Merge branch 'glsl-to-tgsi'
[mesa.git] / src / mesa / main / ffvertex_prog.c
1 /**************************************************************************
2 *
3 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 /**
29 * \file ffvertex_prog.c
30 *
31 * Create a vertex program to execute the current fixed function T&L pipeline.
32 * \author Keith Whitwell
33 */
34
35
36 #include "main/glheader.h"
37 #include "main/mtypes.h"
38 #include "main/macros.h"
39 #include "main/mfeatures.h"
40 #include "main/enums.h"
41 #include "main/ffvertex_prog.h"
42 #include "program/program.h"
43 #include "program/prog_cache.h"
44 #include "program/prog_instruction.h"
45 #include "program/prog_parameter.h"
46 #include "program/prog_print.h"
47 #include "program/prog_statevars.h"
48
49
50 /** Max of number of lights and texture coord units */
51 #define NUM_UNITS MAX2(MAX_TEXTURE_COORD_UNITS, MAX_LIGHTS)
52
53 struct state_key {
54 unsigned light_color_material_mask:12;
55 unsigned light_global_enabled:1;
56 unsigned light_local_viewer:1;
57 unsigned light_twoside:1;
58 unsigned material_shininess_is_zero:1;
59 unsigned need_eye_coords:1;
60 unsigned normalize:1;
61 unsigned rescale_normals:1;
62
63 unsigned fog_source_is_depth:1;
64 unsigned separate_specular:1;
65 unsigned point_attenuated:1;
66 unsigned point_array:1;
67 unsigned texture_enabled_global:1;
68 unsigned fragprog_inputs_read:12;
69
70 unsigned varying_vp_inputs;
71
72 struct {
73 unsigned light_enabled:1;
74 unsigned light_eyepos3_is_zero:1;
75 unsigned light_spotcutoff_is_180:1;
76 unsigned light_attenuated:1;
77 unsigned texunit_really_enabled:1;
78 unsigned texmat_enabled:1;
79 unsigned coord_replace:1;
80 unsigned texgen_enabled:4;
81 unsigned texgen_mode0:4;
82 unsigned texgen_mode1:4;
83 unsigned texgen_mode2:4;
84 unsigned texgen_mode3:4;
85 } unit[NUM_UNITS];
86 };
87
88
89 #define TXG_NONE 0
90 #define TXG_OBJ_LINEAR 1
91 #define TXG_EYE_LINEAR 2
92 #define TXG_SPHERE_MAP 3
93 #define TXG_REFLECTION_MAP 4
94 #define TXG_NORMAL_MAP 5
95
96 static GLuint translate_texgen( GLboolean enabled, GLenum mode )
97 {
98 if (!enabled)
99 return TXG_NONE;
100
101 switch (mode) {
102 case GL_OBJECT_LINEAR: return TXG_OBJ_LINEAR;
103 case GL_EYE_LINEAR: return TXG_EYE_LINEAR;
104 case GL_SPHERE_MAP: return TXG_SPHERE_MAP;
105 case GL_REFLECTION_MAP_NV: return TXG_REFLECTION_MAP;
106 case GL_NORMAL_MAP_NV: return TXG_NORMAL_MAP;
107 default: return TXG_NONE;
108 }
109 }
110
111
112
113 static GLboolean check_active_shininess( struct gl_context *ctx,
114 const struct state_key *key,
115 GLuint side )
116 {
117 GLuint bit = 1 << (MAT_ATTRIB_FRONT_SHININESS + side);
118
119 if ((key->varying_vp_inputs & VERT_BIT_COLOR0) &&
120 (key->light_color_material_mask & bit))
121 return GL_TRUE;
122
123 if (key->varying_vp_inputs & (bit << 16))
124 return GL_TRUE;
125
126 if (ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_SHININESS + side][0] != 0.0F)
127 return GL_TRUE;
128
129 return GL_FALSE;
130 }
131
132
133 static void make_state_key( struct gl_context *ctx, struct state_key *key )
134 {
135 const struct gl_fragment_program *fp;
136 GLuint i;
137
138 memset(key, 0, sizeof(struct state_key));
139 fp = ctx->FragmentProgram._Current;
140
141 /* This now relies on texenvprogram.c being active:
142 */
143 assert(fp);
144
145 key->need_eye_coords = ctx->_NeedEyeCoords;
146
147 key->fragprog_inputs_read = fp->Base.InputsRead;
148 key->varying_vp_inputs = ctx->varying_vp_inputs;
149
150 if (ctx->RenderMode == GL_FEEDBACK) {
151 /* make sure the vertprog emits color and tex0 */
152 key->fragprog_inputs_read |= (FRAG_BIT_COL0 | FRAG_BIT_TEX0);
153 }
154
155 key->separate_specular = (ctx->Light.Model.ColorControl ==
156 GL_SEPARATE_SPECULAR_COLOR);
157
158 if (ctx->Light.Enabled) {
159 key->light_global_enabled = 1;
160
161 if (ctx->Light.Model.LocalViewer)
162 key->light_local_viewer = 1;
163
164 if (ctx->Light.Model.TwoSide)
165 key->light_twoside = 1;
166
167 if (ctx->Light.ColorMaterialEnabled) {
168 key->light_color_material_mask = ctx->Light.ColorMaterialBitmask;
169 }
170
171 for (i = 0; i < MAX_LIGHTS; i++) {
172 struct gl_light *light = &ctx->Light.Light[i];
173
174 if (light->Enabled) {
175 key->unit[i].light_enabled = 1;
176
177 if (light->EyePosition[3] == 0.0)
178 key->unit[i].light_eyepos3_is_zero = 1;
179
180 if (light->SpotCutoff == 180.0)
181 key->unit[i].light_spotcutoff_is_180 = 1;
182
183 if (light->ConstantAttenuation != 1.0 ||
184 light->LinearAttenuation != 0.0 ||
185 light->QuadraticAttenuation != 0.0)
186 key->unit[i].light_attenuated = 1;
187 }
188 }
189
190 if (check_active_shininess(ctx, key, 0)) {
191 key->material_shininess_is_zero = 0;
192 }
193 else if (key->light_twoside &&
194 check_active_shininess(ctx, key, 1)) {
195 key->material_shininess_is_zero = 0;
196 }
197 else {
198 key->material_shininess_is_zero = 1;
199 }
200 }
201
202 if (ctx->Transform.Normalize)
203 key->normalize = 1;
204
205 if (ctx->Transform.RescaleNormals)
206 key->rescale_normals = 1;
207
208 if (ctx->Fog.FogCoordinateSource == GL_FRAGMENT_DEPTH_EXT)
209 key->fog_source_is_depth = 1;
210
211 if (ctx->Point._Attenuated)
212 key->point_attenuated = 1;
213
214 #if FEATURE_point_size_array
215 if (ctx->Array.ArrayObj->PointSize.Enabled)
216 key->point_array = 1;
217 #endif
218
219 if (ctx->Texture._TexGenEnabled ||
220 ctx->Texture._TexMatEnabled ||
221 ctx->Texture._EnabledUnits)
222 key->texture_enabled_global = 1;
223
224 for (i = 0; i < MAX_TEXTURE_COORD_UNITS; i++) {
225 struct gl_texture_unit *texUnit = &ctx->Texture.Unit[i];
226
227 if (texUnit->_ReallyEnabled)
228 key->unit[i].texunit_really_enabled = 1;
229
230 if (ctx->Point.PointSprite)
231 if (ctx->Point.CoordReplace[i])
232 key->unit[i].coord_replace = 1;
233
234 if (ctx->Texture._TexMatEnabled & ENABLE_TEXMAT(i))
235 key->unit[i].texmat_enabled = 1;
236
237 if (texUnit->TexGenEnabled) {
238 key->unit[i].texgen_enabled = 1;
239
240 key->unit[i].texgen_mode0 =
241 translate_texgen( texUnit->TexGenEnabled & (1<<0),
242 texUnit->GenS.Mode );
243 key->unit[i].texgen_mode1 =
244 translate_texgen( texUnit->TexGenEnabled & (1<<1),
245 texUnit->GenT.Mode );
246 key->unit[i].texgen_mode2 =
247 translate_texgen( texUnit->TexGenEnabled & (1<<2),
248 texUnit->GenR.Mode );
249 key->unit[i].texgen_mode3 =
250 translate_texgen( texUnit->TexGenEnabled & (1<<3),
251 texUnit->GenQ.Mode );
252 }
253 }
254 }
255
256
257
258 /* Very useful debugging tool - produces annotated listing of
259 * generated program with line/function references for each
260 * instruction back into this file:
261 */
262 #define DISASSEM 0
263
264
265 /* Use uregs to represent registers internally, translate to Mesa's
266 * expected formats on emit.
