ff_fragment_shader: Use binding to set the sampler unit
[mesa.git] / src / mesa / main / ff_fragment_shader.cpp
1 /**************************************************************************
2 *
3 * Copyright 2007 VMware, Inc.
4 * All Rights Reserved.
5 * Copyright 2009 VMware, Inc. All Rights Reserved.
6 * Copyright © 2010-2011 Intel Corporation
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the
17 * next paragraph) shall be included in all copies or substantial portions
18 * of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 *
28 **************************************************************************/
29
30 #include "main/glheader.h"
31 #include "main/context.h"
32 #include "main/imports.h"
33 #include "main/macros.h"
34 #include "main/samplerobj.h"
35 #include "main/shaderobj.h"
36 #include "main/texenvprogram.h"
37 #include "main/texobj.h"
38 #include "main/uniforms.h"
39 #include "glsl/ir_builder.h"
40 #include "glsl/ir_optimization.h"
41 #include "glsl/glsl_parser_extras.h"
42 #include "glsl/glsl_symbol_table.h"
43 #include "glsl/glsl_types.h"
44 #include "program/ir_to_mesa.h"
45 #include "program/program.h"
46 #include "program/programopt.h"
47 #include "program/prog_cache.h"
48 #include "program/prog_instruction.h"
49 #include "program/prog_parameter.h"
50 #include "program/prog_print.h"
51 #include "program/prog_statevars.h"
52
53 using namespace ir_builder;
54
55 /*
56 * Note on texture units:
57 *
58 * The number of texture units supported by fixed-function fragment
59 * processing is MAX_TEXTURE_COORD_UNITS, not MAX_TEXTURE_IMAGE_UNITS.
60 * That's because there's a one-to-one correspondence between texture
61 * coordinates and samplers in fixed-function processing.
62 *
63 * Since fixed-function vertex processing is limited to MAX_TEXTURE_COORD_UNITS
64 * sets of texcoords, so is fixed-function fragment processing.
65 *
66 * We can safely use ctx->Const.MaxTextureUnits for loop bounds.
67 */
68
69
70 struct texenvprog_cache_item
71 {
72 GLuint hash;
73 void *key;
74 struct gl_shader_program *data;
75 struct texenvprog_cache_item *next;
76 };
77
78 static GLboolean
79 texenv_doing_secondary_color(struct gl_context *ctx)
80 {
81 if (ctx->Light.Enabled &&
82 (ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR))
83 return GL_TRUE;
84
85 if (ctx->Fog.ColorSumEnabled)
86 return GL_TRUE;
87
88 return GL_FALSE;
89 }
90
91 struct mode_opt {
92 #ifdef __GNUC__
93 __extension__ GLubyte Source:4; /**< SRC_x */
94 __extension__ GLubyte Operand:3; /**< OPR_x */
95 #else
96 GLubyte Source; /**< SRC_x */
97 GLubyte Operand; /**< OPR_x */
98 #endif
99 };
100
101 struct state_key {
102 GLuint nr_enabled_units:8;
103 GLuint enabled_units:8;
104 GLuint separate_specular:1;
105 GLuint fog_enabled:1;
106 GLuint fog_mode:2; /**< FOG_x */
107 GLuint inputs_available:12;
108 GLuint num_draw_buffers:4;
109
110 /* NOTE: This array of structs must be last! (see "keySize" below) */
111 struct {
112 GLuint enabled:1;
113 GLuint source_index:4; /**< TEXTURE_x_INDEX */
114 GLuint shadow:1;
115 GLuint ScaleShiftRGB:2;
116 GLuint ScaleShiftA:2;
117
118 GLuint NumArgsRGB:3; /**< up to MAX_COMBINER_TERMS */
119 GLuint ModeRGB:5; /**< MODE_x */
120
121 GLuint NumArgsA:3; /**< up to MAX_COMBINER_TERMS */
122 GLuint ModeA:5; /**< MODE_x */
123
124 struct mode_opt OptRGB[MAX_COMBINER_TERMS];
125 struct mode_opt OptA[MAX_COMBINER_TERMS];
126 } unit[MAX_TEXTURE_UNITS];
127 };
128
129 #define FOG_LINEAR 0
130 #define FOG_EXP 1
131 #define FOG_EXP2 2
132 #define FOG_UNKNOWN 3
133
134 static GLuint translate_fog_mode( GLenum mode )
135 {
136 switch (mode) {
137 case GL_LINEAR: return FOG_LINEAR;
138 case GL_EXP: return FOG_EXP;
139 case GL_EXP2: return FOG_EXP2;
140 default: return FOG_UNKNOWN;
141 }
142 }
143
144 #define OPR_SRC_COLOR 0
145 #define OPR_ONE_MINUS_SRC_COLOR 1
146 #define OPR_SRC_ALPHA 2
147 #define OPR_ONE_MINUS_SRC_ALPHA 3
148 #define OPR_ZERO 4
149 #define OPR_ONE 5
150 #define OPR_UNKNOWN 7
151
152 static GLuint translate_operand( GLenum operand )
153 {
154 switch (operand) {
155 case GL_SRC_COLOR: return OPR_SRC_COLOR;
156 case GL_ONE_MINUS_SRC_COLOR: return OPR_ONE_MINUS_SRC_COLOR;
157 case GL_SRC_ALPHA: return OPR_SRC_ALPHA;
158 case GL_ONE_MINUS_SRC_ALPHA: return OPR_ONE_MINUS_SRC_ALPHA;
159 case GL_ZERO: return OPR_ZERO;
160 case GL_ONE: return OPR_ONE;
161 default:
162 assert(0);
163 return OPR_UNKNOWN;
164 }
165 }
166
167 #define SRC_TEXTURE 0
168 #define SRC_TEXTURE0 1
169 #define SRC_TEXTURE1 2
170 #define SRC_TEXTURE2 3
171 #define SRC_TEXTURE3 4
172 #define SRC_TEXTURE4 5
