Merge branch 'mesa_7_5_branch' into mesa_7_6_branch
[mesa.git] / src / mesa / main / macros.h
1 /**
2 * \file macros.h
3 * A collection of useful macros.
4 */
5
6 /*
7 * Mesa 3-D graphics library
8 * Version: 6.5.2
9 *
10 * Copyright (C) 1999-2006 Brian Paul All Rights Reserved.
11 *
12 * Permission is hereby granted, free of charge, to any person obtaining a
13 * copy of this software and associated documentation files (the "Software"),
14 * to deal in the Software without restriction, including without limitation
15 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
16 * and/or sell copies of the Software, and to permit persons to whom the
17 * Software is furnished to do so, subject to the following conditions:
18 *
19 * The above copyright notice and this permission notice shall be included
20 * in all copies or substantial portions of the Software.
21 *
22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
23 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
24 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
25 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
26 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
27 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
28 */
29
30
31 #ifndef MACROS_H
32 #define MACROS_H
33
34 #include "imports.h"
35
36
37 /**
38 * \name Integer / float conversion for colors, normals, etc.
39 */
40 /*@{*/
41
42 /** Convert GLubyte in [0,255] to GLfloat in [0.0,1.0] */
43 extern GLfloat _mesa_ubyte_to_float_color_tab[256];
44 #define UBYTE_TO_FLOAT(u) _mesa_ubyte_to_float_color_tab[(unsigned int)(u)]
45
46 /** Convert GLfloat in [0.0,1.0] to GLubyte in [0,255] */
47 #define FLOAT_TO_UBYTE(X) ((GLubyte) (GLint) ((X) * 255.0F))
48
49
50 /** Convert GLbyte in [-128,127] to GLfloat in [-1.0,1.0] */
51 #define BYTE_TO_FLOAT(B) ((2.0F * (B) + 1.0F) * (1.0F/255.0F))
52
53 /** Convert GLfloat in [-1.0,1.0] to GLbyte in [-128,127] */
54 #define FLOAT_TO_BYTE(X) ( (((GLint) (255.0F * (X))) - 1) / 2 )
55
56
57 /** Convert GLbyte in [-128,127] to GLfloat in [-1.0,1.0], texture/fb data */
58 #define BYTE_TO_FLOAT_TEX(B) ((B) == -128 ? -1.0F : (B) * (1.0F/127.0F))
59
60 /** Convert GLfloat in [-1.0,1.0] to GLbyte in [-128,127], texture/fb data */
61 #define FLOAT_TO_BYTE_TEX(X) ( (GLint) (127.0F * (X)) )
62
63
64 /** Convert GLushort in [0,65535] to GLfloat in [0.0,1.0] */
65 #define USHORT_TO_FLOAT(S) ((GLfloat) (S) * (1.0F / 65535.0F))
66
67 /** Convert GLfloat in [0.0,1.0] to GLushort in [0, 65535] */
68 #define FLOAT_TO_USHORT(X) ((GLuint) ((X) * 65535.0F))
69
70
71 /** Convert GLshort in [-32768,32767] to GLfloat in [-1.0,1.0] */
72 #define SHORT_TO_FLOAT(S) ((2.0F * (S) + 1.0F) * (1.0F/65535.0F))
73
74 /** Convert GLfloat in [-1.0,1.0] to GLshort in [-32768,32767] */
