imports.h: Correct ceilf typo.
[mesa.git] / src / mesa / main / imports.h
1 /*
2 * Mesa 3-D graphics library
3 * Version: 7.5
4 *
5 * Copyright (C) 1999-2008 Brian Paul All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25
26 /**
27 * \file imports.h
28 * Standard C library function wrappers.
29 *
30 * This file provides wrappers for all the standard C library functions
31 * like malloc(), free(), printf(), getenv(), etc.
32 */
33
34
35 #ifndef IMPORTS_H
36 #define IMPORTS_H
37
38
39 #include "compiler.h"
40 #include "glheader.h"
41 #include "errors.h"
42
43 #ifdef __cplusplus
44 extern "C" {
45 #endif
46
47
48 /**********************************************************************/
49 /** Memory macros */
50 /*@{*/
51
52 /** Allocate \p BYTES bytes */
53 #define MALLOC(BYTES) malloc(BYTES)
54 /** Allocate and zero \p BYTES bytes */
55 #define CALLOC(BYTES) calloc(1, BYTES)
56 /** Allocate a structure of type \p T */
57 #define MALLOC_STRUCT(T) (struct T *) malloc(sizeof(struct T))
58 /** Allocate and zero a structure of type \p T */
59 #define CALLOC_STRUCT(T) (struct T *) calloc(1, sizeof(struct T))
60 /** Free memory */
61 #define FREE(PTR) free(PTR)
62
63 /*@}*/
64
65
66 /*
67 * For GL_ARB_vertex_buffer_object we need to treat vertex array pointers
68 * as offsets into buffer stores. Since the vertex array pointer and
69 * buffer store pointer are both pointers and we need to add them, we use
70 * this macro.
71 * Both pointers/offsets are expressed in bytes.
72 */
73 #define ADD_POINTERS(A, B) ( (GLubyte *) (A) + (uintptr_t) (B) )
74
75
76 /**
77 * Sometimes we treat GLfloats as GLints. On x86 systems, moving a float
78 * as a int (thereby using integer registers instead of FP registers) is
79 * a performance win. Typically, this can be done with ordinary casts.
80 * But with gcc's -fstrict-aliasing flag (which defaults to on in gcc 3.0)
81 * these casts generate warnings.
82 * The following union typedef is used to solve that.
83 */
84 typedef union { GLfloat f; GLint i; } fi_type;
85
86
87
88 /**********************************************************************
89 * Math macros
90 */
91
92 #define MAX_GLUSHORT 0xffff
93 #define MAX_GLUINT 0xffffffff
94
95 /* Degrees to radians conversion: */
96 #define DEG2RAD (M_PI/180.0)
97
98
99 /***
100 *** SQRTF: single-precision square root
101 ***/
102 #define SQRTF(X) (float) sqrt((float) (X))
103
104
105 /***
106 *** INV_SQRTF: single-precision inverse square root
107 ***/
108 #define INV_SQRTF(X) (1.0F / SQRTF(X))
109
110
111 /**
112 * \name Work-arounds for platforms that lack C99 math functions
113 */
114 /*@{*/
115 #if (!defined(_XOPEN_SOURCE) || (_XOPEN_SOURCE < 600)) && !defined(_ISOC99_SOURCE) \
116 && (!defined(__STDC_VERSION__) || (__STDC_VERSION__ < 199901L)) \
117 && (!defined(_MSC_VER) || (_MSC_VER < 1400))
118 #define acosf(f) ((float) acos(f))
119 #define asinf(f) ((float) asin(f))
120 #define atan2f(x,y) ((float) atan2(x,y))
121 #define atanf(f) ((float) atan(f))
122 #define ceilf(f) ((float) ceil(f))
123 #define cosf(f) ((float) cos(f))
124 #define coshf(f) ((float) cosh(f))
125 #define expf(f) ((float) exp(f))
126 #define exp2f(f) ((float) exp2(f))
127 #define floorf(f) ((float) floor(f))
128 #define logf(f) ((float) log(f))
129
130 #ifdef ANDROID
131 #define log2f(f) (logf(f) * (float) (1.0 / M_LN2))
132 #else
133 #define log2f(f) ((float) log2(f))