173 #define SRC_TEXTURE5 6
174 #define SRC_TEXTURE6 7
175 #define SRC_TEXTURE7 8
176 #define SRC_CONSTANT 9
177 #define SRC_PRIMARY_COLOR 10
178 #define SRC_PREVIOUS 11
179 #define SRC_ZERO 12
180 #define SRC_UNKNOWN 15
181
182 static GLuint translate_source( GLenum src )
183 {
184 switch (src) {
185 case GL_TEXTURE: return SRC_TEXTURE;
186 case GL_TEXTURE0:
187 case GL_TEXTURE1:
188 case GL_TEXTURE2:
189 case GL_TEXTURE3:
190 case GL_TEXTURE4:
191 case GL_TEXTURE5:
192 case GL_TEXTURE6:
193 case GL_TEXTURE7: return SRC_TEXTURE0 + (src - GL_TEXTURE0);
194 case GL_CONSTANT: return SRC_CONSTANT;
195 case GL_PRIMARY_COLOR: return SRC_PRIMARY_COLOR;
196 case GL_PREVIOUS: return SRC_PREVIOUS;
197 case GL_ZERO:
198 return SRC_ZERO;
199 default:
200 assert(0);
201 return SRC_UNKNOWN;
202 }
203 }
204
205 #define MODE_REPLACE 0 /* r = a0 */
206 #define MODE_MODULATE 1 /* r = a0 * a1 */
207 #define MODE_ADD 2 /* r = a0 + a1 */
208 #define MODE_ADD_SIGNED 3 /* r = a0 + a1 - 0.5 */
209 #define MODE_INTERPOLATE 4 /* r = a0 * a2 + a1 * (1 - a2) */
210 #define MODE_SUBTRACT 5 /* r = a0 - a1 */
211 #define MODE_DOT3_RGB 6 /* r = a0 . a1 */
212 #define MODE_DOT3_RGB_EXT 7 /* r = a0 . a1 */
213 #define MODE_DOT3_RGBA 8 /* r = a0 . a1 */
214 #define MODE_DOT3_RGBA_EXT 9 /* r = a0 . a1 */
215 #define MODE_MODULATE_ADD_ATI 10 /* r = a0 * a2 + a1 */
216 #define MODE_MODULATE_SIGNED_ADD_ATI 11 /* r = a0 * a2 + a1 - 0.5 */
217 #define MODE_MODULATE_SUBTRACT_ATI 12 /* r = a0 * a2 - a1 */
218 #define MODE_ADD_PRODUCTS 13 /* r = a0 * a1 + a2 * a3 */
219 #define MODE_ADD_PRODUCTS_SIGNED 14 /* r = a0 * a1 + a2 * a3 - 0.5 */
220 #define MODE_UNKNOWN 16
221
222 /**
223 * Translate GL combiner state into a MODE_x value
224 */
225 static GLuint translate_mode( GLenum envMode, GLenum mode )
226 {
227 switch (mode) {
228 case GL_REPLACE: return MODE_REPLACE;
229 case GL_MODULATE: return MODE_MODULATE;
230 case GL_ADD:
231 if (envMode == GL_COMBINE4_NV)
232 return MODE_ADD_PRODUCTS;
233 else
234 return MODE_ADD;
235 case GL_ADD_SIGNED:
236 if (envMode == GL_COMBINE4_NV)
237 return MODE_ADD_PRODUCTS_SIGNED;
238 else
239 return MODE_ADD_SIGNED;
240 case GL_INTERPOLATE: return MODE_INTERPOLATE;
241 case GL_SUBTRACT: return MODE_SUBTRACT;
242 case GL_DOT3_RGB: return MODE_DOT3_RGB;
243 case GL_DOT3_RGB_EXT: return MODE_DOT3_RGB_EXT;
244 case GL_DOT3_RGBA: return MODE_DOT3_RGBA;
245 case GL_DOT3_RGBA_EXT: return MODE_DOT3_RGBA_EXT;
246 case GL_MODULATE_ADD_ATI: return MODE_MODULATE_ADD_ATI;
247 case GL_MODULATE_SIGNED_ADD_ATI: return MODE_MODULATE_SIGNED_ADD_ATI;
248 case GL_MODULATE_SUBTRACT_ATI: return MODE_MODULATE_SUBTRACT_ATI;
249 default:
250 assert(0);
251 return MODE_UNKNOWN;
252 }
253 }
254
255
256 /**
257 * Do we need to clamp the results of the given texture env/combine mode?
258 * If the inputs to the mode are in [0,1] we don't always have to clamp
259 * the results.
260 */
261 static GLboolean
262 need_saturate( GLuint mode )
263 {
264 switch (mode) {
265 case MODE_REPLACE:
266 case MODE_MODULATE:
267 case MODE_INTERPOLATE:
268 return GL_FALSE;
269 case MODE_ADD:
270 case MODE_ADD_SIGNED:
271 case MODE_SUBTRACT:
272 case MODE_DOT3_RGB:
273 case MODE_DOT3_RGB_EXT:
274 case MODE_DOT3_RGBA:
275 case MODE_DOT3_RGBA_EXT:
276 case MODE_MODULATE_ADD_ATI:
277 case MODE_MODULATE_SIGNED_ADD_ATI:
278 case MODE_MODULATE_SUBTRACT_ATI:
279 case MODE_ADD_PRODUCTS:
280 case MODE_ADD_PRODUCTS_SIGNED:
281 return GL_TRUE;
282 default:
283 assert(0);
284 return GL_FALSE;
285 }
286 }
287
288 #define VERT_BIT_TEX_ANY (0xff << VERT_ATTRIB_TEX0)
289
290 /**
291 * Identify all possible varying inputs. The fragment program will
292 * never reference non-varying inputs, but will track them via state
293 * constants instead.
294 *
295 * This function figures out all the inputs that the fragment program
296 * has access to. The bitmask is later reduced to just those which
297 * are actually referenced.
298 */
299 static GLbitfield get_fp_input_mask( struct gl_context *ctx )
300 {
301 /* _NEW_PROGRAM */
302 const GLboolean vertexShader =
303 (ctx->_Shader->CurrentProgram[MESA_SHADER_VERTEX] &&
304 ctx->_Shader->CurrentProgram[MESA_SHADER_VERTEX]->LinkStatus &&
305 ctx->_Shader->CurrentProgram[MESA_SHADER_VERTEX]->_LinkedShaders[MESA_SHADER_VERTEX]);
306 const GLboolean vertexProgram = ctx->VertexProgram._Enabled;
307 GLbitfield fp_inputs = 0x0;
308
309 if (ctx->VertexProgram._Overriden) {
310 /* Somebody's messing with the vertex program and we don't have
311 * a clue what's happening. Assume that it could be producing
312 * all possible outputs.
