fe2416d8946d26ddcff5c5d191913afe6d495759
[mesa.git] / src / mesa / main / ffvertex_prog.c
1 /**************************************************************************
2 *
3 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 /**
29 * \file ffvertex_prog.c
30 *
31 * Create a vertex program to execute the current fixed function T&L pipeline.
32 * \author Keith Whitwell
33 */
34
35
36 #include "main/glheader.h"
37 #include "main/mtypes.h"
38 #include "main/macros.h"
39 #include "main/enums.h"
40 #include "main/ffvertex_prog.h"
41 #include "shader/program.h"
42 #include "shader/prog_cache.h"
43 #include "shader/prog_instruction.h"
44 #include "shader/prog_parameter.h"
45 #include "shader/prog_print.h"
46 #include "shader/prog_statevars.h"
47
48
49 /** Max of number of lights and texture coord units */
50 #define NUM_UNITS MAX2(MAX_TEXTURE_COORD_UNITS, MAX_LIGHTS)
51
52 struct state_key {
53 unsigned light_color_material_mask:12;
54 unsigned light_global_enabled:1;
55 unsigned light_local_viewer:1;
56 unsigned light_twoside:1;
57 unsigned material_shininess_is_zero:1;
58 unsigned need_eye_coords:1;
59 unsigned normalize:1;
60 unsigned rescale_normals:1;
61
62 unsigned fog_source_is_depth:1;
63 unsigned separate_specular:1;
64 unsigned point_attenuated:1;
65 unsigned point_array:1;
66 unsigned texture_enabled_global:1;
67 unsigned fragprog_inputs_read:12;
68
69 unsigned varying_vp_inputs;
70
71 struct {
72 unsigned light_enabled:1;
73 unsigned light_eyepos3_is_zero:1;
74 unsigned light_spotcutoff_is_180:1;
75 unsigned light_attenuated:1;
76 unsigned texunit_really_enabled:1;
77 unsigned texmat_enabled:1;
78 unsigned texgen_enabled:4;
79 unsigned texgen_mode0:4;
80 unsigned texgen_mode1:4;
81 unsigned texgen_mode2:4;
82 unsigned texgen_mode3:4;
83 } unit[NUM_UNITS];
84 };
85
86
87 #define TXG_NONE 0
88 #define TXG_OBJ_LINEAR 1
89 #define TXG_EYE_LINEAR 2
90 #define TXG_SPHERE_MAP 3
91 #define TXG_REFLECTION_MAP 4
92 #define TXG_NORMAL_MAP 5
93
94 static GLuint translate_texgen( GLboolean enabled, GLenum mode )
95 {
96 if (!enabled)
97 return TXG_NONE;
98
99 switch (mode) {
100 case GL_OBJECT_LINEAR: return TXG_OBJ_LINEAR;
101 case GL_EYE_LINEAR: return TXG_EYE_LINEAR;
102 case GL_SPHERE_MAP: return TXG_SPHERE_MAP;
103 case GL_REFLECTION_MAP_NV: return TXG_REFLECTION_MAP;
104 case GL_NORMAL_MAP_NV: return TXG_NORMAL_MAP;
105 default: return TXG_NONE;
106 }
107 }
108
109
110
111 static GLboolean check_active_shininess( GLcontext *ctx,
112 const struct state_key *key,
113 GLuint side )
114 {
115 GLuint bit = 1 << (MAT_ATTRIB_FRONT_SHININESS + side);
116
117 if ((key->varying_vp_inputs & VERT_BIT_COLOR0) &&
118 (key->light_color_material_mask & bit))
119 return GL_TRUE;
120
121 if (key->varying_vp_inputs & (bit << 16))
122 return GL_TRUE;
123
124 if (ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_SHININESS + side][0] != 0.0F)
125 return GL_TRUE;
126
127 return GL_FALSE;
128 }
129
130
131 static void make_state_key( GLcontext *ctx, struct state_key *key )
132 {
133 const struct gl_fragment_program *fp;
134 GLuint i;
135
136 memset(key, 0, sizeof(struct state_key));
137 fp = ctx->FragmentProgram._Current;
138
139 /* This now relies on texenvprogram.c being active:
140 */
141 assert(fp);
142
143 key->need_eye_coords = ctx->_NeedEyeCoords;
144
145 key->fragprog_inputs_read = fp->Base.InputsRead;
146 key->varying_vp_inputs = ctx->varying_vp_inputs;
147
148 if (ctx->RenderMode == GL_FEEDBACK) {
149 /* make sure the vertprog emits color and tex0 */
150 key->fragprog_inputs_read |= (FRAG_BIT_COL0 | FRAG_BIT_TEX0);
151 }
152
153 key->separate_specular = (ctx->Light.Model.ColorControl ==
154 GL_SEPARATE_SPECULAR_COLOR);
155
156 if (ctx->Light.Enabled) {
157 key->light_global_enabled = 1;
158
159 if (ctx->Light.Model.LocalViewer)
160 key->light_local_viewer = 1;
161
162 if (ctx->Light.Model.TwoSide)
163 key->light_twoside = 1;
164
165 if (ctx->Light.ColorMaterialEnabled) {
166 key->light_color_material_mask = ctx->Light.ColorMaterialBitmask;
167 }
168
169 for (i = 0; i < MAX_LIGHTS; i++) {
170 struct gl_light *light = &ctx->Light.Light[i];
171
172 if (light->Enabled) {
173 key->unit[i].light_enabled = 1;
174
175 if (light->EyePosition[3] == 0.0)
176 key->unit[i].light_eyepos3_is_zero = 1;
177
178 if (light->SpotCutoff == 180.0)
179 key->unit[i].light_spotcutoff_is_180 = 1;
180
181 if (light->ConstantAttenuation != 1.0 ||
182 light->LinearAttenuation != 0.0 ||
183 light->QuadraticAttenuation != 0.0)
184 key->unit[i].light_attenuated = 1;
185 }
186 }
187
188 if (check_active_shininess(ctx, key, 0)) {
189 key->material_shininess_is_zero = 0;
190 }
191 else if (key->light_twoside &&
192 check_active_shininess(ctx, key, 1)) {
193 key->material_shininess_is_zero = 0;
194 }
195 else {
196 key->material_shininess_is_zero = 1;
197 }
198 }
199
200 if (ctx->Transform.Normalize)
201 key->normalize = 1;
202
203 if (ctx->Transform.RescaleNormals)
204 key->rescale_normals = 1;
205
206 if (ctx->Fog.FogCoordinateSource == GL_FRAGMENT_DEPTH_EXT)
207 key->fog_source_is_depth = 1;
208
209 if (ctx->Point._Attenuated)
210 key->point_attenuated = 1;
211
212 #if FEATURE_point_size_array
213 if (ctx->Array.ArrayObj->PointSize.Enabled)
214 key->point_array = 1;
215 #endif
216
217 if (ctx->Texture._TexGenEnabled ||
218 ctx->Texture._TexMatEnabled ||
219 ctx->Texture._EnabledUnits)
220 key->texture_enabled_global = 1;
221
222 for (i = 0; i < MAX_TEXTURE_COORD_UNITS; i++) {
223 struct gl_texture_unit *texUnit = &ctx->Texture.Unit[i];
224
225 if (texUnit->_ReallyEnabled)
226 key->unit[i].texunit_really_enabled = 1;
227
228 if (ctx->Texture._TexMatEnabled & ENABLE_TEXMAT(i))
229 key->unit[i].texmat_enabled = 1;
230
231 if (texUnit->TexGenEnabled) {
232 key->unit[i].texgen_enabled = 1;
233
234 key->unit[i].texgen_mode0 =
235 translate_texgen( texUnit->TexGenEnabled & (1<<0),
236 texUnit->GenS.Mode );
237 key->unit[i].texgen_mode1 =
238 translate_texgen( texUnit->TexGenEnabled & (1<<1),
239 texUnit->GenT.Mode );
240 key->unit[i].texgen_mode2 =
241 translate_texgen( texUnit->TexGenEnabled & (1<<2),
242 texUnit->GenR.Mode );
243 key->unit[i].texgen_mode3 =
244 translate_texgen( texUnit->TexGenEnabled & (1<<3),
245 texUnit->GenQ.Mode );
246 }
247 }
248 }
249
250
251
252 /* Very useful debugging tool - produces annotated listing of
253 * generated program with line/function references for each
254 * instruction back into this file:
255 */
256 #define DISASSEM 0
257
258
259 /* Use uregs to represent registers internally, translate to Mesa's
260 * expected formats on emit.
