mesa: Change "BRIAN PAUL" to "THE AUTHORS" in license text.
[mesa.git] / src / mesa / main / macros.h
1 /**
2 * \file macros.h
3 * A collection of useful macros.
4 */
5
6 /*
7 * Mesa 3-D graphics library
8 * Version: 6.5.2
9 *
10 * Copyright (C) 1999-2006 Brian Paul All Rights Reserved.
11 *
12 * Permission is hereby granted, free of charge, to any person obtaining a
13 * copy of this software and associated documentation files (the "Software"),
14 * to deal in the Software without restriction, including without limitation
15 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
16 * and/or sell copies of the Software, and to permit persons to whom the
17 * Software is furnished to do so, subject to the following conditions:
18 *
19 * The above copyright notice and this permission notice shall be included
20 * in all copies or substantial portions of the Software.
21 *
22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
23 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
24 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
25 * THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
26 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
27 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
28 */
29
30
31 #ifndef MACROS_H
32 #define MACROS_H
33
34 #include "imports.h"
35
36
37 /**
38 * \name Integer / float conversion for colors, normals, etc.
39 */
40 /*@{*/
41
42 /** Convert GLubyte in [0,255] to GLfloat in [0.0,1.0] */
43 extern GLfloat _mesa_ubyte_to_float_color_tab[256];
44 #define UBYTE_TO_FLOAT(u) _mesa_ubyte_to_float_color_tab[(unsigned int)(u)]
45
46 /** Convert GLfloat in [0.0,1.0] to GLubyte in [0,255] */
47 #define FLOAT_TO_UBYTE(X) ((GLubyte) (GLint) ((X) * 255.0F))
48
49
50 /** Convert GLbyte in [-128,127] to GLfloat in [-1.0,1.0] */
51 #define BYTE_TO_FLOAT(B) ((2.0F * (B) + 1.0F) * (1.0F/255.0F))
52
53 /** Convert GLfloat in [-1.0,1.0] to GLbyte in [-128,127] */
54 #define FLOAT_TO_BYTE(X) ( (((GLint) (255.0F * (X))) - 1) / 2 )
55
56
57 /** Convert GLbyte to GLfloat while preserving zero */
58 #define BYTE_TO_FLOATZ(B) ((B) == 0 ? 0.0F : BYTE_TO_FLOAT(B))
59
60
61 /** Convert GLbyte in [-128,127] to GLfloat in [-1.0,1.0], texture/fb data */
62 #define BYTE_TO_FLOAT_TEX(B) ((B) == -128 ? -1.0F : (B) * (1.0F/127.0F))
63
64 /** Convert GLfloat in [-1.0,1.0] to GLbyte in [-128,127], texture/fb data */
65 #define FLOAT_TO_BYTE_TEX(X) CLAMP( (GLint) (127.0F * (X)), -128, 127 )
66
67 /** Convert GLushort in [0,65535] to GLfloat in [0.0,1.0] */
68 #define USHORT_TO_FLOAT(S) ((GLfloat) (S) * (1.0F / 65535.0F))
69
70 /** Convert GLfloat in [0.0,1.0] to GLushort in [0, 65535] */
71 #define FLOAT_TO_USHORT(X) ((GLuint) ((X) * 65535.0F))
72
73
74 /** Convert GLshort in [-32768,32767] to GLfloat in [-1.0,1.0] */
75 #define SHORT_TO_FLOAT(S) ((2.0F * (S) + 1.0F) * (1.0F/65535.0F))
76
77 /** Convert GLfloat in [-1.0,1.0] to GLshort in [-32768,32767] */
78 #define FLOAT_TO_SHORT(X) ( (((GLint) (65535.0F * (X))) - 1) / 2 )
79
80 /** Convert GLshort to GLfloat while preserving zero */
