program: Remove NV_fragment_program Abs support.
[mesa.git] / src / mesa / main / ffvertex_prog.c
1 /**************************************************************************
2 *
3 * Copyright 2007 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 /**
29 * \file ffvertex_prog.c
30 *
31 * Create a vertex program to execute the current fixed function T&L pipeline.
32 * \author Keith Whitwell
33 */
34
35
36 #include "main/glheader.h"
37 #include "main/mtypes.h"
38 #include "main/macros.h"
39 #include "main/enums.h"
40 #include "main/ffvertex_prog.h"
41 #include "program/program.h"
42 #include "program/prog_cache.h"
43 #include "program/prog_instruction.h"
44 #include "program/prog_parameter.h"
45 #include "program/prog_print.h"
46 #include "program/prog_statevars.h"
47
48
49 /** Max of number of lights and texture coord units */
50 #define NUM_UNITS MAX2(MAX_TEXTURE_COORD_UNITS, MAX_LIGHTS)
51
52 struct state_key {
53 unsigned light_color_material_mask:12;
54 unsigned light_global_enabled:1;
55 unsigned light_local_viewer:1;
56 unsigned light_twoside:1;
57 unsigned material_shininess_is_zero:1;
58 unsigned need_eye_coords:1;
59 unsigned normalize:1;
60 unsigned rescale_normals:1;
61
62 unsigned fog_source_is_depth:1;
63 unsigned fog_distance_mode:2;
64 unsigned separate_specular:1;
65 unsigned point_attenuated:1;
66 unsigned point_array:1;
67 unsigned texture_enabled_global:1;
68 unsigned fragprog_inputs_read:12;
69
70 GLbitfield64 varying_vp_inputs;
71
72 struct {
73 unsigned light_enabled:1;
74 unsigned light_eyepos3_is_zero:1;
75 unsigned light_spotcutoff_is_180:1;
76 unsigned light_attenuated:1;
77 unsigned texunit_really_enabled:1;
78 unsigned texmat_enabled:1;
79 unsigned coord_replace:1;
80 unsigned texgen_enabled:4;
81 unsigned texgen_mode0:4;
82 unsigned texgen_mode1:4;
83 unsigned texgen_mode2:4;
84 unsigned texgen_mode3:4;
85 } unit[NUM_UNITS];
86 };
87
88
89 #define TXG_NONE 0
90 #define TXG_OBJ_LINEAR 1
91 #define TXG_EYE_LINEAR 2
92 #define TXG_SPHERE_MAP 3
93 #define TXG_REFLECTION_MAP 4
94 #define TXG_NORMAL_MAP 5
95
96 static GLuint translate_texgen( GLboolean enabled, GLenum mode )
97 {
98 if (!enabled)
99 return TXG_NONE;
100
101 switch (mode) {
102 case GL_OBJECT_LINEAR: return TXG_OBJ_LINEAR;
103 case GL_EYE_LINEAR: return TXG_EYE_LINEAR;
104 case GL_SPHERE_MAP: return TXG_SPHERE_MAP;
105 case GL_REFLECTION_MAP_NV: return TXG_REFLECTION_MAP;
106 case GL_NORMAL_MAP_NV: return TXG_NORMAL_MAP;
107 default: return TXG_NONE;
108 }
109 }
110
111 #define FDM_EYE_RADIAL 0
112 #define FDM_EYE_PLANE 1
113 #define FDM_EYE_PLANE_ABS 2
114
115 static GLuint translate_fog_distance_mode( GLenum mode )
116 {
117 switch (mode) {
118 case GL_EYE_RADIAL_NV:
119 return FDM_EYE_RADIAL;
120 case GL_EYE_PLANE:
121 return FDM_EYE_PLANE;
122 default: /* shouldn't happen; fall through to a sensible default */
123 case GL_EYE_PLANE_ABSOLUTE_NV:
124 return FDM_EYE_PLANE_ABS;
125 }
126 }
127
128 static GLboolean check_active_shininess( struct gl_context *ctx,
129 const struct state_key *key,
130 GLuint side )
131 {
132 GLuint attr = MAT_ATTRIB_FRONT_SHININESS + side;
133
134 if ((key->varying_vp_inputs & VERT_BIT_COLOR0) &&
135 (key->light_color_material_mask & (1 << attr)))
136 return GL_TRUE;
137
138 if (key->varying_vp_inputs & VERT_BIT_GENERIC(attr))
139 return GL_TRUE;
140
141 if (ctx->Light.Material.Attrib[attr][0] != 0.0F)
142 return GL_TRUE;
143
144 return GL_FALSE;
145 }
146
147
148 static void make_state_key( struct gl_context *ctx, struct state_key *key )
149 {
150 const struct gl_fragment_program *fp;
151 GLuint i;
152
153 memset(key, 0, sizeof(struct state_key));
154 fp = ctx->FragmentProgram._Current;
155
156 /* This now relies on texenvprogram.c being active:
157 */
158 assert(fp);
159
160 key->need_eye_coords = ctx->_NeedEyeCoords;
161
162 key->fragprog_inputs_read = fp->Base.InputsRead;
163 key->varying_vp_inputs = ctx->varying_vp_inputs;
164
165 if (ctx->RenderMode == GL_FEEDBACK) {
166 /* make sure the vertprog emits color and tex0 */
167 key->fragprog_inputs_read |= (VARYING_BIT_COL0 | VARYING_BIT_TEX0);
168 }
169
170 key->separate_specular = (ctx->Light.Model.ColorControl ==
171 GL_SEPARATE_SPECULAR_COLOR);
172
173 if (ctx->Light.Enabled) {
174 key->light_global_enabled = 1;
175
176 if (ctx->Light.Model.LocalViewer)
177 key->light_local_viewer = 1;
178
179 if (ctx->Light.Model.TwoSide)
180 key->light_twoside = 1;
181
182 if (ctx->Light.ColorMaterialEnabled) {
183 key->light_color_material_mask = ctx->Light._ColorMaterialBitmask;
184 }
185
186 for (i = 0; i < MAX_LIGHTS; i++) {
187 struct gl_light *light = &ctx->Light.Light[i];
188
189 if (light->Enabled) {
190 key->unit[i].light_enabled = 1;
191
192 if (light->EyePosition[3] == 0.0F)
193 key->unit[i].light_eyepos3_is_zero = 1;
194
195 if (light->SpotCutoff == 180.0F)
196 key->unit[i].light_spotcutoff_is_180 = 1;
197
198 if (light->ConstantAttenuation != 1.0F ||
199 light->LinearAttenuation != 0.0F ||
200 light->QuadraticAttenuation != 0.0F)
201 key->unit[i].light_attenuated = 1;
202 }
203 }
204
205 if (check_active_shininess(ctx, key, 0)) {
206 key->material_shininess_is_zero = 0;
207 }
208 else if (key->light_twoside &&
209 check_active_shininess(ctx, key, 1)) {
210 key->material_shininess_is_zero = 0;
211 }
212 else {
213 key->material_shininess_is_zero = 1;
214 }
215 }
216
217 if (ctx->Transform.Normalize)
218 key->normalize = 1;
219
220 if (ctx->Transform.RescaleNormals)
221 key->rescale_normals = 1;
222
223 if (ctx->Fog.FogCoordinateSource == GL_FRAGMENT_DEPTH_EXT) {
224 key->fog_source_is_depth = 1;
225 key->fog_distance_mode = translate_fog_distance_mode(ctx->Fog.FogDistanceMode);
226 }
227
228 if (ctx->Point._Attenuated)
229 key->point_attenuated = 1;
230
231 if (ctx->Array.VAO->VertexAttrib[VERT_ATTRIB_POINT_SIZE].Enabled)
232 key->point_array = 1;
233
234 if (ctx->Texture._TexGenEnabled ||
235 ctx->Texture._TexMatEnabled ||
236 ctx->Texture._MaxEnabledTexImageUnit != -1)
237 key->texture_enabled_global = 1;
238
239 for (i = 0; i < MAX_TEXTURE_COORD_UNITS; i++) {
240 struct gl_texture_unit *texUnit = &ctx->Texture.Unit[i];
241
242 if (texUnit->_Current)
243 key->unit[i].texunit_really_enabled = 1;
244
245 if (ctx->Point.PointSprite)
246 if (ctx->Point.CoordReplace[i])
247 key->unit[i].coord_replace = 1;
248
249 if (ctx->Texture._TexMatEnabled & ENABLE_TEXMAT(i))
250 key->unit[i].texmat_enabled = 1;
251
252 if (texUnit->TexGenEnabled) {
253 key->unit[i].texgen_enabled = 1;
254
255 key->unit[i].texgen_mode0 =
256 translate_texgen( texUnit->TexGenEnabled & (1<<0),
257 texUnit->GenS.Mode );
258 key->unit[i].texgen_mode1 =
259 translate_texgen( texUnit->TexGenEnabled & (1<<1),
260 texUnit->GenT.Mode );
261 key->unit[i].texgen_mode2 =
262 translate_texgen( texUnit->TexGenEnabled & (1<<2),
263 texUnit->GenR.Mode );
264 key->unit[i].texgen_mode3 =
265 translate_texgen( texUnit->TexGenEnabled & (1<<3),
266 texUnit->GenQ.Mode );
267 }
268 }
269 }
270
271
272
273 /* Very useful debugging tool - produces annotated listing of
274 * generated program with line/function references for each
275 * instruction back into this file:
276 */
277 #define DISASSEM 0
278
279
280 /* Use uregs to represent registers internally, translate to Mesa's
281 * expected formats on emit.