261 *
262 * NOTE: These are passed by value extensively in this file rather
263 * than as usual by pointer reference. If this disturbs you, try
264 * remembering they are just 32bits in size.
265 *
266 * GCC is smart enough to deal with these dword-sized structures in
267 * much the same way as if I had defined them as dwords and was using
268 * macros to access and set the fields. This is much nicer and easier
269 * to evolve.
270 */
271 struct ureg {
272 GLuint file:4;
273 GLint idx:9; /* relative addressing may be negative */
274 /* sizeof(idx) should == sizeof(prog_src_reg::Index) */
275 GLuint negate:1;
276 GLuint swz:12;
277 GLuint pad:6;
278 };
279
280
281 struct tnl_program {
282 const struct state_key *state;
283 struct gl_vertex_program *program;
284 GLint max_inst; /** number of instructions allocated for program */
285 GLboolean mvp_with_dp4;
286
287 GLuint temp_in_use;
288 GLuint temp_reserved;
289
290 struct ureg eye_position;
291 struct ureg eye_position_z;
292 struct ureg eye_position_normalized;
293 struct ureg transformed_normal;
294 struct ureg identity;
295
296 GLuint materials;
297 GLuint color_materials;
298 };
299
300
301 static const struct ureg undef = {
302 PROGRAM_UNDEFINED,
303 0,
304 0,
305 0,
306 0
307 };
308
309 /* Local shorthand:
310 */
311 #define X SWIZZLE_X
312 #define Y SWIZZLE_Y
313 #define Z SWIZZLE_Z
314 #define W SWIZZLE_W
315
316
317 /* Construct a ureg:
318 */
319 static struct ureg make_ureg(GLuint file, GLint idx)
320 {
321 struct ureg reg;
322 reg.file = file;
323 reg.idx = idx;
324 reg.negate = 0;
325 reg.swz = SWIZZLE_NOOP;
326 reg.pad = 0;
327 return reg;
328 }
329
330
331
332 static struct ureg negate( struct ureg reg )
333 {
334 reg.negate ^= 1;
335 return reg;
336 }
337
338
339 static struct ureg swizzle( struct ureg reg, int x, int y, int z, int w )
340 {
341 reg.swz = MAKE_SWIZZLE4(GET_SWZ(reg.swz, x),
342 GET_SWZ(reg.swz, y),
343 GET_SWZ(reg.swz, z),
344 GET_SWZ(reg.swz, w));
345 return reg;
346 }
347
348
349 static struct ureg swizzle1( struct ureg reg, int x )
350 {
351 return swizzle(reg, x, x, x, x);
352 }
353
354
355 static struct ureg get_temp( struct tnl_program *p )
356 {
357 int bit = _mesa_ffs( ~p->temp_in_use );
358 if (!bit) {
359 _mesa_problem(NULL, "%s: out of temporaries\n", __FILE__);
360 _mesa_exit(1);
361 }
362
363 if ((GLuint) bit > p->program->Base.NumTemporaries)
364 p->program->Base.NumTemporaries = bit;
365
366 p->temp_in_use |= 1<<(bit-1);
367 return make_ureg(PROGRAM_TEMPORARY, bit-1);
368 }
369
370
371 static struct ureg reserve_temp( struct tnl_program *p )
372 {
373 struct ureg temp = get_temp( p );
374 p->temp_reserved |= 1<<temp.idx;
375 return temp;
376 }
377
378
379 static void release_temp( struct tnl_program *p, struct ureg reg )
380 {
381 if (reg.file == PROGRAM_TEMPORARY) {
382 p->temp_in_use &= ~(1<<reg.idx);
383 p->temp_in_use |= p->temp_reserved; /* can't release reserved temps */
384 }
385 }
386
387 static void release_temps( struct tnl_program *p )
388 {
389 p->temp_in_use = p->temp_reserved;
390 }
391
392
393 static struct ureg register_param5(struct tnl_program *p,
394 GLint s0,
395 GLint s1,
396 GLint s2,
397 GLint s3,
398 GLint s4)
399 {
400 gl_state_index tokens[STATE_LENGTH];
401 GLint idx;
402 tokens[0] = s0;
403 tokens[1] = s1;
404 tokens[2] = s2;
405 tokens[3] = s3;
406 tokens[4] = s4;
407 idx = _mesa_add_state_reference( p->program->Base.Parameters, tokens );
408 return make_ureg(PROGRAM_STATE_VAR, idx);
409 }
410
411
412 #define register_param1(p,s0) register_param5(p,s0,0,0,0,0)
413 #define register_param2(p,s0,s1) register_param5(p,s0,s1,0,0,0)
414 #define register_param3(p,s0,s1,s2) register_param5(p,s0,s1,s2,0,0)
415 #define register_param4(p,s0,s1,s2,s3) register_param5(p,s0,s1,s2,s3,0)
416
417
418
419 /**
420 * \param input one of VERT_ATTRIB_x tokens.
421 */
422 static struct ureg register_input( struct tnl_program *p, GLuint input )
423 {
424 assert(input < 32);
425
426 if (p->state->varying_vp_inputs & (1<<input)) {
427 p->program->Base.InputsRead |= (1<<input);
428 return make_ureg(PROGRAM_INPUT, input);
429 }
430 else {
431 return register_param3( p, STATE_INTERNAL, STATE_CURRENT_ATTRIB, input );
432 }
433 }
434
435
436 /**
437 * \param input one of VERT_RESULT_x tokens.