81 #define SHORT_TO_FLOATZ(S) ((S) == 0 ? 0.0F : SHORT_TO_FLOAT(S))
82
83
84 /** Convert GLshort in [-32768,32767] to GLfloat in [-1.0,1.0], texture/fb data */
85 #define SHORT_TO_FLOAT_TEX(S) ((S) == -32768 ? -1.0F : (S) * (1.0F/32767.0F))
86
87 /** Convert GLfloat in [-1.0,1.0] to GLshort in [-32768,32767], texture/fb data */
88 #define FLOAT_TO_SHORT_TEX(X) ( (GLint) (32767.0F * (X)) )
89
90
91 /** Convert GLuint in [0,4294967295] to GLfloat in [0.0,1.0] */
92 #define UINT_TO_FLOAT(U) ((GLfloat) ((U) * (1.0F / 4294967295.0)))
93
94 /** Convert GLfloat in [0.0,1.0] to GLuint in [0,4294967295] */
95 #define FLOAT_TO_UINT(X) ((GLuint) ((X) * 4294967295.0))
96
97
98 /** Convert GLint in [-2147483648,2147483647] to GLfloat in [-1.0,1.0] */
99 #define INT_TO_FLOAT(I) ((GLfloat) ((2.0F * (I) + 1.0F) * (1.0F/4294967294.0)))
100
101 /** Convert GLfloat in [-1.0,1.0] to GLint in [-2147483648,2147483647] */
102 /* causes overflow:
103 #define FLOAT_TO_INT(X) ( (((GLint) (4294967294.0 * (X))) - 1) / 2 )
104 */
105 /* a close approximation: */
106 #define FLOAT_TO_INT(X) ( (GLint) (2147483647.0 * (X)) )
107
108 /** Convert GLfloat in [-1.0,1.0] to GLint64 in [-(1<<63),(1 << 63) -1] */
109 #define FLOAT_TO_INT64(X) ( (GLint64) (9223372036854775807.0 * (double)(X)) )
110
111
112 /** Convert GLint in [-2147483648,2147483647] to GLfloat in [-1.0,1.0], texture/fb data */
113 #define INT_TO_FLOAT_TEX(I) ((I) == -2147483648 ? -1.0F : (I) * (1.0F/2147483647.0))
114
115 /** Convert GLfloat in [-1.0,1.0] to GLint in [-2147483648,2147483647], texture/fb data */
116 #define FLOAT_TO_INT_TEX(X) ( (GLint) (2147483647.0 * (X)) )
117
118
119 #define BYTE_TO_UBYTE(b) ((GLubyte) ((b) < 0 ? 0 : (GLubyte) (b)))
120 #define SHORT_TO_UBYTE(s) ((GLubyte) ((s) < 0 ? 0 : (GLubyte) ((s) >> 7)))
121 #define USHORT_TO_UBYTE(s) ((GLubyte) ((s) >> 8))
122 #define INT_TO_UBYTE(i) ((GLubyte) ((i) < 0 ? 0 : (GLubyte) ((i) >> 23)))
123 #define UINT_TO_UBYTE(i) ((GLubyte) ((i) >> 24))
124
125
126 #define BYTE_TO_USHORT(b) ((b) < 0 ? 0 : ((GLushort) (((b) * 65535) / 255)))
127 #define UBYTE_TO_USHORT(b) (((GLushort) (b) << 8) | (GLushort) (b))
128 #define SHORT_TO_USHORT(s) ((s) < 0 ? 0 : ((GLushort) (((s) * 65535 / 32767))))
129 #define INT_TO_USHORT(i) ((i) < 0 ? 0 : ((GLushort) ((i) >> 15)))
130 #define UINT_TO_USHORT(i) ((i) < 0 ? 0 : ((GLushort) ((i) >> 16)))
131 #define UNCLAMPED_FLOAT_TO_USHORT(us, f) \
132 us = ( (GLushort) F_TO_I( CLAMP((f), 0.0F, 1.0F) * 65535.0F) )
133 #define CLAMPED_FLOAT_TO_USHORT(us, f) \
134 us = ( (GLushort) F_TO_I( (f) * 65535.0F) )
135
136 #define UNCLAMPED_FLOAT_TO_SHORT(s, f) \
137 s = ( (GLshort) F_TO_I( CLAMP((f), -1.0F, 1.0F) * 32767.0F) )
138
139 /***
140 *** UNCLAMPED_FLOAT_TO_UBYTE: clamp float to [0,1] and map to ubyte in [0,255]
141 *** CLAMPED_FLOAT_TO_UBYTE: map float known to be in [0,1] to ubyte in [0,255]
142 ***/
143 #if defined(USE_IEEE) && !defined(DEBUG)
144 #define IEEE_0996 0x3f7f0000 /* 0.996 or so */
145 /* This function/macro is sensitive to precision. Test very carefully
146 * if you change it!
