mesa: clean-up LOG2() function
[mesa.git] / src / mesa / main / imports.h
1 /*
2 * Mesa 3-D graphics library
3 * Version: 7.5
4 *
5 * Copyright (C) 1999-2008 Brian Paul All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25
26 /**
27 * \file imports.h
28 * Standard C library function wrappers.
29 *
30 * This file provides wrappers for all the standard C library functions
31 * like malloc(), free(), printf(), getenv(), etc.
32 */
33
34
35 #ifndef IMPORTS_H
36 #define IMPORTS_H
37
38
39 #include "compiler.h"
40 #include "glheader.h"
41 #include "errors.h"
42
43 #ifdef __cplusplus
44 extern "C" {
45 #endif
46
47
48 /**********************************************************************/
49 /** Memory macros */
50 /*@{*/
51
52 /** Allocate \p BYTES bytes */
53 #define MALLOC(BYTES) malloc(BYTES)
54 /** Allocate and zero \p BYTES bytes */
55 #define CALLOC(BYTES) calloc(1, BYTES)
56 /** Allocate a structure of type \p T */
57 #define MALLOC_STRUCT(T) (struct T *) malloc(sizeof(struct T))
58 /** Allocate and zero a structure of type \p T */
59 #define CALLOC_STRUCT(T) (struct T *) calloc(1, sizeof(struct T))
60 /** Free memory */
61 #define FREE(PTR) free(PTR)
62
63 /*@}*/
64
65
66 /*
67 * For GL_ARB_vertex_buffer_object we need to treat vertex array pointers
68 * as offsets into buffer stores. Since the vertex array pointer and
69 * buffer store pointer are both pointers and we need to add them, we use
70 * this macro.
71 * Both pointers/offsets are expressed in bytes.
72 */
73 #define ADD_POINTERS(A, B) ( (GLubyte *) (A) + (uintptr_t) (B) )
74
75
76 /**
77 * Sometimes we treat GLfloats as GLints. On x86 systems, moving a float
78 * as a int (thereby using integer registers instead of FP registers) is
79 * a performance win. Typically, this can be done with ordinary casts.
80 * But with gcc's -fstrict-aliasing flag (which defaults to on in gcc 3.0)
81 * these casts generate warnings.
82 * The following union typedef is used to solve that.
83 */
84 typedef union { GLfloat f; GLint i; } fi_type;
85
86
87
88 /**********************************************************************
89 * Math macros
90 */
91
92 #define MAX_GLUSHORT 0xffff
93 #define MAX_GLUINT 0xffffffff
94
95 /* Degrees to radians conversion: */
96 #define DEG2RAD (M_PI/180.0)
97
98
99 /***
100 *** SQRTF: single-precision square root
101 ***/
102 #define SQRTF(X) (float) sqrt((float) (X))
103
104
105 /***
106 *** INV_SQRTF: single-precision inverse square root
107 ***/
108 #define INV_SQRTF(X) (1.0F / SQRTF(X))
109
110
111 /**
112 * \name Work-arounds for platforms that lack C99 math functions
113 */
114 /*@{*/
115 #if (!defined(_XOPEN_SOURCE) || (_XOPEN_SOURCE < 600)) && !defined(_ISOC99_SOURCE) \