75 #define FLOAT_TO_SHORT(X) ( (((GLint) (65535.0F * (X))) - 1) / 2 )
76
77
78 /** Convert GLshort in [-32768,32767] to GLfloat in [-1.0,1.0], texture/fb data */
79 #define SHORT_TO_FLOAT_TEX(S) ((S) == -32768 ? -1.0F : (S) * (1.0F/32767.0F))
80
81 /** Convert GLfloat in [-1.0,1.0] to GLshort in [-32768,32767], texture/fb data */
82 #define FLOAT_TO_SHORT_TEX(X) ( (GLint) (32767.0F * (X)) )
83
84
85 /** Convert GLuint in [0,4294967295] to GLfloat in [0.0,1.0] */
86 #define UINT_TO_FLOAT(U) ((GLfloat) (U) * (1.0F / 4294967295.0))
87
88 /** Convert GLfloat in [0.0,1.0] to GLuint in [0,4294967295] */
89 #define FLOAT_TO_UINT(X) ((GLuint) ((X) * 4294967295.0))
90
91
92 /** Convert GLint in [-2147483648,2147483647] to GLfloat in [-1.0,1.0] */
93 #define INT_TO_FLOAT(I) ((2.0F * (I) + 1.0F) * (1.0F/4294967294.0))
94
95 /** Convert GLfloat in [-1.0,1.0] to GLint in [-2147483648,2147483647] */
96 /* causes overflow:
97 #define FLOAT_TO_INT(X) ( (((GLint) (4294967294.0 * (X))) - 1) / 2 )
98 */
99 /* a close approximation: */
100 #define FLOAT_TO_INT(X) ( (GLint) (2147483647.0 * (X)) )
101
102 /** Convert GLfloat in [-1.0,1.0] to GLint64 in [-(1<<63),(1 << 63) -1] */
103 #define FLOAT_TO_INT64(X) ( (GLint64) (9223372036854775807.0 * (double)(X)) )
104
105
106 /** Convert GLint in [-2147483648,2147483647] to GLfloat in [-1.0,1.0], texture/fb data */
107 #define INT_TO_FLOAT_TEX(I) ((I) == -2147483648 ? -1.0F : (I) * (1.0F/2147483647.0))
108
109 /** Convert GLfloat in [-1.0,1.0] to GLint in [-2147483648,2147483647], texture/fb data */
110 #define FLOAT_TO_INT_TEX(X) ( (GLint) (2147483647.0 * (X)) )
111
112
113 #define BYTE_TO_UBYTE(b) ((GLubyte) ((b) < 0 ? 0 : (GLubyte) (b)))
114 #define SHORT_TO_UBYTE(s) ((GLubyte) ((s) < 0 ? 0 : (GLubyte) ((s) >> 7)))
115 #define USHORT_TO_UBYTE(s) ((GLubyte) ((s) >> 8))
116 #define INT_TO_UBYTE(i) ((GLubyte) ((i) < 0 ? 0 : (GLubyte) ((i) >> 23)))
117 #define UINT_TO_UBYTE(i) ((GLubyte) ((i) >> 24))
118
119
120 #define BYTE_TO_USHORT(b) ((b) < 0 ? 0 : ((GLushort) (((b) * 65535) / 255)))
121 #define UBYTE_TO_USHORT(b) (((GLushort) (b) << 8) | (GLushort) (b))
122 #define SHORT_TO_USHORT(s) ((s) < 0 ? 0 : ((GLushort) (((s) * 65535 / 32767))))
123 #define INT_TO_USHORT(i) ((i) < 0 ? 0 : ((GLushort) ((i) >> 15)))
124 #define UINT_TO_USHORT(i) ((i) < 0 ? 0 : ((GLushort) ((i) >> 16)))
125 #define UNCLAMPED_FLOAT_TO_USHORT(us, f) \
126 us = ( (GLushort) IROUND( CLAMP((f), 0.0F, 1.0F) * 65535.0F) )
127 #define CLAMPED_FLOAT_TO_USHORT(us, f) \
128 us = ( (GLushort) IROUND( (f) * 65535.0F) )
129
130 /*@}*/
131
132
133 /** Stepping a GLfloat pointer by a byte stride */
134 #define STRIDE_F(p, i) (p = (GLfloat *)((GLubyte *)p + i))
135 /** Stepping a GLuint pointer by a byte stride */
136 #define STRIDE_UI(p, i) (p = (GLuint *)((GLubyte *)p + i))