267 *
268 * NOTE: These are passed by value extensively in this file rather
269 * than as usual by pointer reference. If this disturbs you, try
270 * remembering they are just 32bits in size.
271 *
272 * GCC is smart enough to deal with these dword-sized structures in
273 * much the same way as if I had defined them as dwords and was using
274 * macros to access and set the fields. This is much nicer and easier
275 * to evolve.
276 */
277 struct ureg {
278 GLuint file:4;
279 GLint idx:9; /* relative addressing may be negative */
280 /* sizeof(idx) should == sizeof(prog_src_reg::Index) */
281 GLuint negate:1;
282 GLuint swz:12;
283 GLuint pad:6;
284 };
285
286
287 struct tnl_program {
288 const struct state_key *state;
289 struct gl_vertex_program *program;
290 GLint max_inst; /** number of instructions allocated for program */
291 GLboolean mvp_with_dp4;
292
293 GLuint temp_in_use;
294 GLuint temp_reserved;
295
296 struct ureg eye_position;
297 struct ureg eye_position_z;
298 struct ureg eye_position_normalized;
299 struct ureg transformed_normal;
300 struct ureg identity;
301
302 GLuint materials;
303 GLuint color_materials;
304 };
305
306
307 static const struct ureg undef = {
308 PROGRAM_UNDEFINED,
309 0,
310 0,
311 0,
312 0
313 };
314
315 /* Local shorthand:
316 */
317 #define X SWIZZLE_X
318 #define Y SWIZZLE_Y
319 #define Z SWIZZLE_Z
320 #define W SWIZZLE_W
321
322
323 /* Construct a ureg:
324 */
325 static struct ureg make_ureg(GLuint file, GLint idx)
326 {
327 struct ureg reg;
328 reg.file = file;
329 reg.idx = idx;
330 reg.negate = 0;
331 reg.swz = SWIZZLE_NOOP;
332 reg.pad = 0;
333 return reg;
334 }
335
336
337
338 static struct ureg negate( struct ureg reg )
339 {
340 reg.negate ^= 1;
341 return reg;
342 }
343
344
345 static struct ureg swizzle( struct ureg reg, int x, int y, int z, int w )
346 {
347 reg.swz = MAKE_SWIZZLE4(GET_SWZ(reg.swz, x),
348 GET_SWZ(reg.swz, y),
349 GET_SWZ(reg.swz, z),
350 GET_SWZ(reg.swz, w));
351 return reg;
352 }
353
354
355 static struct ureg swizzle1( struct ureg reg, int x )
356 {
357 return swizzle(reg, x, x, x, x);
358 }
359
360
361 static struct ureg get_temp( struct tnl_program *p )
362 {
363 int bit = _mesa_ffs( ~p->temp_in_use );
364 if (!bit) {
365 _mesa_problem(NULL, "%s: out of temporaries\n", __FILE__);
366 exit(1);
367 }
368
369 if ((GLuint) bit > p->program->Base.NumTemporaries)
370 p->program->Base.NumTemporaries = bit;
371
372 p->temp_in_use |= 1<<(bit-1);
373 return make_ureg(PROGRAM_TEMPORARY, bit-1);
374 }
375
376
377 static struct ureg reserve_temp( struct tnl_program *p )
378 {
379 struct ureg temp = get_temp( p );
380 p->temp_reserved |= 1<<temp.idx;
381 return temp;
382 }
383
384
385 static void release_temp( struct tnl_program *p, struct ureg reg )
386 {
387 if (reg.file == PROGRAM_TEMPORARY) {
388 p->temp_in_use &= ~(1<<reg.idx);
389 p->temp_in_use |= p->temp_reserved; /* can't release reserved temps */
390 }
391 }
392
393 static void release_temps( struct tnl_program *p )
394 {
395 p->temp_in_use = p->temp_reserved;
396 }
397
398
399 static struct ureg register_param5(struct tnl_program *p,
400 GLint s0,
401 GLint s1,
402 GLint s2,
403 GLint s3,
404 GLint s4)
405 {
406 gl_state_index tokens[STATE_LENGTH];
407 GLint idx;
408 tokens[0] = s0;
409 tokens[1] = s1;
410 tokens[2] = s2;
411 tokens[3] = s3;
412 tokens[4] = s4;
413 idx = _mesa_add_state_reference( p->program->Base.Parameters, tokens );
414 return make_ureg(PROGRAM_STATE_VAR, idx);
415 }
416
417
418 #define register_param1(p,s0) register_param5(p,s0,0,0,0,0)
419 #define register_param2(p,s0,s1) register_param5(p,s0,s1,0,0,0)
420 #define register_param3(p,s0,s1,s2) register_param5(p,s0,s1,s2,0,0)
421 #define register_param4(p,s0,s1,s2,s3) register_param5(p,s0,s1,s2,s3,0)
422
423
424
425 /**
426 * \param input one of VERT_ATTRIB_x tokens.
427 */
428 static struct ureg register_input( struct tnl_program *p, GLuint input )
429 {
430 assert(input < 32);
431
432 if (p->state->varying_vp_inputs & (1<<input)) {
433 p->program->Base.InputsRead |= (1<<input);
434 return make_ureg(PROGRAM_INPUT, input);
435 }
436 else {
437 return register_param3( p, STATE_INTERNAL, STATE_CURRENT_ATTRIB, input );
438 }
439 }
440
441
442 /**
443 * \param input one of VERT_RESULT_x tokens.
