to scan just update the effective binding
579 * information. If the VAO is already only using a single binding point
580 * we end up here. So the overhead of this scan for an application
581 * carefully preparing the VAO for draw is low.
582 */
583
584 GLbitfield scanmask = mask & vbos & ~bound;
585 /* Is there something left to scan? */
586 if (scanmask == 0) {
587 /* Just update the back reference from the attrib to the binding and
588 * the effective offset.
589 */
590 GLbitfield attrmask = eff_bound_arrays;
591 while (attrmask) {
592 const int j = u_bit_scan(&attrmask);
593 struct gl_array_attributes *attrib2 = &vao->VertexAttrib[j];
594
595 /* Update the index into the common binding point and offset */
596 attrib2->_EffBufferBindingIndex = bindex;
597 attrib2->_EffRelativeOffset = attrib2->RelativeOffset;
598 assert(attrib2->_EffRelativeOffset <= MaxRelativeOffset);
599 }
600 /* Finally this is the set of effectively bound arrays with the
601 * original binding offset.
602 */
603 binding->_EffOffset = binding->Offset;
604 /* The bound arrays past the VERT_ATTRIB_{POS,GENERIC0} mapping. */
605 binding->_EffBoundArrays =
606 _mesa_vao_enable_to_vp_inputs(mode, eff_bound_arrays);
607
608 } else {
609 /* In the VBO case, scan for attribute/binding
610 * combinations with relative bindings in the range of
611 * [0, ctx->Const.MaxVertexAttribRelativeOffset].
612 * Note that this does also go beyond just interleaved arrays
613 * as long as they use the same VBO, binding parameters and the
614 * offsets stay within bounds that the backend still can handle.
615 */
616
617 GLsizeiptr min_offset, max_offset;
618 compute_vbo_offset_range(vao, binding, &min_offset, &max_offset);
619 assert(max_offset <= min_offset + MaxRelativeOffset);
620
621 /* Now scan. */
622 while (scanmask) {
623 /* Do not use u_bit_scan as we can walk multiple
624 * attrib arrays at once
625 */
626 const int j = ffs(scanmask) - 1;
627 const struct gl_array_attributes *attrib2 =
628 &vao->VertexAttrib[j];
629 const struct gl_vertex_buffer_binding *binding2 =
630 &vao->BufferBinding[attrib2->BufferBindingIndex];
631
632 /* Remove those attrib bits from the mask that are bound to the
633 * same effective binding point.
634 */
635 const GLbitfield bound2 = enabled & binding2->_BoundArrays;
636 scanmask &= ~bound2;
637
638 /* Check if we have an identical binding */
639 if (binding->Stride != binding2->Stride)
640 continue;
641 if (binding->InstanceDivisor != binding2->InstanceDivisor)
642 continue;
643 if (binding->BufferObj != binding2->BufferObj)
644 continue;
645 /* Check if we can fold both bindings into a common binding */
646 GLsizeiptr min_offset2, max_offset2;
647 compute_vbo_offset_range(vao, binding2,
648 &min_offset2, &max_offset2);
649 /* If the relative offset is within the limits ... */
650 if (min_offset + MaxRelativeOffset < max_offset2)
651 continue;
652 if (min_offset2 + MaxRelativeOffset < max_offset)
653 continue;
654 /* ... add this array to the effective binding */
655 eff_bound_arrays |= bound2;
656 min_offset = MIN2(min_offset, min_offset2);
657 max_offset = MAX2(max_offset, max_offset2);
658 assert(max_offset <= min_offset + MaxRelativeOffset);
659 }
660
661 /* Update the back reference from the attrib to the binding */
662 GLbitfield attrmask = eff_bound_arrays;
663 while (attrmask) {
664 const int j = u_bit_scan(&attrmask);
665 struct gl_array_attributes *attrib2 = &vao->VertexAttrib[j];
666 const struct gl_vertex_buffer_binding *binding2 =
667 &vao->BufferBinding[attrib2->BufferBindingIndex];
668
669 /* Update the index into the common binding point and offset */
670 attrib2->_EffBufferBindingIndex = bindex;
671 attrib2->_EffRelativeOffset =
672 binding2->Offset + attrib2->RelativeOffset - min_offset;
673 assert(attrib2->_EffRelativeOffset <= MaxRelativeOffset);
674 }
675 /* Finally this is the set of effectively bound arrays */
676 binding->_EffOffset = min_offset;
677 /* The bound arrays past the VERT_ATTRIB_{POS,GENERIC0} mapping. */
678 binding->_EffBoundArrays =
679 _mesa_vao_enable_to_vp_inputs(mode, eff_bound_arrays);
680 }
681
682 /* Mark all the effective bound arrays as processed. */
683 mask &= ~eff_bound_arrays;
684
685 } else {
686 /* Scanning of common bindings for user space arrays.
