mesa: #define fprintf to be __mingw_fprintf() on Mingw32
[mesa.git] / src / mesa / main / imports.h
1 /*
2 * Mesa 3-D graphics library
3 * Version: 7.5
4 *
5 * Copyright (C) 1999-2008 Brian Paul All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25
26 /**
27 * \file imports.h
28 * Standard C library function wrappers.
29 *
30 * This file provides wrappers for all the standard C library functions
31 * like malloc(), free(), printf(), getenv(), etc.
32 */
33
34
35 #ifndef IMPORTS_H
36 #define IMPORTS_H
37
38
39 #include "compiler.h"
40 #include "glheader.h"
41 #include "errors.h"
42
43 #ifdef __cplusplus
44 extern "C" {
45 #endif
46
47
48 /**********************************************************************/
49 /** Memory macros */
50 /*@{*/
51
52 /** Allocate \p BYTES bytes */
53 #define MALLOC(BYTES) malloc(BYTES)
54 /** Allocate and zero \p BYTES bytes */
55 #define CALLOC(BYTES) calloc(1, BYTES)
56 /** Allocate a structure of type \p T */
57 #define MALLOC_STRUCT(T) (struct T *) malloc(sizeof(struct T))
58 /** Allocate and zero a structure of type \p T */
59 #define CALLOC_STRUCT(T) (struct T *) calloc(1, sizeof(struct T))
60 /** Free memory */
61 #define FREE(PTR) free(PTR)
62
63 /*@}*/
64
65
66 /*
67 * For GL_ARB_vertex_buffer_object we need to treat vertex array pointers
68 * as offsets into buffer stores. Since the vertex array pointer and
69 * buffer store pointer are both pointers and we need to add them, we use
70 * this macro.
71 * Both pointers/offsets are expressed in bytes.
72 */
73 #define ADD_POINTERS(A, B) ( (GLubyte *) (A) + (uintptr_t) (B) )
74
75
76 /**
77 * Sometimes we treat GLfloats as GLints. On x86 systems, moving a float
78 * as a int (thereby using integer registers instead of FP registers) is
79 * a performance win. Typically, this can be done with ordinary casts.
80 * But with gcc's -fstrict-aliasing flag (which defaults to on in gcc 3.0)
81 * these casts generate warnings.
82 * The following union typedef is used to solve that.
83 */
84 typedef union { GLfloat f; GLint i; } fi_type;
85
86
87
88 /**********************************************************************
89 * Math macros
90 */
91
92 #define MAX_GLUSHORT 0xffff
93 #define MAX_GLUINT 0xffffffff
94
95 /* Degrees to radians conversion: */
96 #define DEG2RAD (M_PI/180.0)
97
98
99 /***
100 *** SQRTF: single-precision square root
101 ***/
102 #if 0 /* _mesa_sqrtf() not accurate enough - temporarily disabled */
103 # define SQRTF(X) _mesa_sqrtf(X)
104 #else
105 # define SQRTF(X) (float) sqrt((float) (X))
106 #endif
107
108
109 /***
110 *** INV_SQRTF: single-precision inverse square root
111 ***/
112 #if 0
113 #define INV_SQRTF(X) _mesa_inv_sqrt(X)
114 #else
115 #define INV_SQRTF(X) (1.0F / SQRTF(X)) /* this is faster on a P4 */
116 #endif
117
118
119 /**
120 * \name Work-arounds for platforms that lack C99 math functions
121 */
122 /*@{*/
123 #if (!defined(_XOPEN_SOURCE) || (_XOPEN_SOURCE < 600)) && !defined(_ISOC99_SOURCE) \
124 && (!defined(__STDC_VERSION__) || (__STDC_VERSION__ < 199901L)) \
125 && (!defined(_MSC_VER) || (_MSC_VER < 1400))
126 #define acosf(f) ((float) acos(f))
127 #define asinf(f) ((float) asin(f))
128 #define atan2f(x,y) ((float) atan2(x,y))
129 #define atanf(f) ((float) atan(f))
130 #define cielf(f) ((float) ciel(f))
131 #define cosf(f) ((float) cos(f))
132 #define coshf(f) ((float) cosh(f))
133 #define expf(f) ((float) exp(f))
134 #define exp2f(f) ((float) exp2(f))
135 #define floorf(f) ((float) floor(f))
