83541a269aca7050f2a0fb372f43a42410289b07
[mesa.git] / src / mesa / main / ff_fragment_shader.cpp
1 /**************************************************************************
2 *
3 * Copyright 2007 VMware, Inc.
4 * All Rights Reserved.
5 * Copyright 2009 VMware, Inc. All Rights Reserved.
6 * Copyright © 2010-2011 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the
17 * next paragraph) shall be included in all copies or substantial portions
18 * of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 *
28 **************************************************************************/
29
30 #include "main/glheader.h"
31 #include "main/context.h"
32 #include "main/imports.h"
33 #include "main/macros.h"
34 #include "main/samplerobj.h"
35 #include "main/shaderobj.h"
36 #include "main/state.h"
37 #include "main/texenvprogram.h"
38 #include "main/texobj.h"
39 #include "main/uniforms.h"
40 #include "compiler/glsl/ir_builder.h"
41 #include "compiler/glsl/ir_optimization.h"
42 #include "compiler/glsl/glsl_parser_extras.h"
43 #include "compiler/glsl/glsl_symbol_table.h"
44 #include "compiler/glsl_types.h"
45 #include "program/ir_to_mesa.h"
46 #include "program/program.h"
47 #include "program/programopt.h"
48 #include "program/prog_cache.h"
49 #include "program/prog_instruction.h"
50 #include "program/prog_parameter.h"
51 #include "program/prog_print.h"
52 #include "program/prog_statevars.h"
53 #include "util/bitscan.h"
54
55 using namespace ir_builder;
56
57 /*
58 * Note on texture units:
59 *
60 * The number of texture units supported by fixed-function fragment
61 * processing is MAX_TEXTURE_COORD_UNITS, not MAX_TEXTURE_IMAGE_UNITS.
62 * That's because there's a one-to-one correspondence between texture
63 * coordinates and samplers in fixed-function processing.
64 *
65 * Since fixed-function vertex processing is limited to MAX_TEXTURE_COORD_UNITS
66 * sets of texcoords, so is fixed-function fragment processing.
67 *
68 * We can safely use ctx->Const.MaxTextureUnits for loop bounds.
69 */
70
71
72 static GLboolean
73 texenv_doing_secondary_color(struct gl_context *ctx)
74 {
75 if (ctx->Light.Enabled &&
76 (ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR))
77 return GL_TRUE;
78
79 if (ctx->Fog.ColorSumEnabled)
80 return GL_TRUE;
81
82 return GL_FALSE;
83 }
84
85 struct state_key {
86 GLuint nr_enabled_units:4;
87 GLuint separate_specular:1;
88 GLuint fog_mode:2; /**< FOG_x */
89 GLuint inputs_available:12;
90 GLuint num_draw_buffers:4;
91
92 /* NOTE: This array of structs must be last! (see "keySize" below) */
93 struct {
94 GLuint enabled:1;
95 GLuint source_index:4; /**< TEXTURE_x_INDEX */
96 GLuint shadow:1;
97
98 /***
99 * These are taken from struct gl_tex_env_combine_packed
100 * @{
101 */
102 GLuint ModeRGB:4;
103 GLuint ModeA:4;
104 GLuint ScaleShiftRGB:2;
105 GLuint ScaleShiftA:2;
106 GLuint NumArgsRGB:3;
107 GLuint NumArgsA:3;
108 struct gl_tex_env_argument ArgsRGB[MAX_COMBINER_TERMS];
109 struct gl_tex_env_argument ArgsA[MAX_COMBINER_TERMS];
110 /** @} */
111 } unit[MAX_TEXTURE_COORD_UNITS];
112 };
113
114
115 /**
116 * Do we need to clamp the results of the given texture env/combine mode?
117 * If the inputs to the mode are in [0,1] we don't always have to clamp
118 * the results.
119 */
120 static GLboolean
121 need_saturate( GLuint mode )
122 {
123 switch (mode) {
124 case TEXENV_MODE_REPLACE:
125 case TEXENV_MODE_MODULATE:
126 case TEXENV_MODE_INTERPOLATE:
127 return GL_FALSE;
128 case TEXENV_MODE_ADD:
129 case TEXENV_MODE_ADD_SIGNED:
130 case TEXENV_MODE_SUBTRACT:
131 case TEXENV_MODE_DOT3_RGB:
132 case TEXENV_MODE_DOT3_RGB_EXT:
133 case TEXENV_MODE_DOT3_RGBA:
134 case TEXENV_MODE_DOT3_RGBA_EXT:
135 case TEXENV_MODE_MODULATE_ADD_ATI:
136 case TEXENV_MODE_MODULATE_SIGNED_ADD_ATI:
137 case TEXENV_MODE_MODULATE_SUBTRACT_ATI:
138 case TEXENV_MODE_ADD_PRODUCTS_NV:
139 case TEXENV_MODE_ADD_PRODUCTS_SIGNED_NV:
140 return GL_TRUE;
141 default:
142 assert(0);
143 return GL_FALSE;
144 }
145 }
146
147 #define VERT_BIT_TEX_ANY (0xff << VERT_ATTRIB_TEX0)
148
149 /**
150 * Identify all possible varying inputs. The fragment program will
151 * never reference non-varying inputs, but will track them via state
152 * constants instead.
153 *
154 * This function figures out all the inputs that the fragment program
155 * has access to and filters input bitmask.
156 */
157 static GLbitfield filter_fp_input_mask( GLbitfield fp_inputs,
158 struct gl_context *ctx )
159 {
160 if (ctx->VertexProgram._Overriden) {
161 /* Somebody's messing with the vertex program and we don't have
162 * a clue what's happening. Assume that it could be producing
163 * all possible outputs.