147 */
148 #define UNCLAMPED_FLOAT_TO_UBYTE(UB, F) \
149 do { \
150 fi_type __tmp; \
151 __tmp.f = (F); \
152 if (__tmp.i < 0) \
153 UB = (GLubyte) 0; \
154 else if (__tmp.i >= IEEE_0996) \
155 UB = (GLubyte) 255; \
156 else { \
157 __tmp.f = __tmp.f * (255.0F/256.0F) + 32768.0F; \
158 UB = (GLubyte) __tmp.i; \
159 } \
160 } while (0)
161 #define CLAMPED_FLOAT_TO_UBYTE(UB, F) \
162 do { \
163 fi_type __tmp; \
164 __tmp.f = (F) * (255.0F/256.0F) + 32768.0F; \
165 UB = (GLubyte) __tmp.i; \
166 } while (0)
167 #else
168 #define UNCLAMPED_FLOAT_TO_UBYTE(ub, f) \
169 ub = ((GLubyte) F_TO_I(CLAMP((f), 0.0F, 1.0F) * 255.0F))
170 #define CLAMPED_FLOAT_TO_UBYTE(ub, f) \
171 ub = ((GLubyte) F_TO_I((f) * 255.0F))
172 #endif
173
174 static inline GLfloat INT_AS_FLT(GLint i)
175 {
176 fi_type tmp;
177 tmp.i = i;
178 return tmp.f;
179 }
180
181 static inline GLfloat UINT_AS_FLT(GLuint u)
182 {
183 fi_type tmp;
184 tmp.u = u;
185 return tmp.f;
186 }
187
188 /*@}*/
189
190
191 /** Stepping a GLfloat pointer by a byte stride */
192 #define STRIDE_F(p, i) (p = (GLfloat *)((GLubyte *)p + i))
193 /** Stepping a GLuint pointer by a byte stride */
194 #define STRIDE_UI(p, i) (p = (GLuint *)((GLubyte *)p + i))
195 /** Stepping a GLubyte[4] pointer by a byte stride */
196 #define STRIDE_4UB(p, i) (p = (GLubyte (*)[4])((GLubyte *)p + i))
197 /** Stepping a GLfloat[4] pointer by a byte stride */
198 #define STRIDE_4F(p, i) (p = (GLfloat (*)[4])((GLubyte *)p + i))
199 /** Stepping a \p t pointer by a byte stride */
200 #define STRIDE_T(p, t, i) (p = (t)((GLubyte *)p + i))
201
202
203 /**********************************************************************/
204 /** \name 4-element vector operations */
205 /*@{*/
206
207 /** Zero */
208 #define ZERO_4V( DST ) (DST)[0] = (DST)[1] = (DST)[2] = (DST)[3] = 0
209
210 /** Test for equality */
211 #define TEST_EQ_4V(a,b) ((a)[0] == (b)[0] && \
212 (a)[1] == (b)[1] && \
213 (a)[2] == (b)[2] && \
214 (a)[3] == (b)[3])
215
216 /** Test for equality (unsigned bytes) */
217 static inline GLboolean
218 TEST_EQ_4UBV(const GLubyte a[4], const GLubyte b[4])
219 {
220 #if defined(__i386__)
221 return *((const GLuint *) a) == *((const GLuint *) b);
222 #else
223 return TEST_EQ_4V(a, b);
224 #endif
225 }
226
227
228 /** Copy a 4-element vector */
229 #define COPY_4V( DST, SRC ) \
230 do { \
231 (DST)[0] = (SRC)[0]; \
232 (DST)[1] = (SRC)[1]; \
233 (DST)[2] = (SRC)[2]; \
234 (DST)[3] = (SRC)[3]; \
235 } while (0)
236
237 /** Copy a 4-element unsigned byte vector */
238 static inline void
239 COPY_4UBV(GLubyte dst[4], const GLubyte src[4])
240 {
241 #if defined(__i386__)
242 *((GLuint *) dst) = *((GLuint *) src);
243 #else
244 /* The GLuint cast might fail if DST or SRC are not dword-aligned (RISC) */