137 /** Stepping a GLubyte[4] pointer by a byte stride */
138 #define STRIDE_4UB(p, i) (p = (GLubyte (*)[4])((GLubyte *)p + i))
139 /** Stepping a GLfloat[4] pointer by a byte stride */
140 #define STRIDE_4F(p, i) (p = (GLfloat (*)[4])((GLubyte *)p + i))
141 /** Stepping a GLchan[4] pointer by a byte stride */
142 #define STRIDE_4CHAN(p, i) (p = (GLchan (*)[4])((GLubyte *)p + i))
143 /** Stepping a GLchan pointer by a byte stride */
144 #define STRIDE_CHAN(p, i) (p = (GLchan *)((GLubyte *)p + i))
145 /** Stepping a \p t pointer by a byte stride */
146 #define STRIDE_T(p, t, i) (p = (t)((GLubyte *)p + i))
147
148
149 /**********************************************************************/
150 /** \name 4-element vector operations */
151 /*@{*/
152
153 /** Zero */
154 #define ZERO_4V( DST ) (DST)[0] = (DST)[1] = (DST)[2] = (DST)[3] = 0
155
156 /** Test for equality */
157 #define TEST_EQ_4V(a,b) ((a)[0] == (b)[0] && \
158 (a)[1] == (b)[1] && \
159 (a)[2] == (b)[2] && \
160 (a)[3] == (b)[3])
161
162 /** Test for equality (unsigned bytes) */
163 #if defined(__i386__)
164 #define TEST_EQ_4UBV(DST, SRC) *((GLuint*)(DST)) == *((GLuint*)(SRC))
165 #else
166 #define TEST_EQ_4UBV(DST, SRC) TEST_EQ_4V(DST, SRC)
167 #endif
168
169 /** Copy a 4-element vector */
170 #define COPY_4V( DST, SRC ) \
171 do { \
172 (DST)[0] = (SRC)[0]; \
173 (DST)[1] = (SRC)[1]; \
174 (DST)[2] = (SRC)[2]; \
175 (DST)[3] = (SRC)[3]; \
176 } while (0)
177
178 /** Copy a 4-element vector with cast */
179 #define COPY_4V_CAST( DST, SRC, CAST ) \
180 do { \
181 (DST)[0] = (CAST)(SRC)[0]; \
182 (DST)[1] = (CAST)(SRC)[1]; \
183 (DST)[2] = (CAST)(SRC)[2]; \
184 (DST)[3] = (CAST)(SRC)[3]; \
185 } while (0)
186
187 /** Copy a 4-element unsigned byte vector */
188 #if defined(__i386__)
189 #define COPY_4UBV(DST, SRC) \
190 do { \
191 *((GLuint*)(DST)) = *((GLuint*)(SRC)); \
192 } while (0)
193 #else
194 /* The GLuint cast might fail if DST or SRC are not dword-aligned (RISC) */
195 #define COPY_4UBV(DST, SRC) \
196 do { \
197 (DST)[0] = (SRC)[0]; \
198 (DST)[1] = (SRC)[1]; \
199 (DST)[2] = (SRC)[2]; \
200 (DST)[3] = (SRC)[3]; \
201 } while (0)
202 #endif
203
204 /**
205 * Copy a 4-element float vector (avoid using FPU registers)
206 * XXX Could use two 64-bit moves on 64-bit systems
207 */
208 #define COPY_4FV( DST, SRC ) \
209 do { \
210 const GLuint *_s = (const GLuint *) (SRC); \
211 GLuint *_d = (GLuint *) (DST); \
212 _d[0] = _s[0]; \
213 _d[1] = _s[1]; \
214 _d[2] = _s[2]; \
215 _d[3] = _s[3]; \
216 } while (0)
217
218 /** Copy \p SZ elements into a 4-element vector */
219 #define COPY_SZ_4V(DST, SZ, SRC) \
220 do { \
221 switch (SZ) { \
222 case 4: (DST)[3] = (SRC)[3]; \
223 case 3: (DST)[2] = (SRC)[2]; \
224 case 2: (DST)[1] = (SRC)[1]; \