164 */
165 return fp_inputs;
166 }
167
168 if (ctx->RenderMode == GL_FEEDBACK) {
169 /* _NEW_RENDERMODE */
170 return fp_inputs & (VARYING_BIT_COL0 | VARYING_BIT_TEX0);
171 }
172
173 /* _NEW_PROGRAM */
174 const GLboolean vertexShader =
175 ctx->_Shader->CurrentProgram[MESA_SHADER_VERTEX] != NULL;
176 const GLboolean vertexProgram = _mesa_arb_vertex_program_enabled(ctx);
177
178 if (!(vertexProgram || vertexShader)) {
179 /* Fixed function vertex logic */
180 GLbitfield possible_inputs = 0;
181
182 /* _NEW_VARYING_VP_INPUTS */
183 GLbitfield varying_inputs = ctx->varying_vp_inputs;
184
185 /* These get generated in the setup routine regardless of the
186 * vertex program:
187 */
188 /* _NEW_POINT */
189 if (ctx->Point.PointSprite) {
190 /* All texture varyings are possible to use */
191 possible_inputs = VARYING_BITS_TEX_ANY;
192 }
193 else {
194 /* _NEW_TEXTURE_STATE */
195 const GLbitfield possible_tex_inputs =
196 ctx->Texture._TexGenEnabled |
197 ctx->Texture._TexMatEnabled |
198 ((varying_inputs & VERT_BIT_TEX_ANY) >> VERT_ATTRIB_TEX0);
199
200 possible_inputs = (possible_tex_inputs << VARYING_SLOT_TEX0);
201 }
202
203 /* First look at what values may be computed by the generated
204 * vertex program:
205 */
206 /* _NEW_LIGHT */
207 if (ctx->Light.Enabled) {
208 possible_inputs |= VARYING_BIT_COL0;
209
210 if (texenv_doing_secondary_color(ctx))
211 possible_inputs |= VARYING_BIT_COL1;
212 }
213
214 /* Then look at what might be varying as a result of enabled
215 * arrays, etc:
216 */
217 if (varying_inputs & VERT_BIT_COLOR0)
218 possible_inputs |= VARYING_BIT_COL0;
219 if (varying_inputs & VERT_BIT_COLOR1)
220 possible_inputs |= VARYING_BIT_COL1;
221
222 return fp_inputs & possible_inputs;
223 }
224
225 /* calculate from vp->outputs */
226 struct gl_program *vprog;
227
228 /* Choose GLSL vertex shader over ARB vertex program. Need this
229 * since vertex shader state validation comes after fragment state
230 * validation (see additional comments in state.c).
231 */
232 if (vertexShader)
233 vprog = ctx->_Shader->CurrentProgram[MESA_SHADER_VERTEX];
234 else
235 vprog = ctx->VertexProgram.Current;
236
237 GLbitfield possible_inputs = vprog->info.outputs_written;
238
239 /* These get generated in the setup routine regardless of the
240 * vertex program:
241 */
242 /* _NEW_POINT */
243 if (ctx->Point.PointSprite) {
244 /* All texture varyings are possible to use */
245 possible_inputs |= VARYING_BITS_TEX_ANY;
246 }
247
248 return fp_inputs & possible_inputs;
249 }
250
251
252 /**
253 * Examine current texture environment state and generate a unique
254 * key to identify it.
255 */
256 static GLuint make_state_key( struct gl_context *ctx, struct state_key *key )
257 {
258 GLbitfield inputs_referenced = VARYING_BIT_COL0;
259 GLbitfield mask;
260 GLuint keySize;
261
262 memset(key, 0, sizeof(*key));
263
264 /* _NEW_TEXTURE_OBJECT */
265 mask = ctx->Texture._EnabledCoordUnits;
266 int i = -1;
267 while (mask) {
268 i = u_bit_scan(&mask);
269 const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[i];
270 const struct gl_texture_object *texObj = texUnit->_Current;
271 const struct gl_tex_env_combine_packed *comb = &texUnit->_CurrentCombinePacked;
272
273 if (!texObj)
274 continue;
275
276 key->unit[i].enabled = 1;
277 inputs_referenced |= VARYING_BIT_TEX(i);
278
279 key->unit[i].source_index = texObj->TargetIndex;
280
281 const struct gl_sampler_object *samp = _mesa_get_samplerobj(ctx, i);
282 if (samp->CompareMode == GL_COMPARE_R_TO_TEXTURE) {
283 const GLenum format = _mesa_texture_base_format(texObj);
284 key->unit[i].shadow = (format == GL_DEPTH_COMPONENT ||
285 format == GL_DEPTH_STENCIL_EXT);
286 }
287
288 key->unit[i].ModeRGB = comb->ModeRGB;
289 key->unit[i].ModeA = comb->ModeA;
290 key->unit[i].ScaleShiftRGB = comb->ScaleShiftRGB;
291 key->unit[i].ScaleShiftA = comb->ScaleShiftA;
292 key->unit[i].NumArgsRGB = comb->NumArgsRGB;
293 key->unit[i].NumArgsA = comb->NumArgsA;
294
295 memcpy(key->unit[i].ArgsRGB, comb->ArgsRGB, sizeof comb->ArgsRGB);
296 memcpy(key->unit[i].ArgsA, comb->ArgsA, sizeof comb->ArgsA);
297 }
298
299 key->nr_enabled_units = i + 1;
300
301 /* _NEW_LIGHT | _NEW_FOG */
302 if (texenv_doing_secondary_color(ctx)) {
303 key->separate_specular = 1;
304 inputs_referenced |= VARYING_BIT_COL1;
305 }
306
307 /* _NEW_FOG */
308 key->fog_mode = ctx->Fog._PackedEnabledMode;
309
310 /* _NEW_BUFFERS */
311 key->num_draw_buffers = ctx->DrawBuffer->_NumColorDrawBuffers;
312
313 /* _NEW_COLOR */
314 if (ctx->Color.AlphaEnabled && key->num_draw_buffers == 0) {
315 /* if alpha test is enabled we need to emit at least one color */
316 key->num_draw_buffers = 1;
317 }
318
319 key->inputs_available = filter_fp_input_mask(inputs_referenced, ctx);
320
321 /* compute size of state key, ignoring unused texture units */
322 keySize = sizeof(*key) - sizeof(key->unit)
323 + key->nr_enabled_units * sizeof(key->unit[0]);
324
325 return keySize;
326 }
327
328
329 /** State used to build the fragment program:
330 */
331 class texenv_fragment_program : public ir_factory {
332 public:
333 struct gl_shader_program *shader_program;
334 struct gl_shader *shader;
335 exec_list *top_instructions;
336 struct state_key *state;
337
338 ir_variable *src_texture[MAX_TEXTURE_COORD_UNITS];
339 /* Reg containing each texture unit's sampled texture color,
340 * else undef.