687 */
688
689 const struct gl_array_attributes *attrib = &vao->VertexAttrib[i];
690 const GLbitfield bound = VERT_BIT(i);
691
692 /* Note that user space array pointers can only happen using a one
693 * to one binding point to array mapping.
694 * The OpenGL 4.x/ARB_vertex_attrib_binding api does not support
695 * user space arrays collected at multiple binding points.
696 * The only provider of user space interleaved arrays with a single
697 * binding point is the mesa internal vbo module. But that one
698 * provides a perfect interleaved set of arrays.
699 *
700 * If this would not be true we would potentially get attribute arrays
701 * with user space pointers that may not lie within the
702 * MaxRelativeOffset range but still attached to a single binding.
703 * Then we would need to store the effective attribute and binding
704 * grouping information in a seperate array beside
705 * gl_array_attributes/gl_vertex_buffer_binding.
706 */
707 assert(util_bitcount(binding->_BoundArrays & vao->Enabled) == 1
708 || (vao->Enabled & ~binding->_BoundArrays) == 0);
709
710 /* Start this current effective binding with the array */
711 GLbitfield eff_bound_arrays = bound;
712
713 const GLubyte *ptr = attrib->Ptr;
714 unsigned vertex_end = attrib->Format._ElementSize;
715
716 /* Walk other user space arrays and see which are interleaved
717 * using the same binding parameters.
718 */
719 GLbitfield scanmask = mask & ~vbos & ~bound;
720 while (scanmask) {
721 const int j = u_bit_scan(&scanmask);
722 const struct gl_array_attributes *attrib2 = &vao->VertexAttrib[j];
723 const struct gl_vertex_buffer_binding *binding2 =
724 &vao->BufferBinding[attrib2->BufferBindingIndex];
725
726 /* See the comment at the same assert above. */
727 assert(util_bitcount(binding2->_BoundArrays & vao->Enabled) == 1
728 || (vao->Enabled & ~binding->_BoundArrays) == 0);
729
730 /* Check if we have an identical binding */
731 if (binding->Stride != binding2->Stride)
732 continue;
733 if (binding->InstanceDivisor != binding2->InstanceDivisor)
734 continue;
735 if (ptr <= attrib2->Ptr) {
736 if (ptr + binding->Stride < attrib2->Ptr +
737 attrib2->Format._ElementSize)
738 continue;
739 unsigned end = attrib2->Ptr + attrib2->Format._ElementSize - ptr;
740 vertex_end = MAX2(vertex_end, end);
741 } else {
742 if (attrib2->Ptr + binding->Stride < ptr + vertex_end)
743 continue;
744 vertex_end += (GLsizei)(ptr - attrib2->Ptr);
745 ptr = attrib2->Ptr;
746 }
747
748 /* User space buffer object */
749 assert(!binding2->BufferObj);
750
751 eff_bound_arrays |= VERT_BIT(j);
752 }
753
754 /* Update the back reference from the attrib to the binding */
755 GLbitfield attrmask = eff_bound_arrays;
756 while (attrmask) {
757 const int j = u_bit_scan(&attrmask);
758 struct gl_array_attributes *attrib2 = &vao->VertexAttrib[j];
759
760 /* Update the index into the common binding point and the offset */
761 attrib2->_EffBufferBindingIndex = bindex;
762 attrib2->_EffRelativeOffset = attrib2->Ptr - ptr;
763 assert(attrib2->_EffRelativeOffset <= binding->Stride);
764 }
765 /* Finally this is the set of effectively bound arrays */
766 binding->_EffOffset = (GLintptr)ptr;
767 /* The bound arrays past the VERT_ATTRIB_{POS,GENERIC0} mapping. */
768 binding->_EffBoundArrays =
769 _mesa_vao_enable_to_vp_inputs(mode, eff_bound_arrays);
770
771 /* Mark all the effective bound arrays as processed. */
772 mask &= ~eff_bound_arrays;
773 }
774 }
775
776 #ifndef NDEBUG