282 *
283 * NOTE: These are passed by value extensively in this file rather
284 * than as usual by pointer reference. If this disturbs you, try
285 * remembering they are just 32bits in size.
286 *
287 * GCC is smart enough to deal with these dword-sized structures in
288 * much the same way as if I had defined them as dwords and was using
289 * macros to access and set the fields. This is much nicer and easier
290 * to evolve.
291 */
292 struct ureg {
293 GLuint file:4;
294 GLint idx:9; /* relative addressing may be negative */
295 /* sizeof(idx) should == sizeof(prog_src_reg::Index) */
296 GLuint abs:1;
297 GLuint negate:1;
298 GLuint swz:12;
299 GLuint pad:5;
300 };
301
302
303 struct tnl_program {
304 const struct state_key *state;
305 struct gl_vertex_program *program;
306 GLuint max_inst; /** number of instructions allocated for program */
307 GLboolean mvp_with_dp4;
308
309 GLuint temp_in_use;
310 GLuint temp_reserved;
311
312 struct ureg eye_position;
313 struct ureg eye_position_z;
314 struct ureg eye_position_normalized;
315 struct ureg transformed_normal;
316 struct ureg identity;
317
318 GLuint materials;
319 GLuint color_materials;
320 };
321
322
323 static const struct ureg undef = {
324 PROGRAM_UNDEFINED,
325 0,
326 0,
327 0,
328 0,
329 0
330 };
331
332 /* Local shorthand:
333 */
334 #define X SWIZZLE_X
335 #define Y SWIZZLE_Y
336 #define Z SWIZZLE_Z
337 #define W SWIZZLE_W
338
339
340 /* Construct a ureg:
341 */
342 static struct ureg make_ureg(GLuint file, GLint idx)
343 {
344 struct ureg reg;
345 reg.file = file;
346 reg.idx = idx;
347 reg.abs = 0;
348 reg.negate = 0;
349 reg.swz = SWIZZLE_NOOP;
350 reg.pad = 0;
351 return reg;
352 }
353
354
355
356 static struct ureg absolute( struct ureg reg )
357 {
358 reg.abs = 1;
359 reg.negate = 0;
360 return reg;
361 }
362
363
364 static struct ureg negate( struct ureg reg )
365 {
366 reg.negate ^= 1;
367 return reg;
368 }
369
370
371 static struct ureg swizzle( struct ureg reg, int x, int y, int z, int w )
372 {
373 reg.swz = MAKE_SWIZZLE4(GET_SWZ(reg.swz, x),
374 GET_SWZ(reg.swz, y),
375 GET_SWZ(reg.swz, z),
376 GET_SWZ(reg.swz, w));
377 return reg;
378 }
379
380
381 static struct ureg swizzle1( struct ureg reg, int x )
382 {
383 return swizzle(reg, x, x, x, x);
384 }
385
386
387 static struct ureg get_temp( struct tnl_program *p )
388 {
389 int bit = ffs( ~p->temp_in_use );
390 if (!bit) {
391 _mesa_problem(NULL, "%s: out of temporaries\n", __FILE__);
392 exit(1);
393 }
394
395 if ((GLuint) bit > p->program->Base.NumTemporaries)
396 p->program->Base.NumTemporaries = bit;
397
398 p->temp_in_use |= 1<<(bit-1);
399 return make_ureg(PROGRAM_TEMPORARY, bit-1);
400 }
401
402
403 static struct ureg reserve_temp( struct tnl_program *p )
404 {
405 struct ureg temp = get_temp( p );
406 p->temp_reserved |= 1<<temp.idx;
407 return temp;
408 }
409
410
411 static void release_temp( struct tnl_program *p, struct ureg reg )
412 {
413 if (reg.file == PROGRAM_TEMPORARY) {
414 p->temp_in_use &= ~(1<<reg.idx);
415 p->temp_in_use |= p->temp_reserved; /* can't release reserved temps */
416 }
417 }
418
419 static void release_temps( struct tnl_program *p )
420 {
421 p->temp_in_use = p->temp_reserved;
422 }
423
424
425 static struct ureg register_param5(struct tnl_program *p,
426 GLint s0,
427 GLint s1,
428 GLint s2,
429 GLint s3,
430 GLint s4)
431 {
432 gl_state_index tokens[STATE_LENGTH];
433 GLint idx;
434 tokens[0] = s0;
435 tokens[1] = s1;
436 tokens[2] = s2;
437 tokens[3] = s3;
438 tokens[4] = s4;
439 idx = _mesa_add_state_reference( p->program->Base.Parameters, tokens );
440 return make_ureg(PROGRAM_STATE_VAR, idx);
441 }
442
443
444 #define register_param1(p,s0) register_param5(p,s0,0,0,0,0)
445 #define register_param2(p,s0,s1) register_param5(p,s0,s1,0,0,0)
446 #define register_param3(p,s0,s1,s2) register_param5(p,s0,s1,s2,0,0)
447 #define register_param4(p,s0,s1,s2,s3) register_param5(p,s0,s1,s2,s3,0)
448
449
450
451 /**
452 * \param input one of VERT_ATTRIB_x tokens.
453 */
454 static struct ureg register_input( struct tnl_program *p, GLuint input )
455 {
456 assert(input < VERT_ATTRIB_MAX);
457
458 if (p->state->varying_vp_inputs & VERT_BIT(input)) {
459 p->program->Base.InputsRead |= VERT_BIT(input);
460 return make_ureg(PROGRAM_INPUT, input);
461 }
462 else {
463 return register_param3( p, STATE_INTERNAL, STATE_CURRENT_ATTRIB, input );
464 }
465 }
466
467
468 /**
469 * \param input one of VARYING_SLOT_x tokens.