444 */
445 static struct ureg register_output( struct tnl_program *p, GLuint output )
446 {
447 p->program->Base.OutputsWritten |= BITFIELD64_BIT(output);
448 return make_ureg(PROGRAM_OUTPUT, output);
449 }
450
451
452 static struct ureg register_const4f( struct tnl_program *p,
453 GLfloat s0,
454 GLfloat s1,
455 GLfloat s2,
456 GLfloat s3)
457 {
458 gl_constant_value values[4];
459 GLint idx;
460 GLuint swizzle;
461 values[0].f = s0;
462 values[1].f = s1;
463 values[2].f = s2;
464 values[3].f = s3;
465 idx = _mesa_add_unnamed_constant( p->program->Base.Parameters, values, 4,
466 &swizzle );
467 ASSERT(swizzle == SWIZZLE_NOOP);
468 return make_ureg(PROGRAM_CONSTANT, idx);
469 }
470
471 #define register_const1f(p, s0) register_const4f(p, s0, 0, 0, 1)
472 #define register_scalar_const(p, s0) register_const4f(p, s0, s0, s0, s0)
473 #define register_const2f(p, s0, s1) register_const4f(p, s0, s1, 0, 1)
474 #define register_const3f(p, s0, s1, s2) register_const4f(p, s0, s1, s2, 1)
475
476 static GLboolean is_undef( struct ureg reg )
477 {
478 return reg.file == PROGRAM_UNDEFINED;
479 }
480
481
482 static struct ureg get_identity_param( struct tnl_program *p )
483 {
484 if (is_undef(p->identity))
485 p->identity = register_const4f(p, 0,0,0,1);
486
487 return p->identity;
488 }
489
490 static void register_matrix_param5( struct tnl_program *p,
491 GLint s0, /* modelview, projection, etc */
492 GLint s1, /* texture matrix number */
493 GLint s2, /* first row */
494 GLint s3, /* last row */
495 GLint s4, /* inverse, transpose, etc */
496 struct ureg *matrix )
497 {
498 GLint i;
499
500 /* This is a bit sad as the support is there to pull the whole
501 * matrix out in one go:
502 */
503 for (i = 0; i <= s3 - s2; i++)
504 matrix[i] = register_param5( p, s0, s1, i, i, s4 );
505 }
506
507
508 static void emit_arg( struct prog_src_register *src,
509 struct ureg reg )
510 {
511 src->File = reg.file;
512 src->Index = reg.idx;
513 src->Swizzle = reg.swz;
514 src->Negate = reg.negate ? NEGATE_XYZW : NEGATE_NONE;
515 src->Abs = 0;
516 src->RelAddr = 0;
517 /* Check that bitfield sizes aren't exceeded */
518 ASSERT(src->Index == reg.idx);
519 }
520
521
522 static void emit_dst( struct prog_dst_register *dst,
523 struct ureg reg, GLuint mask )
524 {
525 dst->File = reg.file;
526 dst->Index = reg.idx;
527 /* allow zero as a shorthand for xyzw */
528 dst->WriteMask = mask ? mask : WRITEMASK_XYZW;
529 dst->CondMask = COND_TR; /* always pass cond test */
530 dst->CondSwizzle = SWIZZLE_NOOP;
531 dst->CondSrc = 0;
532 /* Check that bitfield sizes aren't exceeded */
533 ASSERT(dst->Index == reg.idx);
534 }
535
536
537 static void debug_insn( struct prog_instruction *inst, const char *fn,
538 GLuint line )
539 {
540 if (DISASSEM) {
541 static const char *last_fn;
542
543 if (fn != last_fn) {
544 last_fn = fn;
545 printf("%s:\n", fn);
546 }
547
548 printf("%d:\t", line);
549 _mesa_print_instruction(inst);
550 }
551 }
552
553
554 static void emit_op3fn(struct tnl_program *p,
555 enum prog_opcode op,
556 struct ureg dest,
557 GLuint mask,
558 struct ureg src0,
559 struct ureg src1,
560 struct ureg src2,
561 const char *fn,
562 GLuint line)
563 {
564 GLuint nr;
565 struct prog_instruction *inst;
566
567 assert((GLint) p->program->Base.NumInstructions <= p->max_inst);
568
569 if (p->program->Base.NumInstructions == p->max_inst) {
570 /* need to extend the program's instruction array */
571 struct prog_instruction *newInst;
572
573 /* double the size */
574 p->max_inst *= 2;
575
576 newInst = _mesa_alloc_instructions(p->max_inst);
577 if (!newInst) {
578 _mesa_error(NULL, GL_OUT_OF_MEMORY, "vertex program build");
579 return;
580 }
581
582 _mesa_copy_instructions(newInst,
583 p->program->Base.Instructions,
584 p->program->Base.NumInstructions);
585
586 _mesa_free_instructions(p->program->Base.Instructions,
587 p->program->Base.NumInstructions);
588
589 p->program->Base.Instructions = newInst;
590 }
591
592 nr = p->program->Base.NumInstructions++;
593
594 inst = &p->program->Base.Instructions[nr];
595 inst->Opcode = (enum prog_opcode) op;
596 inst->Data = 0;
597
598 emit_arg( &inst->SrcReg[0], src0 );
599 emit_arg( &inst->SrcReg[1], src1 );
600 emit_arg( &inst->SrcReg[2], src2 );
601
602 emit_dst( &inst->DstReg, dest, mask );
603
604 debug_insn(inst, fn, line);
605 }
606
607
608 #define emit_op3(p, op, dst, mask, src0, src1, src2) \
609 emit_op3fn(p, op, dst, mask, src0, src1, src2, __FUNCTION__, __LINE__)
610
611 #define emit_op2(p, op, dst, mask, src0, src1) \
612 emit_op3fn(p, op, dst, mask, src0, src1, undef, __FUNCTION__, __LINE__)
613
614 #define emit_op1(p, op, dst, mask, src0) \
615 emit_op3fn(p, op, dst, mask, src0, undef, undef, __FUNCTION__, __LINE__)
616
617
618 static struct ureg make_temp( struct tnl_program *p, struct ureg reg )
619 {
620 if (reg.file == PROGRAM_TEMPORARY &&
621 !(p->temp_reserved & (1<<reg.idx)))
622 return reg;
623 else {
624 struct ureg temp = get_temp(p);
625 emit_op1(p, OPCODE_MOV, temp, 0, reg);
626 return temp;
627 }
628 }
629
630
631 /* Currently no tracking performed of input/output/register size or
632 * active elements. Could be used to reduce these operations, as
633 * could the matrix type.
634 */
635 static void emit_matrix_transform_vec4( struct tnl_program *p,
636 struct ureg dest,
637 const struct ureg *mat,
638 struct ureg src)
639 {
640 emit_op2(p, OPCODE_DP4, dest, WRITEMASK_X, src, mat[0]);
641 emit_op2(p, OPCODE_DP4, dest, WRITEMASK_Y, src, mat[1]);
642 emit_op2(p, OPCODE_DP4, dest, WRITEMASK_Z, src, mat[2]);
643 emit_op2(p, OPCODE_DP4, dest, WRITEMASK_W, src, mat[3]);
644 }
645
646
647 /* This version is much easier to implement if writemasks are not
648 * supported natively on the target or (like SSE), the target doesn't
649 * have a clean/obvious dotproduct implementation.