134 #endif
135
136 #define powf(x,y) ((float) pow(x,y))
137 #define sinf(f) ((float) sin(f))
138 #define sinhf(f) ((float) sinh(f))
139 #define sqrtf(f) ((float) sqrt(f))
140 #define tanf(f) ((float) tan(f))
141 #define tanhf(f) ((float) tanh(f))
142 #define acoshf(f) ((float) acosh(f))
143 #define asinhf(f) ((float) asinh(f))
144 #define atanhf(f) ((float) atanh(f))
145 #endif
146
147 #if defined(_MSC_VER)
148 static inline float truncf(float x) { return x < 0.0f ? ceilf(x) : floorf(x); }
149 static inline float exp2f(float x) { return powf(2.0f, x); }
150 static inline float log2f(float x) { return logf(x) * 1.442695041f; }
151 static inline float asinhf(float x) { return logf(x + sqrtf(x * x + 1.0f)); }
152 static inline float acoshf(float x) { return logf(x + sqrtf(x * x - 1.0f)); }
153 static inline float atanhf(float x) { return (logf(1.0f + x) - logf(1.0f - x)) / 2.0f; }
154 static inline int isblank(int ch) { return ch == ' ' || ch == '\t'; }
155 #define strtoll(p, e, b) _strtoi64(p, e, b)
156 #endif
157 /*@}*/
158
159 /***
160 *** LOG2: Log base 2 of float
161 ***/
162 #ifdef USE_IEEE
163 #if 0
164 /* This is pretty fast, but not accurate enough (only 2 fractional bits).
165 * Based on code from http://www.stereopsis.com/log2.html
166 */
167 static inline GLfloat LOG2(GLfloat x)
168 {
169 const GLfloat y = x * x * x * x;
170 const GLuint ix = *((GLuint *) &y);
171 const GLuint exp = (ix >> 23) & 0xFF;
172 const GLint log2 = ((GLint) exp) - 127;
173 return (GLfloat) log2 * (1.0 / 4.0); /* 4, because of x^4 above */
174 }
175 #endif
176 /* Pretty fast, and accurate.
177 * Based on code from http://www.flipcode.com/totd/
178 */
179 static inline GLfloat LOG2(GLfloat val)
180 {
181 fi_type num;
182 GLint log_2;
183 num.f = val;
184 log_2 = ((num.i >> 23) & 255) - 128;
185 num.i &= ~(255 << 23);
186 num.i += 127 << 23;
187 num.f = ((-1.0f/3) * num.f + 2) * num.f - 2.0f/3;
188 return num.f + log_2;
189 }
190 #else
191 /*
192 * NOTE: log_base_2(x) = log(x) / log(2)
193 * NOTE: 1.442695 = 1/log(2).
194 */
195 #define LOG2(x) ((GLfloat) (log(x) * 1.442695F))
196 #endif
197
198
199 /***
200 *** IS_INF_OR_NAN: test if float is infinite or NaN
201 ***/
202 #ifdef USE_IEEE
203 static inline int IS_INF_OR_NAN( float x )
204 {
205 fi_type tmp;
206 tmp.f = x;
207 return !(int)((unsigned int)((tmp.i & 0x7fffffff)-0x7f800000) >> 31);
208 }
209 #elif defined(isfinite)
210 #define IS_INF_OR_NAN(x) (!isfinite(x))
211 #elif defined(finite)
212 #define IS_INF_OR_NAN(x) (!finite(x))
213 #elif defined(__VMS)
214 #define IS_INF_OR_NAN(x) (!finite(x))
215 #elif defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L
216 #define IS_INF_OR_NAN(x) (!isfinite(x))
217 #else
218 #define IS_INF_OR_NAN(x) (!finite(x))
219 #endif
220
221
222 /***
223 *** IS_NEGATIVE: test if float is negative
224 ***/
225 #if defined(USE_IEEE)
226 static inline int GET_FLOAT_BITS( float x )
227 {
228 fi_type fi;
229 fi.f = x;
230 return fi.i;
231 }
232 #define IS_NEGATIVE(x) (GET_FLOAT_BITS(x) < 0)
233 #else
234 #define IS_NEGATIVE(x) (x < 0.0F)
235 #endif
236
237
238 /***
239 *** DIFFERENT_SIGNS: test if two floats have opposite signs
240 ***/
241 #if defined(USE_IEEE)
242 #define DIFFERENT_SIGNS(x,y) ((GET_FLOAT_BITS(x) ^ GET_FLOAT_BITS(y)) & (1<<31))
243 #else
244 /* Could just use (x*y<0) except for the flatshading requirements.