225 case 1: (DST)[0] = (SRC)[0]; \
226 } \
227 } while(0)
228
229 /** Copy \p SZ elements into a homegeneous (4-element) vector, giving
230 * default values to the remaining */
231 #define COPY_CLEAN_4V(DST, SZ, SRC) \
232 do { \
233 ASSIGN_4V( DST, 0, 0, 0, 1 ); \
234 COPY_SZ_4V( DST, SZ, SRC ); \
235 } while (0)
236
237 /** Subtraction */
238 #define SUB_4V( DST, SRCA, SRCB ) \
239 do { \
240 (DST)[0] = (SRCA)[0] - (SRCB)[0]; \
241 (DST)[1] = (SRCA)[1] - (SRCB)[1]; \
242 (DST)[2] = (SRCA)[2] - (SRCB)[2]; \
243 (DST)[3] = (SRCA)[3] - (SRCB)[3]; \
244 } while (0)
245
246 /** Addition */
247 #define ADD_4V( DST, SRCA, SRCB ) \
248 do { \
249 (DST)[0] = (SRCA)[0] + (SRCB)[0]; \
250 (DST)[1] = (SRCA)[1] + (SRCB)[1]; \
251 (DST)[2] = (SRCA)[2] + (SRCB)[2]; \
252 (DST)[3] = (SRCA)[3] + (SRCB)[3]; \
253 } while (0)
254
255 /** Element-wise multiplication */
256 #define SCALE_4V( DST, SRCA, SRCB ) \
257 do { \
258 (DST)[0] = (SRCA)[0] * (SRCB)[0]; \
259 (DST)[1] = (SRCA)[1] * (SRCB)[1]; \
260 (DST)[2] = (SRCA)[2] * (SRCB)[2]; \
261 (DST)[3] = (SRCA)[3] * (SRCB)[3]; \
262 } while (0)
263
264 /** In-place addition */
265 #define ACC_4V( DST, SRC ) \
266 do { \
267 (DST)[0] += (SRC)[0]; \
268 (DST)[1] += (SRC)[1]; \
269 (DST)[2] += (SRC)[2]; \
270 (DST)[3] += (SRC)[3]; \
271 } while (0)
272
273 /** Element-wise multiplication and addition */
274 #define ACC_SCALE_4V( DST, SRCA, SRCB ) \
275 do { \
276 (DST)[0] += (SRCA)[0] * (SRCB)[0]; \
277 (DST)[1] += (SRCA)[1] * (SRCB)[1]; \
278 (DST)[2] += (SRCA)[2] * (SRCB)[2]; \
279 (DST)[3] += (SRCA)[3] * (SRCB)[3]; \
280 } while (0)
281
282 /** In-place scalar multiplication and addition */
283 #define ACC_SCALE_SCALAR_4V( DST, S, SRCB ) \
284 do { \
285 (DST)[0] += S * (SRCB)[0]; \
286 (DST)[1] += S * (SRCB)[1]; \
287 (DST)[2] += S * (SRCB)[2]; \
288 (DST)[3] += S * (SRCB)[3]; \
289 } while (0)
290
291 /** Scalar multiplication */
292 #define SCALE_SCALAR_4V( DST, S, SRCB ) \
293 do { \
294 (DST)[0] = S * (SRCB)[0]; \
295 (DST)[1] = S * (SRCB)[1]; \
296 (DST)[2] = S * (SRCB)[2]; \
297 (DST)[3] = S * (SRCB)[3]; \
298 } while (0)
299
300 /** In-place scalar multiplication */
301 #define SELF_SCALE_SCALAR_4V( DST, S ) \
302 do { \
303 (DST)[0] *= S; \
304 (DST)[1] *= S; \
305 (DST)[2] *= S; \
306 (DST)[3] *= S; \
307 } while (0)
308
309 /** Assignment */
310 #define ASSIGN_4V( V, V0, V1, V2, V3 ) \
311 do { \
312 V[0] = V0; \
313 V[1] = V1; \
314 V[2] = V2; \
315 V[3] = V3; \
316 } while(0)
317
318 /*@}*/
319
320
321 /**********************************************************************/
322 /** \name 3-element vector operations*/
323 /*@{*/
324
325 /** Zero */
326 #define ZERO_3V( DST ) (DST)[0] = (DST)[1] = (DST)[2] = 0
327
328 /** Test for equality */
329 #define TEST_EQ_3V(a,b) \
330 ((a)[0] == (b)[0] && \