313 */
314 fp_inputs = ~0;
315 }
316 else if (ctx->RenderMode == GL_FEEDBACK) {
317 /* _NEW_RENDERMODE */
318 fp_inputs = (VARYING_BIT_COL0 | VARYING_BIT_TEX0);
319 }
320 else if (!(vertexProgram || vertexShader)) {
321 /* Fixed function vertex logic */
322 /* _NEW_VARYING_VP_INPUTS */
323 GLbitfield64 varying_inputs = ctx->varying_vp_inputs;
324
325 /* These get generated in the setup routine regardless of the
326 * vertex program:
327 */
328 /* _NEW_POINT */
329 if (ctx->Point.PointSprite)
330 varying_inputs |= VARYING_BITS_TEX_ANY;
331
332 /* First look at what values may be computed by the generated
333 * vertex program:
334 */
335 /* _NEW_LIGHT */
336 if (ctx->Light.Enabled) {
337 fp_inputs |= VARYING_BIT_COL0;
338
339 if (texenv_doing_secondary_color(ctx))
340 fp_inputs |= VARYING_BIT_COL1;
341 }
342
343 /* _NEW_TEXTURE */
344 fp_inputs |= (ctx->Texture._TexGenEnabled |
345 ctx->Texture._TexMatEnabled) << VARYING_SLOT_TEX0;
346
347 /* Then look at what might be varying as a result of enabled
348 * arrays, etc:
349 */
350 if (varying_inputs & VERT_BIT_COLOR0)
351 fp_inputs |= VARYING_BIT_COL0;
352 if (varying_inputs & VERT_BIT_COLOR1)
353 fp_inputs |= VARYING_BIT_COL1;
354
355 fp_inputs |= (((varying_inputs & VERT_BIT_TEX_ANY) >> VERT_ATTRIB_TEX0)
356 << VARYING_SLOT_TEX0);
357
358 }
359 else {
360 /* calculate from vp->outputs */
361 struct gl_program *vprog;
362 GLbitfield64 vp_outputs;
363
364 /* Choose GLSL vertex shader over ARB vertex program. Need this
365 * since vertex shader state validation comes after fragment state
366 * validation (see additional comments in state.c).
367 */
368 if (vertexShader)
369 vprog = ctx->_Shader->CurrentProgram[MESA_SHADER_VERTEX]->_LinkedShaders[MESA_SHADER_VERTEX]->Program;
370 else
371 vprog = &ctx->VertexProgram.Current->Base;
372
373 vp_outputs = vprog->OutputsWritten;
374
375 /* These get generated in the setup routine regardless of the
376 * vertex program:
377 */
378 /* _NEW_POINT */
379 if (ctx->Point.PointSprite)
380 vp_outputs |= VARYING_BITS_TEX_ANY;
381
382 if (vp_outputs & (1 << VARYING_SLOT_COL0))
383 fp_inputs |= VARYING_BIT_COL0;
384 if (vp_outputs & (1 << VARYING_SLOT_COL1))
385 fp_inputs |= VARYING_BIT_COL1;
386
387 fp_inputs |= (((vp_outputs & VARYING_BITS_TEX_ANY) >> VARYING_SLOT_TEX0)
388 << VARYING_SLOT_TEX0);
389 }
390
391 return fp_inputs;
392 }
393
394
395 /**
396 * Examine current texture environment state and generate a unique
397 * key to identify it.
398 */
399 static GLuint make_state_key( struct gl_context *ctx, struct state_key *key )
400 {
401 GLuint i, j;
402 GLbitfield inputs_referenced = VARYING_BIT_COL0;
403 const GLbitfield inputs_available = get_fp_input_mask( ctx );
404 GLuint keySize;
405
406 memset(key, 0, sizeof(*key));
407
408 /* _NEW_TEXTURE */
409 for (i = 0; i < ctx->Const.MaxTextureUnits; i++) {
410 const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[i];
411 const struct gl_texture_object *texObj = texUnit->_Current;
412 const struct gl_tex_env_combine_state *comb = texUnit->_CurrentCombine;
413 const struct gl_sampler_object *samp;
414 GLenum format;
415
416 if (!texUnit->_Current || !texUnit->Enabled)
417 continue;
418
419 samp = _mesa_get_samplerobj(ctx, i);
420 format = _mesa_texture_base_format(texObj);
421
422 key->unit[i].enabled = 1;
423 key->enabled_units |= (1<<i);
424 key->nr_enabled_units = i + 1;
425 inputs_referenced |= VARYING_BIT_TEX(i);
426
427 key->unit[i].source_index = _mesa_tex_target_to_index(ctx,
428 texObj->Target);
429
430 key->unit[i].shadow =
431 ((samp->CompareMode == GL_COMPARE_R_TO_TEXTURE) &&
432 ((format == GL_DEPTH_COMPONENT) ||
433 (format == GL_DEPTH_STENCIL_EXT)));
434
435 key->unit[i].NumArgsRGB = comb->_NumArgsRGB;
436 key->unit[i].NumArgsA = comb->_NumArgsA;
437
438 key->unit[i].ModeRGB =
439 translate_mode(texUnit->EnvMode, comb->ModeRGB);
440 key->unit[i].ModeA =
441 translate_mode(texUnit->EnvMode, comb->ModeA);
442
443 key->unit[i].ScaleShiftRGB = comb->ScaleShiftRGB;
444 key->unit[i].ScaleShiftA = comb->ScaleShiftA;
445
446 for (j = 0; j < MAX_COMBINER_TERMS; j++) {
447 key->unit[i].OptRGB[j].Operand = translate_operand(comb->OperandRGB[j]);
448 key->unit[i].OptA[j].Operand = translate_operand(comb->OperandA[j]);
449 key->unit[i].OptRGB[j].Source = translate_source(comb->SourceRGB[j]);
450 key->unit[i].OptA[j].Source = translate_source(comb->SourceA[j]);
451 }
452 }
453
454 /* _NEW_LIGHT | _NEW_FOG */
455 if (texenv_doing_secondary_color(ctx)) {
456 key->separate_specular = 1;
457 inputs_referenced |= VARYING_BIT_COL1;
458 }
459
460 /* _NEW_FOG */
461 if (ctx->Fog.Enabled) {
462 key->fog_enabled = 1;
463 key->fog_mode = translate_fog_mode(ctx->Fog.Mode);
464 inputs_referenced |= VARYING_BIT_FOGC; /* maybe */
465 }
466
467 /* _NEW_BUFFERS */
468 key->num_draw_buffers = ctx->DrawBuffer->_NumColorDrawBuffers;
469
470 /* _NEW_COLOR */
471 if (ctx->Color.AlphaEnabled && key->num_draw_buffers == 0) {
472 /* if alpha test is enabled we need to emit at least one color */
473 key->num_draw_buffers = 1;
474 }
475
476 key->inputs_available = (inputs_available & inputs_referenced);
477
478 /* compute size of state key, ignoring unused texture units */
479 keySize = sizeof(*key) - sizeof(key->unit)
480 + key->nr_enabled_units * sizeof(key->unit[0]);
481
482 return keySize;
483 }
484
485
486 /** State used to build the fragment program:
487 */
488 class texenv_fragment_program : public ir_factory {
489 public:
490 struct gl_shader_program *shader_program;
491 struct gl_shader *shader;
492 exec_list *top_instructions;
493 struct state_key *state;
494
495 ir_variable *src_texture[MAX_TEXTURE_COORD_UNITS];
496 /* Reg containing each texture unit's sampled texture color,
497 * else undef.