470 */
471 static struct ureg register_output( struct tnl_program *p, GLuint output )
472 {
473 p->program->Base.OutputsWritten |= BITFIELD64_BIT(output);
474 return make_ureg(PROGRAM_OUTPUT, output);
475 }
476
477
478 static struct ureg register_const4f( struct tnl_program *p,
479 GLfloat s0,
480 GLfloat s1,
481 GLfloat s2,
482 GLfloat s3)
483 {
484 gl_constant_value values[4];
485 GLint idx;
486 GLuint swizzle;
487 values[0].f = s0;
488 values[1].f = s1;
489 values[2].f = s2;
490 values[3].f = s3;
491 idx = _mesa_add_unnamed_constant( p->program->Base.Parameters, values, 4,
492 &swizzle );
493 assert(swizzle == SWIZZLE_NOOP);
494 return make_ureg(PROGRAM_CONSTANT, idx);
495 }
496
497 #define register_const1f(p, s0) register_const4f(p, s0, 0, 0, 1)
498 #define register_scalar_const(p, s0) register_const4f(p, s0, s0, s0, s0)
499 #define register_const2f(p, s0, s1) register_const4f(p, s0, s1, 0, 1)
500 #define register_const3f(p, s0, s1, s2) register_const4f(p, s0, s1, s2, 1)
501
502 static GLboolean is_undef( struct ureg reg )
503 {
504 return reg.file == PROGRAM_UNDEFINED;
505 }
506
507
508 static struct ureg get_identity_param( struct tnl_program *p )
509 {
510 if (is_undef(p->identity))
511 p->identity = register_const4f(p, 0,0,0,1);
512
513 return p->identity;
514 }
515
516 static void register_matrix_param5( struct tnl_program *p,
517 GLint s0, /* modelview, projection, etc */
518 GLint s1, /* texture matrix number */
519 GLint s2, /* first row */
520 GLint s3, /* last row */
521 GLint s4, /* inverse, transpose, etc */
522 struct ureg *matrix )
523 {
524 GLint i;
525
526 /* This is a bit sad as the support is there to pull the whole
527 * matrix out in one go:
528 */
529 for (i = 0; i <= s3 - s2; i++)
530 matrix[i] = register_param5( p, s0, s1, i, i, s4 );
531 }
532
533
534 static void emit_arg( struct prog_src_register *src,
535 struct ureg reg )
536 {
537 src->File = reg.file;
538 src->Index = reg.idx;
539 src->Swizzle = reg.swz;
540 src->Negate = reg.negate ? NEGATE_XYZW : NEGATE_NONE;
541 src->RelAddr = 0;
542 /* Check that bitfield sizes aren't exceeded */
543 assert(src->Index == reg.idx);
544 }
545
546
547 static void emit_dst( struct prog_dst_register *dst,
548 struct ureg reg, GLuint mask )
549 {
550 dst->File = reg.file;
551 dst->Index = reg.idx;
552 /* allow zero as a shorthand for xyzw */
553 dst->WriteMask = mask ? mask : WRITEMASK_XYZW;
554 /* Check that bitfield sizes aren't exceeded */
555 assert(dst->Index == reg.idx);
556 }
557
558
559 static void debug_insn( struct prog_instruction *inst, const char *fn,
560 GLuint line )
561 {
562 if (DISASSEM) {
563 static const char *last_fn;
564
565 if (fn != last_fn) {
566 last_fn = fn;
567 printf("%s:\n", fn);
568 }
569
570 printf("%d:\t", line);
571 _mesa_print_instruction(inst);
572 }
573 }
574
575
576 static void emit_op3fn(struct tnl_program *p,
577 enum prog_opcode op,
578 struct ureg dest,
579 GLuint mask,
580 struct ureg src0,
581 struct ureg src1,
582 struct ureg src2,
583 const char *fn,
584 GLuint line)
585 {
586 GLuint nr;
587 struct prog_instruction *inst;
588
589 assert(p->program->Base.NumInstructions <= p->max_inst);
590
591 if (p->program->Base.NumInstructions == p->max_inst) {
592 /* need to extend the program's instruction array */
593 struct prog_instruction *newInst;
594
595 /* double the size */
596 p->max_inst *= 2;
597
598 newInst = _mesa_alloc_instructions(p->max_inst);
599 if (!newInst) {
600 _mesa_error(NULL, GL_OUT_OF_MEMORY, "vertex program build");
601 return;
602 }
603
604 _mesa_copy_instructions(newInst,
605 p->program->Base.Instructions,
606 p->program->Base.NumInstructions);
607
608 _mesa_free_instructions(p->program->Base.Instructions,
609 p->program->Base.NumInstructions);
610
611 p->program->Base.Instructions = newInst;
612 }
613
614 nr = p->program->Base.NumInstructions++;
615
616 inst = &p->program->Base.Instructions[nr];
617 inst->Opcode = (enum prog_opcode) op;
618
619 emit_arg( &inst->SrcReg[0], src0 );
620 emit_arg( &inst->SrcReg[1], src1 );
621 emit_arg( &inst->SrcReg[2], src2 );
622
623 emit_dst( &inst->DstReg, dest, mask );
624
625 debug_insn(inst, fn, line);
626 }
627
628
629 #define emit_op3(p, op, dst, mask, src0, src1, src2) \
630 emit_op3fn(p, op, dst, mask, src0, src1, src2, __func__, __LINE__)
631
632 #define emit_op2(p, op, dst, mask, src0, src1) \
633 emit_op3fn(p, op, dst, mask, src0, src1, undef, __func__, __LINE__)
634
635 #define emit_op1(p, op, dst, mask, src0) \
636 emit_op3fn(p, op, dst, mask, src0, undef, undef, __func__, __LINE__)
637
638
639 static struct ureg make_temp( struct tnl_program *p, struct ureg reg )
640 {
641 if (reg.file == PROGRAM_TEMPORARY &&
642 !(p->temp_reserved & (1<<reg.idx)))
643 return reg;
644 else {
645 struct ureg temp = get_temp(p);
646 emit_op1(p, OPCODE_MOV, temp, 0, reg);
647 return temp;
648 }
649 }
650
651
652 /* Currently no tracking performed of input/output/register size or
653 * active elements. Could be used to reduce these operations, as
654 * could the matrix type.
655 */
656 static void emit_matrix_transform_vec4( struct tnl_program *p,
657 struct ureg dest,
658 const struct ureg *mat,
659 struct ureg src)
660 {
661 emit_op2(p, OPCODE_DP4, dest, WRITEMASK_X, src, mat[0]);
662 emit_op2(p, OPCODE_DP4, dest, WRITEMASK_Y, src, mat[1]);
663 emit_op2(p, OPCODE_DP4, dest, WRITEMASK_Z, src, mat[2]);
664 emit_op2(p, OPCODE_DP4, dest, WRITEMASK_W, src, mat[3]);
665 }
666
667
668 /* This version is much easier to implement if writemasks are not
669 * supported natively on the target or (like SSE), the target doesn't
670 * have a clean/obvious dotproduct implementation.