245 * Maybe there's a better way?
246 */
247 #define DIFFERENT_SIGNS(x,y) ((x) * (y) <= 0.0F && (x) - (y) != 0.0F)
248 #endif
249
250
251 /***
252 *** CEILF: ceiling of float
253 *** FLOORF: floor of float
254 *** FABSF: absolute value of float
255 *** LOGF: the natural logarithm (base e) of the value
256 *** EXPF: raise e to the value
257 *** LDEXPF: multiply value by an integral power of two
258 *** FREXPF: extract mantissa and exponent from value
259 ***/
260 #if defined(__gnu_linux__)
261 /* C99 functions */
262 #define CEILF(x) ceilf(x)
263 #define FLOORF(x) floorf(x)
264 #define FABSF(x) fabsf(x)
265 #define LOGF(x) logf(x)
266 #define EXPF(x) expf(x)
267 #define LDEXPF(x,y) ldexpf(x,y)
268 #define FREXPF(x,y) frexpf(x,y)
269 #else
270 #define CEILF(x) ((GLfloat) ceil(x))
271 #define FLOORF(x) ((GLfloat) floor(x))
272 #define FABSF(x) ((GLfloat) fabs(x))
273 #define LOGF(x) ((GLfloat) log(x))
274 #define EXPF(x) ((GLfloat) exp(x))
275 #define LDEXPF(x,y) ((GLfloat) ldexp(x,y))
276 #define FREXPF(x,y) ((GLfloat) frexp(x,y))
277 #endif
278
279
280 /**
281 * Convert float to int by rounding to nearest integer, away from zero.
282 */
283 static inline int IROUND(float f)
284 {
285 return (int) ((f >= 0.0F) ? (f + 0.5F) : (f - 0.5F));
286 }
287
288
289 /**
290 * Convert float to int64 by rounding to nearest integer.
291 */
292 static inline GLint64 IROUND64(float f)
293 {
294 return (GLint64) ((f >= 0.0F) ? (f + 0.5F) : (f - 0.5F));
295 }
296
297
298 /**
299 * Convert positive float to int by rounding to nearest integer.
300 */
301 static inline int IROUND_POS(float f)
302 {
303 assert(f >= 0.0F);
304 return (int) (f + 0.5F);
305 }
306
307
308 /**
309 * Convert float to int using a fast method. The rounding mode may vary.
310 * XXX We could use an x86-64/SSE2 version here.
311 */
312 #if defined(USE_X86_ASM) && defined(__GNUC__) && defined(__i386__)
313 static inline int F_TO_I(float f)
314 {
315 int r;
316 __asm__ ("fistpl %0" : "=m" (r) : "t" (f) : "st");
317 return r;
318 }
319 #elif defined(USE_X86_ASM) && defined(_MSC_VER)
320 static inline int F_TO_I(float f)
321 {
322 int r;
323 _asm {
324 fld f
325 fistp r
326 }
327 return r;
328 }
329 #elif defined(__WATCOMC__) && defined(__386__)
330 long F_TO_I(float f);
331 #pragma aux iround = \
332 "push eax" \
333 "fistp dword ptr [esp]" \
334 "pop eax" \
335 parm [8087] \
336 value [eax] \
337 modify exact [eax];
338 #else
339 #define F_TO_I(f) IROUND(f)
340 #endif
341
342
343 /***
344 *** IFLOOR: return (as an integer) floor of float
345 ***/
346 #if defined(USE_X86_ASM) && defined(__GNUC__) && defined(__i386__)
347 /*
348 * IEEE floor for computers that round to nearest or even.
349 * 'f' must be between -4194304 and 4194303.
350 * This floor operation is done by "(iround(f + .5) + iround(f - .5)) >> 1",
351 * but uses some IEEE specific tricks for better speed.