438 */
439 static struct ureg register_output( struct tnl_program *p, GLuint output )
440 {
441 p->program->Base.OutputsWritten |= BITFIELD64_BIT(output);
442 return make_ureg(PROGRAM_OUTPUT, output);
443 }
444
445
446 static struct ureg register_const4f( struct tnl_program *p,
447 GLfloat s0,
448 GLfloat s1,
449 GLfloat s2,
450 GLfloat s3)
451 {
452 GLfloat values[4];
453 GLint idx;
454 GLuint swizzle;
455 values[0] = s0;
456 values[1] = s1;
457 values[2] = s2;
458 values[3] = s3;
459 idx = _mesa_add_unnamed_constant( p->program->Base.Parameters, values, 4,
460 &swizzle );
461 ASSERT(swizzle == SWIZZLE_NOOP);
462 return make_ureg(PROGRAM_CONSTANT, idx);
463 }
464
465 #define register_const1f(p, s0) register_const4f(p, s0, 0, 0, 1)
466 #define register_scalar_const(p, s0) register_const4f(p, s0, s0, s0, s0)
467 #define register_const2f(p, s0, s1) register_const4f(p, s0, s1, 0, 1)
468 #define register_const3f(p, s0, s1, s2) register_const4f(p, s0, s1, s2, 1)
469
470 static GLboolean is_undef( struct ureg reg )
471 {
472 return reg.file == PROGRAM_UNDEFINED;
473 }
474
475
476 static struct ureg get_identity_param( struct tnl_program *p )
477 {
478 if (is_undef(p->identity))
479 p->identity = register_const4f(p, 0,0,0,1);
480
481 return p->identity;
482 }
483
484 static void register_matrix_param5( struct tnl_program *p,
485 GLint s0, /* modelview, projection, etc */
486 GLint s1, /* texture matrix number */
487 GLint s2, /* first row */
488 GLint s3, /* last row */
489 GLint s4, /* inverse, transpose, etc */
490 struct ureg *matrix )
491 {
492 GLint i;
493
494 /* This is a bit sad as the support is there to pull the whole
495 * matrix out in one go:
496 */
497 for (i = 0; i <= s3 - s2; i++)
498 matrix[i] = register_param5( p, s0, s1, i, i, s4 );
499 }
500
501
502 static void emit_arg( struct prog_src_register *src,
503 struct ureg reg )
504 {
505 src->File = reg.file;
506 src->Index = reg.idx;
507 src->Swizzle = reg.swz;
508 src->Negate = reg.negate ? NEGATE_XYZW : NEGATE_NONE;
509 src->Abs = 0;
510 src->RelAddr = 0;
511 /* Check that bitfield sizes aren't exceeded */
512 ASSERT(src->Index == reg.idx);
513 }
514
515
516 static void emit_dst( struct prog_dst_register *dst,
517 struct ureg reg, GLuint mask )
518 {
519 dst->File = reg.file;
520 dst->Index = reg.idx;
521 /* allow zero as a shorthand for xyzw */
522 dst->WriteMask = mask ? mask : WRITEMASK_XYZW;
523 dst->CondMask = COND_TR; /* always pass cond test */
524 dst->CondSwizzle = SWIZZLE_NOOP;
525 dst->CondSrc = 0;
526 dst->pad = 0;
527 /* Check that bitfield sizes aren't exceeded */
528 ASSERT(dst->Index == reg.idx);
529 }
530
531
532 static void debug_insn( struct prog_instruction *inst, const char *fn,
533 GLuint line )
534 {
535 if (DISASSEM) {
536 static const char *last_fn;
537
538 if (fn != last_fn) {
539 last_fn = fn;
540 _mesa_printf("%s:\n", fn);
541 }
542
543 _mesa_printf("%d:\t", line);
544 _mesa_print_instruction(inst);
545 }
546 }
547
548
549 static void emit_op3fn(struct tnl_program *p,
550 enum prog_opcode op,
551 struct ureg dest,
552 GLuint mask,
553 struct ureg src0,
554 struct ureg src1,
555 struct ureg src2,
556 const char *fn,
557 GLuint line)
558 {
559 GLuint nr;
560 struct prog_instruction *inst;
561
562 assert((GLint) p->program->Base.NumInstructions <= p->max_inst);
563
564 if (p->program->Base.NumInstructions == p->max_inst) {
565 /* need to extend the program's instruction array */
566 struct prog_instruction *newInst;
567
568 /* double the size */
569 p->max_inst *= 2;
570
571 newInst = _mesa_alloc_instructions(p->max_inst);
572 if (!newInst) {
573 _mesa_error(NULL, GL_OUT_OF_MEMORY, "vertex program build");
574 return;
575 }
576
577 _mesa_copy_instructions(newInst,
578 p->program->Base.Instructions,
579 p->program->Base.NumInstructions);
580
581 _mesa_free_instructions(p->program->Base.Instructions,
582 p->program->Base.NumInstructions);
583
584 p->program->Base.Instructions = newInst;
585 }
586
587 nr = p->program->Base.NumInstructions++;
588
589 inst = &p->program->Base.Instructions[nr];
590 inst->Opcode = (enum prog_opcode) op;
591 inst->Data = 0;
592
593 emit_arg( &inst->SrcReg[0], src0 );
594 emit_arg( &inst->SrcReg[1], src1 );
595 emit_arg( &inst->SrcReg[2], src2 );
596
597 emit_dst( &inst->DstReg, dest, mask );
598
599 debug_insn(inst, fn, line);
600 }
601
602
603 #define emit_op3(p, op, dst, mask, src0, src1, src2) \
604 emit_op3fn(p, op, dst, mask, src0, src1, src2, __FUNCTION__, __LINE__)
605
606 #define emit_op2(p, op, dst, mask, src0, src1) \
607 emit_op3fn(p, op, dst, mask, src0, src1, undef, __FUNCTION__, __LINE__)
608
609 #define emit_op1(p, op, dst, mask, src0) \
610 emit_op3fn(p, op, dst, mask, src0, undef, undef, __FUNCTION__, __LINE__)
611
612
613 static struct ureg make_temp( struct tnl_program *p, struct ureg reg )
614 {
615 if (reg.file == PROGRAM_TEMPORARY &&
616 !(p->temp_reserved & (1<<reg.idx)))
617 return reg;
618 else {
619 struct ureg temp = get_temp(p);
620 emit_op1(p, OPCODE_MOV, temp, 0, reg);
621 return temp;
622 }
623 }
624
625
626 /* Currently no tracking performed of input/output/register size or
627 * active elements. Could be used to reduce these operations, as
628 * could the matrix type.
629 */
630 static void emit_matrix_transform_vec4( struct tnl_program *p,
631 struct ureg dest,
632 const struct ureg *mat,
633 struct ureg src)
634 {
635 emit_op2(p, OPCODE_DP4, dest, WRITEMASK_X, src, mat[0]);
636 emit_op2(p, OPCODE_DP4, dest, WRITEMASK_Y, src, mat[1]);
637 emit_op2(p, OPCODE_DP4, dest, WRITEMASK_Z, src, mat[2]);
638 emit_op2(p, OPCODE_DP4, dest, WRITEMASK_W, src, mat[3]);
639 }
640
641
642 /* This version is much easier to implement if writemasks are not
643 * supported natively on the target or (like SSE), the target doesn't
644 * have a clean/obvious dotproduct implementation.