136 #define logf(f) ((float) log(f))
137
138 #ifdef ANDROID
139 #define log2f(f) (logf(f) * (float) (1.0 / M_LN2))
140 #else
141 #define log2f(f) ((float) log2(f))
142 #endif
143
144 #define powf(x,y) ((float) pow(x,y))
145 #define sinf(f) ((float) sin(f))
146 #define sinhf(f) ((float) sinh(f))
147 #define sqrtf(f) ((float) sqrt(f))
148 #define tanf(f) ((float) tan(f))
149 #define tanhf(f) ((float) tanh(f))
150 #define acoshf(f) ((float) acosh(f))
151 #define asinhf(f) ((float) asinh(f))
152 #define atanhf(f) ((float) atanh(f))
153 #endif
154
155 #if defined(_MSC_VER)
156 static inline float truncf(float x) { return x < 0.0f ? ceilf(x) : floorf(x); }
157 static inline float exp2f(float x) { return powf(2.0f, x); }
158 static inline float log2f(float x) { return logf(x) * 1.442695041f; }
159 static inline float asinhf(float x) { return logf(x + sqrtf(x * x + 1.0f)); }
160 static inline float acoshf(float x) { return logf(x + sqrtf(x * x - 1.0f)); }
161 static inline float atanhf(float x) { return (logf(1.0f + x) - logf(1.0f - x)) / 2.0f; }
162 static inline int isblank(int ch) { return ch == ' ' || ch == '\t'; }
163 #define strtoll(p, e, b) _strtoi64(p, e, b)
164 #endif
165 /*@}*/
166
167 /***
168 *** LOG2: Log base 2 of float
169 ***/
170 #ifdef USE_IEEE
171 #if 0
172 /* This is pretty fast, but not accurate enough (only 2 fractional bits).
173 * Based on code from http://www.stereopsis.com/log2.html
174 */
175 static inline GLfloat LOG2(GLfloat x)
176 {
177 const GLfloat y = x * x * x * x;
178 const GLuint ix = *((GLuint *) &y);
179 const GLuint exp = (ix >> 23) & 0xFF;
180 const GLint log2 = ((GLint) exp) - 127;
181 return (GLfloat) log2 * (1.0 / 4.0); /* 4, because of x^4 above */
182 }
183 #endif
184 /* Pretty fast, and accurate.
185 * Based on code from http://www.flipcode.com/totd/
186 */
187 static inline GLfloat LOG2(GLfloat val)
188 {
189 fi_type num;
190 GLint log_2;
191 num.f = val;
192 log_2 = ((num.i >> 23) & 255) - 128;
193 num.i &= ~(255 << 23);
194 num.i += 127 << 23;
195 num.f = ((-1.0f/3) * num.f + 2) * num.f - 2.0f/3;
196 return num.f + log_2;
197 }
198 #else
199 /*
200 * NOTE: log_base_2(x) = log(x) / log(2)
201 * NOTE: 1.442695 = 1/log(2).
202 */
203 #define LOG2(x) ((GLfloat) (log(x) * 1.442695F))
204 #endif
205
206
207 /***
208 *** IS_INF_OR_NAN: test if float is infinite or NaN
209 ***/
210 #ifdef USE_IEEE
211 static inline int IS_INF_OR_NAN( float x )
212 {
213 fi_type tmp;
214 tmp.f = x;
215 return !(int)((unsigned int)((tmp.i & 0x7fffffff)-0x7f800000) >> 31);
216 }
217 #elif defined(isfinite)
218 #define IS_INF_OR_NAN(x) (!isfinite(x))
219 #elif defined(finite)
220 #define IS_INF_OR_NAN(x) (!finite(x))
221 #elif defined(__VMS)
222 #define IS_INF_OR_NAN(x) (!finite(x))
223 #elif defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L
224 #define IS_INF_OR_NAN(x) (!isfinite(x))
225 #else
226 #define IS_INF_OR_NAN(x) (!finite(x))
227 #endif
228
229
230 /***
231 *** IS_NEGATIVE: test if float is negative
232 ***/
233 #if defined(USE_IEEE)
234 static inline int GET_FLOAT_BITS( float x )
235 {
236 fi_type fi;
237 fi.f = x;
238 return fi.i;
239 }
240 #define IS_NEGATIVE(x) (GET_FLOAT_BITS(x) < 0)
241 #else
242 #define IS_NEGATIVE(x) (x < 0.0F)
243 #endif
244
245
246 /***
247 *** DIFFERENT_SIGNS: test if two floats have opposite signs
248 ***/
249 #if defined(USE_IEEE)
250 #define DIFFERENT_SIGNS(x,y) ((GET_FLOAT_BITS(x) ^ GET_FLOAT_BITS(y)) & (1<<31))
251 #else
252 /* Could just use (x*y<0) except for the flatshading requirements.