116 && (!defined(__STDC_VERSION__) || (__STDC_VERSION__ < 199901L)) \
117 && (!defined(_MSC_VER) || (_MSC_VER < 1400))
118 #define acosf(f) ((float) acos(f))
119 #define asinf(f) ((float) asin(f))
120 #define atan2f(x,y) ((float) atan2(x,y))
121 #define atanf(f) ((float) atan(f))
122 #define ceilf(f) ((float) ceil(f))
123 #define cosf(f) ((float) cos(f))
124 #define coshf(f) ((float) cosh(f))
125 #define expf(f) ((float) exp(f))
126 #define exp2f(f) ((float) exp2(f))
127 #define floorf(f) ((float) floor(f))
128 #define logf(f) ((float) log(f))
129
130 #ifdef ANDROID
131 #define log2f(f) (logf(f) * (float) (1.0 / M_LN2))
132 #else
133 #define log2f(f) ((float) log2(f))
134 #endif
135
136 #define powf(x,y) ((float) pow(x,y))
137 #define sinf(f) ((float) sin(f))
138 #define sinhf(f) ((float) sinh(f))
139 #define sqrtf(f) ((float) sqrt(f))
140 #define tanf(f) ((float) tan(f))
141 #define tanhf(f) ((float) tanh(f))
142 #define acoshf(f) ((float) acosh(f))
143 #define asinhf(f) ((float) asinh(f))
144 #define atanhf(f) ((float) atanh(f))
145 #endif
146
147 #if defined(_MSC_VER)
148 static inline float truncf(float x) { return x < 0.0f ? ceilf(x) : floorf(x); }
149 static inline float exp2f(float x) { return powf(2.0f, x); }
150 static inline float log2f(float x) { return logf(x) * 1.442695041f; }
151 static inline float asinhf(float x) { return logf(x + sqrtf(x * x + 1.0f)); }
152 static inline float acoshf(float x) { return logf(x + sqrtf(x * x - 1.0f)); }
153 static inline float atanhf(float x) { return (logf(1.0f + x) - logf(1.0f - x)) / 2.0f; }
154 static inline int isblank(int ch) { return ch == ' ' || ch == '\t'; }
155 #define strtoll(p, e, b) _strtoi64(p, e, b)
156 #endif
157 /*@}*/
158
159 #if defined(__SUNPRO_C)
160 #define sqrtf(f) ((float) sqrt(f))
161 #endif
162
163
164 /***
165 *** LOG2: Log base 2 of float
166 ***/
167 static inline GLfloat LOG2(GLfloat x)
168 {
169 #ifdef USE_IEEE
170 #if 0
171 /* This is pretty fast, but not accurate enough (only 2 fractional bits).
172 * Based on code from http://www.stereopsis.com/log2.html
173 */
174 const GLfloat y = x * x * x * x;
175 const GLuint ix = *((GLuint *) &y);
176 const GLuint exp = (ix >> 23) & 0xFF;
177 const GLint log2 = ((GLint) exp) - 127;
178 return (GLfloat) log2 * (1.0 / 4.0); /* 4, because of x^4 above */
179 #endif
180 /* Pretty fast, and accurate.
181 * Based on code from http://www.flipcode.com/totd/
182 */
183 fi_type num;
184 GLint log_2;
185 num.f = x;
186 log_2 = ((num.i >> 23) & 255) - 128;
187 num.i &= ~(255 << 23);
188 num.i += 127 << 23;
189 num.f = ((-1.0f/3) * num.f + 2) * num.f - 2.0f/3;
190 return num.f + log_2;
191 #else
192 /*
193 * NOTE: log_base_2(x) = log(x) / log(2)
194 * NOTE: 1.442695 = 1/log(2).