777 /* Make sure the above code works as expected. */
778 for (gl_vert_attrib attr = 0; attr < VERT_ATTRIB_MAX; ++attr) {
779 /* Query the original api defined attrib/binding information ... */
780 const unsigned char *const map =_mesa_vao_attribute_map[mode];
781 if (vao->Enabled & VERT_BIT(map[attr])) {
782 const struct gl_array_attributes *attrib =
783 &vao->VertexAttrib[map[attr]];
784 const struct gl_vertex_buffer_binding *binding =
785 &vao->BufferBinding[attrib->BufferBindingIndex];
786 /* ... and compare that with the computed attrib/binding */
787 const struct gl_vertex_buffer_binding *binding2 =
788 &vao->BufferBinding[attrib->_EffBufferBindingIndex];
789 assert(binding->Stride == binding2->Stride);
790 assert(binding->InstanceDivisor == binding2->InstanceDivisor);
791 assert(binding->BufferObj == binding2->BufferObj);
792 if (binding->BufferObj) {
793 assert(attrib->_EffRelativeOffset <= MaxRelativeOffset);
794 assert(binding->Offset + attrib->RelativeOffset ==
795 binding2->_EffOffset + attrib->_EffRelativeOffset);
796 } else {
797 assert(attrib->_EffRelativeOffset < binding->Stride);
798 assert((GLintptr)attrib->Ptr ==
799 binding2->_EffOffset + attrib->_EffRelativeOffset);
800 }
801 }
802 }
803 #endif
804 }
805
806
807 void
808 _mesa_set_vao_immutable(struct gl_context *ctx,
809 struct gl_vertex_array_object *vao)
810 {
811 _mesa_update_vao_derived_arrays(ctx, vao);
812 vao->NewArrays = 0;
813 vao->SharedAndImmutable = true;
814 }
815
816
817 bool
818 _mesa_all_varyings_in_vbos(const struct gl_vertex_array_object *vao)
819 {
820 /* Walk those enabled arrays that have the default vbo attached */
821 GLbitfield mask = vao->Enabled & ~vao->VertexAttribBufferMask;
822
823 while (mask) {
824 /* Do not use u_bit_scan64 as we can walk multiple
825 * attrib arrays at once
826 */
827 const int i = ffs(mask) - 1;
828 const struct gl_array_attributes *attrib_array =
829 &vao->VertexAttrib[i];
830 const struct gl_vertex_buffer_binding *buffer_binding =
831 &vao->BufferBinding[attrib_array->BufferBindingIndex];
832
833 /* We have already masked out vao->VertexAttribBufferMask */
834 assert(!buffer_binding->BufferObj);
835
836 /* Bail out once we find the first non vbo with a non zero stride */
837 if (buffer_binding->Stride != 0)
838 return false;
839
840 /* Note that we cannot use the xor variant since the _BoundArray mask
841 * may contain array attributes that are bound but not enabled.
842 */
843 mask &= ~buffer_binding->_BoundArrays;
844 }
845
846 return true;
847 }
848
849 bool
850 _mesa_all_buffers_are_unmapped(const struct gl_vertex_array_object *vao)
851 {
852 /* Walk the enabled arrays that have a vbo attached */
853 GLbitfield mask = vao->Enabled & vao->VertexAttribBufferMask;
854
855 while (mask) {
856 const int i = ffs(mask) - 1;
857 const struct gl_array_attributes *attrib_array =
858 &vao->VertexAttrib[i];
859 const struct gl_vertex_buffer_binding *buffer_binding =
860 &vao->BufferBinding[attrib_array->BufferBindingIndex];
861
862 /* We have already masked with vao->VertexAttribBufferMask */
863 assert(buffer_binding->BufferObj);
864
865 /* Bail out once we find the first disallowed mapping */
866 if (_mesa_check_disallowed_mapping(buffer_binding->BufferObj))
867 return false;
868
869 /* We have handled everything that is bound to this buffer_binding. */
870 mask &= ~buffer_binding->_BoundArrays;
871 }
872
873 return true;
874 }
875
876
877 /**
878 * Map buffer objects used in attribute arrays.