253 * Maybe there's a better way?
254 */
255 #define DIFFERENT_SIGNS(x,y) ((x) * (y) <= 0.0F && (x) - (y) != 0.0F)
256 #endif
257
258
259 /***
260 *** CEILF: ceiling of float
261 *** FLOORF: floor of float
262 *** FABSF: absolute value of float
263 *** LOGF: the natural logarithm (base e) of the value
264 *** EXPF: raise e to the value
265 *** LDEXPF: multiply value by an integral power of two
266 *** FREXPF: extract mantissa and exponent from value
267 ***/
268 #if defined(__gnu_linux__)
269 /* C99 functions */
270 #define CEILF(x) ceilf(x)
271 #define FLOORF(x) floorf(x)
272 #define FABSF(x) fabsf(x)
273 #define LOGF(x) logf(x)
274 #define EXPF(x) expf(x)
275 #define LDEXPF(x,y) ldexpf(x,y)
276 #define FREXPF(x,y) frexpf(x,y)
277 #else
278 #define CEILF(x) ((GLfloat) ceil(x))
279 #define FLOORF(x) ((GLfloat) floor(x))
280 #define FABSF(x) ((GLfloat) fabs(x))
281 #define LOGF(x) ((GLfloat) log(x))
282 #define EXPF(x) ((GLfloat) exp(x))
283 #define LDEXPF(x,y) ((GLfloat) ldexp(x,y))
284 #define FREXPF(x,y) ((GLfloat) frexp(x,y))
285 #endif
286
287
288 /**
289 * Convert float to int by rounding to nearest integer, away from zero.
290 */
291 static inline int IROUND(float f)
292 {
293 return (int) ((f >= 0.0F) ? (f + 0.5F) : (f - 0.5F));
294 }
295
296
297 /**
298 * Convert float to int64 by rounding to nearest integer.
299 */
300 static inline GLint64 IROUND64(float f)
301 {
302 return (GLint64) ((f >= 0.0F) ? (f + 0.5F) : (f - 0.5F));
303 }
304
305
306 /**
307 * Convert positive float to int by rounding to nearest integer.
308 */
309 static inline int IROUND_POS(float f)
310 {
311 assert(f >= 0.0F);
312 return (int) (f + 0.5F);
313 }
314
315
316 /**
317 * Convert float to int using a fast method. The rounding mode may vary.
318 * XXX We could use an x86-64/SSE2 version here.
319 */
320 #if defined(USE_X86_ASM) && defined(__GNUC__) && defined(__i386__)
321 static inline int F_TO_I(float f)
322 {
323 int r;
324 __asm__ ("fistpl %0" : "=m" (r) : "t" (f) : "st");
325 return r;
326 }
327 #elif defined(USE_X86_ASM) && defined(_MSC_VER)
328 static inline int F_TO_I(float f)
329 {
330 int r;
331 _asm {
332 fld f
333 fistp r
334 }
335 return r;
336 }
337 #elif defined(__WATCOMC__) && defined(__386__)
338 long F_TO_I(float f);
339 #pragma aux iround = \
340 "push eax" \
341 "fistp dword ptr [esp]" \
342 "pop eax" \
343 parm [8087] \
344 value [eax] \
345 modify exact [eax];
346 #else
347 #define F_TO_I(f) IROUND(f)
348 #endif
349
350
351 /***
352 *** IFLOOR: return (as an integer) floor of float
353 ***/
354 #if defined(USE_X86_ASM) && defined(__GNUC__) && defined(__i386__)
355 /*
356 * IEEE floor for computers that round to nearest or even.
357 * 'f' must be between -4194304 and 4194303.
358 * This floor operation is done by "(iround(f + .5) + iround(f - .5)) >> 1",
359 * but uses some IEEE specific tricks for better speed.