650 */
651 static void emit_transpose_matrix_transform_vec4( struct tnl_program *p,
652 struct ureg dest,
653 const struct ureg *mat,
654 struct ureg src)
655 {
656 struct ureg tmp;
657
658 if (dest.file != PROGRAM_TEMPORARY)
659 tmp = get_temp(p);
660 else
661 tmp = dest;
662
663 emit_op2(p, OPCODE_MUL, tmp, 0, swizzle1(src,X), mat[0]);
664 emit_op3(p, OPCODE_MAD, tmp, 0, swizzle1(src,Y), mat[1], tmp);
665 emit_op3(p, OPCODE_MAD, tmp, 0, swizzle1(src,Z), mat[2], tmp);
666 emit_op3(p, OPCODE_MAD, dest, 0, swizzle1(src,W), mat[3], tmp);
667
668 if (dest.file != PROGRAM_TEMPORARY)
669 release_temp(p, tmp);
670 }
671
672
673 static void emit_matrix_transform_vec3( struct tnl_program *p,
674 struct ureg dest,
675 const struct ureg *mat,
676 struct ureg src)
677 {
678 emit_op2(p, OPCODE_DP3, dest, WRITEMASK_X, src, mat[0]);
679 emit_op2(p, OPCODE_DP3, dest, WRITEMASK_Y, src, mat[1]);
680 emit_op2(p, OPCODE_DP3, dest, WRITEMASK_Z, src, mat[2]);
681 }
682
683
684 static void emit_normalize_vec3( struct tnl_program *p,
685 struct ureg dest,
686 struct ureg src )
687 {
688 #if 0
689 /* XXX use this when drivers are ready for NRM3 */
690 emit_op1(p, OPCODE_NRM3, dest, WRITEMASK_XYZ, src);
691 #else
692 struct ureg tmp = get_temp(p);
693 emit_op2(p, OPCODE_DP3, tmp, WRITEMASK_X, src, src);
694 emit_op1(p, OPCODE_RSQ, tmp, WRITEMASK_X, tmp);
695 emit_op2(p, OPCODE_MUL, dest, 0, src, swizzle1(tmp, X));
696 release_temp(p, tmp);
697 #endif
698 }
699
700
701 static void emit_passthrough( struct tnl_program *p,
702 GLuint input,
703 GLuint output )
704 {
705 struct ureg out = register_output(p, output);
706 emit_op1(p, OPCODE_MOV, out, 0, register_input(p, input));
707 }
708
709
710 static struct ureg get_eye_position( struct tnl_program *p )
711 {
712 if (is_undef(p->eye_position)) {
713 struct ureg pos = register_input( p, VERT_ATTRIB_POS );
714 struct ureg modelview[4];
715
716 p->eye_position = reserve_temp(p);
717
718 if (p->mvp_with_dp4) {
719 register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 3,
720 0, modelview );
721
722 emit_matrix_transform_vec4(p, p->eye_position, modelview, pos);
723 }
724 else {
725 register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 3,
726 STATE_MATRIX_TRANSPOSE, modelview );
727
728 emit_transpose_matrix_transform_vec4(p, p->eye_position, modelview, pos);
729 }
730 }
731
732 return p->eye_position;
733 }
734
735
736 static struct ureg get_eye_position_z( struct tnl_program *p )
737 {
738 if (!is_undef(p->eye_position))
739 return swizzle1(p->eye_position, Z);
740
741 if (is_undef(p->eye_position_z)) {
742 struct ureg pos = register_input( p, VERT_ATTRIB_POS );
743 struct ureg modelview[4];
744
745 p->eye_position_z = reserve_temp(p);
746
747 register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 3,
748 0, modelview );
749
750 emit_op2(p, OPCODE_DP4, p->eye_position_z, 0, pos, modelview[2]);
751 }
752
753 return p->eye_position_z;
754 }
755
756
757 static struct ureg get_eye_position_normalized( struct tnl_program *p )
758 {
759 if (is_undef(p->eye_position_normalized)) {
760 struct ureg eye = get_eye_position(p);
761 p->eye_position_normalized = reserve_temp(p);
762 emit_normalize_vec3(p, p->eye_position_normalized, eye);
763 }
764
765 return p->eye_position_normalized;
766 }
767
768
769 static struct ureg get_transformed_normal( struct tnl_program *p )
770 {
771 if (is_undef(p->transformed_normal) &&
772 !p->state->need_eye_coords &&
773 !p->state->normalize &&
774 !(p->state->need_eye_coords == p->state->rescale_normals))
775 {
776 p->transformed_normal = register_input(p, VERT_ATTRIB_NORMAL );
777 }
778 else if (is_undef(p->transformed_normal))
779 {
780 struct ureg normal = register_input(p, VERT_ATTRIB_NORMAL );
781 struct ureg mvinv[3];
782 struct ureg transformed_normal = reserve_temp(p);
783
784 if (p->state->need_eye_coords) {
785 register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 2,
786 STATE_MATRIX_INVTRANS, mvinv );
787
788 /* Transform to eye space:
789 */
790 emit_matrix_transform_vec3( p, transformed_normal, mvinv, normal );
791 normal = transformed_normal;
792 }
793
794 /* Normalize/Rescale:
795 */
796 if (p->state->normalize) {
797 emit_normalize_vec3( p, transformed_normal, normal );
798 normal = transformed_normal;
799 }
800 else if (p->state->need_eye_coords == p->state->rescale_normals) {
801 /* This is already adjusted for eye/non-eye rendering:
802 */
803 struct ureg rescale = register_param2(p, STATE_INTERNAL,
804 STATE_NORMAL_SCALE);
805
806 emit_op2( p, OPCODE_MUL, transformed_normal, 0, normal, rescale );
807 normal = transformed_normal;
808 }
809
810 assert(normal.file == PROGRAM_TEMPORARY);
811 p->transformed_normal = normal;
812 }
813
814 return p->transformed_normal;
815 }
816
817
818 static void build_hpos( struct tnl_program *p )
819 {
820 struct ureg pos = register_input( p, VERT_ATTRIB_POS );
821 struct ureg hpos = register_output( p, VERT_RESULT_HPOS );
822 struct ureg mvp[4];
823
824 if (p->mvp_with_dp4) {
825 register_matrix_param5( p, STATE_MVP_MATRIX, 0, 0, 3,
826 0, mvp );
827 emit_matrix_transform_vec4( p, hpos, mvp, pos );
828 }
829 else {
830 register_matrix_param5( p, STATE_MVP_MATRIX, 0, 0, 3,
831 STATE_MATRIX_TRANSPOSE, mvp );
832 emit_transpose_matrix_transform_vec4( p, hpos, mvp, pos );
833 }
834 }
835
836
837 static GLuint material_attrib( GLuint side, GLuint property )
838 {
839 return (property - STATE_AMBIENT) * 2 + side;
840 }
841
842
843 /**
844 * Get a bitmask of which material values vary on a per-vertex basis.
845 */
846 static void set_material_flags( struct tnl_program *p )
847 {
848 p->color_materials = 0;
849 p->materials = 0;
850
851 if (p->state->varying_vp_inputs & VERT_BIT_COLOR0) {
852 p->materials =
853 p->color_materials = p->state->light_color_material_mask;
854 }
855
856 p->materials |= (p->state->varying_vp_inputs >> 16);
857 }
858
859
860 static struct ureg get_material( struct tnl_program *p, GLuint side,
861 GLuint property )
862 {
863 GLuint attrib = material_attrib(side, property);
864
865 if (p->color_materials & (1<<attrib))
866 return register_input(p, VERT_ATTRIB_COLOR0);
867 else if (p->materials & (1<<attrib)) {
868 /* Put material values in the GENERIC slots -- they are not used
869 * for anything in fixed function mode.
870 */
871 return register_input( p, attrib + VERT_ATTRIB_GENERIC0 );
872 }
873 else
874 return register_param3( p, STATE_MATERIAL, side, property );
875 }
876
877 #define SCENE_COLOR_BITS(side) (( MAT_BIT_FRONT_EMISSION | \
878 MAT_BIT_FRONT_AMBIENT | \
879 MAT_BIT_FRONT_DIFFUSE) << (side))
880
881
882 /**
883 * Either return a precalculated constant value or emit code to
884 * calculate these values dynamically in the case where material calls
885 * are present between begin/end pairs.
886 *
887 * Probably want to shift this to the program compilation phase - if
888 * we always emitted the calculation here, a smart compiler could
889 * detect that it was constant (given a certain set of inputs), and
890 * lift it out of the main loop. That way the programs created here
891 * would be independent of the vertex_buffer details.