245 COPY_4V(dst, src);
246 #endif
247 }
248
249 /** Copy a 4-element float vector */
250 static inline void
251 COPY_4FV(GLfloat dst[4], const GLfloat src[4])
252 {
253 /* memcpy seems to be most efficient */
254 memcpy(dst, src, sizeof(GLfloat) * 4);
255 }
256
257 /** Copy \p SZ elements into a 4-element vector */
258 #define COPY_SZ_4V(DST, SZ, SRC) \
259 do { \
260 switch (SZ) { \
261 case 4: (DST)[3] = (SRC)[3]; \
262 case 3: (DST)[2] = (SRC)[2]; \
263 case 2: (DST)[1] = (SRC)[1]; \
264 case 1: (DST)[0] = (SRC)[0]; \
265 } \
266 } while(0)
267
268 /** Copy \p SZ elements into a homegeneous (4-element) vector, giving
269 * default values to the remaining */
270 #define COPY_CLEAN_4V(DST, SZ, SRC) \
271 do { \
272 ASSIGN_4V( DST, 0, 0, 0, 1 ); \
273 COPY_SZ_4V( DST, SZ, SRC ); \
274 } while (0)
275
276 /** Subtraction */
277 #define SUB_4V( DST, SRCA, SRCB ) \
278 do { \
279 (DST)[0] = (SRCA)[0] - (SRCB)[0]; \
280 (DST)[1] = (SRCA)[1] - (SRCB)[1]; \
281 (DST)[2] = (SRCA)[2] - (SRCB)[2]; \
282 (DST)[3] = (SRCA)[3] - (SRCB)[3]; \
283 } while (0)
284
285 /** Addition */
286 #define ADD_4V( DST, SRCA, SRCB ) \
287 do { \
288 (DST)[0] = (SRCA)[0] + (SRCB)[0]; \
289 (DST)[1] = (SRCA)[1] + (SRCB)[1]; \
290 (DST)[2] = (SRCA)[2] + (SRCB)[2]; \
291 (DST)[3] = (SRCA)[3] + (SRCB)[3]; \
292 } while (0)
293
294 /** Element-wise multiplication */
295 #define SCALE_4V( DST, SRCA, SRCB ) \
296 do { \
297 (DST)[0] = (SRCA)[0] * (SRCB)[0]; \
298 (DST)[1] = (SRCA)[1] * (SRCB)[1]; \
299 (DST)[2] = (SRCA)[2] * (SRCB)[2]; \
300 (DST)[3] = (SRCA)[3] * (SRCB)[3]; \
301 } while (0)
302
303 /** In-place addition */
304 #define ACC_4V( DST, SRC ) \
305 do { \
306 (DST)[0] += (SRC)[0]; \
307 (DST)[1] += (SRC)[1]; \
308 (DST)[2] += (SRC)[2]; \
309 (DST)[3] += (SRC)[3]; \
310 } while (0)
311
312 /** Element-wise multiplication and addition */
313 #define ACC_SCALE_4V( DST, SRCA, SRCB ) \
314 do { \
315 (DST)[0] += (SRCA)[0] * (SRCB)[0]; \
316 (DST)[1] += (SRCA)[1] * (SRCB)[1]; \
317 (DST)[2] += (SRCA)[2] * (SRCB)[2]; \
318 (DST)[3] += (SRCA)[3] * (SRCB)[3]; \
319 } while (0)
320
321 /** In-place scalar multiplication and addition */
322 #define ACC_SCALE_SCALAR_4V( DST, S, SRCB ) \
323 do { \
324 (DST)[0] += S * (SRCB)[0]; \
325 (DST)[1] += S * (SRCB)[1]; \
326 (DST)[2] += S * (SRCB)[2]; \
327 (DST)[3] += S * (SRCB)[3]; \
328 } while (0)
329
330 /** Scalar multiplication */
331 #define SCALE_SCALAR_4V( DST, S, SRCB ) \
332 do { \
333 (DST)[0] = S * (SRCB)[0]; \
334 (DST)[1] = S * (SRCB)[1]; \
335 (DST)[2] = S * (SRCB)[2]; \
336 (DST)[3] = S * (SRCB)[3]; \
337 } while (0)
338
339 /** In-place scalar multiplication */
340 #define SELF_SCALE_SCALAR_4V( DST, S ) \
341 do { \
342 (DST)[0] *= S; \