341 */
342
343 /* Texcoord override from bumpmapping. */
344 ir_variable *texcoord_tex[MAX_TEXTURE_COORD_UNITS];
345
346 /* Reg containing texcoord for a texture unit,
347 * needed for bump mapping, else undef.
348 */
349
350 ir_rvalue *src_previous; /**< Reg containing color from previous
351 * stage. May need to be decl'd.
352 */
353 };
354
355 static ir_rvalue *
356 get_current_attrib(texenv_fragment_program *p, GLuint attrib)
357 {
358 ir_variable *current;
359 ir_rvalue *val;
360
361 current = p->shader->symbols->get_variable("gl_CurrentAttribFragMESA");
362 assert(current);
363 current->data.max_array_access = MAX2(current->data.max_array_access, (int)attrib);
364 val = new(p->mem_ctx) ir_dereference_variable(current);
365 ir_rvalue *index = new(p->mem_ctx) ir_constant(attrib);
366 return new(p->mem_ctx) ir_dereference_array(val, index);
367 }
368
369 static ir_rvalue *
370 get_gl_Color(texenv_fragment_program *p)
371 {
372 if (p->state->inputs_available & VARYING_BIT_COL0) {
373 ir_variable *var = p->shader->symbols->get_variable("gl_Color");
374 assert(var);
375 return new(p->mem_ctx) ir_dereference_variable(var);
376 } else {
377 return get_current_attrib(p, VERT_ATTRIB_COLOR0);
378 }
379 }
380
381 static ir_rvalue *
382 get_source(texenv_fragment_program *p,
383 GLuint src, GLuint unit)
384 {
385 ir_variable *var;
386 ir_dereference *deref;
387
388 switch (src) {
389 case TEXENV_SRC_TEXTURE:
390 return new(p->mem_ctx) ir_dereference_variable(p->src_texture[unit]);
391
392 case TEXENV_SRC_TEXTURE0:
393 case TEXENV_SRC_TEXTURE1:
394 case TEXENV_SRC_TEXTURE2:
395 case TEXENV_SRC_TEXTURE3:
396 case TEXENV_SRC_TEXTURE4:
397 case TEXENV_SRC_TEXTURE5:
398 case TEXENV_SRC_TEXTURE6:
399 case TEXENV_SRC_TEXTURE7:
400 return new(p->mem_ctx)
401 ir_dereference_variable(p->src_texture[src - TEXENV_SRC_TEXTURE0]);
402
403 case TEXENV_SRC_CONSTANT:
404 var = p->shader->symbols->get_variable("gl_TextureEnvColor");
405 assert(var);
406 deref = new(p->mem_ctx) ir_dereference_variable(var);
407 var->data.max_array_access = MAX2(var->data.max_array_access, (int)unit);
408 return new(p->mem_ctx) ir_dereference_array(deref,
409 new(p->mem_ctx) ir_constant(unit));
410
411 case TEXENV_SRC_PRIMARY_COLOR:
412 var = p->shader->symbols->get_variable("gl_Color");
413 assert(var);
414 return new(p->mem_ctx) ir_dereference_variable(var);
415
416 case TEXENV_SRC_ZERO:
417 return new(p->mem_ctx) ir_constant(0.0f);
418
419 case TEXENV_SRC_ONE:
420 return new(p->mem_ctx) ir_constant(1.0f);
421
422 case TEXENV_SRC_PREVIOUS:
423 if (!p->src_previous) {
424 return get_gl_Color(p);
425 } else {
426 return p->src_previous->clone(p->mem_ctx, NULL);
427 }
428
429 default:
430 assert(0);
431 return NULL;
432 }
433 }
434
435 static ir_rvalue *
436 emit_combine_source(texenv_fragment_program *p,
437 GLuint unit,
438 GLuint source,
439 GLuint operand)
440 {
441 ir_rvalue *src;
442
443 src = get_source(p, source, unit);
444
445 switch (operand) {
446 case TEXENV_OPR_ONE_MINUS_COLOR:
447 return sub(new(p->mem_ctx) ir_constant(1.0f), src);
448
449 case TEXENV_OPR_ALPHA:
450 return src->type->is_scalar() ? src : swizzle_w(src);
451
452 case TEXENV_OPR_ONE_MINUS_ALPHA: {
453 ir_rvalue *const scalar = src->type->is_scalar() ? src : swizzle_w(src);
454
455 return sub(new(p->mem_ctx) ir_constant(1.0f), scalar);
456 }
457
458 case TEXENV_OPR_COLOR:
459 return src;
460
461 default:
462 assert(0);
463 return src;
464 }
465 }
466
467 /**
468 * Check if the RGB and Alpha sources and operands match for the given
469 * texture unit's combinder state. When the RGB and A sources and
470 * operands match, we can emit fewer instructions.