352 * Contributed by Josh Vanderhoof
353 */
354 static inline int ifloor(float f)
355 {
356 int ai, bi;
357 double af, bf;
358 af = (3 << 22) + 0.5 + (double)f;
359 bf = (3 << 22) + 0.5 - (double)f;
360 /* GCC generates an extra fstp/fld without this. */
361 __asm__ ("fstps %0" : "=m" (ai) : "t" (af) : "st");
362 __asm__ ("fstps %0" : "=m" (bi) : "t" (bf) : "st");
363 return (ai - bi) >> 1;
364 }
365 #define IFLOOR(x) ifloor(x)
366 #elif defined(USE_IEEE)
367 static inline int ifloor(float f)
368 {
369 int ai, bi;
370 double af, bf;
371 fi_type u;
372
373 af = (3 << 22) + 0.5 + (double)f;
374 bf = (3 << 22) + 0.5 - (double)f;
375 u.f = (float) af; ai = u.i;
376 u.f = (float) bf; bi = u.i;
377 return (ai - bi) >> 1;
378 }
379 #define IFLOOR(x) ifloor(x)
380 #else
381 static inline int ifloor(float f)
382 {
383 int i = IROUND(f);
384 return (i > f) ? i - 1 : i;
385 }
386 #define IFLOOR(x) ifloor(x)
387 #endif
388
389
390 /***
391 *** ICEIL: return (as an integer) ceiling of float
392 ***/
393 #if defined(USE_X86_ASM) && defined(__GNUC__) && defined(__i386__)
394 /*
395 * IEEE ceil for computers that round to nearest or even.
396 * 'f' must be between -4194304 and 4194303.
397 * This ceil operation is done by "(iround(f + .5) + iround(f - .5) + 1) >> 1",
398 * but uses some IEEE specific tricks for better speed.
399 * Contributed by Josh Vanderhoof
400 */
401 static inline int iceil(float f)
402 {
403 int ai, bi;
404 double af, bf;
405 af = (3 << 22) + 0.5 + (double)f;
406 bf = (3 << 22) + 0.5 - (double)f;
407 /* GCC generates an extra fstp/fld without this. */
408 __asm__ ("fstps %0" : "=m" (ai) : "t" (af) : "st");
409 __asm__ ("fstps %0" : "=m" (bi) : "t" (bf) : "st");
410 return (ai - bi + 1) >> 1;
411 }
412 #define ICEIL(x) iceil(x)
413 #elif defined(USE_IEEE)
414 static inline int iceil(float f)
415 {
416 int ai, bi;
417 double af, bf;
418 fi_type u;
419 af = (3 << 22) + 0.5 + (double)f;
420 bf = (3 << 22) + 0.5 - (double)f;
421 u.f = (float) af; ai = u.i;
422 u.f = (float) bf; bi = u.i;
423 return (ai - bi + 1) >> 1;
424 }
425 #define ICEIL(x) iceil(x)
426 #else
427 static inline int iceil(float f)
428 {
429 int i = IROUND(f);
430 return (i < f) ? i + 1 : i;
431 }
432 #define ICEIL(x) iceil(x)
433 #endif
434
435
436 /**
437 * Is x a power of two?
438 */
439 static inline int
440 _mesa_is_pow_two(int x)
441 {
442 return !(x & (x - 1));
443 }
444
445 /**
446 * Round given integer to next higer power of two
447 * If X is zero result is undefined.
448 *
449 * Source for the fallback implementation is
450 * Sean Eron Anderson's webpage "Bit Twiddling Hacks"
451 * http://graphics.stanford.edu/~seander/bithacks.html
452 *
453 * When using builtin function have to do some work
454 * for case when passed values 1 to prevent hiting
455 * undefined result from __builtin_clz. Undefined
456 * results would be different depending on optimization
457 * level used for build.
458 */
459 static inline int32_t
460 _mesa_next_pow_two_32(uint32_t x)
461 {
462 #if defined(__GNUC__) && \
463 ((__GNUC__ * 100 + __GNUC_MINOR__) >= 304) /* gcc 3.4 or later */
464 uint32_t y = (x != 1);
465 return (1 + y) << ((__builtin_clz(x - y) ^ 31) );
466 #else
467 x--;
468 x |= x >> 1;
469 x |= x >> 2;
470 x |= x >> 4;
471 x |= x >> 8;
472 x |= x >> 16;
473 x++;
474 return x;
475 #endif
476 }
477
478 static inline int64_t
479 _mesa_next_pow_two_64(uint64_t x)
480 {
481 #if defined(__GNUC__) && \
482 ((__GNUC__ * 100 + __GNUC_MINOR__) >= 304) /* gcc 3.4 or later */
483 uint64_t y = (x != 1);
484 if (sizeof(x) == sizeof(long))
485 return (1 + y) << ((__builtin_clzl(x - y) ^ 63));
486 else
487 return (1 + y) << ((__builtin_clzll(x - y) ^ 63));
488 #else
489 x--;
490 x |= x >> 1;
491 x |= x >> 2;
492 x |= x >> 4;
493 x |= x >> 8;
494 x |= x >> 16;
495 x |= x >> 32;
496 x++;
497 return x;
498 #endif
499 }
500
501
502 /*
503 * Returns the floor form of binary logarithm for a 32-bit integer.