879 */
880 void
881 _mesa_vao_map_arrays(struct gl_context *ctx, struct gl_vertex_array_object *vao,
882 GLbitfield access)
883 {
884 GLbitfield mask = vao->Enabled & vao->VertexAttribBufferMask;
885 while (mask) {
886 /* Do not use u_bit_scan as we can walk multiple attrib arrays at once */
887 const gl_vert_attrib attr = ffs(mask) - 1;
888 const GLubyte bindex = vao->VertexAttrib[attr].BufferBindingIndex;
889 struct gl_vertex_buffer_binding *binding = &vao->BufferBinding[bindex];
890 mask &= ~binding->_BoundArrays;
891
892 struct gl_buffer_object *bo = binding->BufferObj;
893 assert(bo);
894 if (_mesa_bufferobj_mapped(bo, MAP_INTERNAL))
895 continue;
896
897 ctx->Driver.MapBufferRange(ctx, 0, bo->Size, access, bo, MAP_INTERNAL);
898 }
899 }
900
901
902 /**
903 * Map buffer objects used in the vao, attribute arrays and index buffer.
904 */
905 void
906 _mesa_vao_map(struct gl_context *ctx, struct gl_vertex_array_object *vao,
907 GLbitfield access)
908 {
909 struct gl_buffer_object *bo = vao->IndexBufferObj;
910
911 /* map the index buffer, if there is one, and not already mapped */
912 if (bo && !_mesa_bufferobj_mapped(bo, MAP_INTERNAL))
913 ctx->Driver.MapBufferRange(ctx, 0, bo->Size, access, bo, MAP_INTERNAL);
914
915 _mesa_vao_map_arrays(ctx, vao, access);
916 }
917
918
919 /**
920 * Unmap buffer objects used in attribute arrays.
921 */
922 void
923 _mesa_vao_unmap_arrays(struct gl_context *ctx,
924 struct gl_vertex_array_object *vao)
925 {
926 GLbitfield mask = vao->Enabled & vao->VertexAttribBufferMask;
927 while (mask) {
928 /* Do not use u_bit_scan as we can walk multiple attrib arrays at once */
929 const gl_vert_attrib attr = ffs(mask) - 1;
930 const GLubyte bindex = vao->VertexAttrib[attr].BufferBindingIndex;
931 struct gl_vertex_buffer_binding *binding = &vao->BufferBinding[bindex];
932 mask &= ~binding->_BoundArrays;
933
934 struct gl_buffer_object *bo = binding->BufferObj;
935 assert(bo);
936 if (!_mesa_bufferobj_mapped(bo, MAP_INTERNAL))
937 continue;
938
939 ctx->Driver.UnmapBuffer(ctx, bo, MAP_INTERNAL);
940 }
941 }
942
943
944 /**
945 * Unmap buffer objects used in the vao, attribute arrays and index buffer.
946 */
947 void
948 _mesa_vao_unmap(struct gl_context *ctx, struct gl_vertex_array_object *vao)
949 {
950 struct gl_buffer_object *bo = vao->IndexBufferObj;
951
952 /* unmap the index buffer, if there is one, and still mapped */
953 if (bo && _mesa_bufferobj_mapped(bo, MAP_INTERNAL))
954 ctx->Driver.UnmapBuffer(ctx, bo, MAP_INTERNAL);
955
956 _mesa_vao_unmap_arrays(ctx, vao);
957 }
958
959
960 /**********************************************************************/
961 /* API Functions */
962 /**********************************************************************/
963
964
965 /**
966 * ARB version of glBindVertexArray()
967 */
968 static ALWAYS_INLINE void
969 bind_vertex_array(struct gl_context *ctx, GLuint id, bool no_error)
970 {
971 struct gl_vertex_array_object *const oldObj = ctx->Array.VAO;
972 struct gl_vertex_array_object *newObj = NULL;
973
974 assert(oldObj != NULL);
975
976 if (oldObj->Name == id)
977 return; /* rebinding the same array object- no change */
978
979 /*
980 * Get pointer to new array object (newObj)
981 */
982 if (id == 0) {
983 /* The spec says there is no array object named 0, but we use
984 * one internally because it simplifies things.