892 */
893 static struct ureg get_scenecolor( struct tnl_program *p, GLuint side )
894 {
895 if (p->materials & SCENE_COLOR_BITS(side)) {
896 struct ureg lm_ambient = register_param1(p, STATE_LIGHTMODEL_AMBIENT);
897 struct ureg material_emission = get_material(p, side, STATE_EMISSION);
898 struct ureg material_ambient = get_material(p, side, STATE_AMBIENT);
899 struct ureg material_diffuse = get_material(p, side, STATE_DIFFUSE);
900 struct ureg tmp = make_temp(p, material_diffuse);
901 emit_op3(p, OPCODE_MAD, tmp, WRITEMASK_XYZ, lm_ambient,
902 material_ambient, material_emission);
903 return tmp;
904 }
905 else
906 return register_param2( p, STATE_LIGHTMODEL_SCENECOLOR, side );
907 }
908
909
910 static struct ureg get_lightprod( struct tnl_program *p, GLuint light,
911 GLuint side, GLuint property )
912 {
913 GLuint attrib = material_attrib(side, property);
914 if (p->materials & (1<<attrib)) {
915 struct ureg light_value =
916 register_param3(p, STATE_LIGHT, light, property);
917 struct ureg material_value = get_material(p, side, property);
918 struct ureg tmp = get_temp(p);
919 emit_op2(p, OPCODE_MUL, tmp, 0, light_value, material_value);
920 return tmp;
921 }
922 else
923 return register_param4(p, STATE_LIGHTPROD, light, side, property);
924 }
925
926
927 static struct ureg calculate_light_attenuation( struct tnl_program *p,
928 GLuint i,
929 struct ureg VPpli,
930 struct ureg dist )
931 {
932 struct ureg attenuation = register_param3(p, STATE_LIGHT, i,
933 STATE_ATTENUATION);
934 struct ureg att = get_temp(p);
935
936 /* Calculate spot attenuation:
937 */
938 if (!p->state->unit[i].light_spotcutoff_is_180) {
939 struct ureg spot_dir_norm = register_param3(p, STATE_INTERNAL,
940 STATE_LIGHT_SPOT_DIR_NORMALIZED, i);
941 struct ureg spot = get_temp(p);
942 struct ureg slt = get_temp(p);
943
944 emit_op2(p, OPCODE_DP3, spot, 0, negate(VPpli), spot_dir_norm);
945 emit_op2(p, OPCODE_SLT, slt, 0, swizzle1(spot_dir_norm,W), spot);
946 emit_op2(p, OPCODE_POW, spot, 0, spot, swizzle1(attenuation, W));
947 emit_op2(p, OPCODE_MUL, att, 0, slt, spot);
948
949 release_temp(p, spot);
950 release_temp(p, slt);
951 }
952
953 /* Calculate distance attenuation:
954 */
955 if (p->state->unit[i].light_attenuated) {
956 /* 1/d,d,d,1/d */
957 emit_op1(p, OPCODE_RCP, dist, WRITEMASK_YZ, dist);
958 /* 1,d,d*d,1/d */
959 emit_op2(p, OPCODE_MUL, dist, WRITEMASK_XZ, dist, swizzle1(dist,Y));
960 /* 1/dist-atten */
961 emit_op2(p, OPCODE_DP3, dist, 0, attenuation, dist);
962
963 if (!p->state->unit[i].light_spotcutoff_is_180) {
964 /* dist-atten */
965 emit_op1(p, OPCODE_RCP, dist, 0, dist);
966 /* spot-atten * dist-atten */
967 emit_op2(p, OPCODE_MUL, att, 0, dist, att);
968 }
969 else {
970 /* dist-atten */
971 emit_op1(p, OPCODE_RCP, att, 0, dist);
972 }
973 }
974
975 return att;
976 }
977
978
979 /**
980 * Compute:
981 * lit.y = MAX(0, dots.x)
982 * lit.z = SLT(0, dots.x)
983 */
984 static void emit_degenerate_lit( struct tnl_program *p,
985 struct ureg lit,
986 struct ureg dots )
987 {
988 struct ureg id = get_identity_param(p); /* id = {0,0,0,1} */
989
990 /* Note that lit.x & lit.w will not be examined. Note also that
991 * dots.xyzw == dots.xxxx.
992 */
993
994 /* MAX lit, id, dots;
995 */
996 emit_op2(p, OPCODE_MAX, lit, WRITEMASK_XYZW, id, dots);
997
998 /* result[2] = (in > 0 ? 1 : 0)
999 * SLT lit.z, id.z, dots; # lit.z = (0 < dots.z) ? 1 : 0
1000 */
1001 emit_op2(p, OPCODE_SLT, lit, WRITEMASK_Z, swizzle1(id,Z), dots);
1002 }
1003
1004
1005 /* Need to add some addtional parameters to allow lighting in object
1006 * space - STATE_SPOT_DIRECTION and STATE_HALF_VECTOR implicitly assume eye
1007 * space lighting.
1008 */
1009 static void build_lighting( struct tnl_program *p )
1010 {
1011 const GLboolean twoside = p->state->light_twoside;
1012 const GLboolean separate = p->state->separate_specular;
1013 GLuint nr_lights = 0, count = 0;
1014 struct ureg normal = get_transformed_normal(p);
1015 struct ureg lit = get_temp(p);
1016 struct ureg dots = get_temp(p);
1017 struct ureg _col0 = undef, _col1 = undef;
1018 struct ureg _bfc0 = undef, _bfc1 = undef;
1019 GLuint i;
1020
1021 /*
1022 * NOTE:
1023 * dots.x = dot(normal, VPpli)
1024 * dots.y = dot(normal, halfAngle)
1025 * dots.z = back.shininess
1026 * dots.w = front.shininess
1027 */
1028
1029 for (i = 0; i < MAX_LIGHTS; i++)
1030 if (p->state->unit[i].light_enabled)
1031 nr_lights++;
1032
1033 set_material_flags(p);
1034
1035 {
1036 if (!p->state->material_shininess_is_zero) {
1037 struct ureg shininess = get_material(p, 0, STATE_SHININESS);
1038 emit_op1(p, OPCODE_MOV, dots, WRITEMASK_W, swizzle1(shininess,X));
1039 release_temp(p, shininess);
1040 }
1041
1042 _col0 = make_temp(p, get_scenecolor(p, 0));
1043 if (separate)
1044 _col1 = make_temp(p, get_identity_param(p));
1045 else
1046 _col1 = _col0;
1047 }
1048
1049 if (twoside) {
1050 if (!p->state->material_shininess_is_zero) {
1051 /* Note that we negate the back-face specular exponent here.
1052 * The negation will be un-done later in the back-face code below.
1053 */
1054 struct ureg shininess = get_material(p, 1, STATE_SHININESS);
1055 emit_op1(p, OPCODE_MOV, dots, WRITEMASK_Z,
1056 negate(swizzle1(shininess,X)));
1057 release_temp(p, shininess);
1058 }
1059
1060 _bfc0 = make_temp(p, get_scenecolor(p, 1));
1061 if (separate)
1062 _bfc1 = make_temp(p, get_identity_param(p));
1063 else
1064 _bfc1 = _bfc0;
1065 }
1066
1067 /* If no lights, still need to emit the scenecolor.
1068 */
1069 {
1070 struct ureg res0 = register_output( p, VERT_RESULT_COL0 );
1071 emit_op1(p, OPCODE_MOV, res0, 0, _col0);
1072 }
1073
1074 if (separate) {
1075 struct ureg res1 = register_output( p, VERT_RESULT_COL1 );
1076 emit_op1(p, OPCODE_MOV, res1, 0, _col1);
1077 }
1078
1079 if (twoside) {
1080 struct ureg res0 = register_output( p, VERT_RESULT_BFC0 );
1081 emit_op1(p, OPCODE_MOV, res0, 0, _bfc0);
1082 }
1083
1084 if (twoside && separate) {
1085 struct ureg res1 = register_output( p, VERT_RESULT_BFC1 );
1086 emit_op1(p, OPCODE_MOV, res1, 0, _bfc1);
1087 }
1088
1089 if (nr_lights == 0) {
1090 release_temps(p);
1091 return;
1092 }
1093
1094 for (i = 0; i < MAX_LIGHTS; i++) {
1095 if (p->state->unit[i].light_enabled) {
1096 struct ureg half = undef;
1097 struct ureg att = undef, VPpli = undef;
1098
1099 count++;
1100
1101 if (p->state->unit[i].light_eyepos3_is_zero) {
1102 /* Can used precomputed constants in this case.
1103 * Attenuation never applies to infinite lights.