471 */
472 static GLboolean args_match( const struct state_key *key, GLuint unit )
473 {
474 GLuint i, numArgs = key->unit[unit].NumArgsRGB;
475
476 for (i = 0; i < numArgs; i++) {
477 if (key->unit[unit].ArgsA[i].Source != key->unit[unit].ArgsRGB[i].Source)
478 return GL_FALSE;
479
480 switch (key->unit[unit].ArgsA[i].Operand) {
481 case TEXENV_OPR_ALPHA:
482 switch (key->unit[unit].ArgsRGB[i].Operand) {
483 case TEXENV_OPR_COLOR:
484 case TEXENV_OPR_ALPHA:
485 break;
486 default:
487 return GL_FALSE;
488 }
489 break;
490 case TEXENV_OPR_ONE_MINUS_ALPHA:
491 switch (key->unit[unit].ArgsRGB[i].Operand) {
492 case TEXENV_OPR_ONE_MINUS_COLOR:
493 case TEXENV_OPR_ONE_MINUS_ALPHA:
494 break;
495 default:
496 return GL_FALSE;
497 }
498 break;
499 default:
500 return GL_FALSE; /* impossible */
501 }
502 }
503
504 return GL_TRUE;
505 }
506
507 static ir_rvalue *
508 smear(ir_rvalue *val)
509 {
510 if (!val->type->is_scalar())
511 return val;
512
513 return swizzle_xxxx(val);
514 }
515
516 static ir_rvalue *
517 emit_combine(texenv_fragment_program *p,
518 GLuint unit,
519 GLuint nr,
520 GLuint mode,
521 const struct gl_tex_env_argument *opt)
522 {
523 ir_rvalue *src[MAX_COMBINER_TERMS];
524 ir_rvalue *tmp0, *tmp1;
525 GLuint i;
526
527 assert(nr <= MAX_COMBINER_TERMS);
528
529 for (i = 0; i < nr; i++)
530 src[i] = emit_combine_source( p, unit, opt[i].Source, opt[i].Operand );
531
532 switch (mode) {
533 case TEXENV_MODE_REPLACE:
534 return src[0];
535
536 case TEXENV_MODE_MODULATE:
537 return mul(src[0], src[1]);
538
539 case TEXENV_MODE_ADD:
540 return add(src[0], src[1]);
541
542 case TEXENV_MODE_ADD_SIGNED:
543 return add(add(src[0], src[1]), new(p->mem_ctx) ir_constant(-0.5f));
544
545 case TEXENV_MODE_INTERPOLATE:
546 /* Arg0 * (Arg2) + Arg1 * (1-Arg2) */
547 tmp0 = mul(src[0], src[2]);
548 tmp1 = mul(src[1], sub(new(p->mem_ctx) ir_constant(1.0f),
549 src[2]->clone(p->mem_ctx, NULL)));
550 return add(tmp0, tmp1);
551
552 case TEXENV_MODE_SUBTRACT:
553 return sub(src[0], src[1]);
554
555 case TEXENV_MODE_DOT3_RGBA:
556 case TEXENV_MODE_DOT3_RGBA_EXT:
557 case TEXENV_MODE_DOT3_RGB_EXT:
558 case TEXENV_MODE_DOT3_RGB: {
559 tmp0 = mul(src[0], new(p->mem_ctx) ir_constant(2.0f));
560 tmp0 = add(tmp0, new(p->mem_ctx) ir_constant(-1.0f));
561
562 tmp1 = mul(src[1], new(p->mem_ctx) ir_constant(2.0f));
563 tmp1 = add(tmp1, new(p->mem_ctx) ir_constant(-1.0f));
564
565 return dot(swizzle_xyz(smear(tmp0)), swizzle_xyz(smear(tmp1)));
566 }
567 case TEXENV_MODE_MODULATE_ADD_ATI:
568 return add(mul(src[0], src[2]), src[1]);
569
570 case TEXENV_MODE_MODULATE_SIGNED_ADD_ATI:
571 return add(add(mul(src[0], src[2]), src[1]),
572 new(p->mem_ctx) ir_constant(-0.5f));
573
574 case TEXENV_MODE_MODULATE_SUBTRACT_ATI:
575 return sub(mul(src[0], src[2]), src[1]);
576
577 case TEXENV_MODE_ADD_PRODUCTS_NV:
578 return add(mul(src[0], src[1]), mul(src[2], src[3]));
579
580 case TEXENV_MODE_ADD_PRODUCTS_SIGNED_NV:
581 return add(add(mul(src[0], src[1]), mul(src[2], src[3])),
582 new(p->mem_ctx) ir_constant(-0.5f));
583 default:
584 assert(0);
585 return src[0];
586 }
587 }
588
589 /**
590 * Generate instructions for one texture unit's env/combiner mode.