504 */
505 static inline GLuint
506 _mesa_logbase2(GLuint n)
507 {
508 #if defined(__GNUC__) && \
509 ((__GNUC__ * 100 + __GNUC_MINOR__) >= 304) /* gcc 3.4 or later */
510 return (31 - __builtin_clz(n | 1));
511 #else
512 GLuint pos = 0;
513 if (n >= 1<<16) { n >>= 16; pos += 16; }
514 if (n >= 1<< 8) { n >>= 8; pos += 8; }
515 if (n >= 1<< 4) { n >>= 4; pos += 4; }
516 if (n >= 1<< 2) { n >>= 2; pos += 2; }
517 if (n >= 1<< 1) { pos += 1; }
518 return pos;
519 #endif
520 }
521
522
523 /**
524 * Return 1 if this is a little endian machine, 0 if big endian.
525 */
526 static inline GLboolean
527 _mesa_little_endian(void)
528 {
529 const GLuint ui = 1; /* intentionally not static */
530 return *((const GLubyte *) &ui);
531 }
532
533
534
535 /**********************************************************************
536 * Functions
537 */
538
539 extern void *
540 _mesa_align_malloc( size_t bytes, unsigned long alignment );
541
542 extern void *
543 _mesa_align_calloc( size_t bytes, unsigned long alignment );
544
545 extern void
546 _mesa_align_free( void *ptr );
547
548 extern void *
549 _mesa_align_realloc(void *oldBuffer, size_t oldSize, size_t newSize,
550 unsigned long alignment);
551
552 extern void *
553 _mesa_exec_malloc( GLuint size );
554
555 extern void
556 _mesa_exec_free( void *addr );
557
558 extern void *
559 _mesa_realloc( void *oldBuffer, size_t oldSize, size_t newSize );
560
561
562 #ifndef FFS_DEFINED
563 #define FFS_DEFINED 1
564 #ifdef __GNUC__
565
566 #if defined(__MINGW32__) || defined(__CYGWIN__) || defined(ANDROID) || defined(__APPLE__)
567 #define ffs __builtin_ffs
568 #define ffsll __builtin_ffsll
569 #endif
570
571 #else
572
573 extern int ffs(int i);
574 extern int ffsll(long long int i);
575
576 #endif /*__ GNUC__ */
577 #endif /* FFS_DEFINED */
578
579
580 #if defined(__GNUC__) && ((__GNUC__ * 100 + __GNUC_MINOR__) >= 304) /* gcc 3.4 or later */
581 #define _mesa_bitcount(i) __builtin_popcount(i)
582 #define _mesa_bitcount_64(i) __builtin_popcountll(i)
583 #else
584 extern unsigned int
585 _mesa_bitcount(unsigned int n);
586 extern unsigned int
587 _mesa_bitcount_64(uint64_t n);
588 #endif
589
590
591 extern GLhalfARB
592 _mesa_float_to_half(float f);
593
594 extern float
595 _mesa_half_to_float(GLhalfARB h);
596
597
598 extern void *
599 _mesa_bsearch( const void *key, const void *base, size_t nmemb, size_t size,
600 int (*compar)(const void *, const void *) );
601
602 extern char *
603 _mesa_getenv( const char *var );
604
605 extern char *
606 _mesa_strdup( const char *s );
607
608 extern float
609 _mesa_strtof( const char *s, char **end );
610
611 extern unsigned int
612 _mesa_str_checksum(const char *str);
613
614 extern int
615 _mesa_snprintf( char *str, size_t size, const char *fmt, ... ) PRINTFLIKE(3, 4);
616
617 extern int
618 _mesa_vsnprintf(char *str, size_t size, const char *fmt, va_list arg);
619
620
621 #if defined(_MSC_VER) && !defined(snprintf)
622 #define snprintf _snprintf
623 #endif
624
625
626 #ifdef __cplusplus
627 }
628 #endif
629
630
631 #endif /* IMPORTS_H */