195 */
196 return (GLfloat) (log(x) * 1.442695F);
197 #endif
198 }
199
200
201
202 /***
203 *** IS_INF_OR_NAN: test if float is infinite or NaN
204 ***/
205 #ifdef USE_IEEE
206 static inline int IS_INF_OR_NAN( float x )
207 {
208 fi_type tmp;
209 tmp.f = x;
210 return !(int)((unsigned int)((tmp.i & 0x7fffffff)-0x7f800000) >> 31);
211 }
212 #elif defined(isfinite)
213 #define IS_INF_OR_NAN(x) (!isfinite(x))
214 #elif defined(finite)
215 #define IS_INF_OR_NAN(x) (!finite(x))
216 #elif defined(__VMS)
217 #define IS_INF_OR_NAN(x) (!finite(x))
218 #elif defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L
219 #define IS_INF_OR_NAN(x) (!isfinite(x))
220 #else
221 #define IS_INF_OR_NAN(x) (!finite(x))
222 #endif
223
224
225 /***
226 *** CEILF: ceiling of float
227 *** FLOORF: floor of float
228 *** FABSF: absolute value of float
229 *** LOGF: the natural logarithm (base e) of the value
230 *** EXPF: raise e to the value
231 *** LDEXPF: multiply value by an integral power of two
232 *** FREXPF: extract mantissa and exponent from value
233 ***/
234 #if defined(__gnu_linux__)
235 /* C99 functions */
236 #define CEILF(x) ceilf(x)
237 #define FLOORF(x) floorf(x)
238 #define FABSF(x) fabsf(x)
239 #define LOGF(x) logf(x)
240 #define EXPF(x) expf(x)
241 #define LDEXPF(x,y) ldexpf(x,y)
242 #define FREXPF(x,y) frexpf(x,y)
243 #else
244 #define CEILF(x) ((GLfloat) ceil(x))
245 #define FLOORF(x) ((GLfloat) floor(x))
246 #define FABSF(x) ((GLfloat) fabs(x))
247 #define LOGF(x) ((GLfloat) log(x))
248 #define EXPF(x) ((GLfloat) exp(x))
249 #define LDEXPF(x,y) ((GLfloat) ldexp(x,y))
250 #define FREXPF(x,y) ((GLfloat) frexp(x,y))
251 #endif
252
253
254 /**
255 * Convert float to int by rounding to nearest integer, away from zero.
256 */
257 static inline int IROUND(float f)
258 {
259 return (int) ((f >= 0.0F) ? (f + 0.5F) : (f - 0.5F));
260 }
261
262
263 /**
264 * Convert float to int64 by rounding to nearest integer.
265 */
266 static inline GLint64 IROUND64(float f)
267 {
268 return (GLint64) ((f >= 0.0F) ? (f + 0.5F) : (f - 0.5F));
269 }
270
271
272 /**
273 * Convert positive float to int by rounding to nearest integer.
274 */
275 static inline int IROUND_POS(float f)
276 {
277 assert(f >= 0.0F);
278 return (int) (f + 0.5F);
279 }
280
281
282 /**
283 * Convert float to int using a fast method. The rounding mode may vary.
284 * XXX We could use an x86-64/SSE2 version here.
285 */
286 static inline int F_TO_I(float f)
287 {
288 #if defined(USE_X86_ASM) && defined(__GNUC__) && defined(__i386__)
289 int r;
290 __asm__ ("fistpl %0" : "=m" (r) : "t" (f) : "st");
291 return r;
292 #elif defined(USE_X86_ASM) && defined(_MSC_VER)
293 int r;
294 _asm {
295 fld f
296 fistp r
297 }
298 return r;
299 #else
300 return IROUND(f);
301 #endif
302 }
303
304
305 /** Return (as an integer) floor of float */
306 static inline int IFLOOR(float f)
307 {
308 #if defined(USE_X86_ASM) && defined(__GNUC__) && defined(__i386__)
309 /*
310 * IEEE floor for computers that round to nearest or even.
311 * 'f' must be between -4194304 and 4194303.
312 * This floor operation is done by "(iround(f + .5) + iround(f - .5)) >> 1",
313 * but uses some IEEE specific tricks for better speed.
314 * Contributed by Josh Vanderhoof
315 */
316 int ai, bi;
317 double af, bf;
318 af = (3 << 22) + 0.5 + (double)f;
319 bf = (3 << 22) + 0.5 - (double)f;
320 /* GCC generates an extra fstp/fld without this. */
321 __asm__ ("fstps %0" : "=m" (ai) : "t" (af) : "st");
322 __asm__ ("fstps %0" : "=m" (bi) : "t" (bf) : "st");
323 return (ai - bi) >> 1;
324 #elif defined(USE_IEEE)
325 int ai, bi;
326 double af, bf;
327 fi_type u;
328 af = (3 << 22) + 0.5 + (double)f;
329 bf = (3 << 22) + 0.5 - (double)f;
330 u.f = (float) af; ai = u.i;
331 u.f = (float) bf; bi = u.i;
332 return (ai - bi) >> 1;
333 #else
334 int i = IROUND(f);
335 return (i > f) ? i - 1 : i;
336 #endif
337 }
338
339
340 /** Return (as an integer) ceiling of float */
341 static inline int ICEIL(float f)
342 {
343 #if defined(USE_X86_ASM) && defined(__GNUC__) && defined(__i386__)
344 /*
345 * IEEE ceil for computers that round to nearest or even.