645 */
646 static void emit_transpose_matrix_transform_vec4( struct tnl_program *p,
647 struct ureg dest,
648 const struct ureg *mat,
649 struct ureg src)
650 {
651 struct ureg tmp;
652
653 if (dest.file != PROGRAM_TEMPORARY)
654 tmp = get_temp(p);
655 else
656 tmp = dest;
657
658 emit_op2(p, OPCODE_MUL, tmp, 0, swizzle1(src,X), mat[0]);
659 emit_op3(p, OPCODE_MAD, tmp, 0, swizzle1(src,Y), mat[1], tmp);
660 emit_op3(p, OPCODE_MAD, tmp, 0, swizzle1(src,Z), mat[2], tmp);
661 emit_op3(p, OPCODE_MAD, dest, 0, swizzle1(src,W), mat[3], tmp);
662
663 if (dest.file != PROGRAM_TEMPORARY)
664 release_temp(p, tmp);
665 }
666
667
668 static void emit_matrix_transform_vec3( struct tnl_program *p,
669 struct ureg dest,
670 const struct ureg *mat,
671 struct ureg src)
672 {
673 emit_op2(p, OPCODE_DP3, dest, WRITEMASK_X, src, mat[0]);
674 emit_op2(p, OPCODE_DP3, dest, WRITEMASK_Y, src, mat[1]);
675 emit_op2(p, OPCODE_DP3, dest, WRITEMASK_Z, src, mat[2]);
676 }
677
678
679 static void emit_normalize_vec3( struct tnl_program *p,
680 struct ureg dest,
681 struct ureg src )
682 {
683 #if 0
684 /* XXX use this when drivers are ready for NRM3 */
685 emit_op1(p, OPCODE_NRM3, dest, WRITEMASK_XYZ, src);
686 #else
687 struct ureg tmp = get_temp(p);
688 emit_op2(p, OPCODE_DP3, tmp, WRITEMASK_X, src, src);
689 emit_op1(p, OPCODE_RSQ, tmp, WRITEMASK_X, tmp);
690 emit_op2(p, OPCODE_MUL, dest, 0, src, swizzle1(tmp, X));
691 release_temp(p, tmp);
692 #endif
693 }
694
695
696 static void emit_passthrough( struct tnl_program *p,
697 GLuint input,
698 GLuint output )
699 {
700 struct ureg out = register_output(p, output);
701 emit_op1(p, OPCODE_MOV, out, 0, register_input(p, input));
702 }
703
704
705 static struct ureg get_eye_position( struct tnl_program *p )
706 {
707 if (is_undef(p->eye_position)) {
708 struct ureg pos = register_input( p, VERT_ATTRIB_POS );
709 struct ureg modelview[4];
710
711 p->eye_position = reserve_temp(p);
712
713 if (p->mvp_with_dp4) {
714 register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 3,
715 0, modelview );
716
717 emit_matrix_transform_vec4(p, p->eye_position, modelview, pos);
718 }
719 else {
720 register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 3,
721 STATE_MATRIX_TRANSPOSE, modelview );
722
723 emit_transpose_matrix_transform_vec4(p, p->eye_position, modelview, pos);
724 }
725 }
726
727 return p->eye_position;
728 }
729
730
731 static struct ureg get_eye_position_z( struct tnl_program *p )
732 {
733 if (!is_undef(p->eye_position))
734 return swizzle1(p->eye_position, Z);
735
736 if (is_undef(p->eye_position_z)) {
737 struct ureg pos = register_input( p, VERT_ATTRIB_POS );
738 struct ureg modelview[4];
739
740 p->eye_position_z = reserve_temp(p);
741
742 register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 3,
743 0, modelview );
744
745 emit_op2(p, OPCODE_DP4, p->eye_position_z, 0, pos, modelview[2]);
746 }
747
748 return p->eye_position_z;
749 }
750
751
752 static struct ureg get_eye_position_normalized( struct tnl_program *p )
753 {
754 if (is_undef(p->eye_position_normalized)) {
755 struct ureg eye = get_eye_position(p);
756 p->eye_position_normalized = reserve_temp(p);
757 emit_normalize_vec3(p, p->eye_position_normalized, eye);
758 }
759
760 return p->eye_position_normalized;
761 }
762
763
764 static struct ureg get_transformed_normal( struct tnl_program *p )
765 {
766 if (is_undef(p->transformed_normal) &&
767 !p->state->need_eye_coords &&
768 !p->state->normalize &&
769 !(p->state->need_eye_coords == p->state->rescale_normals))
770 {
771 p->transformed_normal = register_input(p, VERT_ATTRIB_NORMAL );
772 }
773 else if (is_undef(p->transformed_normal))
774 {
775 struct ureg normal = register_input(p, VERT_ATTRIB_NORMAL );
776 struct ureg mvinv[3];
777 struct ureg transformed_normal = reserve_temp(p);
778
779 if (p->state->need_eye_coords) {
780 register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 2,
781 STATE_MATRIX_INVTRANS, mvinv );
782
783 /* Transform to eye space:
784 */
785 emit_matrix_transform_vec3( p, transformed_normal, mvinv, normal );
786 normal = transformed_normal;
787 }
788
789 /* Normalize/Rescale:
790 */
791 if (p->state->normalize) {
792 emit_normalize_vec3( p, transformed_normal, normal );
793 normal = transformed_normal;
794 }
795 else if (p->state->need_eye_coords == p->state->rescale_normals) {
796 /* This is already adjusted for eye/non-eye rendering:
797 */
798 struct ureg rescale = register_param2(p, STATE_INTERNAL,
799 STATE_NORMAL_SCALE);
800
801 emit_op2( p, OPCODE_MUL, transformed_normal, 0, normal, rescale );
802 normal = transformed_normal;
803 }
804
805 assert(normal.file == PROGRAM_TEMPORARY);
806 p->transformed_normal = normal;
807 }
808
809 return p->transformed_normal;
810 }
811
812
813 static void build_hpos( struct tnl_program *p )
814 {
815 struct ureg pos = register_input( p, VERT_ATTRIB_POS );
816 struct ureg hpos = register_output( p, VERT_RESULT_HPOS );
817 struct ureg mvp[4];
818
819 if (p->mvp_with_dp4) {
820 register_matrix_param5( p, STATE_MVP_MATRIX, 0, 0, 3,
821 0, mvp );
822 emit_matrix_transform_vec4( p, hpos, mvp, pos );
823 }
824 else {
825 register_matrix_param5( p, STATE_MVP_MATRIX, 0, 0, 3,
826 STATE_MATRIX_TRANSPOSE, mvp );
827 emit_transpose_matrix_transform_vec4( p, hpos, mvp, pos );
828 }
829 }
830
831
832 static GLuint material_attrib( GLuint side, GLuint property )
833 {
834 return (property - STATE_AMBIENT) * 2 + side;
835 }
836
837
838 /**
839 * Get a bitmask of which material values vary on a per-vertex basis.
840 */
841 static void set_material_flags( struct tnl_program *p )
842 {
843 p->color_materials = 0;
844 p->materials = 0;
845
846 if (p->state->varying_vp_inputs & VERT_BIT_COLOR0) {
847 p->materials =
848 p->color_materials = p->state->light_color_material_mask;
849 }
850
851 p->materials |= (p->state->varying_vp_inputs >> 16);
852 }
853
854
855 static struct ureg get_material( struct tnl_program *p, GLuint side,
856 GLuint property )
857 {
858 GLuint attrib = material_attrib(side, property);
859
860 if (p->color_materials & (1<<attrib))
861 return register_input(p, VERT_ATTRIB_COLOR0);
862 else if (p->materials & (1<<attrib)) {
863 /* Put material values in the GENERIC slots -- they are not used
864 * for anything in fixed function mode.
865 */
866 return register_input( p, attrib + VERT_ATTRIB_GENERIC0 );
867 }
868 else
869 return register_param3( p, STATE_MATERIAL, side, property );
870 }
871
872 #define SCENE_COLOR_BITS(side) (( MAT_BIT_FRONT_EMISSION | \
873 MAT_BIT_FRONT_AMBIENT | \
874 MAT_BIT_FRONT_DIFFUSE) << (side))
875
876
877 /**
878 * Either return a precalculated constant value or emit code to
879 * calculate these values dynamically in the case where material calls
880 * are present between begin/end pairs.
881 *
882 * Probably want to shift this to the program compilation phase - if
883 * we always emitted the calculation here, a smart compiler could
884 * detect that it was constant (given a certain set of inputs), and
885 * lift it out of the main loop. That way the programs created here
886 * would be independent of the vertex_buffer details.