360 * Contributed by Josh Vanderhoof
361 */
362 static inline int ifloor(float f)
363 {
364 int ai, bi;
365 double af, bf;
366 af = (3 << 22) + 0.5 + (double)f;
367 bf = (3 << 22) + 0.5 - (double)f;
368 /* GCC generates an extra fstp/fld without this. */
369 __asm__ ("fstps %0" : "=m" (ai) : "t" (af) : "st");
370 __asm__ ("fstps %0" : "=m" (bi) : "t" (bf) : "st");
371 return (ai - bi) >> 1;
372 }
373 #define IFLOOR(x) ifloor(x)
374 #elif defined(USE_IEEE)
375 static inline int ifloor(float f)
376 {
377 int ai, bi;
378 double af, bf;
379 fi_type u;
380
381 af = (3 << 22) + 0.5 + (double)f;
382 bf = (3 << 22) + 0.5 - (double)f;
383 u.f = (float) af; ai = u.i;
384 u.f = (float) bf; bi = u.i;
385 return (ai - bi) >> 1;
386 }
387 #define IFLOOR(x) ifloor(x)
388 #else
389 static inline int ifloor(float f)
390 {
391 int i = IROUND(f);
392 return (i > f) ? i - 1 : i;
393 }
394 #define IFLOOR(x) ifloor(x)
395 #endif
396
397
398 /***
399 *** ICEIL: return (as an integer) ceiling of float
400 ***/
401 #if defined(USE_X86_ASM) && defined(__GNUC__) && defined(__i386__)
402 /*
403 * IEEE ceil for computers that round to nearest or even.
404 * 'f' must be between -4194304 and 4194303.
405 * This ceil operation is done by "(iround(f + .5) + iround(f - .5) + 1) >> 1",
406 * but uses some IEEE specific tricks for better speed.
407 * Contributed by Josh Vanderhoof
408 */
409 static inline int iceil(float f)
410 {
411 int ai, bi;
412 double af, bf;
413 af = (3 << 22) + 0.5 + (double)f;
414 bf = (3 << 22) + 0.5 - (double)f;
415 /* GCC generates an extra fstp/fld without this. */
416 __asm__ ("fstps %0" : "=m" (ai) : "t" (af) : "st");
417 __asm__ ("fstps %0" : "=m" (bi) : "t" (bf) : "st");
418 return (ai - bi + 1) >> 1;
419 }
420 #define ICEIL(x) iceil(x)
421 #elif defined(USE_IEEE)
422 static inline int iceil(float f)
423 {
424 int ai, bi;
425 double af, bf;
426 fi_type u;
427 af = (3 << 22) + 0.5 + (double)f;
428 bf = (3 << 22) + 0.5 - (double)f;
429 u.f = (float) af; ai = u.i;
430 u.f = (float) bf; bi = u.i;
431 return (ai - bi + 1) >> 1;
432 }
433 #define ICEIL(x) iceil(x)
434 #else
435 static inline int iceil(float f)
436 {
437 int i = IROUND(f);
438 return (i < f) ? i + 1 : i;
439 }
440 #define ICEIL(x) iceil(x)
441 #endif
442
443
444 /**
445 * Is x a power of two?
446 */
447 static inline int
448 _mesa_is_pow_two(int x)
449 {
450 return !(x & (x - 1));
451 }
452
453 /**
454 * Round given integer to next higer power of two
455 * If X is zero result is undefined.
456 *
457 * Source for the fallback implementation is
458 * Sean Eron Anderson's webpage "Bit Twiddling Hacks"
459 * http://graphics.stanford.edu/~seander/bithacks.html
460 *
461 * When using builtin function have to do some work
462 * for case when passed values 1 to prevent hiting
463 * undefined result from __builtin_clz. Undefined
464 * results would be different depending on optimization
465 * level used for build.
466 */
467 static inline int32_t
468 _mesa_next_pow_two_32(uint32_t x)
469 {
470 #if defined(__GNUC__) && \
471 ((__GNUC__ * 100 + __GNUC_MINOR__) >= 304) /* gcc 3.4 or later */
472 uint32_t y = (x != 1);
473 return (1 + y) << ((__builtin_clz(x - y) ^ 31) );
474 #else
475 x--;
476 x |= x >> 1;
477 x |= x >> 2;
478 x |= x >> 4;
479 x |= x >> 8;
480 x |= x >> 16;
481 x++;
482 return x;
483 #endif
484 }
485
486 static inline int64_t
487 _mesa_next_pow_two_64(uint64_t x)
488 {
489 #if defined(__GNUC__) && \
490 ((__GNUC__ * 100 + __GNUC_MINOR__) >= 304) /* gcc 3.4 or later */
491 uint64_t y = (x != 1);
492 if (sizeof(x) == sizeof(long))
493 return (1 + y) << ((__builtin_clzl(x - y) ^ 63));
494 else
495 return (1 + y) << ((__builtin_clzll(x - y) ^ 63));
496 #else
497 x--;
498 x |= x >> 1;
499 x |= x >> 2;
500 x |= x >> 4;
501 x |= x >> 8;
502 x |= x >> 16;
503 x |= x >> 32;
504 x++;
505 return x;
506 #endif
507 }
508
509
510 /*
511 * Returns the floor form of binary logarithm for a 32-bit integer.