591 */
592 static ir_rvalue *
593 emit_texenv(texenv_fragment_program *p, GLuint unit)
594 {
595 const struct state_key *key = p->state;
596 GLboolean rgb_saturate, alpha_saturate;
597 GLuint rgb_shift, alpha_shift;
598
599 if (!key->unit[unit].enabled) {
600 return get_source(p, TEXENV_SRC_PREVIOUS, 0);
601 }
602
603 switch (key->unit[unit].ModeRGB) {
604 case TEXENV_MODE_DOT3_RGB_EXT:
605 alpha_shift = key->unit[unit].ScaleShiftA;
606 rgb_shift = 0;
607 break;
608 case TEXENV_MODE_DOT3_RGBA_EXT:
609 alpha_shift = 0;
610 rgb_shift = 0;
611 break;
612 default:
613 rgb_shift = key->unit[unit].ScaleShiftRGB;
614 alpha_shift = key->unit[unit].ScaleShiftA;
615 break;
616 }
617
618 /* If we'll do rgb/alpha shifting don't saturate in emit_combine().
619 * We don't want to clamp twice.
620 */
621 if (rgb_shift)
622 rgb_saturate = GL_FALSE; /* saturate after rgb shift */
623 else if (need_saturate(key->unit[unit].ModeRGB))
624 rgb_saturate = GL_TRUE;
625 else
626 rgb_saturate = GL_FALSE;
627
628 if (alpha_shift)
629 alpha_saturate = GL_FALSE; /* saturate after alpha shift */
630 else if (need_saturate(key->unit[unit].ModeA))
631 alpha_saturate = GL_TRUE;
632 else
633 alpha_saturate = GL_FALSE;
634
635 ir_variable *temp_var = p->make_temp(glsl_type::vec4_type, "texenv_combine");
636 ir_dereference *deref;
637 ir_rvalue *val;
638
639 /* Emit the RGB and A combine ops
640 */
641 if (key->unit[unit].ModeRGB == key->unit[unit].ModeA &&
642 args_match(key, unit)) {
643 val = emit_combine(p, unit,
644 key->unit[unit].NumArgsRGB,
645 key->unit[unit].ModeRGB,
646 key->unit[unit].ArgsRGB);
647 val = smear(val);
648 if (rgb_saturate)
649 val = saturate(val);
650
651 p->emit(assign(temp_var, val));
652 }
653 else if (key->unit[unit].ModeRGB == TEXENV_MODE_DOT3_RGBA_EXT ||
654 key->unit[unit].ModeRGB == TEXENV_MODE_DOT3_RGBA) {
655 ir_rvalue *val = emit_combine(p, unit,
656 key->unit[unit].NumArgsRGB,
657 key->unit[unit].ModeRGB,
658 key->unit[unit].ArgsRGB);
659 val = smear(val);
660 if (rgb_saturate)
661 val = saturate(val);
662 p->emit(assign(temp_var, val));
663 }
664 else {
665 /* Need to do something to stop from re-emitting identical
666 * argument calculations here:
667 */
668 val = emit_combine(p, unit,
669 key->unit[unit].NumArgsRGB,
670 key->unit[unit].ModeRGB,
671 key->unit[unit].ArgsRGB);
672 val = swizzle_xyz(smear(val));
673 if (rgb_saturate)
674 val = saturate(val);
675 p->emit(assign(temp_var, val, WRITEMASK_XYZ));
676
677 val = emit_combine(p, unit,
678 key->unit[unit].NumArgsA,
679 key->unit[unit].ModeA,
680 key->unit[unit].ArgsA);
681 val = swizzle_w(smear(val));
682 if (alpha_saturate)
683 val = saturate(val);
684 p->emit(assign(temp_var, val, WRITEMASK_W));
685 }
686
687 deref = new(p->mem_ctx) ir_dereference_variable(temp_var);
688
689 /* Deal with the final shift:
690 */
691 if (alpha_shift || rgb_shift) {
692 ir_constant *shift;
693
694 if (rgb_shift == alpha_shift) {
695 shift = new(p->mem_ctx) ir_constant((float)(1 << rgb_shift));
696 }
697 else {
698 ir_constant_data const_data;
699
700 const_data.f[0] = float(1 << rgb_shift);
701 const_data.f[1] = float(1 << rgb_shift);
702 const_data.f[2] = float(1 << rgb_shift);
703 const_data.f[3] = float(1 << alpha_shift);
704
705 shift = new(p->mem_ctx) ir_constant(glsl_type::vec4_type,
706 &const_data);
707 }
708
709 return saturate(mul(deref, shift));
710 }
711 else
712 return deref;
713 }
714
715
716 /**
717 * Generate instruction for getting a texture source term.