887 */
888 static struct ureg get_scenecolor( struct tnl_program *p, GLuint side )
889 {
890 if (p->materials & SCENE_COLOR_BITS(side)) {
891 struct ureg lm_ambient = register_param1(p, STATE_LIGHTMODEL_AMBIENT);
892 struct ureg material_emission = get_material(p, side, STATE_EMISSION);
893 struct ureg material_ambient = get_material(p, side, STATE_AMBIENT);
894 struct ureg material_diffuse = get_material(p, side, STATE_DIFFUSE);
895 struct ureg tmp = make_temp(p, material_diffuse);
896 emit_op3(p, OPCODE_MAD, tmp, WRITEMASK_XYZ, lm_ambient,
897 material_ambient, material_emission);
898 return tmp;
899 }
900 else
901 return register_param2( p, STATE_LIGHTMODEL_SCENECOLOR, side );
902 }
903
904
905 static struct ureg get_lightprod( struct tnl_program *p, GLuint light,
906 GLuint side, GLuint property )
907 {
908 GLuint attrib = material_attrib(side, property);
909 if (p->materials & (1<<attrib)) {
910 struct ureg light_value =
911 register_param3(p, STATE_LIGHT, light, property);
912 struct ureg material_value = get_material(p, side, property);
913 struct ureg tmp = get_temp(p);
914 emit_op2(p, OPCODE_MUL, tmp, 0, light_value, material_value);
915 return tmp;
916 }
917 else
918 return register_param4(p, STATE_LIGHTPROD, light, side, property);
919 }
920
921
922 static struct ureg calculate_light_attenuation( struct tnl_program *p,
923 GLuint i,
924 struct ureg VPpli,
925 struct ureg dist )
926 {
927 struct ureg attenuation = register_param3(p, STATE_LIGHT, i,
928 STATE_ATTENUATION);
929 struct ureg att = get_temp(p);
930
931 /* Calculate spot attenuation:
932 */
933 if (!p->state->unit[i].light_spotcutoff_is_180) {
934 struct ureg spot_dir_norm = register_param3(p, STATE_INTERNAL,
935 STATE_LIGHT_SPOT_DIR_NORMALIZED, i);
936 struct ureg spot = get_temp(p);
937 struct ureg slt = get_temp(p);
938
939 emit_op2(p, OPCODE_DP3, spot, 0, negate(VPpli), spot_dir_norm);
940 emit_op2(p, OPCODE_SLT, slt, 0, swizzle1(spot_dir_norm,W), spot);
941 emit_op2(p, OPCODE_POW, spot, 0, spot, swizzle1(attenuation, W));
942 emit_op2(p, OPCODE_MUL, att, 0, slt, spot);
943
944 release_temp(p, spot);
945 release_temp(p, slt);
946 }
947
948 /* Calculate distance attenuation:
949 */
950 if (p->state->unit[i].light_attenuated) {
951 /* 1/d,d,d,1/d */
952 emit_op1(p, OPCODE_RCP, dist, WRITEMASK_YZ, dist);
953 /* 1,d,d*d,1/d */
954 emit_op2(p, OPCODE_MUL, dist, WRITEMASK_XZ, dist, swizzle1(dist,Y));
955 /* 1/dist-atten */
956 emit_op2(p, OPCODE_DP3, dist, 0, attenuation, dist);
957
958 if (!p->state->unit[i].light_spotcutoff_is_180) {
959 /* dist-atten */
960 emit_op1(p, OPCODE_RCP, dist, 0, dist);
961 /* spot-atten * dist-atten */
962 emit_op2(p, OPCODE_MUL, att, 0, dist, att);
963 }
964 else {
965 /* dist-atten */
966 emit_op1(p, OPCODE_RCP, att, 0, dist);
967 }
968 }
969
970 return att;
971 }
972
973
974 /**
975 * Compute:
976 * lit.y = MAX(0, dots.x)
977 * lit.z = SLT(0, dots.x)
978 */
979 static void emit_degenerate_lit( struct tnl_program *p,
980 struct ureg lit,
981 struct ureg dots )
982 {
983 struct ureg id = get_identity_param(p); /* id = {0,0,0,1} */
984
985 /* Note that lit.x & lit.w will not be examined. Note also that
986 * dots.xyzw == dots.xxxx.
987 */
988
989 /* MAX lit, id, dots;
990 */
991 emit_op2(p, OPCODE_MAX, lit, WRITEMASK_XYZW, id, dots);
992
993 /* result[2] = (in > 0 ? 1 : 0)
994 * SLT lit.z, id.z, dots; # lit.z = (0 < dots.z) ? 1 : 0
995 */
996 emit_op2(p, OPCODE_SLT, lit, WRITEMASK_Z, swizzle1(id,Z), dots);
997 }
998
999
1000 /* Need to add some addtional parameters to allow lighting in object
1001 * space - STATE_SPOT_DIRECTION and STATE_HALF_VECTOR implicitly assume eye
1002 * space lighting.
1003 */
1004 static void build_lighting( struct tnl_program *p )
1005 {
1006 const GLboolean twoside = p->state->light_twoside;
1007 const GLboolean separate = p->state->separate_specular;
1008 GLuint nr_lights = 0, count = 0;
1009 struct ureg normal = get_transformed_normal(p);
1010 struct ureg lit = get_temp(p);
1011 struct ureg dots = get_temp(p);
1012 struct ureg _col0 = undef, _col1 = undef;
1013 struct ureg _bfc0 = undef, _bfc1 = undef;
1014 GLuint i;
1015
1016 /*
1017 * NOTE:
1018 * dots.x = dot(normal, VPpli)
1019 * dots.y = dot(normal, halfAngle)
1020 * dots.z = back.shininess
1021 * dots.w = front.shininess
1022 */
1023
1024 for (i = 0; i < MAX_LIGHTS; i++)
1025 if (p->state->unit[i].light_enabled)
1026 nr_lights++;
1027
1028 set_material_flags(p);
1029
1030 {
1031 if (!p->state->material_shininess_is_zero) {
1032 struct ureg shininess = get_material(p, 0, STATE_SHININESS);
1033 emit_op1(p, OPCODE_MOV, dots, WRITEMASK_W, swizzle1(shininess,X));
1034 release_temp(p, shininess);
1035 }
1036
1037 _col0 = make_temp(p, get_scenecolor(p, 0));
1038 if (separate)
1039 _col1 = make_temp(p, get_identity_param(p));
1040 else
1041 _col1 = _col0;
1042 }
1043
1044 if (twoside) {
1045 if (!p->state->material_shininess_is_zero) {
1046 /* Note that we negate the back-face specular exponent here.
1047 * The negation will be un-done later in the back-face code below.
1048 */
1049 struct ureg shininess = get_material(p, 1, STATE_SHININESS);
1050 emit_op1(p, OPCODE_MOV, dots, WRITEMASK_Z,
1051 negate(swizzle1(shininess,X)));
1052 release_temp(p, shininess);
1053 }
1054
1055 _bfc0 = make_temp(p, get_scenecolor(p, 1));
1056 if (separate)
1057 _bfc1 = make_temp(p, get_identity_param(p));
1058 else
1059 _bfc1 = _bfc0;
1060 }
1061
1062 /* If no lights, still need to emit the scenecolor.
1063 */
1064 {
1065 struct ureg res0 = register_output( p, VERT_RESULT_COL0 );
1066 emit_op1(p, OPCODE_MOV, res0, 0, _col0);
1067 }
1068
1069 if (separate) {
1070 struct ureg res1 = register_output( p, VERT_RESULT_COL1 );
1071 emit_op1(p, OPCODE_MOV, res1, 0, _col1);
1072 }
1073
1074 if (twoside) {
1075 struct ureg res0 = register_output( p, VERT_RESULT_BFC0 );
1076 emit_op1(p, OPCODE_MOV, res0, 0, _bfc0);
1077 }
1078
1079 if (twoside && separate) {
1080 struct ureg res1 = register_output( p, VERT_RESULT_BFC1 );
1081 emit_op1(p, OPCODE_MOV, res1, 0, _bfc1);
1082 }
1083
1084 if (nr_lights == 0) {
1085 release_temps(p);
1086 return;
1087 }
1088
1089 for (i = 0; i < MAX_LIGHTS; i++) {
1090 if (p->state->unit[i].light_enabled) {
1091 struct ureg half = undef;
1092 struct ureg att = undef, VPpli = undef;
1093
1094 count++;
1095
1096 if (p->state->unit[i].light_eyepos3_is_zero) {
1097 /* Can used precomputed constants in this case.
1098 * Attenuation never applies to infinite lights.