671 */
672 static void emit_transpose_matrix_transform_vec4( struct tnl_program *p,
673 struct ureg dest,
674 const struct ureg *mat,
675 struct ureg src)
676 {
677 struct ureg tmp;
678
679 if (dest.file != PROGRAM_TEMPORARY)
680 tmp = get_temp(p);
681 else
682 tmp = dest;
683
684 emit_op2(p, OPCODE_MUL, tmp, 0, swizzle1(src,X), mat[0]);
685 emit_op3(p, OPCODE_MAD, tmp, 0, swizzle1(src,Y), mat[1], tmp);
686 emit_op3(p, OPCODE_MAD, tmp, 0, swizzle1(src,Z), mat[2], tmp);
687 emit_op3(p, OPCODE_MAD, dest, 0, swizzle1(src,W), mat[3], tmp);
688
689 if (dest.file != PROGRAM_TEMPORARY)
690 release_temp(p, tmp);
691 }
692
693
694 static void emit_matrix_transform_vec3( struct tnl_program *p,
695 struct ureg dest,
696 const struct ureg *mat,
697 struct ureg src)
698 {
699 emit_op2(p, OPCODE_DP3, dest, WRITEMASK_X, src, mat[0]);
700 emit_op2(p, OPCODE_DP3, dest, WRITEMASK_Y, src, mat[1]);
701 emit_op2(p, OPCODE_DP3, dest, WRITEMASK_Z, src, mat[2]);
702 }
703
704
705 static void emit_normalize_vec3( struct tnl_program *p,
706 struct ureg dest,
707 struct ureg src )
708 {
709 struct ureg tmp = get_temp(p);
710 emit_op2(p, OPCODE_DP3, tmp, WRITEMASK_X, src, src);
711 emit_op1(p, OPCODE_RSQ, tmp, WRITEMASK_X, tmp);
712 emit_op2(p, OPCODE_MUL, dest, 0, src, swizzle1(tmp, X));
713 release_temp(p, tmp);
714 }
715
716
717 static void emit_passthrough( struct tnl_program *p,
718 GLuint input,
719 GLuint output )
720 {
721 struct ureg out = register_output(p, output);
722 emit_op1(p, OPCODE_MOV, out, 0, register_input(p, input));
723 }
724
725
726 static struct ureg get_eye_position( struct tnl_program *p )
727 {
728 if (is_undef(p->eye_position)) {
729 struct ureg pos = register_input( p, VERT_ATTRIB_POS );
730 struct ureg modelview[4];
731
732 p->eye_position = reserve_temp(p);
733
734 if (p->mvp_with_dp4) {
735 register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 3,
736 0, modelview );
737
738 emit_matrix_transform_vec4(p, p->eye_position, modelview, pos);
739 }
740 else {
741 register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 3,
742 STATE_MATRIX_TRANSPOSE, modelview );
743
744 emit_transpose_matrix_transform_vec4(p, p->eye_position, modelview, pos);
745 }
746 }
747
748 return p->eye_position;
749 }
750
751
752 static struct ureg get_eye_position_z( struct tnl_program *p )
753 {
754 if (!is_undef(p->eye_position))
755 return swizzle1(p->eye_position, Z);
756
757 if (is_undef(p->eye_position_z)) {
758 struct ureg pos = register_input( p, VERT_ATTRIB_POS );
759 struct ureg modelview[4];
760
761 p->eye_position_z = reserve_temp(p);
762
763 register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 3,
764 0, modelview );
765
766 emit_op2(p, OPCODE_DP4, p->eye_position_z, 0, pos, modelview[2]);
767 }
768
769 return p->eye_position_z;
770 }
771
772
773 static struct ureg get_eye_position_normalized( struct tnl_program *p )
774 {
775 if (is_undef(p->eye_position_normalized)) {
776 struct ureg eye = get_eye_position(p);
777 p->eye_position_normalized = reserve_temp(p);
778 emit_normalize_vec3(p, p->eye_position_normalized, eye);
779 }
780
781 return p->eye_position_normalized;
782 }
783
784
785 static struct ureg get_transformed_normal( struct tnl_program *p )
786 {
787 if (is_undef(p->transformed_normal) &&
788 !p->state->need_eye_coords &&
789 !p->state->normalize &&
790 !(p->state->need_eye_coords == p->state->rescale_normals))
791 {
792 p->transformed_normal = register_input(p, VERT_ATTRIB_NORMAL );
793 }
794 else if (is_undef(p->transformed_normal))
795 {
796 struct ureg normal = register_input(p, VERT_ATTRIB_NORMAL );
797 struct ureg mvinv[3];
798 struct ureg transformed_normal = reserve_temp(p);
799
800 if (p->state->need_eye_coords) {
801 register_matrix_param5( p, STATE_MODELVIEW_MATRIX, 0, 0, 2,
802 STATE_MATRIX_INVTRANS, mvinv );
803
804 /* Transform to eye space:
805 */
806 emit_matrix_transform_vec3( p, transformed_normal, mvinv, normal );
807 normal = transformed_normal;
808 }
809
810 /* Normalize/Rescale:
811 */
812 if (p->state->normalize) {
813 emit_normalize_vec3( p, transformed_normal, normal );
814 normal = transformed_normal;
815 }
816 else if (p->state->need_eye_coords == p->state->rescale_normals) {
817 /* This is already adjusted for eye/non-eye rendering:
818 */
819 struct ureg rescale = register_param2(p, STATE_INTERNAL,
820 STATE_NORMAL_SCALE);
821
822 emit_op2( p, OPCODE_MUL, transformed_normal, 0, normal, rescale );
823 normal = transformed_normal;
824 }
825
826 assert(normal.file == PROGRAM_TEMPORARY);
827 p->transformed_normal = normal;
828 }
829
830 return p->transformed_normal;
831 }
832
833
834 static void build_hpos( struct tnl_program *p )
835 {
836 struct ureg pos = register_input( p, VERT_ATTRIB_POS );
837 struct ureg hpos = register_output( p, VARYING_SLOT_POS );
838 struct ureg mvp[4];
839
840 if (p->mvp_with_dp4) {
841 register_matrix_param5( p, STATE_MVP_MATRIX, 0, 0, 3,
842 0, mvp );
843 emit_matrix_transform_vec4( p, hpos, mvp, pos );
844 }
845 else {
846 register_matrix_param5( p, STATE_MVP_MATRIX, 0, 0, 3,
847 STATE_MATRIX_TRANSPOSE, mvp );
848 emit_transpose_matrix_transform_vec4( p, hpos, mvp, pos );
849 }
850 }
851
852
853 static GLuint material_attrib( GLuint side, GLuint property )
854 {
855 return (property - STATE_AMBIENT) * 2 + side;
856 }
857
858
859 /**
860 * Get a bitmask of which material values vary on a per-vertex basis.
861 */
862 static void set_material_flags( struct tnl_program *p )
863 {
864 p->color_materials = 0;
865 p->materials = 0;
866
867 if (p->state->varying_vp_inputs & VERT_BIT_COLOR0) {
868 p->materials =
869 p->color_materials = p->state->light_color_material_mask;
870 }
871
872 p->materials |= (p->state->varying_vp_inputs >> VERT_ATTRIB_GENERIC0);
873 }
874
875
876 static struct ureg get_material( struct tnl_program *p, GLuint side,
877 GLuint property )
878 {
879 GLuint attrib = material_attrib(side, property);
880
881 if (p->color_materials & (1<<attrib))
882 return register_input(p, VERT_ATTRIB_COLOR0);
883 else if (p->materials & (1<<attrib)) {
884 /* Put material values in the GENERIC slots -- they are not used
885 * for anything in fixed function mode.
886 */
887 return register_input( p, attrib + VERT_ATTRIB_GENERIC0 );
888 }
889 else
890 return register_param3( p, STATE_MATERIAL, side, property );
891 }
892
893 #define SCENE_COLOR_BITS(side) (( MAT_BIT_FRONT_EMISSION | \
894 MAT_BIT_FRONT_AMBIENT | \
895 MAT_BIT_FRONT_DIFFUSE) << (side))
896
897
898 /**
899 * Either return a precalculated constant value or emit code to
900 * calculate these values dynamically in the case where material calls
901 * are present between begin/end pairs.
902 *
903 * Probably want to shift this to the program compilation phase - if
904 * we always emitted the calculation here, a smart compiler could
905 * detect that it was constant (given a certain set of inputs), and
906 * lift it out of the main loop. That way the programs created here
907 * would be independent of the vertex_buffer details.