343 (DST)[1] *= S; \
344 (DST)[2] *= S; \
345 (DST)[3] *= S; \
346 } while (0)
347
348 /** Assignment */
349 #define ASSIGN_4V( V, V0, V1, V2, V3 ) \
350 do { \
351 V[0] = V0; \
352 V[1] = V1; \
353 V[2] = V2; \
354 V[3] = V3; \
355 } while(0)
356
357 /*@}*/
358
359
360 /**********************************************************************/
361 /** \name 3-element vector operations*/
362 /*@{*/
363
364 /** Zero */
365 #define ZERO_3V( DST ) (DST)[0] = (DST)[1] = (DST)[2] = 0
366
367 /** Test for equality */
368 #define TEST_EQ_3V(a,b) \
369 ((a)[0] == (b)[0] && \
370 (a)[1] == (b)[1] && \
371 (a)[2] == (b)[2])
372
373 /** Copy a 3-element vector */
374 #define COPY_3V( DST, SRC ) \
375 do { \
376 (DST)[0] = (SRC)[0]; \
377 (DST)[1] = (SRC)[1]; \
378 (DST)[2] = (SRC)[2]; \
379 } while (0)
380
381 /** Copy a 3-element vector with cast */
382 #define COPY_3V_CAST( DST, SRC, CAST ) \
383 do { \
384 (DST)[0] = (CAST)(SRC)[0]; \
385 (DST)[1] = (CAST)(SRC)[1]; \
386 (DST)[2] = (CAST)(SRC)[2]; \
387 } while (0)
388
389 /** Copy a 3-element float vector */
390 #define COPY_3FV( DST, SRC ) \
391 do { \
392 const GLfloat *_tmp = (SRC); \
393 (DST)[0] = _tmp[0]; \
394 (DST)[1] = _tmp[1]; \
395 (DST)[2] = _tmp[2]; \
396 } while (0)
397
398 /** Subtraction */
399 #define SUB_3V( DST, SRCA, SRCB ) \
400 do { \
401 (DST)[0] = (SRCA)[0] - (SRCB)[0]; \
402 (DST)[1] = (SRCA)[1] - (SRCB)[1]; \
403 (DST)[2] = (SRCA)[2] - (SRCB)[2]; \
404 } while (0)
405
406 /** Addition */
407 #define ADD_3V( DST, SRCA, SRCB ) \
408 do { \
409 (DST)[0] = (SRCA)[0] + (SRCB)[0]; \
410 (DST)[1] = (SRCA)[1] + (SRCB)[1]; \
411 (DST)[2] = (SRCA)[2] + (SRCB)[2]; \
412 } while (0)
413
414 /** In-place scalar multiplication */
415 #define SCALE_3V( DST, SRCA, SRCB ) \
416 do { \
417 (DST)[0] = (SRCA)[0] * (SRCB)[0]; \
418 (DST)[1] = (SRCA)[1] * (SRCB)[1]; \
419 (DST)[2] = (SRCA)[2] * (SRCB)[2]; \
420 } while (0)
421
422 /** In-place element-wise multiplication */
423 #define SELF_SCALE_3V( DST, SRC ) \
424 do { \
425 (DST)[0] *= (SRC)[0]; \
426 (DST)[1] *= (SRC)[1]; \
427 (DST)[2] *= (SRC)[2]; \
428 } while (0)
429
430 /** In-place addition */
431 #define ACC_3V( DST, SRC ) \
432 do { \
433 (DST)[0] += (SRC)[0]; \
434 (DST)[1] += (SRC)[1]; \
435 (DST)[2] += (SRC)[2]; \
436 } while (0)
437
438 /** Element-wise multiplication and addition */
439 #define ACC_SCALE_3V( DST, SRCA, SRCB ) \
440 do { \
441 (DST)[0] += (SRCA)[0] * (SRCB)[0]; \
442 (DST)[1] += (SRCA)[1] * (SRCB)[1]; \
443 (DST)[2] += (SRCA)[2] * (SRCB)[2]; \
444 } while (0)
445
446 /** Scalar multiplication */
447 #define SCALE_SCALAR_3V( DST, S, SRCB ) \
448 do { \
449 (DST)[0] = S * (SRCB)[0]; \
450 (DST)[1] = S * (SRCB)[1]; \
451 (DST)[2] = S * (SRCB)[2]; \