718 */
719 static void load_texture( texenv_fragment_program *p, GLuint unit )
720 {
721 ir_dereference *deref;
722
723 if (p->src_texture[unit])
724 return;
725
726 const GLuint texTarget = p->state->unit[unit].source_index;
727 ir_rvalue *texcoord;
728
729 if (!(p->state->inputs_available & (VARYING_BIT_TEX0 << unit))) {
730 texcoord = get_current_attrib(p, VERT_ATTRIB_TEX0 + unit);
731 } else if (p->texcoord_tex[unit]) {
732 texcoord = new(p->mem_ctx) ir_dereference_variable(p->texcoord_tex[unit]);
733 } else {
734 ir_variable *tc_array = p->shader->symbols->get_variable("gl_TexCoord");
735 assert(tc_array);
736 texcoord = new(p->mem_ctx) ir_dereference_variable(tc_array);
737 ir_rvalue *index = new(p->mem_ctx) ir_constant(unit);
738 texcoord = new(p->mem_ctx) ir_dereference_array(texcoord, index);
739 tc_array->data.max_array_access = MAX2(tc_array->data.max_array_access, (int)unit);
740 }
741
742 if (!p->state->unit[unit].enabled) {
743 p->src_texture[unit] = p->make_temp(glsl_type::vec4_type,
744 "dummy_tex");
745 p->emit(p->src_texture[unit]);
746
747 p->emit(assign(p->src_texture[unit], new(p->mem_ctx) ir_constant(0.0f)));
748 return ;
749 }
750
751 const glsl_type *sampler_type = NULL;
752 int coords = 0;
753
754 switch (texTarget) {
755 case TEXTURE_1D_INDEX:
756 if (p->state->unit[unit].shadow)
757 sampler_type = glsl_type::sampler1DShadow_type;
758 else
759 sampler_type = glsl_type::sampler1D_type;
760 coords = 1;
761 break;
762 case TEXTURE_1D_ARRAY_INDEX:
763 if (p->state->unit[unit].shadow)
764 sampler_type = glsl_type::sampler1DArrayShadow_type;
765 else
766 sampler_type = glsl_type::sampler1DArray_type;
767 coords = 2;
768 break;
769 case TEXTURE_2D_INDEX:
770 if (p->state->unit[unit].shadow)
771 sampler_type = glsl_type::sampler2DShadow_type;
772 else
773 sampler_type = glsl_type::sampler2D_type;
774 coords = 2;
775 break;
776 case TEXTURE_2D_ARRAY_INDEX:
777 if (p->state->unit[unit].shadow)
778 sampler_type = glsl_type::sampler2DArrayShadow_type;
779 else
780 sampler_type = glsl_type::sampler2DArray_type;
781 coords = 3;
782 break;
783 case TEXTURE_RECT_INDEX:
784 if (p->state->unit[unit].shadow)
785 sampler_type = glsl_type::sampler2DRectShadow_type;
786 else
787 sampler_type = glsl_type::sampler2DRect_type;
788 coords = 2;
789 break;
790 case TEXTURE_3D_INDEX:
791 assert(!p->state->unit[unit].shadow);
792 sampler_type = glsl_type::sampler3D_type;
793 coords = 3;
794 break;
795 case TEXTURE_CUBE_INDEX:
796 if (p->state->unit[unit].shadow)
797 sampler_type = glsl_type::samplerCubeShadow_type;
798 else
799 sampler_type = glsl_type::samplerCube_type;
800 coords = 3;
801 break;
802 case TEXTURE_EXTERNAL_INDEX:
803 assert(!p->state->unit[unit].shadow);
804 sampler_type = glsl_type::samplerExternalOES_type;
805 coords = 2;
806 break;
807 }
808
809 p->src_texture[unit] = p->make_temp(glsl_type::vec4_type,
810 "tex");
811
812 ir_texture *tex = new(p->mem_ctx) ir_texture(ir_tex);
813
814
815 char *sampler_name = ralloc_asprintf(p->mem_ctx, "sampler_%d", unit);
816 ir_variable *sampler = new(p->mem_ctx) ir_variable(sampler_type,
817 sampler_name,
818 ir_var_uniform);
819 p->top_instructions->push_head(sampler);
820
821 /* Set the texture unit for this sampler in the same way that
822 * layout(binding=X) would.
823 */
824 sampler->data.explicit_binding = true;
825 sampler->data.binding = unit;
826
827 deref = new(p->mem_ctx) ir_dereference_variable(sampler);
828 tex->set_sampler(deref, glsl_type::vec4_type);
829
830 tex->coordinate = new(p->mem_ctx) ir_swizzle(texcoord, 0, 1, 2, 3, coords);
831
832 if (p->state->unit[unit].shadow) {
833 texcoord = texcoord->clone(p->mem_ctx, NULL);
834 tex->shadow_comparator = new(p->mem_ctx) ir_swizzle(texcoord,
835 coords, 0, 0, 0,
836 1);
837 coords++;
838 }
839
840 texcoord = texcoord->clone(p->mem_ctx, NULL);
841 tex->projector = swizzle_w(texcoord);
842
843 p->emit(assign(p->src_texture[unit], tex));
844 }
845
846 static void
847 load_texenv_source(texenv_fragment_program *p,
848 GLuint src, GLuint unit)
849 {
850 switch (src) {
851 case TEXENV_SRC_TEXTURE:
852 load_texture(p, unit);
853 break;
854
855 case TEXENV_SRC_TEXTURE0:
856 case TEXENV_SRC_TEXTURE1:
857 case TEXENV_SRC_TEXTURE2:
858 case TEXENV_SRC_TEXTURE3:
859 case TEXENV_SRC_TEXTURE4:
860 case TEXENV_SRC_TEXTURE5:
861 case TEXENV_SRC_TEXTURE6:
862 case TEXENV_SRC_TEXTURE7:
863 load_texture(p, src - TEXENV_SRC_TEXTURE0);
864 break;
865
866 default:
867 /* not a texture src - do nothing */
868 break;
869 }
870 }
871
872
873 /**
874 * Generate instructions for loading all texture source terms.
875 */
876 static GLboolean
877 load_texunit_sources( texenv_fragment_program *p, GLuint unit )
878 {
879 const struct state_key *key = p->state;
880 GLuint i;
881
882 for (i = 0; i < key->unit[unit].NumArgsRGB; i++) {
883 load_texenv_source( p, key->unit[unit].ArgsRGB[i].Source, unit );
884 }
885
886 for (i = 0; i < key->unit[unit].NumArgsA; i++) {
887 load_texenv_source( p, key->unit[unit].ArgsA[i].Source, unit );
888 }
889
890 return GL_TRUE;
891 }
892
893 /**
894 * Applies the fog calculations.