498 */
499
500 /* Texcoord override from bumpmapping. */
501 ir_variable *texcoord_tex[MAX_TEXTURE_COORD_UNITS];
502
503 /* Reg containing texcoord for a texture unit,
504 * needed for bump mapping, else undef.
505 */
506
507 ir_rvalue *src_previous; /**< Reg containing color from previous
508 * stage. May need to be decl'd.
509 */
510 };
511
512 static ir_rvalue *
513 get_current_attrib(texenv_fragment_program *p, GLuint attrib)
514 {
515 ir_variable *current;
516 ir_rvalue *val;
517
518 current = p->shader->symbols->get_variable("gl_CurrentAttribFragMESA");
519 assert(current);
520 current->data.max_array_access = MAX2(current->data.max_array_access, attrib);
521 val = new(p->mem_ctx) ir_dereference_variable(current);
522 ir_rvalue *index = new(p->mem_ctx) ir_constant(attrib);
523 return new(p->mem_ctx) ir_dereference_array(val, index);
524 }
525
526 static ir_rvalue *
527 get_gl_Color(texenv_fragment_program *p)
528 {
529 if (p->state->inputs_available & VARYING_BIT_COL0) {
530 ir_variable *var = p->shader->symbols->get_variable("gl_Color");
531 assert(var);
532 return new(p->mem_ctx) ir_dereference_variable(var);
533 } else {
534 return get_current_attrib(p, VERT_ATTRIB_COLOR0);
535 }
536 }
537
538 static ir_rvalue *
539 get_source(texenv_fragment_program *p,
540 GLuint src, GLuint unit)
541 {
542 ir_variable *var;
543 ir_dereference *deref;
544
545 switch (src) {
546 case SRC_TEXTURE:
547 return new(p->mem_ctx) ir_dereference_variable(p->src_texture[unit]);
548
549 case SRC_TEXTURE0:
550 case SRC_TEXTURE1:
551 case SRC_TEXTURE2:
552 case SRC_TEXTURE3:
553 case SRC_TEXTURE4:
554 case SRC_TEXTURE5:
555 case SRC_TEXTURE6:
556 case SRC_TEXTURE7:
557 return new(p->mem_ctx)
558 ir_dereference_variable(p->src_texture[src - SRC_TEXTURE0]);
559
560 case SRC_CONSTANT:
561 var = p->shader->symbols->get_variable("gl_TextureEnvColor");
562 assert(var);
563 deref = new(p->mem_ctx) ir_dereference_variable(var);
564 var->data.max_array_access = MAX2(var->data.max_array_access, unit);
565 return new(p->mem_ctx) ir_dereference_array(deref,
566 new(p->mem_ctx) ir_constant(unit));
567
568 case SRC_PRIMARY_COLOR:
569 var = p->shader->symbols->get_variable("gl_Color");
570 assert(var);
571 return new(p->mem_ctx) ir_dereference_variable(var);
572
573 case SRC_ZERO:
574 return new(p->mem_ctx) ir_constant(0.0f);
575
576 case SRC_PREVIOUS:
577 if (!p->src_previous) {
578 return get_gl_Color(p);
579 } else {
580 return p->src_previous->clone(p->mem_ctx, NULL);
581 }
582
583 default:
584 assert(0);
585 return NULL;
586 }
587 }
588
589 static ir_rvalue *
590 emit_combine_source(texenv_fragment_program *p,
591 GLuint unit,
592 GLuint source,
593 GLuint operand)
594 {
595 ir_rvalue *src;
596
597 src = get_source(p, source, unit);
598
599 switch (operand) {
600 case OPR_ONE_MINUS_SRC_COLOR:
601 return sub(new(p->mem_ctx) ir_constant(1.0f), src);
602
603 case OPR_SRC_ALPHA:
604 return src->type->is_scalar() ? src : swizzle_w(src);
605
606 case OPR_ONE_MINUS_SRC_ALPHA: {
607 ir_rvalue *const scalar = src->type->is_scalar() ? src : swizzle_w(src);
608
609 return sub(new(p->mem_ctx) ir_constant(1.0f), scalar);
610 }
611
612 case OPR_ZERO:
613 return new(p->mem_ctx) ir_constant(0.0f);
614 case OPR_ONE:
615 return new(p->mem_ctx) ir_constant(1.0f);
616 case OPR_SRC_COLOR:
617 return src;
618 default:
619 assert(0);
620 return src;
621 }
622 }
623
624 /**
625 * Check if the RGB and Alpha sources and operands match for the given
626 * texture unit's combinder state. When the RGB and A sources and
627 * operands match, we can emit fewer instructions.