331 (a)[1] == (b)[1] && \
332 (a)[2] == (b)[2])
333
334 /** Copy a 3-element vector */
335 #define COPY_3V( DST, SRC ) \
336 do { \
337 (DST)[0] = (SRC)[0]; \
338 (DST)[1] = (SRC)[1]; \
339 (DST)[2] = (SRC)[2]; \
340 } while (0)
341
342 /** Copy a 3-element vector with cast */
343 #define COPY_3V_CAST( DST, SRC, CAST ) \
344 do { \
345 (DST)[0] = (CAST)(SRC)[0]; \
346 (DST)[1] = (CAST)(SRC)[1]; \
347 (DST)[2] = (CAST)(SRC)[2]; \
348 } while (0)
349
350 /** Copy a 3-element float vector */
351 #define COPY_3FV( DST, SRC ) \
352 do { \
353 const GLfloat *_tmp = (SRC); \
354 (DST)[0] = _tmp[0]; \
355 (DST)[1] = _tmp[1]; \
356 (DST)[2] = _tmp[2]; \
357 } while (0)
358
359 /** Subtraction */
360 #define SUB_3V( DST, SRCA, SRCB ) \
361 do { \
362 (DST)[0] = (SRCA)[0] - (SRCB)[0]; \
363 (DST)[1] = (SRCA)[1] - (SRCB)[1]; \
364 (DST)[2] = (SRCA)[2] - (SRCB)[2]; \
365 } while (0)
366
367 /** Addition */
368 #define ADD_3V( DST, SRCA, SRCB ) \
369 do { \
370 (DST)[0] = (SRCA)[0] + (SRCB)[0]; \
371 (DST)[1] = (SRCA)[1] + (SRCB)[1]; \
372 (DST)[2] = (SRCA)[2] + (SRCB)[2]; \
373 } while (0)
374
375 /** In-place scalar multiplication */
376 #define SCALE_3V( DST, SRCA, SRCB ) \
377 do { \
378 (DST)[0] = (SRCA)[0] * (SRCB)[0]; \
379 (DST)[1] = (SRCA)[1] * (SRCB)[1]; \
380 (DST)[2] = (SRCA)[2] * (SRCB)[2]; \
381 } while (0)
382
383 /** In-place element-wise multiplication */
384 #define SELF_SCALE_3V( DST, SRC ) \
385 do { \
386 (DST)[0] *= (SRC)[0]; \
387 (DST)[1] *= (SRC)[1]; \
388 (DST)[2] *= (SRC)[2]; \
389 } while (0)
390
391 /** In-place addition */
392 #define ACC_3V( DST, SRC ) \
393 do { \
394 (DST)[0] += (SRC)[0]; \
395 (DST)[1] += (SRC)[1]; \
396 (DST)[2] += (SRC)[2]; \
397 } while (0)
398
399 /** Element-wise multiplication and addition */
400 #define ACC_SCALE_3V( DST, SRCA, SRCB ) \
401 do { \
402 (DST)[0] += (SRCA)[0] * (SRCB)[0]; \
403 (DST)[1] += (SRCA)[1] * (SRCB)[1]; \
404 (DST)[2] += (SRCA)[2] * (SRCB)[2]; \
405 } while (0)
406
407 /** Scalar multiplication */
408 #define SCALE_SCALAR_3V( DST, S, SRCB ) \
409 do { \
410 (DST)[0] = S * (SRCB)[0]; \
411 (DST)[1] = S * (SRCB)[1]; \
412 (DST)[2] = S * (SRCB)[2]; \
413 } while (0)
414
415 /** In-place scalar multiplication and addition */
416 #define ACC_SCALE_SCALAR_3V( DST, S, SRCB ) \
417 do { \
418 (DST)[0] += S * (SRCB)[0]; \
419 (DST)[1] += S * (SRCB)[1]; \
420 (DST)[2] += S * (SRCB)[2]; \
421 } while (0)
422
423 /** In-place scalar multiplication */
424 #define SELF_SCALE_SCALAR_3V( DST, S ) \
425 do { \
426 (DST)[0] *= S; \
427 (DST)[1] *= S; \
428 (DST)[2] *= S; \
429 } while (0)
430
431 /** In-place scalar addition */
432 #define ACC_SCALAR_3V( DST, S ) \
433 do { \
434 (DST)[0] += S; \
435 (DST)[1] += S; \
436 (DST)[2] += S; \
437 } while (0)
438
439 /** Assignment */