908 */
909 static struct ureg get_scenecolor( struct tnl_program *p, GLuint side )
910 {
911 if (p->materials & SCENE_COLOR_BITS(side)) {
912 struct ureg lm_ambient = register_param1(p, STATE_LIGHTMODEL_AMBIENT);
913 struct ureg material_emission = get_material(p, side, STATE_EMISSION);
914 struct ureg material_ambient = get_material(p, side, STATE_AMBIENT);
915 struct ureg material_diffuse = get_material(p, side, STATE_DIFFUSE);
916 struct ureg tmp = make_temp(p, material_diffuse);
917 emit_op3(p, OPCODE_MAD, tmp, WRITEMASK_XYZ, lm_ambient,
918 material_ambient, material_emission);
919 return tmp;
920 }
921 else
922 return register_param2( p, STATE_LIGHTMODEL_SCENECOLOR, side );
923 }
924
925
926 static struct ureg get_lightprod( struct tnl_program *p, GLuint light,
927 GLuint side, GLuint property )
928 {
929 GLuint attrib = material_attrib(side, property);
930 if (p->materials & (1<<attrib)) {
931 struct ureg light_value =
932 register_param3(p, STATE_LIGHT, light, property);
933 struct ureg material_value = get_material(p, side, property);
934 struct ureg tmp = get_temp(p);
935 emit_op2(p, OPCODE_MUL, tmp, 0, light_value, material_value);
936 return tmp;
937 }
938 else
939 return register_param4(p, STATE_LIGHTPROD, light, side, property);
940 }
941
942
943 static struct ureg calculate_light_attenuation( struct tnl_program *p,
944 GLuint i,
945 struct ureg VPpli,
946 struct ureg dist )
947 {
948 struct ureg attenuation = register_param3(p, STATE_LIGHT, i,
949 STATE_ATTENUATION);
950 struct ureg att = undef;
951
952 /* Calculate spot attenuation:
953 */
954 if (!p->state->unit[i].light_spotcutoff_is_180) {
955 struct ureg spot_dir_norm = register_param3(p, STATE_INTERNAL,
956 STATE_LIGHT_SPOT_DIR_NORMALIZED, i);
957 struct ureg spot = get_temp(p);
958 struct ureg slt = get_temp(p);
959
960 att = get_temp(p);
961
962 emit_op2(p, OPCODE_DP3, spot, 0, negate(VPpli), spot_dir_norm);
963 emit_op2(p, OPCODE_SLT, slt, 0, swizzle1(spot_dir_norm,W), spot);
964 emit_op2(p, OPCODE_POW, spot, 0, absolute(spot), swizzle1(attenuation, W));
965 emit_op2(p, OPCODE_MUL, att, 0, slt, spot);
966
967 release_temp(p, spot);
968 release_temp(p, slt);
969 }
970
971 /* Calculate distance attenuation(See formula (2.4) at glspec 2.1 page 62):
972 *
973 * Skip the calucation when _dist_ is undefined(light_eyepos3_is_zero)
974 */
975 if (p->state->unit[i].light_attenuated && !is_undef(dist)) {
976 if (is_undef(att))
977 att = get_temp(p);
978 /* 1/d,d,d,1/d */
979 emit_op1(p, OPCODE_RCP, dist, WRITEMASK_YZ, dist);
980 /* 1,d,d*d,1/d */
981 emit_op2(p, OPCODE_MUL, dist, WRITEMASK_XZ, dist, swizzle1(dist,Y));
982 /* 1/dist-atten */
983 emit_op2(p, OPCODE_DP3, dist, 0, attenuation, dist);
984
985 if (!p->state->unit[i].light_spotcutoff_is_180) {
986 /* dist-atten */
987 emit_op1(p, OPCODE_RCP, dist, 0, dist);
988 /* spot-atten * dist-atten */
989 emit_op2(p, OPCODE_MUL, att, 0, dist, att);
990 }
991 else {
992 /* dist-atten */
993 emit_op1(p, OPCODE_RCP, att, 0, dist);
994 }
995 }
996
997 return att;
998 }
999
1000
1001 /**
1002 * Compute:
1003 * lit.y = MAX(0, dots.x)
1004 * lit.z = SLT(0, dots.x)
1005 */
1006 static void emit_degenerate_lit( struct tnl_program *p,
1007 struct ureg lit,
1008 struct ureg dots )
1009 {
1010 struct ureg id = get_identity_param(p); /* id = {0,0,0,1} */
1011
1012 /* Note that lit.x & lit.w will not be examined. Note also that
1013 * dots.xyzw == dots.xxxx.
1014 */
1015
1016 /* MAX lit, id, dots;
1017 */
1018 emit_op2(p, OPCODE_MAX, lit, WRITEMASK_XYZW, id, dots);
1019
1020 /* result[2] = (in > 0 ? 1 : 0)
1021 * SLT lit.z, id.z, dots; # lit.z = (0 < dots.z) ? 1 : 0
1022 */
1023 emit_op2(p, OPCODE_SLT, lit, WRITEMASK_Z, swizzle1(id,Z), dots);
1024 }
1025
1026
1027 /* Need to add some addtional parameters to allow lighting in object
1028 * space - STATE_SPOT_DIRECTION and STATE_HALF_VECTOR implicitly assume eye
1029 * space lighting.
1030 */
1031 static void build_lighting( struct tnl_program *p )
1032 {
1033 const GLboolean twoside = p->state->light_twoside;
1034 const GLboolean separate = p->state->separate_specular;
1035 GLuint nr_lights = 0, count = 0;
1036 struct ureg normal = get_transformed_normal(p);
1037 struct ureg lit = get_temp(p);
1038 struct ureg dots = get_temp(p);
1039 struct ureg _col0 = undef, _col1 = undef;
1040 struct ureg _bfc0 = undef, _bfc1 = undef;
1041 GLuint i;
1042
1043 /*
1044 * NOTE:
1045 * dots.x = dot(normal, VPpli)
1046 * dots.y = dot(normal, halfAngle)
1047 * dots.z = back.shininess
1048 * dots.w = front.shininess
1049 */
1050
1051 for (i = 0; i < MAX_LIGHTS; i++)
1052 if (p->state->unit[i].light_enabled)
1053 nr_lights++;
1054
1055 set_material_flags(p);
1056
1057 {
1058 if (!p->state->material_shininess_is_zero) {
1059 struct ureg shininess = get_material(p, 0, STATE_SHININESS);
1060 emit_op1(p, OPCODE_MOV, dots, WRITEMASK_W, swizzle1(shininess,X));
1061 release_temp(p, shininess);
1062 }
1063
1064 _col0 = make_temp(p, get_scenecolor(p, 0));
1065 if (separate)
1066 _col1 = make_temp(p, get_identity_param(p));
1067 else
1068 _col1 = _col0;
1069 }
1070
1071 if (twoside) {
1072 if (!p->state->material_shininess_is_zero) {
1073 /* Note that we negate the back-face specular exponent here.
1074 * The negation will be un-done later in the back-face code below.
1075 */
1076 struct ureg shininess = get_material(p, 1, STATE_SHININESS);
1077 emit_op1(p, OPCODE_MOV, dots, WRITEMASK_Z,
1078 negate(swizzle1(shininess,X)));
1079 release_temp(p, shininess);
1080 }
1081
1082 _bfc0 = make_temp(p, get_scenecolor(p, 1));
1083 if (separate)
1084 _bfc1 = make_temp(p, get_identity_param(p));
1085 else
1086 _bfc1 = _bfc0;
1087 }
1088
1089 /* If no lights, still need to emit the scenecolor.
1090 */
1091 {
1092 struct ureg res0 = register_output( p, VARYING_SLOT_COL0 );
1093 emit_op1(p, OPCODE_MOV, res0, 0, _col0);
1094 }
1095
1096 if (separate) {
1097 struct ureg res1 = register_output( p, VARYING_SLOT_COL1 );
1098 emit_op1(p, OPCODE_MOV, res1, 0, _col1);
1099 }
1100
1101 if (twoside) {
1102 struct ureg res0 = register_output( p, VARYING_SLOT_BFC0 );
1103 emit_op1(p, OPCODE_MOV, res0, 0, _bfc0);
1104 }
1105
1106 if (twoside && separate) {
1107 struct ureg res1 = register_output( p, VARYING_SLOT_BFC1 );
1108 emit_op1(p, OPCODE_MOV, res1, 0, _bfc1);
1109 }
1110
1111 if (nr_lights == 0) {
1112 release_temps(p);
1113 return;
1114 }
1115
1116 for (i = 0; i < MAX_LIGHTS; i++) {
1117 if (p->state->unit[i].light_enabled) {
1118 struct ureg half = undef;
1119 struct ureg att = undef, VPpli = undef;
1120 struct ureg dist = undef;
1121
1122 count++;
1123 if (p->state->unit[i].light_eyepos3_is_zero) {
1124 VPpli = register_param3(p, STATE_INTERNAL,
1125 STATE_LIGHT_POSITION_NORMALIZED, i);
1126 } else {
1127 struct ureg Ppli = register_param3(p, STATE_INTERNAL,
1128 STATE_LIGHT_POSITION, i);
1129 struct ureg V = get_eye_position(p);
1130
1131 VPpli = get_temp(p);
1132 dist = get_temp(p);
1133
1134 /* Calculate VPpli vector
1135 */
1136 emit_op2(p, OPCODE_SUB, VPpli, 0, Ppli, V);
1137
1138 /* Normalize VPpli. The dist value also used in
1139 * attenuation below.
