mesa: fix memory leak when generating mipmaps for compressed textures
[mesa.git] / src / mesa / main / mipmap.c
1 /*
2 * Mesa 3-D graphics library
3 * Version: 7.1
4 *
5 * Copyright (C) 1999-2007 Brian Paul All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25
26 /**
27 * \file mipmap.c mipmap generation and teximage resizing functions.
28 */
29
30 #include "imports.h"
31 #include "mipmap.h"
32 #include "texcompress.h"
33 #include "texformat.h"
34 #include "teximage.h"
35 #include "image.h"
36
37
38
39 static GLint
40 bytes_per_pixel(GLenum datatype, GLuint comps)
41 {
42 GLint b = _mesa_sizeof_packed_type(datatype);
43 assert(b >= 0);
44
45 if (_mesa_type_is_packed(datatype))
46 return b;
47 else
48 return b * comps;
49 }
50
51
52 /**
53 * \name Support macros for do_row and do_row_3d
54 *
55 * The macro madness is here for two reasons. First, it compacts the code
56 * slightly. Second, it makes it much easier to adjust the specifics of the
57 * filter to tune the rounding characteristics.
58 */
59 /*@{*/
60 #define DECLARE_ROW_POINTERS(t, e) \
61 const t(*rowA)[e] = (const t(*)[e]) srcRowA; \
62 const t(*rowB)[e] = (const t(*)[e]) srcRowB; \
63 const t(*rowC)[e] = (const t(*)[e]) srcRowC; \
64 const t(*rowD)[e] = (const t(*)[e]) srcRowD; \
65 t(*dst)[e] = (t(*)[e]) dstRow
66
67 #define DECLARE_ROW_POINTERS0(t) \
68 const t *rowA = (const t *) srcRowA; \
69 const t *rowB = (const t *) srcRowB; \
70 const t *rowC = (const t *) srcRowC; \
71 const t *rowD = (const t *) srcRowD; \
72 t *dst = (t *) dstRow
73
74 #define FILTER_SUM_3D(Aj, Ak, Bj, Bk, Cj, Ck, Dj, Dk) \
75 ((unsigned) Aj + (unsigned) Ak \
76 + (unsigned) Bj + (unsigned) Bk \
77 + (unsigned) Cj + (unsigned) Ck \
78 + (unsigned) Dj + (unsigned) Dk \
79 + 4) >> 3
80
81 #define FILTER_3D(e) \
82 do { \
83 dst[i][e] = FILTER_SUM_3D(rowA[j][e], rowA[k][e], \
84 rowB[j][e], rowB[k][e], \
85 rowC[j][e], rowC[k][e], \
86 rowD[j][e], rowD[k][e]); \
87 } while(0)
88
89 #define FILTER_SUM_3D_SIGNED(Aj, Ak, Bj, Bk, Cj, Ck, Dj, Dk) \
90 (Aj + Ak \
91 + Bj + Bk \
92 + Cj + Ck \
93 + Dj + Dk \
94 + 4) / 8
95
96 #define FILTER_3D_SIGNED(e) \
97 do { \
98 dst[i][e] = FILTER_SUM_3D_SIGNED(rowA[j][e], rowA[k][e], \
99 rowB[j][e], rowB[k][e], \
100 rowC[j][e], rowC[k][e], \
101 rowD[j][e], rowD[k][e]); \
102 } while(0)
103
104 #define FILTER_F_3D(e) \
105 do { \
106 dst[i][e] = (rowA[j][e] + rowA[k][e] \
107 + rowB[j][e] + rowB[k][e] \
108 + rowC[j][e] + rowC[k][e] \
109 + rowD[j][e] + rowD[k][e]) * 0.125F; \
110 } while(0)
111
112 #define FILTER_HF_3D(e) \
113 do { \
114 const GLfloat aj = _mesa_half_to_float(rowA[j][e]); \
115 const GLfloat ak = _mesa_half_to_float(rowA[k][e]); \
116 const GLfloat bj = _mesa_half_to_float(rowB[j][e]); \
117 const GLfloat bk = _mesa_half_to_float(rowB[k][e]); \
118 const GLfloat cj = _mesa_half_to_float(rowC[j][e]); \
119 const GLfloat ck = _mesa_half_to_float(rowC[k][e]); \
120 const GLfloat dj = _mesa_half_to_float(rowD[j][e]); \
121 const GLfloat dk = _mesa_half_to_float(rowD[k][e]); \
122 dst[i][e] = _mesa_float_to_half((aj + ak + bj + bk + cj + ck + dj + dk) \
123 * 0.125F); \
124 } while(0)
125 /*@}*/
126
127
128 /**
129 * Average together two rows of a source image to produce a single new
130 * row in the dest image. It's legal for the two source rows to point
131 * to the same data. The source width must be equal to either the
132 * dest width or two times the dest width.