346 * 'f' must be between -4194304 and 4194303.
347 * This ceil operation is done by "(iround(f + .5) + iround(f - .5) + 1) >> 1",
348 * but uses some IEEE specific tricks for better speed.
349 * Contributed by Josh Vanderhoof
350 */
351 int ai, bi;
352 double af, bf;
353 af = (3 << 22) + 0.5 + (double)f;
354 bf = (3 << 22) + 0.5 - (double)f;
355 /* GCC generates an extra fstp/fld without this. */
356 __asm__ ("fstps %0" : "=m" (ai) : "t" (af) : "st");
357 __asm__ ("fstps %0" : "=m" (bi) : "t" (bf) : "st");
358 return (ai - bi + 1) >> 1;
359 #elif defined(USE_IEEE)
360 int ai, bi;
361 double af, bf;
362 fi_type u;
363 af = (3 << 22) + 0.5 + (double)f;
364 bf = (3 << 22) + 0.5 - (double)f;
365 u.f = (float) af; ai = u.i;
366 u.f = (float) bf; bi = u.i;
367 return (ai - bi + 1) >> 1;
368 #else
369 int i = IROUND(f);
370 return (i < f) ? i + 1 : i;
371 #endif
372 }
373
374
375 /**
376 * Is x a power of two?
377 */
378 static inline int
379 _mesa_is_pow_two(int x)
380 {
381 return !(x & (x - 1));
382 }
383
384 /**
385 * Round given integer to next higer power of two
386 * If X is zero result is undefined.
387 *
388 * Source for the fallback implementation is
389 * Sean Eron Anderson's webpage "Bit Twiddling Hacks"
390 * http://graphics.stanford.edu/~seander/bithacks.html
391 *
392 * When using builtin function have to do some work
393 * for case when passed values 1 to prevent hiting
394 * undefined result from __builtin_clz. Undefined
395 * results would be different depending on optimization
396 * level used for build.
397 */
398 static inline int32_t
399 _mesa_next_pow_two_32(uint32_t x)
400 {
401 #if defined(__GNUC__) && \
402 ((__GNUC__ * 100 + __GNUC_MINOR__) >= 304) /* gcc 3.4 or later */
403 uint32_t y = (x != 1);
404 return (1 + y) << ((__builtin_clz(x - y) ^ 31) );
405 #else
406 x--;
407 x |= x >> 1;
408 x |= x >> 2;
409 x |= x >> 4;
410 x |= x >> 8;
411 x |= x >> 16;
412 x++;
413 return x;
414 #endif
415 }
416
417 static inline int64_t
418 _mesa_next_pow_two_64(uint64_t x)
419 {
420 #if defined(__GNUC__) && \
421 ((__GNUC__ * 100 + __GNUC_MINOR__) >= 304) /* gcc 3.4 or later */
422 uint64_t y = (x != 1);
423 if (sizeof(x) == sizeof(long))
424 return (1 + y) << ((__builtin_clzl(x - y) ^ 63));
425 else
426 return (1 + y) << ((__builtin_clzll(x - y) ^ 63));
427 #else
428 x--;
429 x |= x >> 1;
430 x |= x >> 2;
431 x |= x >> 4;
432 x |= x >> 8;
433 x |= x >> 16;
434 x |= x >> 32;
435 x++;
436 return x;
437 #endif
438 }
439
440
441 /*
442 * Returns the floor form of binary logarithm for a 32-bit integer.