1104 */
1105 VPpli = register_param3(p, STATE_INTERNAL,
1106 STATE_LIGHT_POSITION_NORMALIZED, i);
1107
1108 if (!p->state->material_shininess_is_zero) {
1109 if (p->state->light_local_viewer) {
1110 struct ureg eye_hat = get_eye_position_normalized(p);
1111 half = get_temp(p);
1112 emit_op2(p, OPCODE_SUB, half, 0, VPpli, eye_hat);
1113 emit_normalize_vec3(p, half, half);
1114 }
1115 else {
1116 half = register_param3(p, STATE_INTERNAL,
1117 STATE_LIGHT_HALF_VECTOR, i);
1118 }
1119 }
1120 }
1121 else {
1122 struct ureg Ppli = register_param3(p, STATE_INTERNAL,
1123 STATE_LIGHT_POSITION, i);
1124 struct ureg V = get_eye_position(p);
1125 struct ureg dist = get_temp(p);
1126
1127 VPpli = get_temp(p);
1128
1129 /* Calculate VPpli vector
1130 */
1131 emit_op2(p, OPCODE_SUB, VPpli, 0, Ppli, V);
1132
1133 /* Normalize VPpli. The dist value also used in
1134 * attenuation below.
1135 */
1136 emit_op2(p, OPCODE_DP3, dist, 0, VPpli, VPpli);
1137 emit_op1(p, OPCODE_RSQ, dist, 0, dist);
1138 emit_op2(p, OPCODE_MUL, VPpli, 0, VPpli, dist);
1139
1140 /* Calculate attenuation:
1141 */
1142 if (!p->state->unit[i].light_spotcutoff_is_180 ||
1143 p->state->unit[i].light_attenuated) {
1144 att = calculate_light_attenuation(p, i, VPpli, dist);
1145 }
1146
1147 /* Calculate viewer direction, or use infinite viewer:
1148 */
1149 if (!p->state->material_shininess_is_zero) {
1150 half = get_temp(p);
1151
1152 if (p->state->light_local_viewer) {
1153 struct ureg eye_hat = get_eye_position_normalized(p);
1154 emit_op2(p, OPCODE_SUB, half, 0, VPpli, eye_hat);
1155 }
1156 else {
1157 struct ureg z_dir = swizzle(get_identity_param(p),X,Y,W,Z);
1158 emit_op2(p, OPCODE_ADD, half, 0, VPpli, z_dir);
1159 }
1160
1161 emit_normalize_vec3(p, half, half);
1162 }
1163
1164 release_temp(p, dist);
1165 }
1166
1167 /* Calculate dot products:
1168 */
1169 if (p->state->material_shininess_is_zero) {
1170 emit_op2(p, OPCODE_DP3, dots, 0, normal, VPpli);
1171 }
1172 else {
1173 emit_op2(p, OPCODE_DP3, dots, WRITEMASK_X, normal, VPpli);
1174 emit_op2(p, OPCODE_DP3, dots, WRITEMASK_Y, normal, half);
1175 }
1176
1177 /* Front face lighting:
1178 */
1179 {
1180 struct ureg ambient = get_lightprod(p, i, 0, STATE_AMBIENT);
1181 struct ureg diffuse = get_lightprod(p, i, 0, STATE_DIFFUSE);
1182 struct ureg specular = get_lightprod(p, i, 0, STATE_SPECULAR);
1183 struct ureg res0, res1;
1184 GLuint mask0, mask1;
1185
1186 if (count == nr_lights) {
1187 if (separate) {
1188 mask0 = WRITEMASK_XYZ;
1189 mask1 = WRITEMASK_XYZ;
1190 res0 = register_output( p, VERT_RESULT_COL0 );
1191 res1 = register_output( p, VERT_RESULT_COL1 );
1192 }
1193 else {
1194 mask0 = 0;
1195 mask1 = WRITEMASK_XYZ;
1196 res0 = _col0;
1197 res1 = register_output( p, VERT_RESULT_COL0 );
1198 }
1199 }
1200 else {
1201 mask0 = 0;
1202 mask1 = 0;
1203 res0 = _col0;
1204 res1 = _col1;
1205 }
1206
1207 if (!is_undef(att)) {
1208 /* light is attenuated by distance */
1209 emit_op1(p, OPCODE_LIT, lit, 0, dots);
1210 emit_op2(p, OPCODE_MUL, lit, 0, lit, att);
1211 emit_op3(p, OPCODE_MAD, _col0, 0, swizzle1(lit,X), ambient, _col0);
1212 }
1213 else if (!p->state->material_shininess_is_zero) {
1214 /* there's a non-zero specular term */
1215 emit_op1(p, OPCODE_LIT, lit, 0, dots);
1216 emit_op2(p, OPCODE_ADD, _col0, 0, ambient, _col0);
1217 }
1218 else {
1219 /* no attenutation, no specular */
1220 emit_degenerate_lit(p, lit, dots);
1221 emit_op2(p, OPCODE_ADD, _col0, 0, ambient, _col0);
1222 }
1223
1224 emit_op3(p, OPCODE_MAD, res0, mask0, swizzle1(lit,Y), diffuse, _col0);
1225 emit_op3(p, OPCODE_MAD, res1, mask1, swizzle1(lit,Z), specular, _col1);
1226
1227 release_temp(p, ambient);
1228 release_temp(p, diffuse);
1229 release_temp(p, specular);
1230 }
1231
1232 /* Back face lighting:
1233 */
1234 if (twoside) {
1235 struct ureg ambient = get_lightprod(p, i, 1, STATE_AMBIENT);
1236 struct ureg diffuse = get_lightprod(p, i, 1, STATE_DIFFUSE);
1237 struct ureg specular = get_lightprod(p, i, 1, STATE_SPECULAR);
1238 struct ureg res0, res1;
1239 GLuint mask0, mask1;
1240
1241 if (count == nr_lights) {
1242 if (separate) {
1243 mask0 = WRITEMASK_XYZ;
1244 mask1 = WRITEMASK_XYZ;
1245 res0 = register_output( p, VERT_RESULT_BFC0 );
1246 res1 = register_output( p, VERT_RESULT_BFC1 );
1247 }
1248 else {
1249 mask0 = 0;
1250 mask1 = WRITEMASK_XYZ;
1251 res0 = _bfc0;
1252 res1 = register_output( p, VERT_RESULT_BFC0 );
1253 }
1254 }
1255 else {
1256 res0 = _bfc0;
1257 res1 = _bfc1;
1258 mask0 = 0;
1259 mask1 = 0;
1260 }
1261
1262 /* For the back face we need to negate the X and Y component
1263 * dot products. dots.Z has the negated back-face specular
1264 * exponent. We swizzle that into the W position. This
1265 * negation makes the back-face specular term positive again.
1266 */
1267 dots = negate(swizzle(dots,X,Y,W,Z));
1268
1269 if (!is_undef(att)) {
1270 emit_op1(p, OPCODE_LIT, lit, 0, dots);
1271 emit_op2(p, OPCODE_MUL, lit, 0, lit, att);
1272 emit_op3(p, OPCODE_MAD, _bfc0, 0, swizzle1(lit,X), ambient, _bfc0);
1273 }
1274 else if (!p->state->material_shininess_is_zero) {
1275 emit_op1(p, OPCODE_LIT, lit, 0, dots);
1276 emit_op2(p, OPCODE_ADD, _bfc0, 0, ambient, _bfc0); /**/
1277 }
1278 else {
1279 emit_degenerate_lit(p, lit, dots);
1280 emit_op2(p, OPCODE_ADD, _bfc0, 0, ambient, _bfc0);
1281 }
1282
1283 emit_op3(p, OPCODE_MAD, res0, mask0, swizzle1(lit,Y), diffuse, _bfc0);
1284 emit_op3(p, OPCODE_MAD, res1, mask1, swizzle1(lit,Z), specular, _bfc1);
1285 /* restore dots to its original state for subsequent lights
1286 * by negating and swizzling again.