440 #define ASSIGN_3V( V, V0, V1, V2 ) \
441 do { \
442 V[0] = V0; \
443 V[1] = V1; \
444 V[2] = V2; \
445 } while(0)
446
447 /*@}*/
448
449
450 /**********************************************************************/
451 /** \name 2-element vector operations*/
452 /*@{*/
453
454 /** Zero */
455 #define ZERO_2V( DST ) (DST)[0] = (DST)[1] = 0
456
457 /** Copy a 2-element vector */
458 #define COPY_2V( DST, SRC ) \
459 do { \
460 (DST)[0] = (SRC)[0]; \
461 (DST)[1] = (SRC)[1]; \
462 } while (0)
463
464 /** Copy a 2-element vector with cast */
465 #define COPY_2V_CAST( DST, SRC, CAST ) \
466 do { \
467 (DST)[0] = (CAST)(SRC)[0]; \
468 (DST)[1] = (CAST)(SRC)[1]; \
469 } while (0)
470
471 /** Copy a 2-element float vector */
472 #define COPY_2FV( DST, SRC ) \
473 do { \
474 const GLfloat *_tmp = (SRC); \
475 (DST)[0] = _tmp[0]; \
476 (DST)[1] = _tmp[1]; \
477 } while (0)
478
479 /** Subtraction */
480 #define SUB_2V( DST, SRCA, SRCB ) \
481 do { \
482 (DST)[0] = (SRCA)[0] - (SRCB)[0]; \
483 (DST)[1] = (SRCA)[1] - (SRCB)[1]; \
484 } while (0)
485
486 /** Addition */
487 #define ADD_2V( DST, SRCA, SRCB ) \
488 do { \
489 (DST)[0] = (SRCA)[0] + (SRCB)[0]; \
490 (DST)[1] = (SRCA)[1] + (SRCB)[1]; \
491 } while (0)
492
493 /** In-place scalar multiplication */
494 #define SCALE_2V( DST, SRCA, SRCB ) \
495 do { \
496 (DST)[0] = (SRCA)[0] * (SRCB)[0]; \
497 (DST)[1] = (SRCA)[1] * (SRCB)[1]; \
498 } while (0)
499
500 /** In-place addition */
501 #define ACC_2V( DST, SRC ) \
502 do { \
503 (DST)[0] += (SRC)[0]; \
504 (DST)[1] += (SRC)[1]; \
505 } while (0)
506
507 /** Element-wise multiplication and addition */
508 #define ACC_SCALE_2V( DST, SRCA, SRCB ) \
509 do { \
510 (DST)[0] += (SRCA)[0] * (SRCB)[0]; \
511 (DST)[1] += (SRCA)[1] * (SRCB)[1]; \
512 } while (0)
513
514 /** Scalar multiplication */
515 #define SCALE_SCALAR_2V( DST, S, SRCB ) \
516 do { \
517 (DST)[0] = S * (SRCB)[0]; \
518 (DST)[1] = S * (SRCB)[1]; \
519 } while (0)
520
521 /** In-place scalar multiplication and addition */
522 #define ACC_SCALE_SCALAR_2V( DST, S, SRCB ) \
523 do { \
524 (DST)[0] += S * (SRCB)[0]; \
525 (DST)[1] += S * (SRCB)[1]; \
526 } while (0)
527
528 /** In-place scalar multiplication */
529 #define SELF_SCALE_SCALAR_2V( DST, S ) \
530 do { \
531 (DST)[0] *= S; \
532 (DST)[1] *= S; \
533 } while (0)
534
535 /** In-place scalar addition */
536 #define ACC_SCALAR_2V( DST, S ) \
537 do { \
538 (DST)[0] += S; \
539 (DST)[1] += S; \
540 } while (0)
541
542 /** Assign scalers to short vectors */
543 #define ASSIGN_2V( V, V0, V1 ) \
544 do { \
545 V[0] = V0; \
546 V[1] = V1; \
547 } while(0)
548
549 /*@}*/
550
551
552 /** \name Linear interpolation macros */
553 /*@{*/
554
555 /**
556 * Linear interpolation
557 *
558 * \note \p OUT argument is evaluated twice!