443 */
444 static inline GLuint
445 _mesa_logbase2(GLuint n)
446 {
447 #if defined(__GNUC__) && \
448 ((__GNUC__ * 100 + __GNUC_MINOR__) >= 304) /* gcc 3.4 or later */
449 return (31 - __builtin_clz(n | 1));
450 #else
451 GLuint pos = 0;
452 if (n >= 1<<16) { n >>= 16; pos += 16; }
453 if (n >= 1<< 8) { n >>= 8; pos += 8; }
454 if (n >= 1<< 4) { n >>= 4; pos += 4; }
455 if (n >= 1<< 2) { n >>= 2; pos += 2; }
456 if (n >= 1<< 1) { pos += 1; }
457 return pos;
458 #endif
459 }
460
461
462 /**
463 * Return 1 if this is a little endian machine, 0 if big endian.
464 */
465 static inline GLboolean
466 _mesa_little_endian(void)
467 {
468 const GLuint ui = 1; /* intentionally not static */
469 return *((const GLubyte *) &ui);
470 }
471
472
473
474 /**********************************************************************
475 * Functions
476 */
477
478 extern void *
479 _mesa_align_malloc( size_t bytes, unsigned long alignment );
480
481 extern void *
482 _mesa_align_calloc( size_t bytes, unsigned long alignment );
483
484 extern void
485 _mesa_align_free( void *ptr );
486
487 extern void *
488 _mesa_align_realloc(void *oldBuffer, size_t oldSize, size_t newSize,
489 unsigned long alignment);
490
491 extern void *
492 _mesa_exec_malloc( GLuint size );
493
494 extern void
495 _mesa_exec_free( void *addr );
496
497 extern void *
498 _mesa_realloc( void *oldBuffer, size_t oldSize, size_t newSize );
499
500
501 #ifndef FFS_DEFINED
502 #define FFS_DEFINED 1
503 #ifdef __GNUC__
504
505 #if defined(__MINGW32__) || defined(__CYGWIN__) || defined(ANDROID) || defined(__APPLE__)
506 #define ffs __builtin_ffs
507 #define ffsll __builtin_ffsll
508 #endif
509
510 #else
511
512 extern int ffs(int i);
513 extern int ffsll(long long int i);
514
515 #endif /*__ GNUC__ */
516 #endif /* FFS_DEFINED */
517
518
519 #if defined(__GNUC__) && ((__GNUC__ * 100 + __GNUC_MINOR__) >= 304) /* gcc 3.4 or later */
520 #define _mesa_bitcount(i) __builtin_popcount(i)
521 #define _mesa_bitcount_64(i) __builtin_popcountll(i)
522 #else
523 extern unsigned int
524 _mesa_bitcount(unsigned int n);
525 extern unsigned int
526 _mesa_bitcount_64(uint64_t n);
527 #endif
528
529
530 extern GLhalfARB
531 _mesa_float_to_half(float f);
532
533 extern float
534 _mesa_half_to_float(GLhalfARB h);
535
536
537 extern void *
538 _mesa_bsearch( const void *key, const void *base, size_t nmemb, size_t size,
539 int (*compar)(const void *, const void *) );
540
541 extern char *
542 _mesa_getenv( const char *var );
543
544 extern char *
545 _mesa_strdup( const char *s );
546
547 extern float
548 _mesa_strtof( const char *s, char **end );
549
550 extern unsigned int
551 _mesa_str_checksum(const char *str);
552
553 extern int
554 _mesa_snprintf( char *str, size_t size, const char *fmt, ... ) PRINTFLIKE(3, 4);
555
556 extern int
557 _mesa_vsnprintf(char *str, size_t size, const char *fmt, va_list arg);
558
559
560 #if defined(_MSC_VER) && !defined(snprintf)
561 #define snprintf _snprintf
562 #endif
563
564
565 #ifdef __cplusplus
566 }
567 #endif
568
569
570 #endif /* IMPORTS_H */