1099 */
1100 VPpli = register_param3(p, STATE_INTERNAL,
1101 STATE_LIGHT_POSITION_NORMALIZED, i);
1102
1103 if (!p->state->material_shininess_is_zero) {
1104 if (p->state->light_local_viewer) {
1105 struct ureg eye_hat = get_eye_position_normalized(p);
1106 half = get_temp(p);
1107 emit_op2(p, OPCODE_SUB, half, 0, VPpli, eye_hat);
1108 emit_normalize_vec3(p, half, half);
1109 }
1110 else {
1111 half = register_param3(p, STATE_INTERNAL,
1112 STATE_LIGHT_HALF_VECTOR, i);
1113 }
1114 }
1115 }
1116 else {
1117 struct ureg Ppli = register_param3(p, STATE_INTERNAL,
1118 STATE_LIGHT_POSITION, i);
1119 struct ureg V = get_eye_position(p);
1120 struct ureg dist = get_temp(p);
1121
1122 VPpli = get_temp(p);
1123
1124 /* Calculate VPpli vector
1125 */
1126 emit_op2(p, OPCODE_SUB, VPpli, 0, Ppli, V);
1127
1128 /* Normalize VPpli. The dist value also used in
1129 * attenuation below.
1130 */
1131 emit_op2(p, OPCODE_DP3, dist, 0, VPpli, VPpli);
1132 emit_op1(p, OPCODE_RSQ, dist, 0, dist);
1133 emit_op2(p, OPCODE_MUL, VPpli, 0, VPpli, dist);
1134
1135 /* Calculate attenuation:
1136 */
1137 if (!p->state->unit[i].light_spotcutoff_is_180 ||
1138 p->state->unit[i].light_attenuated) {
1139 att = calculate_light_attenuation(p, i, VPpli, dist);
1140 }
1141
1142 /* Calculate viewer direction, or use infinite viewer:
1143 */
1144 if (!p->state->material_shininess_is_zero) {
1145 half = get_temp(p);
1146
1147 if (p->state->light_local_viewer) {
1148 struct ureg eye_hat = get_eye_position_normalized(p);
1149 emit_op2(p, OPCODE_SUB, half, 0, VPpli, eye_hat);
1150 }
1151 else {
1152 struct ureg z_dir = swizzle(get_identity_param(p),X,Y,W,Z);
1153 emit_op2(p, OPCODE_ADD, half, 0, VPpli, z_dir);
1154 }
1155
1156 emit_normalize_vec3(p, half, half);
1157 }
1158
1159 release_temp(p, dist);
1160 }
1161
1162 /* Calculate dot products:
1163 */
1164 if (p->state->material_shininess_is_zero) {
1165 emit_op2(p, OPCODE_DP3, dots, 0, normal, VPpli);
1166 }
1167 else {
1168 emit_op2(p, OPCODE_DP3, dots, WRITEMASK_X, normal, VPpli);
1169 emit_op2(p, OPCODE_DP3, dots, WRITEMASK_Y, normal, half);
1170 }
1171
1172 /* Front face lighting:
1173 */
1174 {
1175 struct ureg ambient = get_lightprod(p, i, 0, STATE_AMBIENT);
1176 struct ureg diffuse = get_lightprod(p, i, 0, STATE_DIFFUSE);
1177 struct ureg specular = get_lightprod(p, i, 0, STATE_SPECULAR);
1178 struct ureg res0, res1;
1179 GLuint mask0, mask1;
1180
1181 if (count == nr_lights) {
1182 if (separate) {
1183 mask0 = WRITEMASK_XYZ;
1184 mask1 = WRITEMASK_XYZ;
1185 res0 = register_output( p, VERT_RESULT_COL0 );
1186 res1 = register_output( p, VERT_RESULT_COL1 );
1187 }
1188 else {
1189 mask0 = 0;
1190 mask1 = WRITEMASK_XYZ;
1191 res0 = _col0;
1192 res1 = register_output( p, VERT_RESULT_COL0 );
1193 }
1194 }
1195 else {
1196 mask0 = 0;
1197 mask1 = 0;
1198 res0 = _col0;
1199 res1 = _col1;
1200 }
1201
1202 if (!is_undef(att)) {
1203 /* light is attenuated by distance */
1204 emit_op1(p, OPCODE_LIT, lit, 0, dots);
1205 emit_op2(p, OPCODE_MUL, lit, 0, lit, att);
1206 emit_op3(p, OPCODE_MAD, _col0, 0, swizzle1(lit,X), ambient, _col0);
1207 }
1208 else if (!p->state->material_shininess_is_zero) {
1209 /* there's a non-zero specular term */
1210 emit_op1(p, OPCODE_LIT, lit, 0, dots);
1211 emit_op2(p, OPCODE_ADD, _col0, 0, ambient, _col0);
1212 }
1213 else {
1214 /* no attenutation, no specular */
1215 emit_degenerate_lit(p, lit, dots);
1216 emit_op2(p, OPCODE_ADD, _col0, 0, ambient, _col0);
1217 }
1218
1219 emit_op3(p, OPCODE_MAD, res0, mask0, swizzle1(lit,Y), diffuse, _col0);
1220 emit_op3(p, OPCODE_MAD, res1, mask1, swizzle1(lit,Z), specular, _col1);
1221
1222 release_temp(p, ambient);
1223 release_temp(p, diffuse);
1224 release_temp(p, specular);
1225 }
1226
1227 /* Back face lighting:
1228 */
1229 if (twoside) {
1230 struct ureg ambient = get_lightprod(p, i, 1, STATE_AMBIENT);
1231 struct ureg diffuse = get_lightprod(p, i, 1, STATE_DIFFUSE);
1232 struct ureg specular = get_lightprod(p, i, 1, STATE_SPECULAR);
1233 struct ureg res0, res1;
1234 GLuint mask0, mask1;
1235
1236 if (count == nr_lights) {
1237 if (separate) {
1238 mask0 = WRITEMASK_XYZ;
1239 mask1 = WRITEMASK_XYZ;
1240 res0 = register_output( p, VERT_RESULT_BFC0 );
1241 res1 = register_output( p, VERT_RESULT_BFC1 );
1242 }
1243 else {
1244 mask0 = 0;
1245 mask1 = WRITEMASK_XYZ;
1246 res0 = _bfc0;
1247 res1 = register_output( p, VERT_RESULT_BFC0 );
1248 }
1249 }
1250 else {
1251 res0 = _bfc0;
1252 res1 = _bfc1;
1253 mask0 = 0;
1254 mask1 = 0;
1255 }
1256
1257 /* For the back face we need to negate the X and Y component
1258 * dot products. dots.Z has the negated back-face specular
1259 * exponent. We swizzle that into the W position. This
1260 * negation makes the back-face specular term positive again.
1261 */
1262 dots = negate(swizzle(dots,X,Y,W,Z));
1263
1264 if (!is_undef(att)) {
1265 emit_op1(p, OPCODE_LIT, lit, 0, dots);
1266 emit_op2(p, OPCODE_MUL, lit, 0, lit, att);
1267 emit_op3(p, OPCODE_MAD, _bfc0, 0, swizzle1(lit,X), ambient, _bfc0);
1268 }
1269 else if (!p->state->material_shininess_is_zero) {
1270 emit_op1(p, OPCODE_LIT, lit, 0, dots);
1271 emit_op2(p, OPCODE_ADD, _bfc0, 0, ambient, _bfc0); /**/
1272 }
1273 else {
1274 emit_degenerate_lit(p, lit, dots);
1275 emit_op2(p, OPCODE_ADD, _bfc0, 0, ambient, _bfc0);
1276 }
1277
1278 emit_op3(p, OPCODE_MAD, res0, mask0, swizzle1(lit,Y), diffuse, _bfc0);
1279 emit_op3(p, OPCODE_MAD, res1, mask1, swizzle1(lit,Z), specular, _bfc1);
1280 /* restore dots to its original state for subsequent lights
1281 * by negating and swizzling again.