628 */
629 static GLboolean args_match( const struct state_key *key, GLuint unit )
630 {
631 GLuint i, numArgs = key->unit[unit].NumArgsRGB;
632
633 for (i = 0; i < numArgs; i++) {
634 if (key->unit[unit].OptA[i].Source != key->unit[unit].OptRGB[i].Source)
635 return GL_FALSE;
636
637 switch (key->unit[unit].OptA[i].Operand) {
638 case OPR_SRC_ALPHA:
639 switch (key->unit[unit].OptRGB[i].Operand) {
640 case OPR_SRC_COLOR:
641 case OPR_SRC_ALPHA:
642 break;
643 default:
644 return GL_FALSE;
645 }
646 break;
647 case OPR_ONE_MINUS_SRC_ALPHA:
648 switch (key->unit[unit].OptRGB[i].Operand) {
649 case OPR_ONE_MINUS_SRC_COLOR:
650 case OPR_ONE_MINUS_SRC_ALPHA:
651 break;
652 default:
653 return GL_FALSE;
654 }
655 break;
656 default:
657 return GL_FALSE; /* impossible */
658 }
659 }
660
661 return GL_TRUE;
662 }
663
664 static ir_rvalue *
665 smear(ir_rvalue *val)
666 {
667 if (!val->type->is_scalar())
668 return val;
669
670 return swizzle_xxxx(val);
671 }
672
673 static ir_rvalue *
674 emit_combine(texenv_fragment_program *p,
675 GLuint unit,
676 GLuint nr,
677 GLuint mode,
678 const struct mode_opt *opt)
679 {
680 ir_rvalue *src[MAX_COMBINER_TERMS];
681 ir_rvalue *tmp0, *tmp1;
682 GLuint i;
683
684 assert(nr <= MAX_COMBINER_TERMS);
685
686 for (i = 0; i < nr; i++)
687 src[i] = emit_combine_source( p, unit, opt[i].Source, opt[i].Operand );
688
689 switch (mode) {
690 case MODE_REPLACE:
691 return src[0];
692
693 case MODE_MODULATE:
694 return mul(src[0], src[1]);
695
696 case MODE_ADD:
697 return add(src[0], src[1]);
698
699 case MODE_ADD_SIGNED:
700 return add(add(src[0], src[1]), new(p->mem_ctx) ir_constant(-0.5f));
701
702 case MODE_INTERPOLATE:
703 /* Arg0 * (Arg2) + Arg1 * (1-Arg2) */
704 tmp0 = mul(src[0], src[2]);
705 tmp1 = mul(src[1], sub(new(p->mem_ctx) ir_constant(1.0f),
706 src[2]->clone(p->mem_ctx, NULL)));
707 return add(tmp0, tmp1);
708
709 case MODE_SUBTRACT:
710 return sub(src[0], src[1]);
711
712 case MODE_DOT3_RGBA:
713 case MODE_DOT3_RGBA_EXT:
714 case MODE_DOT3_RGB_EXT:
715 case MODE_DOT3_RGB: {
716 tmp0 = mul(src[0], new(p->mem_ctx) ir_constant(2.0f));
717 tmp0 = add(tmp0, new(p->mem_ctx) ir_constant(-1.0f));
718
719 tmp1 = mul(src[1], new(p->mem_ctx) ir_constant(2.0f));
720 tmp1 = add(tmp1, new(p->mem_ctx) ir_constant(-1.0f));
721
722 return dot(swizzle_xyz(smear(tmp0)), swizzle_xyz(smear(tmp1)));
723 }
724 case MODE_MODULATE_ADD_ATI:
725 return add(mul(src[0], src[2]), src[1]);
726
727 case MODE_MODULATE_SIGNED_ADD_ATI:
728 return add(add(mul(src[0], src[2]), src[1]),
729 new(p->mem_ctx) ir_constant(-0.5f));
730
731 case MODE_MODULATE_SUBTRACT_ATI:
732 return sub(mul(src[0], src[2]), src[1]);
733
734 case MODE_ADD_PRODUCTS:
735 return add(mul(src[0], src[1]), mul(src[2], src[3]));
736
737 case MODE_ADD_PRODUCTS_SIGNED:
738 return add(add(mul(src[0], src[1]), mul(src[2], src[3])),
739 new(p->mem_ctx) ir_constant(-0.5f));
740 default:
741 assert(0);
742 return src[0];
743 }
744 }
745
746 /**
747 * Generate instructions for one texture unit's env/combiner mode.
748 */
749 static ir_rvalue *
750 emit_texenv(texenv_fragment_program *p, GLuint unit)
751 {
752 const struct state_key *key = p->state;
753 GLboolean rgb_saturate, alpha_saturate;
754 GLuint rgb_shift, alpha_shift;
755
756 if (!key->unit[unit].enabled) {
757 return get_source(p, SRC_PREVIOUS, 0);
758 }
759
760 switch (key->unit[unit].ModeRGB) {
761 case MODE_DOT3_RGB_EXT:
762 alpha_shift = key->unit[unit].ScaleShiftA;
763 rgb_shift = 0;
764 break;
765 case MODE_DOT3_RGBA_EXT:
766 alpha_shift = 0;
767 rgb_shift = 0;
768 break;
769 default:
770 rgb_shift = key->unit[unit].ScaleShiftRGB;
771 alpha_shift = key->unit[unit].ScaleShiftA;
772 break;
773 }
774
775 /* If we'll do rgb/alpha shifting don't saturate in emit_combine().
776 * We don't want to clamp twice.