559 * \note Be wary of using *coord++ as an argument to any of these macros!
560 */
561 #define LINTERP(T, OUT, IN) ((OUT) + (T) * ((IN) - (OUT)))
562
563 /* Can do better with integer math
564 */
565 #define INTERP_UB( t, dstub, outub, inub ) \
566 do { \
567 GLfloat inf = UBYTE_TO_FLOAT( inub ); \
568 GLfloat outf = UBYTE_TO_FLOAT( outub ); \
569 GLfloat dstf = LINTERP( t, outf, inf ); \
570 UNCLAMPED_FLOAT_TO_UBYTE( dstub, dstf ); \
571 } while (0)
572
573 #define INTERP_CHAN( t, dstc, outc, inc ) \
574 do { \
575 GLfloat inf = CHAN_TO_FLOAT( inc ); \
576 GLfloat outf = CHAN_TO_FLOAT( outc ); \
577 GLfloat dstf = LINTERP( t, outf, inf ); \
578 UNCLAMPED_FLOAT_TO_CHAN( dstc, dstf ); \
579 } while (0)
580
581 #define INTERP_UI( t, dstui, outui, inui ) \
582 dstui = (GLuint) (GLint) LINTERP( (t), (GLfloat) (outui), (GLfloat) (inui) )
583
584 #define INTERP_F( t, dstf, outf, inf ) \
585 dstf = LINTERP( t, outf, inf )
586
587 #define INTERP_4F( t, dst, out, in ) \
588 do { \
589 dst[0] = LINTERP( (t), (out)[0], (in)[0] ); \
590 dst[1] = LINTERP( (t), (out)[1], (in)[1] ); \
591 dst[2] = LINTERP( (t), (out)[2], (in)[2] ); \
592 dst[3] = LINTERP( (t), (out)[3], (in)[3] ); \
593 } while (0)
594
595 #define INTERP_3F( t, dst, out, in ) \
596 do { \
597 dst[0] = LINTERP( (t), (out)[0], (in)[0] ); \
598 dst[1] = LINTERP( (t), (out)[1], (in)[1] ); \
599 dst[2] = LINTERP( (t), (out)[2], (in)[2] ); \
600 } while (0)
601
602 #define INTERP_4CHAN( t, dst, out, in ) \
603 do { \
604 INTERP_CHAN( (t), (dst)[0], (out)[0], (in)[0] ); \
605 INTERP_CHAN( (t), (dst)[1], (out)[1], (in)[1] ); \
606 INTERP_CHAN( (t), (dst)[2], (out)[2], (in)[2] ); \
607 INTERP_CHAN( (t), (dst)[3], (out)[3], (in)[3] ); \
608 } while (0)
609
610 #define INTERP_3CHAN( t, dst, out, in ) \
611 do { \
612 INTERP_CHAN( (t), (dst)[0], (out)[0], (in)[0] ); \
613 INTERP_CHAN( (t), (dst)[1], (out)[1], (in)[1] ); \
614 INTERP_CHAN( (t), (dst)[2], (out)[2], (in)[2] ); \
615 } while (0)
616
617 #define INTERP_SZ( t, vec, to, out, in, sz ) \
618 do { \
619 switch (sz) { \
620 case 4: vec[to][3] = LINTERP( (t), (vec)[out][3], (vec)[in][3] ); \
621 case 3: vec[to][2] = LINTERP( (t), (vec)[out][2], (vec)[in][2] ); \
622 case 2: vec[to][1] = LINTERP( (t), (vec)[out][1], (vec)[in][1] ); \