895 *
896 * This is basically like the ARB_fragment_prorgam fog options. Note
897 * that ffvertex_prog.c produces fogcoord for us when
898 * GL_FOG_COORDINATE_EXT is set to GL_FRAGMENT_DEPTH_EXT.
899 */
900 static ir_rvalue *
901 emit_fog_instructions(texenv_fragment_program *p,
902 ir_rvalue *fragcolor)
903 {
904 struct state_key *key = p->state;
905 ir_rvalue *f, *temp;
906 ir_variable *params, *oparams;
907 ir_variable *fogcoord;
908
909 /* Temporary storage for the whole fog result. Fog calculations
910 * only affect rgb so we're hanging on to the .a value of fragcolor
911 * this way.
912 */
913 ir_variable *fog_result = p->make_temp(glsl_type::vec4_type, "fog_result");
914 p->emit(assign(fog_result, fragcolor));
915
916 fragcolor = swizzle_xyz(fog_result);
917
918 oparams = p->shader->symbols->get_variable("gl_FogParamsOptimizedMESA");
919 assert(oparams);
920 fogcoord = p->shader->symbols->get_variable("gl_FogFragCoord");
921 assert(fogcoord);
922 params = p->shader->symbols->get_variable("gl_Fog");
923 assert(params);
924 f = new(p->mem_ctx) ir_dereference_variable(fogcoord);
925
926 ir_variable *f_var = p->make_temp(glsl_type::float_type, "fog_factor");
927
928 switch (key->fog_mode) {
929 case FOG_LINEAR:
930 /* f = (end - z) / (end - start)
931 *
932 * gl_MesaFogParamsOptimized gives us (-1 / (end - start)) and
933 * (end / (end - start)) so we can generate a single MAD.
934 */
935 f = add(mul(f, swizzle_x(oparams)), swizzle_y(oparams));
936 break;
937 case FOG_EXP:
938 /* f = e^(-(density * fogcoord))
939 *
940 * gl_MesaFogParamsOptimized gives us density/ln(2) so we can
941 * use EXP2 which is generally the native instruction without
942 * having to do any further math on the fog density uniform.
943 */
944 f = mul(f, swizzle_z(oparams));
945 f = new(p->mem_ctx) ir_expression(ir_unop_neg, f);
946 f = new(p->mem_ctx) ir_expression(ir_unop_exp2, f);
947 break;
948 case FOG_EXP2:
949 /* f = e^(-(density * fogcoord)^2)
950 *
951 * gl_MesaFogParamsOptimized gives us density/sqrt(ln(2)) so we
952 * can do this like FOG_EXP but with a squaring after the
953 * multiply by density.
954 */
955 ir_variable *temp_var = p->make_temp(glsl_type::float_type, "fog_temp");
956 p->emit(assign(temp_var, mul(f, swizzle_w(oparams))));
957
958 f = mul(temp_var, temp_var);
959 f = new(p->mem_ctx) ir_expression(ir_unop_neg, f);
960 f = new(p->mem_ctx) ir_expression(ir_unop_exp2, f);
961 break;
962 }
963
964 p->emit(assign(f_var, saturate(f)));
965
966 f = sub(new(p->mem_ctx) ir_constant(1.0f), f_var);
967 temp = new(p->mem_ctx) ir_dereference_variable(params);
968 temp = new(p->mem_ctx) ir_dereference_record(temp, "color");
969 temp = mul(swizzle_xyz(temp), f);
970
971 p->emit(assign(fog_result, add(temp, mul(fragcolor, f_var)), WRITEMASK_XYZ));
972
973 return new(p->mem_ctx) ir_dereference_variable(fog_result);
974 }
975
976 static void
977 emit_instructions(texenv_fragment_program *p)
978 {
979 struct state_key *key = p->state;
980 GLuint unit;
981
982 if (key->nr_enabled_units) {
983 /* First pass - to support texture_env_crossbar, first identify
984 * all referenced texture sources and emit texld instructions
985 * for each:
986 */
987 for (unit = 0; unit < key->nr_enabled_units; unit++)
988 if (key->unit[unit].enabled) {
989 load_texunit_sources(p, unit);
990 }
991
992 /* Second pass - emit combine instructions to build final color:
993 */
994 for (unit = 0; unit < key->nr_enabled_units; unit++) {
995 if (key->unit[unit].enabled) {
996 p->src_previous = emit_texenv(p, unit);
997 }
998 }
999 }
1000
1001 ir_rvalue *cf = get_source(p, TEXENV_SRC_PREVIOUS, 0);
1002
1003 if (key->separate_specular) {
1004 ir_variable *spec_result = p->make_temp(glsl_type::vec4_type,
1005 "specular_add");
1006 p->emit(assign(spec_result, cf));
1007
1008 ir_rvalue *secondary;
1009 if (p->state->inputs_available & VARYING_BIT_COL1) {
1010 ir_variable *var =
1011 p->shader->symbols->get_variable("gl_SecondaryColor");
1012 assert(var);
1013 secondary = swizzle_xyz(var);
1014 } else {
1015 secondary = swizzle_xyz(get_current_attrib(p, VERT_ATTRIB_COLOR1));
1016 }
1017
1018 p->emit(assign(spec_result, add(swizzle_xyz(spec_result), secondary),
1019 WRITEMASK_XYZ));
1020
1021 cf = new(p->mem_ctx) ir_dereference_variable(spec_result);
1022 }
1023
1024 if (key->fog_mode) {
1025 cf = emit_fog_instructions(p, cf);
1026 }
1027
1028 ir_variable *frag_color = p->shader->symbols->get_variable("gl_FragColor");
1029 assert(frag_color);
1030 p->emit(assign(frag_color, cf));
1031 }
1032
1033 /**
1034 * Generate a new fragment program which implements the context's
1035 * current texture env/combine mode.