777 */
778 if (rgb_shift)
779 rgb_saturate = GL_FALSE; /* saturate after rgb shift */
780 else if (need_saturate(key->unit[unit].ModeRGB))
781 rgb_saturate = GL_TRUE;
782 else
783 rgb_saturate = GL_FALSE;
784
785 if (alpha_shift)
786 alpha_saturate = GL_FALSE; /* saturate after alpha shift */
787 else if (need_saturate(key->unit[unit].ModeA))
788 alpha_saturate = GL_TRUE;
789 else
790 alpha_saturate = GL_FALSE;
791
792 ir_variable *temp_var = p->make_temp(glsl_type::vec4_type, "texenv_combine");
793 ir_dereference *deref;
794 ir_rvalue *val;
795
796 /* Emit the RGB and A combine ops
797 */
798 if (key->unit[unit].ModeRGB == key->unit[unit].ModeA &&
799 args_match(key, unit)) {
800 val = emit_combine(p, unit,
801 key->unit[unit].NumArgsRGB,
802 key->unit[unit].ModeRGB,
803 key->unit[unit].OptRGB);
804 val = smear(val);
805 if (rgb_saturate)
806 val = saturate(val);
807
808 p->emit(assign(temp_var, val));
809 }
810 else if (key->unit[unit].ModeRGB == MODE_DOT3_RGBA_EXT ||
811 key->unit[unit].ModeRGB == MODE_DOT3_RGBA) {
812 ir_rvalue *val = emit_combine(p, unit,
813 key->unit[unit].NumArgsRGB,
814 key->unit[unit].ModeRGB,
815 key->unit[unit].OptRGB);
816 val = smear(val);
817 if (rgb_saturate)
818 val = saturate(val);
819 p->emit(assign(temp_var, val));
820 }
821 else {
822 /* Need to do something to stop from re-emitting identical
823 * argument calculations here:
824 */
825 val = emit_combine(p, unit,
826 key->unit[unit].NumArgsRGB,
827 key->unit[unit].ModeRGB,
828 key->unit[unit].OptRGB);
829 val = swizzle_xyz(smear(val));
830 if (rgb_saturate)
831 val = saturate(val);
832 p->emit(assign(temp_var, val, WRITEMASK_XYZ));
833
834 val = emit_combine(p, unit,
835 key->unit[unit].NumArgsA,
836 key->unit[unit].ModeA,
837 key->unit[unit].OptA);
838 val = swizzle_w(smear(val));
839 if (alpha_saturate)
840 val = saturate(val);
841 p->emit(assign(temp_var, val, WRITEMASK_W));
842 }
843
844 deref = new(p->mem_ctx) ir_dereference_variable(temp_var);
845
846 /* Deal with the final shift:
847 */
848 if (alpha_shift || rgb_shift) {
849 ir_constant *shift;
850
851 if (rgb_shift == alpha_shift) {
852 shift = new(p->mem_ctx) ir_constant((float)(1 << rgb_shift));
853 }
854 else {
855 ir_constant_data const_data;
856
857 const_data.f[0] = float(1 << rgb_shift);
858 const_data.f[1] = float(1 << rgb_shift);
859 const_data.f[2] = float(1 << rgb_shift);
860 const_data.f[3] = float(1 << alpha_shift);
861
862 shift = new(p->mem_ctx) ir_constant(glsl_type::vec4_type,
863 &const_data);
864 }
865
866 return saturate(mul(deref, shift));
867 }
868 else
869 return deref;
870 }
871
872
873 /**
874 * Generate instruction for getting a texture source term.
875 */
876 static void load_texture( texenv_fragment_program *p, GLuint unit )
877 {
878 ir_dereference *deref;
879
880 if (p->src_texture[unit])
881 return;
882
883 const GLuint texTarget = p->state->unit[unit].source_index;
884 ir_rvalue *texcoord;
885
886 if (!(p->state->inputs_available & (VARYING_BIT_TEX0 << unit))) {
887 texcoord = get_current_attrib(p, VERT_ATTRIB_TEX0 + unit);
888 } else if (p->texcoord_tex[unit]) {
889 texcoord = new(p->mem_ctx) ir_dereference_variable(p->texcoord_tex[unit]);
890 } else {
891 ir_variable *tc_array = p->shader->symbols->get_variable("gl_TexCoord");
892 assert(tc_array);
893 texcoord = new(p->mem_ctx) ir_dereference_variable(tc_array);
894 ir_rvalue *index = new(p->mem_ctx) ir_constant(unit);
895 texcoord = new(p->mem_ctx) ir_dereference_array(texcoord, index);
896 tc_array->data.max_array_access = MAX2(tc_array->data.max_array_access, unit);
897 }
898
899 if (!p->state->unit[unit].enabled) {
900 p->src_texture[unit] = p->make_temp(glsl_type::vec4_type,
901 "dummy_tex");
902 p->emit(p->src_texture[unit]);
903
904 p->emit(assign(p->src_texture[unit], new(p->mem_ctx) ir_constant(0.0f)));
905 return ;
906 }
907
908 const glsl_type *sampler_type = NULL;
909 int coords = 0;
910
911 switch (texTarget) {
912 case TEXTURE_1D_INDEX:
913 if (p->state->unit[unit].shadow)
914 sampler_type = glsl_type::sampler1DShadow_type;
915 else
916 sampler_type = glsl_type::sampler1D_type;
917 coords = 1;
918 break;
919 case TEXTURE_1D_ARRAY_INDEX:
920 if (p->state->unit[unit].shadow)
921 sampler_type = glsl_type::sampler1DArrayShadow_type;
922 else
923 sampler_type = glsl_type::sampler1DArray_type;
924 coords = 2;
925 break;
926 case TEXTURE_2D_INDEX:
927 if (p->state->unit[unit].shadow)
928 sampler_type = glsl_type::sampler2DShadow_type;
929 else
930 sampler_type = glsl_type::sampler2D_type;
931 coords = 2;
932 break;
933 case TEXTURE_2D_ARRAY_INDEX:
934 if (p->state->unit[unit].shadow)
935 sampler_type = glsl_type::sampler2DArrayShadow_type;
936 else
937 sampler_type = glsl_type::sampler2DArray_type;
938 coords = 3;
939 break;
940 case TEXTURE_RECT_INDEX:
941 if (p->state->unit[unit].shadow)
942 sampler_type = glsl_type::sampler2DRectShadow_type;
943 else
944 sampler_type = glsl_type::sampler2DRect_type;
945 coords = 2;
946 break;
947 case TEXTURE_3D_INDEX:
948 assert(!p->state->unit[unit].shadow);
949 sampler_type = glsl_type::sampler3D_type;
950 coords = 3;
951 break;
952 case TEXTURE_CUBE_INDEX:
953 if (p->state->unit[unit].shadow)
954 sampler_type = glsl_type::samplerCubeShadow_type;
955 else
956 sampler_type = glsl_type::samplerCube_type;
957 coords = 3;
958 break;
959 case TEXTURE_EXTERNAL_INDEX:
960 assert(!p->state->unit[unit].shadow);
961 sampler_type = glsl_type::samplerExternalOES_type;
962 coords = 2;
963 break;
964 }
965
966 p->src_texture[unit] = p->make_temp(glsl_type::vec4_type,
967 "tex");
968
969 ir_texture *tex = new(p->mem_ctx) ir_texture(ir_tex);
970
971
972 char *sampler_name = ralloc_asprintf(p->mem_ctx, "sampler_%d", unit);
973 ir_variable *sampler = new(p->mem_ctx) ir_variable(sampler_type,
974 sampler_name,
975 ir_var_uniform);
976 p->top_instructions->push_head(sampler);
977
978 /* Set the texture unit for this sampler in the same way that
979 * layout(binding=X) would.