1140 */
1141 emit_op2(p, OPCODE_DP3, dist, 0, VPpli, VPpli);
1142 emit_op1(p, OPCODE_RSQ, dist, 0, dist);
1143 emit_op2(p, OPCODE_MUL, VPpli, 0, VPpli, dist);
1144 }
1145
1146 /* Calculate attenuation:
1147 */
1148 att = calculate_light_attenuation(p, i, VPpli, dist);
1149 release_temp(p, dist);
1150
1151 /* Calculate viewer direction, or use infinite viewer:
1152 */
1153 if (!p->state->material_shininess_is_zero) {
1154 if (p->state->light_local_viewer) {
1155 struct ureg eye_hat = get_eye_position_normalized(p);
1156 half = get_temp(p);
1157 emit_op2(p, OPCODE_SUB, half, 0, VPpli, eye_hat);
1158 emit_normalize_vec3(p, half, half);
1159 } else if (p->state->unit[i].light_eyepos3_is_zero) {
1160 half = register_param3(p, STATE_INTERNAL,
1161 STATE_LIGHT_HALF_VECTOR, i);
1162 } else {
1163 struct ureg z_dir = swizzle(get_identity_param(p),X,Y,W,Z);
1164 half = get_temp(p);
1165 emit_op2(p, OPCODE_ADD, half, 0, VPpli, z_dir);
1166 emit_normalize_vec3(p, half, half);
1167 }
1168 }
1169
1170 /* Calculate dot products:
1171 */
1172 if (p->state->material_shininess_is_zero) {
1173 emit_op2(p, OPCODE_DP3, dots, 0, normal, VPpli);
1174 }
1175 else {
1176 emit_op2(p, OPCODE_DP3, dots, WRITEMASK_X, normal, VPpli);
1177 emit_op2(p, OPCODE_DP3, dots, WRITEMASK_Y, normal, half);
1178 }
1179
1180 /* Front face lighting:
1181 */
1182 {
1183 struct ureg ambient = get_lightprod(p, i, 0, STATE_AMBIENT);
1184 struct ureg diffuse = get_lightprod(p, i, 0, STATE_DIFFUSE);
1185 struct ureg specular = get_lightprod(p, i, 0, STATE_SPECULAR);
1186 struct ureg res0, res1;
1187 GLuint mask0, mask1;
1188
1189 if (count == nr_lights) {
1190 if (separate) {
1191 mask0 = WRITEMASK_XYZ;
1192 mask1 = WRITEMASK_XYZ;
1193 res0 = register_output( p, VARYING_SLOT_COL0 );
1194 res1 = register_output( p, VARYING_SLOT_COL1 );
1195 }
1196 else {
1197 mask0 = 0;
1198 mask1 = WRITEMASK_XYZ;
1199 res0 = _col0;
1200 res1 = register_output( p, VARYING_SLOT_COL0 );
1201 }
1202 }
1203 else {
1204 mask0 = 0;
1205 mask1 = 0;
1206 res0 = _col0;
1207 res1 = _col1;
1208 }
1209
1210 if (!is_undef(att)) {
1211 /* light is attenuated by distance */
1212 emit_op1(p, OPCODE_LIT, lit, 0, dots);
1213 emit_op2(p, OPCODE_MUL, lit, 0, lit, att);
1214 emit_op3(p, OPCODE_MAD, _col0, 0, swizzle1(lit,X), ambient, _col0);
1215 }
1216 else if (!p->state->material_shininess_is_zero) {
1217 /* there's a non-zero specular term */
1218 emit_op1(p, OPCODE_LIT, lit, 0, dots);
1219 emit_op2(p, OPCODE_ADD, _col0, 0, ambient, _col0);
1220 }
1221 else {
1222 /* no attenutation, no specular */
1223 emit_degenerate_lit(p, lit, dots);
1224 emit_op2(p, OPCODE_ADD, _col0, 0, ambient, _col0);
1225 }
1226
1227 emit_op3(p, OPCODE_MAD, res0, mask0, swizzle1(lit,Y), diffuse, _col0);
1228 emit_op3(p, OPCODE_MAD, res1, mask1, swizzle1(lit,Z), specular, _col1);
1229
1230 release_temp(p, ambient);
1231 release_temp(p, diffuse);
1232 release_temp(p, specular);
1233 }
1234
1235 /* Back face lighting:
1236 */
1237 if (twoside) {
1238 struct ureg ambient = get_lightprod(p, i, 1, STATE_AMBIENT);
1239 struct ureg diffuse = get_lightprod(p, i, 1, STATE_DIFFUSE);
1240 struct ureg specular = get_lightprod(p, i, 1, STATE_SPECULAR);
1241 struct ureg res0, res1;
1242 GLuint mask0, mask1;
1243
1244 if (count == nr_lights) {
1245 if (separate) {
1246 mask0 = WRITEMASK_XYZ;
1247 mask1 = WRITEMASK_XYZ;
1248 res0 = register_output( p, VARYING_SLOT_BFC0 );
1249 res1 = register_output( p, VARYING_SLOT_BFC1 );
1250 }
1251 else {
1252 mask0 = 0;
1253 mask1 = WRITEMASK_XYZ;
1254 res0 = _bfc0;
1255 res1 = register_output( p, VARYING_SLOT_BFC0 );
1256 }
1257 }
1258 else {
1259 res0 = _bfc0;
1260 res1 = _bfc1;
1261 mask0 = 0;
1262 mask1 = 0;
1263 }
1264
1265 /* For the back face we need to negate the X and Y component
1266 * dot products. dots.Z has the negated back-face specular
1267 * exponent. We swizzle that into the W position. This
1268 * negation makes the back-face specular term positive again.
1269 */
1270 dots = negate(swizzle(dots,X,Y,W,Z));
1271
1272 if (!is_undef(att)) {
1273 emit_op1(p, OPCODE_LIT, lit, 0, dots);
1274 emit_op2(p, OPCODE_MUL, lit, 0, lit, att);
1275 emit_op3(p, OPCODE_MAD, _bfc0, 0, swizzle1(lit,X), ambient, _bfc0);
1276 }
1277 else if (!p->state->material_shininess_is_zero) {
1278 emit_op1(p, OPCODE_LIT, lit, 0, dots);
1279 emit_op2(p, OPCODE_ADD, _bfc0, 0, ambient, _bfc0); /**/
1280 }
1281 else {
1282 emit_degenerate_lit(p, lit, dots);
1283 emit_op2(p, OPCODE_ADD, _bfc0, 0, ambient, _bfc0);
1284 }
1285
1286 emit_op3(p, OPCODE_MAD, res0, mask0, swizzle1(lit,Y), diffuse, _bfc0);
1287 emit_op3(p, OPCODE_MAD, res1, mask1, swizzle1(lit,Z), specular, _bfc1);
1288 /* restore dots to its original state for subsequent lights
1289 * by negating and swizzling again.