1036 */
1037 static struct gl_shader_program *
1038 create_new_program(struct gl_context *ctx, struct state_key *key)
1039 {
1040 texenv_fragment_program p;
1041 unsigned int unit;
1042 _mesa_glsl_parse_state *state;
1043
1044 p.mem_ctx = ralloc_context(NULL);
1045 p.shader = _mesa_new_shader(0, MESA_SHADER_FRAGMENT);
1046 #ifdef DEBUG
1047 p.shader->SourceChecksum = 0xf18ed; /* fixed */
1048 #endif
1049 p.shader->ir = new(p.shader) exec_list;
1050 state = new(p.shader) _mesa_glsl_parse_state(ctx, MESA_SHADER_FRAGMENT,
1051 p.shader);
1052 p.shader->symbols = state->symbols;
1053 p.top_instructions = p.shader->ir;
1054 p.instructions = p.shader->ir;
1055 p.state = key;
1056 p.shader_program = _mesa_new_shader_program(0);
1057
1058 /* Tell the linker to ignore the fact that we're building a
1059 * separate shader, in case we're in a GLES2 context that would
1060 * normally reject that. The real problem is that we're building a
1061 * fixed function program in a GLES2 context at all, but that's a
1062 * big mess to clean up.
1063 */
1064 p.shader_program->SeparateShader = GL_TRUE;
1065
1066 /* The legacy GLSL shadow functions follow the depth texture
1067 * mode and return vec4. The GLSL 1.30 shadow functions return float and
1068 * ignore the depth texture mode. That's a shader and state dependency
1069 * that's difficult to deal with. st/mesa uses a simple but not
1070 * completely correct solution: if the shader declares GLSL >= 1.30 and
1071 * the depth texture mode is GL_ALPHA (000X), it sets the XXXX swizzle
1072 * instead. Thus, the GLSL 1.30 shadow function will get the result in .x
1073 * and legacy shadow functions will get it in .w as expected.
1074 * For the fixed-function fragment shader, use 120 to get correct behavior
1075 * for GL_ALPHA.
1076 */
1077 state->language_version = 120;
1078
1079 state->es_shader = false;
1080 if (_mesa_is_gles(ctx) && ctx->Extensions.OES_EGL_image_external)
1081 state->OES_EGL_image_external_enable = true;
1082 _mesa_glsl_initialize_types(state);
1083 _mesa_glsl_initialize_variables(p.instructions, state);
1084
1085 for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) {
1086 p.src_texture[unit] = NULL;
1087 p.texcoord_tex[unit] = NULL;
1088 }
1089
1090 p.src_previous = NULL;
1091
1092 ir_function *main_f = new(p.mem_ctx) ir_function("main");
1093 p.emit(main_f);
1094 state->symbols->add_function(main_f);
1095
1096 ir_function_signature *main_sig =
1097 new(p.mem_ctx) ir_function_signature(glsl_type::void_type);
1098 main_sig->is_defined = true;
1099 main_f->add_signature(main_sig);
1100
1101 p.instructions = &main_sig->body;
1102 if (key->num_draw_buffers)
1103 emit_instructions(&p);
1104
1105 validate_ir_tree(p.shader->ir);
1106
1107 const struct gl_shader_compiler_options *options =
1108 &ctx->Const.ShaderCompilerOptions[MESA_SHADER_FRAGMENT];
1109
1110 /* Conservative approach: Don't optimize here, the linker does it too. */
1111 if (!ctx->Const.GLSLOptimizeConservatively) {
1112 while (do_common_optimization(p.shader->ir, false, false, options,
1113 ctx->Const.NativeIntegers))
1114 ;
1115 }
1116
1117 reparent_ir(p.shader->ir, p.shader->ir);
1118
1119 p.shader->CompileStatus = compile_success;
1120 p.shader->Version = state->language_version;
1121 p.shader_program->Shaders =
1122 (gl_shader **)malloc(sizeof(*p.shader_program->Shaders));
1123 p.shader_program->Shaders[0] = p.shader;
1124 p.shader_program->NumShaders = 1;
1125
1126 _mesa_glsl_link_shader(ctx, p.shader_program);
1127
1128 if (!p.shader_program->data->LinkStatus)
1129 _mesa_problem(ctx, "Failed to link fixed function fragment shader: %s\n",
1130 p.shader_program->data->InfoLog);
1131
1132 ralloc_free(p.mem_ctx);
1133 return p.shader_program;
1134 }
1135
1136 extern "C" {
1137
1138 /**
1139 * Return a fragment program which implements the current
1140 * fixed-function texture, fog and color-sum operations.
1141 */
1142 struct gl_shader_program *
1143 _mesa_get_fixed_func_fragment_program(struct gl_context *ctx)
1144 {
1145 struct gl_shader_program *shader_program;
1146 struct state_key key;
1147 GLuint keySize;
1148
1149 keySize = make_state_key(ctx, &key);
1150
1151 shader_program = (struct gl_shader_program *)
1152 _mesa_search_program_cache(ctx->FragmentProgram.Cache,
1153 &key, keySize);
1154
1155 if (!shader_program) {
1156 shader_program = create_new_program(ctx, &key);
1157
1158 _mesa_shader_cache_insert(ctx, ctx->FragmentProgram.Cache,
1159 &key, keySize, shader_program);
1160 }
1161
1162 return shader_program;
1163 }
1164
1165 }