980 */
981 sampler->data.explicit_binding = true;
982 sampler->data.binding = unit;
983
984 deref = new(p->mem_ctx) ir_dereference_variable(sampler);
985 tex->set_sampler(deref, glsl_type::vec4_type);
986
987 tex->coordinate = new(p->mem_ctx) ir_swizzle(texcoord, 0, 1, 2, 3, coords);
988
989 if (p->state->unit[unit].shadow) {
990 texcoord = texcoord->clone(p->mem_ctx, NULL);
991 tex->shadow_comparitor = new(p->mem_ctx) ir_swizzle(texcoord,
992 coords, 0, 0, 0,
993 1);
994 coords++;
995 }
996
997 texcoord = texcoord->clone(p->mem_ctx, NULL);
998 tex->projector = swizzle_w(texcoord);
999
1000 p->emit(assign(p->src_texture[unit], tex));
1001 }
1002
1003 static void
1004 load_texenv_source(texenv_fragment_program *p,
1005 GLuint src, GLuint unit)
1006 {
1007 switch (src) {
1008 case SRC_TEXTURE:
1009 load_texture(p, unit);
1010 break;
1011
1012 case SRC_TEXTURE0:
1013 case SRC_TEXTURE1:
1014 case SRC_TEXTURE2:
1015 case SRC_TEXTURE3:
1016 case SRC_TEXTURE4:
1017 case SRC_TEXTURE5:
1018 case SRC_TEXTURE6:
1019 case SRC_TEXTURE7:
1020 load_texture(p, src - SRC_TEXTURE0);
1021 break;
1022
1023 default:
1024 /* not a texture src - do nothing */
1025 break;
1026 }
1027 }
1028
1029
1030 /**
1031 * Generate instructions for loading all texture source terms.
1032 */
1033 static GLboolean
1034 load_texunit_sources( texenv_fragment_program *p, GLuint unit )
1035 {
1036 const struct state_key *key = p->state;
1037 GLuint i;
1038
1039 for (i = 0; i < key->unit[unit].NumArgsRGB; i++) {
1040 load_texenv_source( p, key->unit[unit].OptRGB[i].Source, unit );
1041 }
1042
1043 for (i = 0; i < key->unit[unit].NumArgsA; i++) {
1044 load_texenv_source( p, key->unit[unit].OptA[i].Source, unit );
1045 }
1046
1047 return GL_TRUE;
1048 }
1049
1050 /**
1051 * Applies the fog calculations.
1052 *
1053 * This is basically like the ARB_fragment_prorgam fog options. Note
1054 * that ffvertex_prog.c produces fogcoord for us when
1055 * GL_FOG_COORDINATE_EXT is set to GL_FRAGMENT_DEPTH_EXT.
1056 */
1057 static ir_rvalue *
1058 emit_fog_instructions(texenv_fragment_program *p,
1059 ir_rvalue *fragcolor)
1060 {
1061 struct state_key *key = p->state;
1062 ir_rvalue *f, *temp;
1063 ir_variable *params, *oparams;
1064 ir_variable *fogcoord;
1065
1066 /* Temporary storage for the whole fog result. Fog calculations
1067 * only affect rgb so we're hanging on to the .a value of fragcolor
1068 * this way.
1069 */
1070 ir_variable *fog_result = p->make_temp(glsl_type::vec4_type, "fog_result");
1071 p->emit(assign(fog_result, fragcolor));
1072
1073 fragcolor = swizzle_xyz(fog_result);
1074
1075 oparams = p->shader->symbols->get_variable("gl_FogParamsOptimizedMESA");
1076 assert(oparams);
1077 fogcoord = p->shader->symbols->get_variable("gl_FogFragCoord");
1078 assert(fogcoord);
1079 params = p->shader->symbols->get_variable("gl_Fog");
1080 assert(params);
1081 f = new(p->mem_ctx) ir_dereference_variable(fogcoord);
1082
1083 ir_variable *f_var = p->make_temp(glsl_type::float_type, "fog_factor");
1084
1085 switch (key->fog_mode) {
1086 case FOG_LINEAR:
1087 /* f = (end - z) / (end - start)
1088 *
1089 * gl_MesaFogParamsOptimized gives us (-1 / (end - start)) and
1090 * (end / (end - start)) so we can generate a single MAD.
1091 */
1092 f = add(mul(f, swizzle_x(oparams)), swizzle_y(oparams));
1093 break;
1094 case FOG_EXP:
1095 /* f = e^(-(density * fogcoord))
1096 *
1097 * gl_MesaFogParamsOptimized gives us density/ln(2) so we can
1098 * use EXP2 which is generally the native instruction without
1099 * having to do any further math on the fog density uniform.
1100 */
1101 f = mul(f, swizzle_z(oparams));
1102 f = new(p->mem_ctx) ir_expression(ir_unop_neg, f);
1103 f = new(p->mem_ctx) ir_expression(ir_unop_exp2, f);
1104 break;
1105 case FOG_EXP2:
1106 /* f = e^(-(density * fogcoord)^2)
1107 *
1108 * gl_MesaFogParamsOptimized gives us density/sqrt(ln(2)) so we
1109 * can do this like FOG_EXP but with a squaring after the
1110 * multiply by density.