1282 */
1283 dots = negate(swizzle(dots,X,Y,W,Z));
1284
1285 release_temp(p, ambient);
1286 release_temp(p, diffuse);
1287 release_temp(p, specular);
1288 }
1289
1290 release_temp(p, half);
1291 release_temp(p, VPpli);
1292 release_temp(p, att);
1293 }
1294 }
1295
1296 release_temps( p );
1297 }
1298
1299
1300 static void build_fog( struct tnl_program *p )
1301 {
1302 struct ureg fog = register_output(p, VERT_RESULT_FOGC);
1303 struct ureg input;
1304
1305 if (p->state->fog_source_is_depth) {
1306 input = get_eye_position_z(p);
1307 }
1308 else {
1309 input = swizzle1(register_input(p, VERT_ATTRIB_FOG), X);
1310 }
1311
1312 /* result.fog = {abs(f),0,0,1}; */
1313 emit_op1(p, OPCODE_ABS, fog, WRITEMASK_X, input);
1314 emit_op1(p, OPCODE_MOV, fog, WRITEMASK_YZW, get_identity_param(p));
1315 }
1316
1317
1318 static void build_reflect_texgen( struct tnl_program *p,
1319 struct ureg dest,
1320 GLuint writemask )
1321 {
1322 struct ureg normal = get_transformed_normal(p);
1323 struct ureg eye_hat = get_eye_position_normalized(p);
1324 struct ureg tmp = get_temp(p);
1325
1326 /* n.u */
1327 emit_op2(p, OPCODE_DP3, tmp, 0, normal, eye_hat);
1328 /* 2n.u */
1329 emit_op2(p, OPCODE_ADD, tmp, 0, tmp, tmp);
1330 /* (-2n.u)n + u */
1331 emit_op3(p, OPCODE_MAD, dest, writemask, negate(tmp), normal, eye_hat);
1332
1333 release_temp(p, tmp);
1334 }
1335
1336
1337 static void build_sphere_texgen( struct tnl_program *p,
1338 struct ureg dest,
1339 GLuint writemask )
1340 {
1341 struct ureg normal = get_transformed_normal(p);
1342 struct ureg eye_hat = get_eye_position_normalized(p);
1343 struct ureg tmp = get_temp(p);
1344 struct ureg half = register_scalar_const(p, .5);
1345 struct ureg r = get_temp(p);
1346 struct ureg inv_m = get_temp(p);
1347 struct ureg id = get_identity_param(p);
1348
1349 /* Could share the above calculations, but it would be
1350 * a fairly odd state for someone to set (both sphere and
1351 * reflection active for different texture coordinate
1352 * components. Of course - if two texture units enable
1353 * reflect and/or sphere, things start to tilt in favour
1354 * of seperating this out:
1355 */
1356
1357 /* n.u */
1358 emit_op2(p, OPCODE_DP3, tmp, 0, normal, eye_hat);
1359 /* 2n.u */
1360 emit_op2(p, OPCODE_ADD, tmp, 0, tmp, tmp);
1361 /* (-2n.u)n + u */
1362 emit_op3(p, OPCODE_MAD, r, 0, negate(tmp), normal, eye_hat);
1363 /* r + 0,0,1 */
1364 emit_op2(p, OPCODE_ADD, tmp, 0, r, swizzle(id,X,Y,W,Z));
1365 /* rx^2 + ry^2 + (rz+1)^2 */
1366 emit_op2(p, OPCODE_DP3, tmp, 0, tmp, tmp);
1367 /* 2/m */
1368 emit_op1(p, OPCODE_RSQ, tmp, 0, tmp);
1369 /* 1/m */
1370 emit_op2(p, OPCODE_MUL, inv_m, 0, tmp, half);
1371 /* r/m + 1/2 */
1372 emit_op3(p, OPCODE_MAD, dest, writemask, r, inv_m, half);
1373
1374 release_temp(p, tmp);
1375 release_temp(p, r);
1376 release_temp(p, inv_m);
1377 }
1378
1379
1380 static void build_texture_transform( struct tnl_program *p )
1381 {
1382 GLuint i, j;
1383
1384 for (i = 0; i < MAX_TEXTURE_COORD_UNITS; i++) {
1385
1386 if (!(p->state->fragprog_inputs_read & FRAG_BIT_TEX(i)))
1387 continue;
1388
1389 if (p->state->unit[i].texgen_enabled ||
1390 p->state->unit[i].texmat_enabled) {
1391
1392 GLuint texmat_enabled = p->state->unit[i].texmat_enabled;
1393 struct ureg out = register_output(p, VERT_RESULT_TEX0 + i);
1394 struct ureg out_texgen = undef;
1395
1396 if (p->state->unit[i].texgen_enabled) {
1397 GLuint copy_mask = 0;
1398 GLuint sphere_mask = 0;
1399 GLuint reflect_mask = 0;
1400 GLuint normal_mask = 0;
1401 GLuint modes[4];
1402
1403 if (texmat_enabled)
1404 out_texgen = get_temp(p);
1405 else
1406 out_texgen = out;
1407
1408 modes[0] = p->state->unit[i].texgen_mode0;
1409 modes[1] = p->state->unit[i].texgen_mode1;
1410 modes[2] = p->state->unit[i].texgen_mode2;
1411 modes[3] = p->state->unit[i].texgen_mode3;
1412
1413 for (j = 0; j < 4; j++) {
1414 switch (modes[j]) {
1415 case TXG_OBJ_LINEAR: {
1416 struct ureg obj = register_input(p, VERT_ATTRIB_POS);
1417 struct ureg plane =
1418 register_param3(p, STATE_TEXGEN, i,
1419 STATE_TEXGEN_OBJECT_S + j);
1420
1421 emit_op2(p, OPCODE_DP4, out_texgen, WRITEMASK_X << j,
1422 obj, plane );
1423 break;
1424 }
1425 case TXG_EYE_LINEAR: {
1426 struct ureg eye = get_eye_position(p);
1427 struct ureg plane =
1428 register_param3(p, STATE_TEXGEN, i,
1429 STATE_TEXGEN_EYE_S + j);
1430
1431 emit_op2(p, OPCODE_DP4, out_texgen, WRITEMASK_X << j,
1432 eye, plane );
1433 break;
1434 }
1435 case TXG_SPHERE_MAP:
1436 sphere_mask |= WRITEMASK_X << j;
1437 break;
1438 case TXG_REFLECTION_MAP:
1439 reflect_mask |= WRITEMASK_X << j;
1440 break;
1441 case TXG_NORMAL_MAP:
1442 normal_mask |= WRITEMASK_X << j;
1443 break;
1444 case TXG_NONE:
1445 copy_mask |= WRITEMASK_X << j;
1446 }
1447 }
1448
1449 if (sphere_mask) {
1450 build_sphere_texgen(p, out_texgen, sphere_mask);
1451 }
1452
1453 if (reflect_mask) {
1454 build_reflect_texgen(p, out_texgen, reflect_mask);
1455 }
1456
1457 if (normal_mask) {
1458 struct ureg normal = get_transformed_normal(p);
1459 emit_op1(p, OPCODE_MOV, out_texgen, normal_mask, normal );
1460 }
1461
1462 if (copy_mask) {
1463 struct ureg in = register_input(p, VERT_ATTRIB_TEX0+i);
1464 emit_op1(p, OPCODE_MOV, out_texgen, copy_mask, in );
1465 }
1466 }
1467
1468 if (texmat_enabled) {
1469 struct ureg texmat[4];
1470 struct ureg in = (!is_undef(out_texgen) ?