452 } while (0)
453
454 /** In-place scalar multiplication and addition */
455 #define ACC_SCALE_SCALAR_3V( DST, S, SRCB ) \
456 do { \
457 (DST)[0] += S * (SRCB)[0]; \
458 (DST)[1] += S * (SRCB)[1]; \
459 (DST)[2] += S * (SRCB)[2]; \
460 } while (0)
461
462 /** In-place scalar multiplication */
463 #define SELF_SCALE_SCALAR_3V( DST, S ) \
464 do { \
465 (DST)[0] *= S; \
466 (DST)[1] *= S; \
467 (DST)[2] *= S; \
468 } while (0)
469
470 /** In-place scalar addition */
471 #define ACC_SCALAR_3V( DST, S ) \
472 do { \
473 (DST)[0] += S; \
474 (DST)[1] += S; \
475 (DST)[2] += S; \
476 } while (0)
477
478 /** Assignment */
479 #define ASSIGN_3V( V, V0, V1, V2 ) \
480 do { \
481 V[0] = V0; \
482 V[1] = V1; \
483 V[2] = V2; \
484 } while(0)
485
486 /*@}*/
487
488
489 /**********************************************************************/
490 /** \name 2-element vector operations*/
491 /*@{*/
492
493 /** Zero */
494 #define ZERO_2V( DST ) (DST)[0] = (DST)[1] = 0
495
496 /** Copy a 2-element vector */
497 #define COPY_2V( DST, SRC ) \
498 do { \
499 (DST)[0] = (SRC)[0]; \
500 (DST)[1] = (SRC)[1]; \
501 } while (0)
502
503 /** Copy a 2-element vector with cast */
504 #define COPY_2V_CAST( DST, SRC, CAST ) \
505 do { \
506 (DST)[0] = (CAST)(SRC)[0]; \
507 (DST)[1] = (CAST)(SRC)[1]; \
508 } while (0)
509
510 /** Copy a 2-element float vector */
511 #define COPY_2FV( DST, SRC ) \
512 do { \
513 const GLfloat *_tmp = (SRC); \
514 (DST)[0] = _tmp[0]; \
515 (DST)[1] = _tmp[1]; \
516 } while (0)
517
518 /** Subtraction */
519 #define SUB_2V( DST, SRCA, SRCB ) \
520 do { \
521 (DST)[0] = (SRCA)[0] - (SRCB)[0]; \
522 (DST)[1] = (SRCA)[1] - (SRCB)[1]; \
523 } while (0)
524
525 /** Addition */
526 #define ADD_2V( DST, SRCA, SRCB ) \
527 do { \
528 (DST)[0] = (SRCA)[0] + (SRCB)[0]; \
529 (DST)[1] = (SRCA)[1] + (SRCB)[1]; \
530 } while (0)
531
532 /** In-place scalar multiplication */
533 #define SCALE_2V( DST, SRCA, SRCB ) \
534 do { \
535 (DST)[0] = (SRCA)[0] * (SRCB)[0]; \
536 (DST)[1] = (SRCA)[1] * (SRCB)[1]; \
537 } while (0)
538
539 /** In-place addition */
540 #define ACC_2V( DST, SRC ) \
541 do { \
542 (DST)[0] += (SRC)[0]; \
543 (DST)[1] += (SRC)[1]; \
544 } while (0)
545
546 /** Element-wise multiplication and addition */
547 #define ACC_SCALE_2V( DST, SRCA, SRCB ) \
548 do { \
549 (DST)[0] += (SRCA)[0] * (SRCB)[0]; \
550 (DST)[1] += (SRCA)[1] * (SRCB)[1]; \
551 } while (0)
552
553 /** Scalar multiplication */
554 #define SCALE_SCALAR_2V( DST, S, SRCB ) \
555 do { \
556 (DST)[0] = S * (SRCB)[0]; \
557 (DST)[1] = S * (SRCB)[1]; \
558 } while (0)
559
560 /** In-place scalar multiplication and addition */
561 #define ACC_SCALE_SCALAR_2V( DST, S, SRCB ) \
562 do { \
563 (DST)[0] += S * (SRCB)[0]; \