512 */
513 static inline GLuint
514 _mesa_logbase2(GLuint n)
515 {
516 #if defined(__GNUC__) && \
517 ((__GNUC__ * 100 + __GNUC_MINOR__) >= 304) /* gcc 3.4 or later */
518 return (31 - __builtin_clz(n | 1));
519 #else
520 GLuint pos = 0;
521 if (n >= 1<<16) { n >>= 16; pos += 16; }
522 if (n >= 1<< 8) { n >>= 8; pos += 8; }
523 if (n >= 1<< 4) { n >>= 4; pos += 4; }
524 if (n >= 1<< 2) { n >>= 2; pos += 2; }
525 if (n >= 1<< 1) { pos += 1; }
526 return pos;
527 #endif
528 }
529
530
531 /**
532 * Return 1 if this is a little endian machine, 0 if big endian.
533 */
534 static inline GLboolean
535 _mesa_little_endian(void)
536 {
537 const GLuint ui = 1; /* intentionally not static */
538 return *((const GLubyte *) &ui);
539 }
540
541
542
543 /**********************************************************************
544 * Functions
545 */
546
547 extern void *
548 _mesa_align_malloc( size_t bytes, unsigned long alignment );
549
550 extern void *
551 _mesa_align_calloc( size_t bytes, unsigned long alignment );
552
553 extern void
554 _mesa_align_free( void *ptr );
555
556 extern void *
557 _mesa_align_realloc(void *oldBuffer, size_t oldSize, size_t newSize,
558 unsigned long alignment);
559
560 extern void *
561 _mesa_exec_malloc( GLuint size );
562
563 extern void
564 _mesa_exec_free( void *addr );
565
566 extern void *
567 _mesa_realloc( void *oldBuffer, size_t oldSize, size_t newSize );
568
569 extern void
570 _mesa_memset16( unsigned short *dst, unsigned short val, size_t n );
571
572 extern double
573 _mesa_sqrtd(double x);
574
575 extern float
576 _mesa_sqrtf(float x);
577
578 extern float
579 _mesa_inv_sqrtf(float x);
580
581 extern void
582 _mesa_init_sqrt_table(void);
583
584
585 #ifndef FFS_DEFINED
586 #define FFS_DEFINED 1
587 #ifdef __GNUC__
588
589 #if defined(__MINGW32__) || defined(__CYGWIN__) || defined(ANDROID) || defined(__APPLE__)
590 #define ffs __builtin_ffs
591 #define ffsll __builtin_ffsll
592 #endif
593
594 #else
595
596 extern int ffs(int i);
597 extern int ffsll(long long int i);
598
599 #endif /*__ GNUC__ */
600 #endif /* FFS_DEFINED */
601
602
603 #if defined(__GNUC__) && ((__GNUC__ * 100 + __GNUC_MINOR__) >= 304) /* gcc 3.4 or later */
604 #define _mesa_bitcount(i) __builtin_popcount(i)
605 #define _mesa_bitcount_64(i) __builtin_popcountll(i)
606 #else
607 extern unsigned int
608 _mesa_bitcount(unsigned int n);
609 extern unsigned int
610 _mesa_bitcount_64(uint64_t n);
611 #endif
612
613
614 extern GLhalfARB
615 _mesa_float_to_half(float f);
616
617 extern float
618 _mesa_half_to_float(GLhalfARB h);
619
620
621 extern void *
622 _mesa_bsearch( const void *key, const void *base, size_t nmemb, size_t size,
623 int (*compar)(const void *, const void *) );
624
625 extern char *
626 _mesa_getenv( const char *var );
627
628 extern char *
629 _mesa_strdup( const char *s );
630
631 extern float
632 _mesa_strtof( const char *s, char **end );
633
634 extern unsigned int
635 _mesa_str_checksum(const char *str);
636
637 extern int
638 _mesa_snprintf( char *str, size_t size, const char *fmt, ... ) PRINTFLIKE(3, 4);
639
640 extern int
641 _mesa_vsnprintf(char *str, size_t size, const char *fmt, va_list arg);
642
643
644 #if defined(_MSC_VER) && !defined(snprintf)
645 #define snprintf _snprintf
646 #endif
647
648
649 /**
650 * On Mingw32 we need to use __mingw_fprintf() to parse formats such
651 * as "0x%llx", and possibly others
652 */
653 #ifdef __MINGW32__
654 #define fprintf __mingw_fprintf
655 #endif
656
657
658
659 #ifdef __cplusplus
660 }
661 #endif
662
663
664 #endif /* IMPORTS_H */