985 */
986 newObj = ctx->Array.DefaultVAO;
987 }
988 else {
989 /* non-default array object */
990 newObj = _mesa_lookup_vao(ctx, id);
991 if (!no_error && !newObj) {
992 _mesa_error(ctx, GL_INVALID_OPERATION,
993 "glBindVertexArray(non-gen name)");
994 return;
995 }
996
997 newObj->EverBound = GL_TRUE;
998 }
999
1000 /* The _DrawArrays pointer is pointing at the VAO being unbound and
1001 * that VAO may be in the process of being deleted. If it's not going
1002 * to be deleted, this will have no effect, because the pointer needs
1003 * to be updated by the VBO module anyway.
1004 *
1005 * Before the VBO module can update the pointer, we have to set it
1006 * to NULL for drivers not to set up arrays which are not bound,
1007 * or to prevent a crash if the VAO being unbound is going to be
1008 * deleted.
1009 */
1010 _mesa_set_draw_vao(ctx, ctx->Array._EmptyVAO, 0);
1011
1012 _mesa_reference_vao(ctx, &ctx->Array.VAO, newObj);
1013 }
1014
1015
1016 void GLAPIENTRY
1017 _mesa_BindVertexArray_no_error(GLuint id)
1018 {
1019 GET_CURRENT_CONTEXT(ctx);
1020 bind_vertex_array(ctx, id, true);
1021 }
1022
1023
1024 void GLAPIENTRY
1025 _mesa_BindVertexArray(GLuint id)
1026 {
1027 GET_CURRENT_CONTEXT(ctx);
1028 bind_vertex_array(ctx, id, false);
1029 }
1030
1031
1032 /**
1033 * Delete a set of array objects.
1034 *
1035 * \param n Number of array objects to delete.
1036 * \param ids Array of \c n array object IDs.
1037 */
1038 static void
1039 delete_vertex_arrays(struct gl_context *ctx, GLsizei n, const GLuint *ids)
1040 {
1041 GLsizei i;
1042
1043 for (i = 0; i < n; i++) {
1044 /* IDs equal to 0 should be silently ignored. */
1045 if (!ids[i])
1046 continue;
1047
1048 struct gl_vertex_array_object *obj = _mesa_lookup_vao(ctx, ids[i]);
1049
1050 if (obj) {
1051 assert(obj->Name == ids[i]);
1052
1053 /* If the array object is currently bound, the spec says "the binding
1054 * for that object reverts to zero and the default vertex array
1055 * becomes current."
1056 */
1057 if (obj == ctx->Array.VAO)
1058 _mesa_BindVertexArray_no_error(0);
1059
1060 /* The ID is immediately freed for re-use */
1061 _mesa_HashRemoveLocked(ctx->Array.Objects, obj->Name);
1062
1063 if (ctx->Array.LastLookedUpVAO == obj)
1064 _mesa_reference_vao(ctx, &ctx->Array.LastLookedUpVAO, NULL);
1065 if (ctx->Array._DrawVAO == obj)
1066 _mesa_set_draw_vao(ctx, ctx->Array._EmptyVAO, 0);
1067
1068 /* Unreference the array object.
1069 * If refcount hits zero, the object will be deleted.
1070 */
1071 _mesa_reference_vao(ctx, &obj, NULL);
1072 }
1073 }
1074 }
1075
1076
1077 void GLAPIENTRY
1078 _mesa_DeleteVertexArrays_no_error(GLsizei n, const GLuint *ids)
1079 {
1080 GET_CURRENT_CONTEXT(ctx);
1081 delete_vertex_arrays(ctx, n, ids);
1082 }
1083
1084
1085 void GLAPIENTRY
1086 _mesa_DeleteVertexArrays(GLsizei n, const GLuint *ids)
1087 {
1088 GET_CURRENT_CONTEXT(ctx);
1089
1090 if (n < 0) {
1091 _mesa_error(ctx, GL_INVALID_VALUE, "glDeleteVertexArray(n)");
1092 return;
1093 }
1094
1095 delete_vertex_arrays(ctx, n, ids);
1096 }
1097
1098
1099 /**
1100 * Generate a set of unique array object IDs and store them in \c arrays.