1290 */
1291 dots = negate(swizzle(dots,X,Y,W,Z));
1292
1293 release_temp(p, ambient);
1294 release_temp(p, diffuse);
1295 release_temp(p, specular);
1296 }
1297
1298 release_temp(p, half);
1299 release_temp(p, VPpli);
1300 release_temp(p, att);
1301 }
1302 }
1303
1304 release_temps( p );
1305 }
1306
1307
1308 static void build_fog( struct tnl_program *p )
1309 {
1310 struct ureg fog = register_output(p, VARYING_SLOT_FOGC);
1311 struct ureg input;
1312
1313 if (p->state->fog_source_is_depth) {
1314
1315 switch (p->state->fog_distance_mode) {
1316 case FDM_EYE_RADIAL: /* Z = sqrt(Xe*Xe + Ye*Ye + Ze*Ze) */
1317 input = get_eye_position(p);
1318 emit_op2(p, OPCODE_DP3, fog, WRITEMASK_X, input, input);
1319 emit_op1(p, OPCODE_RSQ, fog, WRITEMASK_X, fog);
1320 emit_op1(p, OPCODE_RCP, fog, WRITEMASK_X, fog);
1321 break;
1322 case FDM_EYE_PLANE: /* Z = Ze */
1323 input = get_eye_position_z(p);
1324 emit_op1(p, OPCODE_MOV, fog, WRITEMASK_X, input);
1325 break;
1326 case FDM_EYE_PLANE_ABS: /* Z = abs(Ze) */
1327 input = get_eye_position_z(p);
1328 emit_op1(p, OPCODE_ABS, fog, WRITEMASK_X, input);
1329 break;
1330 default:
1331 assert(!"Bad fog mode in build_fog()");
1332 break;
1333 }
1334
1335 }
1336 else {
1337 input = swizzle1(register_input(p, VERT_ATTRIB_FOG), X);
1338 emit_op1(p, OPCODE_ABS, fog, WRITEMASK_X, input);
1339 }
1340
1341 emit_op1(p, OPCODE_MOV, fog, WRITEMASK_YZW, get_identity_param(p));
1342 }
1343
1344
1345 static void build_reflect_texgen( struct tnl_program *p,
1346 struct ureg dest,
1347 GLuint writemask )
1348 {
1349 struct ureg normal = get_transformed_normal(p);
1350 struct ureg eye_hat = get_eye_position_normalized(p);
1351 struct ureg tmp = get_temp(p);
1352
1353 /* n.u */
1354 emit_op2(p, OPCODE_DP3, tmp, 0, normal, eye_hat);
1355 /* 2n.u */
1356 emit_op2(p, OPCODE_ADD, tmp, 0, tmp, tmp);
1357 /* (-2n.u)n + u */
1358 emit_op3(p, OPCODE_MAD, dest, writemask, negate(tmp), normal, eye_hat);
1359
1360 release_temp(p, tmp);
1361 }
1362
1363
1364 static void build_sphere_texgen( struct tnl_program *p,
1365 struct ureg dest,
1366 GLuint writemask )
1367 {
1368 struct ureg normal = get_transformed_normal(p);
1369 struct ureg eye_hat = get_eye_position_normalized(p);
1370 struct ureg tmp = get_temp(p);
1371 struct ureg half = register_scalar_const(p, .5);
1372 struct ureg r = get_temp(p);
1373 struct ureg inv_m = get_temp(p);
1374 struct ureg id = get_identity_param(p);
1375
1376 /* Could share the above calculations, but it would be
1377 * a fairly odd state for someone to set (both sphere and
1378 * reflection active for different texture coordinate
1379 * components. Of course - if two texture units enable
1380 * reflect and/or sphere, things start to tilt in favour
1381 * of seperating this out:
1382 */
1383
1384 /* n.u */
1385 emit_op2(p, OPCODE_DP3, tmp, 0, normal, eye_hat);
1386 /* 2n.u */
1387 emit_op2(p, OPCODE_ADD, tmp, 0, tmp, tmp);
1388 /* (-2n.u)n + u */
1389 emit_op3(p, OPCODE_MAD, r, 0, negate(tmp), normal, eye_hat);
1390 /* r + 0,0,1 */
1391 emit_op2(p, OPCODE_ADD, tmp, 0, r, swizzle(id,X,Y,W,Z));
1392 /* rx^2 + ry^2 + (rz+1)^2 */
1393 emit_op2(p, OPCODE_DP3, tmp, 0, tmp, tmp);
1394 /* 2/m */
1395 emit_op1(p, OPCODE_RSQ, tmp, 0, tmp);
1396 /* 1/m */
1397 emit_op2(p, OPCODE_MUL, inv_m, 0, tmp, half);
1398 /* r/m + 1/2 */
1399 emit_op3(p, OPCODE_MAD, dest, writemask, r, inv_m, half);
1400
1401 release_temp(p, tmp);
1402 release_temp(p, r);
1403 release_temp(p, inv_m);
1404 }
1405
1406
1407 static void build_texture_transform( struct tnl_program *p )
1408 {
1409 GLuint i, j;
1410
1411 for (i = 0; i < MAX_TEXTURE_COORD_UNITS; i++) {
1412
1413 if (!(p->state->fragprog_inputs_read & VARYING_BIT_TEX(i)))
1414 continue;
1415
1416 if (p->state->unit[i].coord_replace)
1417 continue;
1418
1419 if (p->state->unit[i].texgen_enabled ||
1420 p->state->unit[i].texmat_enabled) {
1421
1422 GLuint texmat_enabled = p->state->unit[i].texmat_enabled;
1423 struct ureg out = register_output(p, VARYING_SLOT_TEX0 + i);
1424 struct ureg out_texgen = undef;
1425
1426 if (p->state->unit[i].texgen_enabled) {
1427 GLuint copy_mask = 0;
1428 GLuint sphere_mask = 0;
1429 GLuint reflect_mask = 0;
1430 GLuint normal_mask = 0;
1431 GLuint modes[4];
1432
1433 if (texmat_enabled)
1434 out_texgen = get_temp(p);
1435 else
1436 out_texgen = out;
1437
1438 modes[0] = p->state->unit[i].texgen_mode0;
1439 modes[1] = p->state->unit[i].texgen_mode1;
1440 modes[2] = p->state->unit[i].texgen_mode2;
1441 modes[3] = p->state->unit[i].texgen_mode3;
1442
1443 for (j = 0; j < 4; j++) {
1444 switch (modes[j]) {
1445 case TXG_OBJ_LINEAR: {
1446 struct ureg obj = register_input(p, VERT_ATTRIB_POS);
1447 struct ureg plane =
1448 register_param3(p, STATE_TEXGEN, i,
1449 STATE_TEXGEN_OBJECT_S + j);
1450
1451 emit_op2(p, OPCODE_DP4, out_texgen, WRITEMASK_X << j,
1452 obj, plane );
1453 break;
1454 }
1455 case TXG_EYE_LINEAR: {
1456 struct ureg eye = get_eye_position(p);
1457 struct ureg plane =
1458 register_param3(p, STATE_TEXGEN, i,
1459 STATE_TEXGEN_EYE_S + j);
1460
1461 emit_op2(p, OPCODE_DP4, out_texgen, WRITEMASK_X << j,
1462 eye, plane );
1463 break;
1464 }
1465 case TXG_SPHERE_MAP:
1466 sphere_mask |= WRITEMASK_X << j;
1467 break;
1468 case TXG_REFLECTION_MAP:
1469 reflect_mask |= WRITEMASK_X << j;
1470 break;
1471 case TXG_NORMAL_MAP:
1472 normal_mask |= WRITEMASK_X << j;
1473 break;
1474 case TXG_NONE:
1475 copy_mask |= WRITEMASK_X << j;
1476 }
1477 }
1478
1479 if (sphere_mask) {
1480 build_sphere_texgen(p, out_texgen, sphere_mask);
1481 }
1482
1483 if (reflect_mask) {
1484 build_reflect_texgen(p, out_texgen, reflect_mask);
1485 }
1486
1487 if (normal_mask) {
1488 struct ureg normal = get_transformed_normal(p);
1489 emit_op1(p, OPCODE_MOV, out_texgen, normal_mask, normal );
1490 }
1491
1492 if (copy_mask) {
1493 struct ureg in = register_input(p, VERT_ATTRIB_TEX0+i);
1494 emit_op1(p, OPCODE_MOV, out_texgen, copy_mask, in );
1495 }
1496 }
1497
1498 if (texmat_enabled) {
1499 struct ureg texmat[4];
1500 struct ureg in = (!is_undef(out_texgen) ?