564 (DST)[1] += S * (SRCB)[1]; \
565 } while (0)
566
567 /** In-place scalar multiplication */
568 #define SELF_SCALE_SCALAR_2V( DST, S ) \
569 do { \
570 (DST)[0] *= S; \
571 (DST)[1] *= S; \
572 } while (0)
573
574 /** In-place scalar addition */
575 #define ACC_SCALAR_2V( DST, S ) \
576 do { \
577 (DST)[0] += S; \
578 (DST)[1] += S; \
579 } while (0)
580
581 /** Assign scalers to short vectors */
582 #define ASSIGN_2V( V, V0, V1 ) \
583 do { \
584 V[0] = V0; \
585 V[1] = V1; \
586 } while(0)
587
588 /*@}*/
589
590 /** Copy \p sz elements into a homegeneous (4-element) vector, giving
591 * default values to the remaining components.
592 * The default values are chosen based on \p type.
593 */
594 static inline void
595 COPY_CLEAN_4V_TYPE_AS_FLOAT(GLfloat dst[4], int sz, const GLfloat src[4],
596 GLenum type)
597 {
598 switch (type) {
599 case GL_FLOAT:
600 ASSIGN_4V(dst, 0, 0, 0, 1);
601 break;
602 case GL_INT:
603 ASSIGN_4V(dst, INT_AS_FLT(0), INT_AS_FLT(0),
604 INT_AS_FLT(0), INT_AS_FLT(1));
605 break;
606 case GL_UNSIGNED_INT:
607 ASSIGN_4V(dst, UINT_AS_FLT(0), UINT_AS_FLT(0),
608 UINT_AS_FLT(0), UINT_AS_FLT(1));
609 break;
610 default:
611 ASSERT(0);
612 }
613 COPY_SZ_4V(dst, sz, src);
614 }
615
616 /** \name Linear interpolation functions */
617 /*@{*/
618
619 static inline GLfloat
620 LINTERP(GLfloat t, GLfloat out, GLfloat in)
621 {
622 return out + t * (in - out);
623 }
624
625 static inline void
626 INTERP_3F(GLfloat t, GLfloat dst[3], const GLfloat out[3], const GLfloat in[3])
627 {
628 dst[0] = LINTERP( t, out[0], in[0] );
629 dst[1] = LINTERP( t, out[1], in[1] );
630 dst[2] = LINTERP( t, out[2], in[2] );
631 }
632
633 static inline void
634 INTERP_4F(GLfloat t, GLfloat dst[4], const GLfloat out[4], const GLfloat in[4])
635 {
636 dst[0] = LINTERP( t, out[0], in[0] );
637 dst[1] = LINTERP( t, out[1], in[1] );
638 dst[2] = LINTERP( t, out[2], in[2] );
639 dst[3] = LINTERP( t, out[3], in[3] );
640 }
641
642 /*@}*/
643
644
645
646 /** Clamp X to [MIN,MAX] */
647 #define CLAMP( X, MIN, MAX ) ( (X)<(MIN) ? (MIN) : ((X)>(MAX) ? (MAX) : (X)) )
648
649 /** Minimum of two values: */
650 #define MIN2( A, B ) ( (A)<(B) ? (A) : (B) )
651
652 /** Maximum of two values: */
653 #define MAX2( A, B ) ( (A)>(B) ? (A) : (B) )
654
655 /** Minimum and maximum of three values: */
656 #define MIN3( A, B, C ) ((A) < (B) ? MIN2(A, C) : MIN2(B, C))
657 #define MAX3( A, B, C ) ((A) > (B) ? MAX2(A, C) : MAX2(B, C))
658
659 static inline unsigned
660 minify(unsigned value, unsigned levels)
661 {
662 return MAX2(1, value >> levels);
663 }
664
665 /**
666 * Align a value up to an alignment value
667 *
668 * If \c value is not already aligned to the requested alignment value, it
669 * will be rounded up.