1101 * Helper for _mesa_GenVertexArrays() and _mesa_CreateVertexArrays()
1102 * below.
1103 *
1104 * \param n Number of IDs to generate.
1105 * \param arrays Array of \c n locations to store the IDs.
1106 * \param create Indicates that the objects should also be created.
1107 * \param func The name of the GL entry point.
1108 */
1109 static void
1110 gen_vertex_arrays(struct gl_context *ctx, GLsizei n, GLuint *arrays,
1111 bool create, const char *func)
1112 {
1113 GLuint first;
1114 GLint i;
1115
1116 if (!arrays)
1117 return;
1118
1119 first = _mesa_HashFindFreeKeyBlock(ctx->Array.Objects, n);
1120
1121 /* For the sake of simplicity we create the array objects in both
1122 * the Gen* and Create* cases. The only difference is the value of
1123 * EverBound, which is set to true in the Create* case.
1124 */
1125 for (i = 0; i < n; i++) {
1126 struct gl_vertex_array_object *obj;
1127 GLuint name = first + i;
1128
1129 obj = _mesa_new_vao(ctx, name);
1130 if (!obj) {
1131 _mesa_error(ctx, GL_OUT_OF_MEMORY, "%s", func);
1132 return;
1133 }
1134 obj->EverBound = create;
1135 _mesa_HashInsertLocked(ctx->Array.Objects, obj->Name, obj);
1136 arrays[i] = first + i;
1137 }
1138 }
1139
1140
1141 static void
1142 gen_vertex_arrays_err(struct gl_context *ctx, GLsizei n, GLuint *arrays,
1143 bool create, const char *func)
1144 {
1145 if (n < 0) {
1146 _mesa_error(ctx, GL_INVALID_VALUE, "%s(n < 0)", func);
1147 return;
1148 }
1149
1150 gen_vertex_arrays(ctx, n, arrays, create, func);
1151 }
1152
1153
1154 /**
1155 * ARB version of glGenVertexArrays()
1156 * All arrays will be required to live in VBOs.
1157 */
1158 void GLAPIENTRY
1159 _mesa_GenVertexArrays_no_error(GLsizei n, GLuint *arrays)
1160 {
1161 GET_CURRENT_CONTEXT(ctx);
1162 gen_vertex_arrays(ctx, n, arrays, false, "glGenVertexArrays");
1163 }
1164
1165
1166 void GLAPIENTRY
1167 _mesa_GenVertexArrays(GLsizei n, GLuint *arrays)
1168 {
1169 GET_CURRENT_CONTEXT(ctx);
1170 gen_vertex_arrays_err(ctx, n, arrays, false, "glGenVertexArrays");
1171 }
1172
1173
1174 /**
1175 * ARB_direct_state_access
1176 * Generates ID's and creates the array objects.
1177 */
1178 void GLAPIENTRY
1179 _mesa_CreateVertexArrays_no_error(GLsizei n, GLuint *arrays)
1180 {
1181 GET_CURRENT_CONTEXT(ctx);
1182 gen_vertex_arrays(ctx, n, arrays, true, "glCreateVertexArrays");
1183 }
1184
1185
1186 void GLAPIENTRY
1187 _mesa_CreateVertexArrays(GLsizei n, GLuint *arrays)
1188 {
1189 GET_CURRENT_CONTEXT(ctx);
1190 gen_vertex_arrays_err(ctx, n, arrays, true, "glCreateVertexArrays");
1191 }
1192
1193
1194 /**
1195 * Determine if ID is the name of an array object.
1196 *
1197 * \param id ID of the potential array object.
1198 * \return \c GL_TRUE if \c id is the name of a array object,
1199 * \c GL_FALSE otherwise.
1200 */
1201 GLboolean GLAPIENTRY
1202 _mesa_IsVertexArray( GLuint id )
1203 {
1204 struct gl_vertex_array_object * obj;
1205 GET_CURRENT_CONTEXT(ctx);
1206 ASSERT_OUTSIDE_BEGIN_END_WITH_RETVAL(ctx, GL_FALSE);
1207
1208 obj = _mesa_lookup_vao(ctx, id);
1209
1210 return obj != NULL && obj->EverBound;
1211 }
1212
1213
1214 /**
1215 * Sets the element array buffer binding of a vertex array object.