1471 out_texgen :
1472 register_input(p, VERT_ATTRIB_TEX0+i));
1473 if (p->mvp_with_dp4) {
1474 register_matrix_param5( p, STATE_TEXTURE_MATRIX, i, 0, 3,
1475 0, texmat );
1476 emit_matrix_transform_vec4( p, out, texmat, in );
1477 }
1478 else {
1479 register_matrix_param5( p, STATE_TEXTURE_MATRIX, i, 0, 3,
1480 STATE_MATRIX_TRANSPOSE, texmat );
1481 emit_transpose_matrix_transform_vec4( p, out, texmat, in );
1482 }
1483 }
1484
1485 release_temps(p);
1486 }
1487 else {
1488 emit_passthrough(p, VERT_ATTRIB_TEX0+i, VERT_RESULT_TEX0+i);
1489 }
1490 }
1491 }
1492
1493
1494 /**
1495 * Point size attenuation computation.
1496 */
1497 static void build_atten_pointsize( struct tnl_program *p )
1498 {
1499 struct ureg eye = get_eye_position_z(p);
1500 struct ureg state_size = register_param1(p, STATE_POINT_SIZE);
1501 struct ureg state_attenuation = register_param1(p, STATE_POINT_ATTENUATION);
1502 struct ureg out = register_output(p, VERT_RESULT_PSIZ);
1503 struct ureg ut = get_temp(p);
1504
1505 /* dist = |eyez| */
1506 emit_op1(p, OPCODE_ABS, ut, WRITEMASK_Y, swizzle1(eye, Z));
1507 /* p1 + dist * (p2 + dist * p3); */
1508 emit_op3(p, OPCODE_MAD, ut, WRITEMASK_X, swizzle1(ut, Y),
1509 swizzle1(state_attenuation, Z), swizzle1(state_attenuation, Y));
1510 emit_op3(p, OPCODE_MAD, ut, WRITEMASK_X, swizzle1(ut, Y),
1511 ut, swizzle1(state_attenuation, X));
1512
1513 /* 1 / sqrt(factor) */
1514 emit_op1(p, OPCODE_RSQ, ut, WRITEMASK_X, ut );
1515
1516 #if 0
1517 /* out = pointSize / sqrt(factor) */
1518 emit_op2(p, OPCODE_MUL, out, WRITEMASK_X, ut, state_size);
1519 #else
1520 /* this is a good place to clamp the point size since there's likely
1521 * no hardware registers to clamp point size at rasterization time.
1522 */
1523 emit_op2(p, OPCODE_MUL, ut, WRITEMASK_X, ut, state_size);
1524 emit_op2(p, OPCODE_MAX, ut, WRITEMASK_X, ut, swizzle1(state_size, Y));
1525 emit_op2(p, OPCODE_MIN, out, WRITEMASK_X, ut, swizzle1(state_size, Z));
1526 #endif
1527
1528 release_temp(p, ut);
1529 }
1530
1531
1532 /**
1533 * Pass-though per-vertex point size, from user's point size array.
1534 */
1535 static void build_array_pointsize( struct tnl_program *p )
1536 {
1537 struct ureg in = register_input(p, VERT_ATTRIB_POINT_SIZE);
1538 struct ureg out = register_output(p, VERT_RESULT_PSIZ);
1539 emit_op1(p, OPCODE_MOV, out, WRITEMASK_X, in);
1540 }
1541
1542
1543 static void build_tnl_program( struct tnl_program *p )
1544 {
1545 /* Emit the program, starting with modelviewproject:
1546 */
1547 build_hpos(p);
1548
1549 /* Lighting calculations:
1550 */
1551 if (p->state->fragprog_inputs_read & (FRAG_BIT_COL0|FRAG_BIT_COL1)) {
1552 if (p->state->light_global_enabled)
1553 build_lighting(p);
1554 else {
1555 if (p->state->fragprog_inputs_read & FRAG_BIT_COL0)
1556 emit_passthrough(p, VERT_ATTRIB_COLOR0, VERT_RESULT_COL0);
1557
1558 if (p->state->fragprog_inputs_read & FRAG_BIT_COL1)
1559 emit_passthrough(p, VERT_ATTRIB_COLOR1, VERT_RESULT_COL1);
1560 }
1561 }
1562
1563 if (p->state->fragprog_inputs_read & FRAG_BIT_FOGC)
1564 build_fog(p);
1565
1566 if (p->state->fragprog_inputs_read & FRAG_BITS_TEX_ANY)
1567 build_texture_transform(p);
1568
1569 if (p->state->point_attenuated)
1570 build_atten_pointsize(p);
1571 else if (p->state->point_array)
1572 build_array_pointsize(p);
1573
1574 /* Finish up:
1575 */
1576 emit_op1(p, OPCODE_END, undef, 0, undef);
1577
1578 /* Disassemble:
1579 */
1580 if (DISASSEM) {
1581 _mesa_printf ("\n");
1582 }
1583 }
1584
1585
1586 static void
1587 create_new_program( const struct state_key *key,
1588 struct gl_vertex_program *program,
1589 GLboolean mvp_with_dp4,
1590 GLuint max_temps)
1591 {
1592 struct tnl_program p;
1593
1594 _mesa_memset(&p, 0, sizeof(p));
1595 p.state = key;
1596 p.program = program;
1597 p.eye_position = undef;
1598 p.eye_position_z = undef;
1599 p.eye_position_normalized = undef;
1600 p.transformed_normal = undef;
1601 p.identity = undef;
1602 p.temp_in_use = 0;
1603 p.mvp_with_dp4 = mvp_with_dp4;
1604
1605 if (max_temps >= sizeof(int) * 8)
1606 p.temp_reserved = 0;
1607 else
1608 p.temp_reserved = ~((1<<max_temps)-1);
1609
1610 /* Start by allocating 32 instructions.
1611 * If we need more, we'll grow the instruction array as needed.
1612 */
1613 p.max_inst = 32;
1614 p.program->Base.Instructions = _mesa_alloc_instructions(p.max_inst);
1615 p.program->Base.String = NULL;
1616 p.program->Base.NumInstructions =
1617 p.program->Base.NumTemporaries =
1618 p.program->Base.NumParameters =
1619 p.program->Base.NumAttributes = p.program->Base.NumAddressRegs = 0;
1620 p.program->Base.Parameters = _mesa_new_parameter_list();
1621 p.program->Base.InputsRead = 0;
1622 p.program->Base.OutputsWritten = 0;
1623
1624 build_tnl_program( &p );
1625 }
1626
1627
1628 /**
1629 * Return a vertex program which implements the current fixed-function
1630 * transform/lighting/texgen operations.
1631 * XXX move this into core mesa (main/)
1632 */
1633 struct gl_vertex_program *
1634 _mesa_get_fixed_func_vertex_program(GLcontext *ctx)
1635 {
1636 struct gl_vertex_program *prog;
1637 struct state_key key;
1638
1639 /* Grab all the relevent state and put it in a single structure:
1640 */
1641 make_state_key(ctx, &key);
1642
1643 /* Look for an already-prepared program for this state:
1644 */
1645 prog = (struct gl_vertex_program *)
1646 _mesa_search_program_cache(ctx->VertexProgram.Cache, &key, sizeof(key));
1647
1648 if (!prog) {
1649 /* OK, we'll have to build a new one */
1650 if (0)
1651 _mesa_printf("Build new TNL program\n");
1652
1653 prog = (struct gl_vertex_program *)
1654 ctx->Driver.NewProgram(ctx, GL_VERTEX_PROGRAM_ARB, 0);
1655 if (!prog)
1656 return NULL;
1657
1658 create_new_program( &key, prog,
1659 ctx->mvp_with_dp4,
1660 ctx->Const.VertexProgram.MaxTemps );
1661
1662 #if 0
1663 if (ctx->Driver.ProgramStringNotify)
1664 ctx->Driver.ProgramStringNotify( ctx, GL_VERTEX_PROGRAM_ARB,
1665 &prog->Base );
1666 #endif
1667 _mesa_program_cache_insert(ctx, ctx->VertexProgram.Cache,
1668 &key, sizeof(key), &prog->Base);
1669 }
1670
1671 return prog;
1672 }