670 *
671 * \param value Value to be rounded
672 * \param alignment Alignment value to be used. This must be a power of two.
673 *
674 * \sa ROUND_DOWN_TO()
675 */
676 #define ALIGN(value, alignment) (((value) + alignment - 1) & ~(alignment - 1))
677
678
679
680 /** Cross product of two 3-element vectors */
681 static inline void
682 CROSS3(GLfloat n[3], const GLfloat u[3], const GLfloat v[3])
683 {
684 n[0] = u[1] * v[2] - u[2] * v[1];
685 n[1] = u[2] * v[0] - u[0] * v[2];
686 n[2] = u[0] * v[1] - u[1] * v[0];
687 }
688
689
690 /** Dot product of two 2-element vectors */
691 static inline GLfloat
692 DOT2(const GLfloat a[2], const GLfloat b[2])
693 {
694 return a[0] * b[0] + a[1] * b[1];
695 }
696
697 static inline GLfloat
698 DOT3(const GLfloat a[3], const GLfloat b[3])
699 {
700 return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
701 }
702
703 static inline GLfloat
704 DOT4(const GLfloat a[4], const GLfloat b[4])
705 {
706 return a[0] * b[0] + a[1] * b[1] + a[2] * b[2] + a[3] * b[3];
707 }
708
709
710 static inline GLfloat
711 LEN_SQUARED_3FV(const GLfloat v[3])
712 {
713 return DOT3(v, v);
714 }
715
716 static inline GLfloat
717 LEN_SQUARED_2FV(const GLfloat v[2])
718 {
719 return DOT2(v, v);
720 }
721
722
723 static inline GLfloat
724 LEN_3FV(const GLfloat v[3])
725 {
726 return sqrtf(LEN_SQUARED_3FV(v));
727 }
728
729 static inline GLfloat
730 LEN_2FV(const GLfloat v[2])
731 {
732 return sqrtf(LEN_SQUARED_2FV(v));
733 }
734
735
736 /* Normalize a 3-element vector to unit length. */
737 static inline void
738 NORMALIZE_3FV(GLfloat v[3])
739 {
740 GLfloat len = (GLfloat) LEN_SQUARED_3FV(v);
741 if (len) {
742 len = INV_SQRTF(len);
743 v[0] *= len;
744 v[1] *= len;
745 v[2] *= len;
746 }
747 }
748
749
750 /** Is float value negative? */
751 static inline GLboolean
752 IS_NEGATIVE(float x)
753 {
754 return signbit(x) != 0;
755 }
756
757 /** Test two floats have opposite signs */
758 static inline GLboolean
759 DIFFERENT_SIGNS(GLfloat x, GLfloat y)
760 {
761 return signbit(x) != signbit(y);
762 }
763
764
765 /** Compute ceiling of integer quotient of A divided by B. */
766 #define CEILING( A, B ) ( (A) % (B) == 0 ? (A)/(B) : (A)/(B)+1 )
767
768
769 /** casts to silence warnings with some compilers */
770 #define ENUM_TO_INT(E) ((GLint)(E))
771 #define ENUM_TO_FLOAT(E) ((GLfloat)(GLint)(E))
772 #define ENUM_TO_DOUBLE(E) ((GLdouble)(GLint)(E))
773 #define ENUM_TO_BOOLEAN(E) ((E) ? GL_TRUE : GL_FALSE)
774
775 /* Compute the size of an array */
776 #define ARRAY_SIZE(x) (sizeof(x) / sizeof(x[0]))
777
778
779 #endif