1111 */
1112 ir_variable *temp_var = p->make_temp(glsl_type::float_type, "fog_temp");
1113 p->emit(assign(temp_var, mul(f, swizzle_w(oparams))));
1114
1115 f = mul(temp_var, temp_var);
1116 f = new(p->mem_ctx) ir_expression(ir_unop_neg, f);
1117 f = new(p->mem_ctx) ir_expression(ir_unop_exp2, f);
1118 break;
1119 }
1120
1121 p->emit(assign(f_var, saturate(f)));
1122
1123 f = sub(new(p->mem_ctx) ir_constant(1.0f), f_var);
1124 temp = new(p->mem_ctx) ir_dereference_variable(params);
1125 temp = new(p->mem_ctx) ir_dereference_record(temp, "color");
1126 temp = mul(swizzle_xyz(temp), f);
1127
1128 p->emit(assign(fog_result, add(temp, mul(fragcolor, f_var)), WRITEMASK_XYZ));
1129
1130 return new(p->mem_ctx) ir_dereference_variable(fog_result);
1131 }
1132
1133 static void
1134 emit_instructions(texenv_fragment_program *p)
1135 {
1136 struct state_key *key = p->state;
1137 GLuint unit;
1138
1139 if (key->enabled_units) {
1140 /* First pass - to support texture_env_crossbar, first identify
1141 * all referenced texture sources and emit texld instructions
1142 * for each:
1143 */
1144 for (unit = 0; unit < key->nr_enabled_units; unit++)
1145 if (key->unit[unit].enabled) {
1146 load_texunit_sources(p, unit);
1147 }
1148
1149 /* Second pass - emit combine instructions to build final color:
1150 */
1151 for (unit = 0; unit < key->nr_enabled_units; unit++) {
1152 if (key->unit[unit].enabled) {
1153 p->src_previous = emit_texenv(p, unit);
1154 }
1155 }
1156 }
1157
1158 ir_rvalue *cf = get_source(p, SRC_PREVIOUS, 0);
1159
1160 if (key->separate_specular) {
1161 ir_variable *spec_result = p->make_temp(glsl_type::vec4_type,
1162 "specular_add");
1163 p->emit(assign(spec_result, cf));
1164
1165 ir_rvalue *secondary;
1166 if (p->state->inputs_available & VARYING_BIT_COL1) {
1167 ir_variable *var =
1168 p->shader->symbols->get_variable("gl_SecondaryColor");
1169 assert(var);
1170 secondary = swizzle_xyz(var);
1171 } else {
1172 secondary = swizzle_xyz(get_current_attrib(p, VERT_ATTRIB_COLOR1));
1173 }
1174
1175 p->emit(assign(spec_result, add(swizzle_xyz(spec_result), secondary),
1176 WRITEMASK_XYZ));
1177
1178 cf = new(p->mem_ctx) ir_dereference_variable(spec_result);
1179 }
1180
1181 if (key->fog_enabled) {
1182 cf = emit_fog_instructions(p, cf);
1183 }
1184
1185 ir_variable *frag_color = p->shader->symbols->get_variable("gl_FragColor");
1186 assert(frag_color);
1187 p->emit(assign(frag_color, cf));
1188 }
1189
1190 /**
1191 * Generate a new fragment program which implements the context's
1192 * current texture env/combine mode.
1193 */
1194 static struct gl_shader_program *
1195 create_new_program(struct gl_context *ctx, struct state_key *key)
1196 {
1197 texenv_fragment_program p;
1198 unsigned int unit;
1199 _mesa_glsl_parse_state *state;
1200
1201 p.mem_ctx = ralloc_context(NULL);
1202 p.shader = ctx->Driver.NewShader(ctx, 0, GL_FRAGMENT_SHADER);
1203 p.shader->ir = new(p.shader) exec_list;
1204 state = new(p.shader) _mesa_glsl_parse_state(ctx, MESA_SHADER_FRAGMENT,
1205 p.shader);
1206 p.shader->symbols = state->symbols;
1207 p.top_instructions = p.shader->ir;
1208 p.instructions = p.shader->ir;
1209 p.state = key;
1210 p.shader_program = _mesa_new_shader_program(0);
1211
1212 /* Tell the linker to ignore the fact that we're building a
1213 * separate shader, in case we're in a GLES2 context that would
1214 * normally reject that. The real problem is that we're building a
1215 * fixed function program in a GLES2 context at all, but that's a
1216 * big mess to clean up.
1217 */
1218 p.shader_program->SeparateShader = GL_TRUE;
1219
1220 state->language_version = 130;
1221 state->es_shader = false;
1222 if (_mesa_is_gles(ctx) && ctx->Extensions.OES_EGL_image_external)
1223 state->OES_EGL_image_external_enable = true;
1224 _mesa_glsl_initialize_types(state);
1225 _mesa_glsl_initialize_variables(p.instructions, state);
1226
1227 for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) {
1228 p.src_texture[unit] = NULL;
1229 p.texcoord_tex[unit] = NULL;
1230 }
1231
1232 p.src_previous = NULL;
1233
1234 ir_function *main_f = new(p.mem_ctx) ir_function("main");
1235 p.emit(main_f);
1236 state->symbols->add_function(main_f);
1237
1238 ir_function_signature *main_sig =
1239 new(p.mem_ctx) ir_function_signature(glsl_type::void_type);
1240 main_sig->is_defined = true;
1241 main_f->add_signature(main_sig);
1242
1243 p.instructions = &main_sig->body;
1244 if (key->num_draw_buffers)
1245 emit_instructions(&p);
1246
1247 validate_ir_tree(p.shader->ir);
1248
1249 const struct gl_shader_compiler_options *options =
1250 &ctx->Const.ShaderCompilerOptions[MESA_SHADER_FRAGMENT];
1251
1252 while (do_common_optimization(p.shader->ir, false, false, options,
1253 ctx->Const.NativeIntegers))
1254 ;
1255 reparent_ir(p.shader->ir, p.shader->ir);
1256
1257 p.shader->CompileStatus = true;
1258 p.shader->Version = state->language_version;
1259 p.shader->uses_builtin_functions = state->uses_builtin_functions;
1260 p.shader_program->Shaders =
1261 (gl_shader **)malloc(sizeof(*p.shader_program->Shaders));
1262 p.shader_program->Shaders[0] = p.shader;
1263 p.shader_program->NumShaders = 1;
1264
1265 _mesa_glsl_link_shader(ctx, p.shader_program);
1266
1267 if (!p.shader_program->LinkStatus)
1268 _mesa_problem(ctx, "Failed to link fixed function fragment shader: %s\n",
1269 p.shader_program->InfoLog);
1270
1271 ralloc_free(p.mem_ctx);
1272 return p.shader_program;
1273 }
1274
1275 extern "C" {
1276
1277 /**
1278 * Return a fragment program which implements the current
1279 * fixed-function texture, fog and color-sum operations.
1280 */
1281 struct gl_shader_program *
1282 _mesa_get_fixed_func_fragment_program(struct gl_context *ctx)
1283 {
1284 struct gl_shader_program *shader_program;
1285 struct state_key key;
1286 GLuint keySize;
1287
1288 keySize = make_state_key(ctx, &key);
1289
1290 shader_program = (struct gl_shader_program *)
1291 _mesa_search_program_cache(ctx->FragmentProgram.Cache,
1292 &key, keySize);
1293
1294 if (!shader_program) {
1295 shader_program = create_new_program(ctx, &key);
1296
1297 _mesa_shader_cache_insert(ctx, ctx->FragmentProgram.Cache,
1298 &key, keySize, shader_program);
1299 }
1300
1301 return shader_program;
1302 }
1303
1304 }