1287 */
1288 dots = negate(swizzle(dots,X,Y,W,Z));
1289
1290 release_temp(p, ambient);
1291 release_temp(p, diffuse);
1292 release_temp(p, specular);
1293 }
1294
1295 release_temp(p, half);
1296 release_temp(p, VPpli);
1297 release_temp(p, att);
1298 }
1299 }
1300
1301 release_temps( p );
1302 }
1303
1304
1305 static void build_fog( struct tnl_program *p )
1306 {
1307 struct ureg fog = register_output(p, VERT_RESULT_FOGC);
1308 struct ureg input;
1309
1310 if (p->state->fog_source_is_depth) {
1311 input = get_eye_position_z(p);
1312 }
1313 else {
1314 input = swizzle1(register_input(p, VERT_ATTRIB_FOG), X);
1315 }
1316
1317 /* result.fog = {abs(f),0,0,1}; */
1318 emit_op1(p, OPCODE_ABS, fog, WRITEMASK_X, input);
1319 emit_op1(p, OPCODE_MOV, fog, WRITEMASK_YZW, get_identity_param(p));
1320 }
1321
1322
1323 static void build_reflect_texgen( struct tnl_program *p,
1324 struct ureg dest,
1325 GLuint writemask )
1326 {
1327 struct ureg normal = get_transformed_normal(p);
1328 struct ureg eye_hat = get_eye_position_normalized(p);
1329 struct ureg tmp = get_temp(p);
1330
1331 /* n.u */
1332 emit_op2(p, OPCODE_DP3, tmp, 0, normal, eye_hat);
1333 /* 2n.u */
1334 emit_op2(p, OPCODE_ADD, tmp, 0, tmp, tmp);
1335 /* (-2n.u)n + u */
1336 emit_op3(p, OPCODE_MAD, dest, writemask, negate(tmp), normal, eye_hat);
1337
1338 release_temp(p, tmp);
1339 }
1340
1341
1342 static void build_sphere_texgen( struct tnl_program *p,
1343 struct ureg dest,
1344 GLuint writemask )
1345 {
1346 struct ureg normal = get_transformed_normal(p);
1347 struct ureg eye_hat = get_eye_position_normalized(p);
1348 struct ureg tmp = get_temp(p);
1349 struct ureg half = register_scalar_const(p, .5);
1350 struct ureg r = get_temp(p);
1351 struct ureg inv_m = get_temp(p);
1352 struct ureg id = get_identity_param(p);
1353
1354 /* Could share the above calculations, but it would be
1355 * a fairly odd state for someone to set (both sphere and
1356 * reflection active for different texture coordinate
1357 * components. Of course - if two texture units enable
1358 * reflect and/or sphere, things start to tilt in favour
1359 * of seperating this out:
1360 */
1361
1362 /* n.u */
1363 emit_op2(p, OPCODE_DP3, tmp, 0, normal, eye_hat);
1364 /* 2n.u */
1365 emit_op2(p, OPCODE_ADD, tmp, 0, tmp, tmp);
1366 /* (-2n.u)n + u */
1367 emit_op3(p, OPCODE_MAD, r, 0, negate(tmp), normal, eye_hat);
1368 /* r + 0,0,1 */
1369 emit_op2(p, OPCODE_ADD, tmp, 0, r, swizzle(id,X,Y,W,Z));
1370 /* rx^2 + ry^2 + (rz+1)^2 */
1371 emit_op2(p, OPCODE_DP3, tmp, 0, tmp, tmp);
1372 /* 2/m */
1373 emit_op1(p, OPCODE_RSQ, tmp, 0, tmp);
1374 /* 1/m */
1375 emit_op2(p, OPCODE_MUL, inv_m, 0, tmp, half);
1376 /* r/m + 1/2 */
1377 emit_op3(p, OPCODE_MAD, dest, writemask, r, inv_m, half);
1378
1379 release_temp(p, tmp);
1380 release_temp(p, r);
1381 release_temp(p, inv_m);
1382 }
1383
1384
1385 static void build_texture_transform( struct tnl_program *p )
1386 {
1387 GLuint i, j;
1388
1389 for (i = 0; i < MAX_TEXTURE_COORD_UNITS; i++) {
1390
1391 if (!(p->state->fragprog_inputs_read & FRAG_BIT_TEX(i)))
1392 continue;
1393
1394 if (p->state->unit[i].coord_replace)
1395 continue;
1396
1397 if (p->state->unit[i].texgen_enabled ||
1398 p->state->unit[i].texmat_enabled) {
1399
1400 GLuint texmat_enabled = p->state->unit[i].texmat_enabled;
1401 struct ureg out = register_output(p, VERT_RESULT_TEX0 + i);
1402 struct ureg out_texgen = undef;
1403
1404 if (p->state->unit[i].texgen_enabled) {
1405 GLuint copy_mask = 0;
1406 GLuint sphere_mask = 0;
1407 GLuint reflect_mask = 0;
1408 GLuint normal_mask = 0;
1409 GLuint modes[4];
1410
1411 if (texmat_enabled)
1412 out_texgen = get_temp(p);
1413 else
1414 out_texgen = out;
1415
1416 modes[0] = p->state->unit[i].texgen_mode0;
1417 modes[1] = p->state->unit[i].texgen_mode1;
1418 modes[2] = p->state->unit[i].texgen_mode2;
1419 modes[3] = p->state->unit[i].texgen_mode3;
1420
1421 for (j = 0; j < 4; j++) {
1422 switch (modes[j]) {
1423 case TXG_OBJ_LINEAR: {
1424 struct ureg obj = register_input(p, VERT_ATTRIB_POS);
1425 struct ureg plane =
1426 register_param3(p, STATE_TEXGEN, i,
1427 STATE_TEXGEN_OBJECT_S + j);
1428
1429 emit_op2(p, OPCODE_DP4, out_texgen, WRITEMASK_X << j,
1430 obj, plane );
1431 break;
1432 }
1433 case TXG_EYE_LINEAR: {
1434 struct ureg eye = get_eye_position(p);
1435 struct ureg plane =
1436 register_param3(p, STATE_TEXGEN, i,
1437 STATE_TEXGEN_EYE_S + j);
1438
1439 emit_op2(p, OPCODE_DP4, out_texgen, WRITEMASK_X << j,
1440 eye, plane );
1441 break;
1442 }
1443 case TXG_SPHERE_MAP:
1444 sphere_mask |= WRITEMASK_X << j;
1445 break;
1446 case TXG_REFLECTION_MAP:
1447 reflect_mask |= WRITEMASK_X << j;
1448 break;
1449 case TXG_NORMAL_MAP:
1450 normal_mask |= WRITEMASK_X << j;
1451 break;
1452 case TXG_NONE:
1453 copy_mask |= WRITEMASK_X << j;
1454 }
1455 }
1456
1457 if (sphere_mask) {
1458 build_sphere_texgen(p, out_texgen, sphere_mask);
1459 }
1460
1461 if (reflect_mask) {
1462 build_reflect_texgen(p, out_texgen, reflect_mask);
1463 }
1464
1465 if (normal_mask) {
1466 struct ureg normal = get_transformed_normal(p);
1467 emit_op1(p, OPCODE_MOV, out_texgen, normal_mask, normal );
1468 }
1469
1470 if (copy_mask) {
1471 struct ureg in = register_input(p, VERT_ATTRIB_TEX0+i);
1472 emit_op1(p, OPCODE_MOV, out_texgen, copy_mask, in );
1473 }
1474 }
1475
1476 if (texmat_enabled) {
1477 struct ureg texmat[4];
1478 struct ureg in = (!is_undef(out_texgen) ?