1501 out_texgen :
1502 register_input(p, VERT_ATTRIB_TEX0+i));
1503 if (p->mvp_with_dp4) {
1504 register_matrix_param5( p, STATE_TEXTURE_MATRIX, i, 0, 3,
1505 0, texmat );
1506 emit_matrix_transform_vec4( p, out, texmat, in );
1507 }
1508 else {
1509 register_matrix_param5( p, STATE_TEXTURE_MATRIX, i, 0, 3,
1510 STATE_MATRIX_TRANSPOSE, texmat );
1511 emit_transpose_matrix_transform_vec4( p, out, texmat, in );
1512 }
1513 }
1514
1515 release_temps(p);
1516 }
1517 else {
1518 emit_passthrough(p, VERT_ATTRIB_TEX0+i, VARYING_SLOT_TEX0+i);
1519 }
1520 }
1521 }
1522
1523
1524 /**
1525 * Point size attenuation computation.
1526 */
1527 static void build_atten_pointsize( struct tnl_program *p )
1528 {
1529 struct ureg eye = get_eye_position_z(p);
1530 struct ureg state_size = register_param2(p, STATE_INTERNAL, STATE_POINT_SIZE_CLAMPED);
1531 struct ureg state_attenuation = register_param1(p, STATE_POINT_ATTENUATION);
1532 struct ureg out = register_output(p, VARYING_SLOT_PSIZ);
1533 struct ureg ut = get_temp(p);
1534
1535 /* dist = |eyez| */
1536 emit_op1(p, OPCODE_ABS, ut, WRITEMASK_Y, swizzle1(eye, Z));
1537 /* p1 + dist * (p2 + dist * p3); */
1538 emit_op3(p, OPCODE_MAD, ut, WRITEMASK_X, swizzle1(ut, Y),
1539 swizzle1(state_attenuation, Z), swizzle1(state_attenuation, Y));
1540 emit_op3(p, OPCODE_MAD, ut, WRITEMASK_X, swizzle1(ut, Y),
1541 ut, swizzle1(state_attenuation, X));
1542
1543 /* 1 / sqrt(factor) */
1544 emit_op1(p, OPCODE_RSQ, ut, WRITEMASK_X, ut );
1545
1546 #if 0
1547 /* out = pointSize / sqrt(factor) */
1548 emit_op2(p, OPCODE_MUL, out, WRITEMASK_X, ut, state_size);
1549 #else
1550 /* this is a good place to clamp the point size since there's likely
1551 * no hardware registers to clamp point size at rasterization time.
1552 */
1553 emit_op2(p, OPCODE_MUL, ut, WRITEMASK_X, ut, state_size);
1554 emit_op2(p, OPCODE_MAX, ut, WRITEMASK_X, ut, swizzle1(state_size, Y));
1555 emit_op2(p, OPCODE_MIN, out, WRITEMASK_X, ut, swizzle1(state_size, Z));
1556 #endif
1557
1558 release_temp(p, ut);
1559 }
1560
1561
1562 /**
1563 * Pass-though per-vertex point size, from user's point size array.
1564 */
1565 static void build_array_pointsize( struct tnl_program *p )
1566 {
1567 struct ureg in = register_input(p, VERT_ATTRIB_POINT_SIZE);
1568 struct ureg out = register_output(p, VARYING_SLOT_PSIZ);
1569 emit_op1(p, OPCODE_MOV, out, WRITEMASK_X, in);
1570 }
1571
1572
1573 static void build_tnl_program( struct tnl_program *p )
1574 {
1575 /* Emit the program, starting with the modelview, projection transforms:
1576 */
1577 build_hpos(p);
1578
1579 /* Lighting calculations:
1580 */
1581 if (p->state->fragprog_inputs_read & (VARYING_BIT_COL0|VARYING_BIT_COL1)) {
1582 if (p->state->light_global_enabled)
1583 build_lighting(p);
1584 else {
1585 if (p->state->fragprog_inputs_read & VARYING_BIT_COL0)
1586 emit_passthrough(p, VERT_ATTRIB_COLOR0, VARYING_SLOT_COL0);
1587
1588 if (p->state->fragprog_inputs_read & VARYING_BIT_COL1)
1589 emit_passthrough(p, VERT_ATTRIB_COLOR1, VARYING_SLOT_COL1);
1590 }
1591 }
1592
1593 if (p->state->fragprog_inputs_read & VARYING_BIT_FOGC)
1594 build_fog(p);
1595
1596 if (p->state->fragprog_inputs_read & VARYING_BITS_TEX_ANY)
1597 build_texture_transform(p);
1598
1599 if (p->state->point_attenuated)
1600 build_atten_pointsize(p);
1601 else if (p->state->point_array)
1602 build_array_pointsize(p);
1603
1604 /* Finish up:
1605 */
1606 emit_op1(p, OPCODE_END, undef, 0, undef);
1607
1608 /* Disassemble:
1609 */
1610 if (DISASSEM) {
1611 printf ("\n");
1612 }
1613 }
1614
1615
1616 static void
1617 create_new_program( const struct state_key *key,
1618 struct gl_vertex_program *program,
1619 GLboolean mvp_with_dp4,
1620 GLuint max_temps)
1621 {
1622 struct tnl_program p;
1623
1624 memset(&p, 0, sizeof(p));
1625 p.state = key;
1626 p.program = program;
1627 p.eye_position = undef;
1628 p.eye_position_z = undef;
1629 p.eye_position_normalized = undef;
1630 p.transformed_normal = undef;
1631 p.identity = undef;
1632 p.temp_in_use = 0;
1633 p.mvp_with_dp4 = mvp_with_dp4;
1634
1635 if (max_temps >= sizeof(int) * 8)
1636 p.temp_reserved = 0;
1637 else
1638 p.temp_reserved = ~((1<<max_temps)-1);
1639
1640 /* Start by allocating 32 instructions.
1641 * If we need more, we'll grow the instruction array as needed.
1642 */
1643 p.max_inst = 32;
1644 p.program->Base.Instructions = _mesa_alloc_instructions(p.max_inst);
1645 p.program->Base.String = NULL;
1646 p.program->Base.NumInstructions =
1647 p.program->Base.NumTemporaries =
1648 p.program->Base.NumParameters =
1649 p.program->Base.NumAttributes = p.program->Base.NumAddressRegs = 0;
1650 p.program->Base.Parameters = _mesa_new_parameter_list();
1651 p.program->Base.InputsRead = 0;
1652 p.program->Base.OutputsWritten = 0;
1653
1654 build_tnl_program( &p );
1655 }
1656
1657
1658 /**
1659 * Return a vertex program which implements the current fixed-function
1660 * transform/lighting/texgen operations.
1661 */
1662 struct gl_vertex_program *
1663 _mesa_get_fixed_func_vertex_program(struct gl_context *ctx)
1664 {
1665 struct gl_vertex_program *prog;
1666 struct state_key key;
1667
1668 /* Grab all the relevant state and put it in a single structure:
1669 */
1670 make_state_key(ctx, &key);
1671
1672 /* Look for an already-prepared program for this state:
1673 */
1674 prog = gl_vertex_program(
1675 _mesa_search_program_cache(ctx->VertexProgram.Cache, &key, sizeof(key)));
1676
1677 if (!prog) {
1678 /* OK, we'll have to build a new one */
1679 if (0)
1680 printf("Build new TNL program\n");
1681
1682 prog = gl_vertex_program(ctx->Driver.NewProgram(ctx, GL_VERTEX_PROGRAM_ARB, 0));
1683 if (!prog)
1684 return NULL;
1685
1686 create_new_program( &key, prog,
1687 ctx->Const.ShaderCompilerOptions[MESA_SHADER_VERTEX].OptimizeForAOS,
1688 ctx->Const.Program[MESA_SHADER_VERTEX].MaxTemps );
1689
1690 if (ctx->Driver.ProgramStringNotify)
1691 ctx->Driver.ProgramStringNotify( ctx, GL_VERTEX_PROGRAM_ARB,
1692 &prog->Base );
1693
1694 _mesa_program_cache_insert(ctx, ctx->VertexProgram.Cache,
1695 &key, sizeof(key), &prog->Base);
1696 }
1697
1698 return prog;
1699 }