1216 *
1217 * This is the ARB_direct_state_access equivalent of
1218 * glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, buffer).
1219 */
1220 static ALWAYS_INLINE void
1221 vertex_array_element_buffer(struct gl_context *ctx, GLuint vaobj, GLuint buffer,
1222 bool no_error)
1223 {
1224 struct gl_vertex_array_object *vao;
1225 struct gl_buffer_object *bufObj;
1226
1227 ASSERT_OUTSIDE_BEGIN_END(ctx);
1228
1229 if (!no_error) {
1230 /* The GL_ARB_direct_state_access specification says:
1231 *
1232 * "An INVALID_OPERATION error is generated by
1233 * VertexArrayElementBuffer if <vaobj> is not [compatibility profile:
1234 * zero or] the name of an existing vertex array object."
1235 */
1236 vao =_mesa_lookup_vao_err(ctx, vaobj, false, "glVertexArrayElementBuffer");
1237 if (!vao)
1238 return;
1239 } else {
1240 vao = _mesa_lookup_vao(ctx, vaobj);
1241 }
1242
1243 if (buffer != 0) {
1244 if (!no_error) {
1245 /* The GL_ARB_direct_state_access specification says:
1246 *
1247 * "An INVALID_OPERATION error is generated if <buffer> is not zero
1248 * or the name of an existing buffer object."
1249 */
1250 bufObj = _mesa_lookup_bufferobj_err(ctx, buffer,
1251 "glVertexArrayElementBuffer");
1252 } else {
1253 bufObj = _mesa_lookup_bufferobj(ctx, buffer);
1254 }
1255
1256 if (!bufObj)
1257 return;
1258
1259 bufObj->UsageHistory |= USAGE_ELEMENT_ARRAY_BUFFER;
1260 } else {
1261 bufObj = NULL;
1262 }
1263
1264 _mesa_reference_buffer_object(ctx, &vao->IndexBufferObj, bufObj);
1265 }
1266
1267
1268 void GLAPIENTRY
1269 _mesa_VertexArrayElementBuffer_no_error(GLuint vaobj, GLuint buffer)
1270 {
1271 GET_CURRENT_CONTEXT(ctx);
1272 vertex_array_element_buffer(ctx, vaobj, buffer, true);
1273 }
1274
1275
1276 void GLAPIENTRY
1277 _mesa_VertexArrayElementBuffer(GLuint vaobj, GLuint buffer)
1278 {
1279 GET_CURRENT_CONTEXT(ctx);
1280 vertex_array_element_buffer(ctx, vaobj, buffer, false);
1281 }
1282
1283
1284 void GLAPIENTRY
1285 _mesa_GetVertexArrayiv(GLuint vaobj, GLenum pname, GLint *param)
1286 {
1287 GET_CURRENT_CONTEXT(ctx);
1288 struct gl_vertex_array_object *vao;
1289
1290 ASSERT_OUTSIDE_BEGIN_END(ctx);
1291
1292 /* The GL_ARB_direct_state_access specification says:
1293 *
1294 * "An INVALID_OPERATION error is generated if <vaobj> is not
1295 * [compatibility profile: zero or] the name of an existing
1296 * vertex array object."
1297 */
1298 vao = _mesa_lookup_vao_err(ctx, vaobj, false, "glGetVertexArrayiv");
1299 if (!vao)
1300 return;
1301
1302 /* The GL_ARB_direct_state_access specification says:
1303 *
1304 * "An INVALID_ENUM error is generated if <pname> is not
1305 * ELEMENT_ARRAY_BUFFER_BINDING."
1306 */
1307 if (pname != GL_ELEMENT_ARRAY_BUFFER_BINDING) {
1308 _mesa_error(ctx, GL_INVALID_ENUM,
1309 "glGetVertexArrayiv(pname != "
1310 "GL_ELEMENT_ARRAY_BUFFER_BINDING)");
1311 return;
1312 }
1313
1314 param[0] = vao->IndexBufferObj ? vao->IndexBufferObj->Name : 0;
1315 }