1479 out_texgen :
1480 register_input(p, VERT_ATTRIB_TEX0+i));
1481 if (p->mvp_with_dp4) {
1482 register_matrix_param5( p, STATE_TEXTURE_MATRIX, i, 0, 3,
1483 0, texmat );
1484 emit_matrix_transform_vec4( p, out, texmat, in );
1485 }
1486 else {
1487 register_matrix_param5( p, STATE_TEXTURE_MATRIX, i, 0, 3,
1488 STATE_MATRIX_TRANSPOSE, texmat );
1489 emit_transpose_matrix_transform_vec4( p, out, texmat, in );
1490 }
1491 }
1492
1493 release_temps(p);
1494 }
1495 else {
1496 emit_passthrough(p, VERT_ATTRIB_TEX0+i, VERT_RESULT_TEX0+i);
1497 }
1498 }
1499 }
1500
1501
1502 /**
1503 * Point size attenuation computation.
1504 */
1505 static void build_atten_pointsize( struct tnl_program *p )
1506 {
1507 struct ureg eye = get_eye_position_z(p);
1508 struct ureg state_size = register_param2(p, STATE_INTERNAL, STATE_POINT_SIZE_CLAMPED);
1509 struct ureg state_attenuation = register_param1(p, STATE_POINT_ATTENUATION);
1510 struct ureg out = register_output(p, VERT_RESULT_PSIZ);
1511 struct ureg ut = get_temp(p);
1512
1513 /* dist = |eyez| */
1514 emit_op1(p, OPCODE_ABS, ut, WRITEMASK_Y, swizzle1(eye, Z));
1515 /* p1 + dist * (p2 + dist * p3); */
1516 emit_op3(p, OPCODE_MAD, ut, WRITEMASK_X, swizzle1(ut, Y),
1517 swizzle1(state_attenuation, Z), swizzle1(state_attenuation, Y));
1518 emit_op3(p, OPCODE_MAD, ut, WRITEMASK_X, swizzle1(ut, Y),
1519 ut, swizzle1(state_attenuation, X));
1520
1521 /* 1 / sqrt(factor) */
1522 emit_op1(p, OPCODE_RSQ, ut, WRITEMASK_X, ut );
1523
1524 #if 0
1525 /* out = pointSize / sqrt(factor) */
1526 emit_op2(p, OPCODE_MUL, out, WRITEMASK_X, ut, state_size);
1527 #else
1528 /* this is a good place to clamp the point size since there's likely
1529 * no hardware registers to clamp point size at rasterization time.
1530 */
1531 emit_op2(p, OPCODE_MUL, ut, WRITEMASK_X, ut, state_size);
1532 emit_op2(p, OPCODE_MAX, ut, WRITEMASK_X, ut, swizzle1(state_size, Y));
1533 emit_op2(p, OPCODE_MIN, out, WRITEMASK_X, ut, swizzle1(state_size, Z));
1534 #endif
1535
1536 release_temp(p, ut);
1537 }
1538
1539
1540 /**
1541 * Pass-though per-vertex point size, from user's point size array.
1542 */
1543 static void build_array_pointsize( struct tnl_program *p )
1544 {
1545 struct ureg in = register_input(p, VERT_ATTRIB_POINT_SIZE);
1546 struct ureg out = register_output(p, VERT_RESULT_PSIZ);
1547 emit_op1(p, OPCODE_MOV, out, WRITEMASK_X, in);
1548 }
1549
1550
1551 static void build_tnl_program( struct tnl_program *p )
1552 {
1553 /* Emit the program, starting with modelviewproject:
1554 */
1555 build_hpos(p);
1556
1557 /* Lighting calculations:
1558 */
1559 if (p->state->fragprog_inputs_read & (FRAG_BIT_COL0|FRAG_BIT_COL1)) {
1560 if (p->state->light_global_enabled)
1561 build_lighting(p);
1562 else {
1563 if (p->state->fragprog_inputs_read & FRAG_BIT_COL0)
1564 emit_passthrough(p, VERT_ATTRIB_COLOR0, VERT_RESULT_COL0);
1565
1566 if (p->state->fragprog_inputs_read & FRAG_BIT_COL1)
1567 emit_passthrough(p, VERT_ATTRIB_COLOR1, VERT_RESULT_COL1);
1568 }
1569 }
1570
1571 if (p->state->fragprog_inputs_read & FRAG_BIT_FOGC)
1572 build_fog(p);
1573
1574 if (p->state->fragprog_inputs_read & FRAG_BITS_TEX_ANY)
1575 build_texture_transform(p);
1576
1577 if (p->state->point_attenuated)
1578 build_atten_pointsize(p);
1579 else if (p->state->point_array)
1580 build_array_pointsize(p);
1581
1582 /* Finish up:
1583 */
1584 emit_op1(p, OPCODE_END, undef, 0, undef);
1585
1586 /* Disassemble:
1587 */
1588 if (DISASSEM) {
1589 printf ("\n");
1590 }
1591 }
1592
1593
1594 static void
1595 create_new_program( const struct state_key *key,
1596 struct gl_vertex_program *program,
1597 GLboolean mvp_with_dp4,
1598 GLuint max_temps)
1599 {
1600 struct tnl_program p;
1601
1602 memset(&p, 0, sizeof(p));
1603 p.state = key;
1604 p.program = program;
1605 p.eye_position = undef;
1606 p.eye_position_z = undef;
1607 p.eye_position_normalized = undef;
1608 p.transformed_normal = undef;
1609 p.identity = undef;
1610 p.temp_in_use = 0;
1611 p.mvp_with_dp4 = mvp_with_dp4;
1612
1613 if (max_temps >= sizeof(int) * 8)
1614 p.temp_reserved = 0;
1615 else
1616 p.temp_reserved = ~((1<<max_temps)-1);
1617
1618 /* Start by allocating 32 instructions.
1619 * If we need more, we'll grow the instruction array as needed.
1620 */
1621 p.max_inst = 32;
1622 p.program->Base.Instructions = _mesa_alloc_instructions(p.max_inst);
1623 p.program->Base.String = NULL;
1624 p.program->Base.NumInstructions =
1625 p.program->Base.NumTemporaries =
1626 p.program->Base.NumParameters =
1627 p.program->Base.NumAttributes = p.program->Base.NumAddressRegs = 0;
1628 p.program->Base.Parameters = _mesa_new_parameter_list();
1629 p.program->Base.InputsRead = 0;
1630 p.program->Base.OutputsWritten = 0;
1631
1632 build_tnl_program( &p );
1633 }
1634
1635
1636 /**
1637 * Return a vertex program which implements the current fixed-function
1638 * transform/lighting/texgen operations.
1639 * XXX move this into core mesa (main/)
1640 */
1641 struct gl_vertex_program *
1642 _mesa_get_fixed_func_vertex_program(struct gl_context *ctx)
1643 {
1644 struct gl_vertex_program *prog;
1645 struct state_key key;
1646
1647 /* Grab all the relevent state and put it in a single structure:
1648 */
1649 make_state_key(ctx, &key);
1650
1651 /* Look for an already-prepared program for this state:
1652 */
1653 prog = (struct gl_vertex_program *)
1654 _mesa_search_program_cache(ctx->VertexProgram.Cache, &key, sizeof(key));
1655
1656 if (!prog) {
1657 /* OK, we'll have to build a new one */
1658 if (0)
1659 printf("Build new TNL program\n");
1660
1661 prog = (struct gl_vertex_program *)
1662 ctx->Driver.NewProgram(ctx, GL_VERTEX_PROGRAM_ARB, 0);
1663 if (!prog)
1664 return NULL;
1665
1666 create_new_program( &key, prog,
1667 ctx->mvp_with_dp4,
1668 ctx->Const.VertexProgram.MaxTemps );
1669
1670 #if 0
1671 if (ctx->Driver.ProgramStringNotify)
1672 ctx->Driver.ProgramStringNotify( ctx, GL_VERTEX_PROGRAM_ARB,
1673 &prog->Base );
1674 #endif
1675 _mesa_program_cache_insert(ctx, ctx->VertexProgram.Cache,
1676 &key, sizeof(key), &prog->Base);
1677 }
1678
1679 return prog;
1680 }