623 case 1: vec[to][0] = LINTERP( (t), (vec)[out][0], (vec)[in][0] ); \
624 } \
625 } while(0)
626
627 /*@}*/
628
629
630
631 /** Clamp X to [MIN,MAX] */
632 #define CLAMP( X, MIN, MAX ) ( (X)<(MIN) ? (MIN) : ((X)>(MAX) ? (MAX) : (X)) )
633
634 /** Assign X to CLAMP(X, MIN, MAX) */
635 #define CLAMP_SELF(x, mn, mx) \
636 ( (x)<(mn) ? ((x) = (mn)) : ((x)>(mx) ? ((x)=(mx)) : (x)) )
637
638
639
640 /** Minimum of two values: */
641 #define MIN2( A, B ) ( (A)<(B) ? (A) : (B) )
642
643 /** Maximum of two values: */
644 #define MAX2( A, B ) ( (A)>(B) ? (A) : (B) )
645
646 /** Dot product of two 2-element vectors */
647 #define DOT2( a, b ) ( (a)[0]*(b)[0] + (a)[1]*(b)[1] )
648
649 /** Dot product of two 3-element vectors */
650 #define DOT3( a, b ) ( (a)[0]*(b)[0] + (a)[1]*(b)[1] + (a)[2]*(b)[2] )
651
652 /** Dot product of two 4-element vectors */
653 #define DOT4( a, b ) ( (a)[0]*(b)[0] + (a)[1]*(b)[1] + \
654 (a)[2]*(b)[2] + (a)[3]*(b)[3] )
655
656 /** Dot product of two 4-element vectors */
657 #define DOT4V(v,a,b,c,d) (v[0]*(a) + v[1]*(b) + v[2]*(c) + v[3]*(d))
658
659
660 /** Cross product of two 3-element vectors */
661 #define CROSS3(n, u, v) \
662 do { \
663 (n)[0] = (u)[1]*(v)[2] - (u)[2]*(v)[1]; \
664 (n)[1] = (u)[2]*(v)[0] - (u)[0]*(v)[2]; \
665 (n)[2] = (u)[0]*(v)[1] - (u)[1]*(v)[0]; \
666 } while (0)
667
668
669 /* Normalize a 3-element vector to unit length. */
670 #define NORMALIZE_3FV( V ) \
671 do { \
672 GLfloat len = (GLfloat) LEN_SQUARED_3FV(V); \
673 if (len) { \
674 len = INV_SQRTF(len); \
675 (V)[0] = (GLfloat) ((V)[0] * len); \
676 (V)[1] = (GLfloat) ((V)[1] * len); \
677 (V)[2] = (GLfloat) ((V)[2] * len); \
678 } \
679 } while(0)
680
681 #define LEN_3FV( V ) (SQRTF((V)[0]*(V)[0]+(V)[1]*(V)[1]+(V)[2]*(V)[2]))
682 #define LEN_2FV( V ) (SQRTF((V)[0]*(V)[0]+(V)[1]*(V)[1]))
683
684 #define LEN_SQUARED_3FV( V ) ((V)[0]*(V)[0]+(V)[1]*(V)[1]+(V)[2]*(V)[2])
685 #define LEN_SQUARED_2FV( V ) ((V)[0]*(V)[0]+(V)[1]*(V)[1])
686
687
688 /** casts to silence warnings with some compilers */
689 #define ENUM_TO_INT(E) ((GLint)(E))
690 #define ENUM_TO_FLOAT(E) ((GLfloat)(GLint)(E))
691 #define ENUM_TO_DOUBLE(E) ((GLdouble)(GLint)(E))
692 #define ENUM_TO_BOOLEAN(E) ((E) ? GL_TRUE : GL_FALSE)
693
694
695 #endif