133 * \param datatype GL_UNSIGNED_BYTE, GL_UNSIGNED_SHORT, GL_FLOAT, etc.
134 * \param comps number of components per pixel (1..4)
135 */
136 static void
137 do_row(GLenum datatype, GLuint comps, GLint srcWidth,
138 const GLvoid *srcRowA, const GLvoid *srcRowB,
139 GLint dstWidth, GLvoid *dstRow)
140 {
141 const GLuint k0 = (srcWidth == dstWidth) ? 0 : 1;
142 const GLuint colStride = (srcWidth == dstWidth) ? 1 : 2;
143
144 ASSERT(comps >= 1);
145 ASSERT(comps <= 4);
146
147 /* This assertion is no longer valid with non-power-of-2 textures
148 assert(srcWidth == dstWidth || srcWidth == 2 * dstWidth);
149 */
150
151 if (datatype == GL_UNSIGNED_BYTE && comps == 4) {
152 GLuint i, j, k;
153 const GLubyte(*rowA)[4] = (const GLubyte(*)[4]) srcRowA;
154 const GLubyte(*rowB)[4] = (const GLubyte(*)[4]) srcRowB;
155 GLubyte(*dst)[4] = (GLubyte(*)[4]) dstRow;
156 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
157 i++, j += colStride, k += colStride) {
158 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
159 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
160 dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
161 dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) / 4;
162 }
163 }
164 else if (datatype == GL_UNSIGNED_BYTE && comps == 3) {
165 GLuint i, j, k;
166 const GLubyte(*rowA)[3] = (const GLubyte(*)[3]) srcRowA;
167 const GLubyte(*rowB)[3] = (const GLubyte(*)[3]) srcRowB;
168 GLubyte(*dst)[3] = (GLubyte(*)[3]) dstRow;
169 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
170 i++, j += colStride, k += colStride) {
171 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
172 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
173 dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
174 }
175 }
176 else if (datatype == GL_UNSIGNED_BYTE && comps == 2) {
177 GLuint i, j, k;
178 const GLubyte(*rowA)[2] = (const GLubyte(*)[2]) srcRowA;
179 const GLubyte(*rowB)[2] = (const GLubyte(*)[2]) srcRowB;
180 GLubyte(*dst)[2] = (GLubyte(*)[2]) dstRow;
181 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
182 i++, j += colStride, k += colStride) {
183 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) >> 2;
184 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) >> 2;
185 }
186 }
187 else if (datatype == GL_UNSIGNED_BYTE && comps == 1) {
188 GLuint i, j, k;
189 const GLubyte *rowA = (const GLubyte *) srcRowA;
190 const GLubyte *rowB = (const GLubyte *) srcRowB;
191 GLubyte *dst = (GLubyte *) dstRow;
192 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
193 i++, j += colStride, k += colStride) {
194 dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) >> 2;
195 }
196 }
197
198 else if (datatype == GL_BYTE && comps == 4) {
199 GLuint i, j, k;
200 const GLbyte(*rowA)[4] = (const GLbyte(*)[4]) srcRowA;
201 const GLbyte(*rowB)[4] = (const GLbyte(*)[4]) srcRowB;
202 GLbyte(*dst)[4] = (GLbyte(*)[4]) dstRow;
203 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
204 i++, j += colStride, k += colStride) {
205 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
206 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
207 dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
208 dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) / 4;
209 }
210 }
211 else if (datatype == GL_BYTE && comps == 3) {
212 GLuint i, j, k;
213 const GLbyte(*rowA)[3] = (const GLbyte(*)[3]) srcRowA;
214 const GLbyte(*rowB)[3] = (const GLbyte(*)[3]) srcRowB;
215 GLbyte(*dst)[3] = (GLbyte(*)[3]) dstRow;
216 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
217 i++, j += colStride, k += colStride) {
218 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
219 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
220 dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
221 }
222 }
223 else if (datatype == GL_BYTE && comps == 2) {
224 GLuint i, j, k;
225 const GLbyte(*rowA)[2] = (const GLbyte(*)[2]) srcRowA;
226 const GLbyte(*rowB)[2] = (const GLbyte(*)[2]) srcRowB;
227 GLbyte(*dst)[2] = (GLbyte(*)[2]) dstRow;
228 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
229 i++, j += colStride, k += colStride) {
230 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
231 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
232 }
233 }
234 else if (datatype == GL_BYTE && comps == 1) {
235 GLuint i, j, k;
236 const GLbyte *rowA = (const GLbyte *) srcRowA;
237 const GLbyte *rowB = (const GLbyte *) srcRowB;
238 GLbyte *dst = (GLbyte *) dstRow;
239 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
240 i++, j += colStride, k += colStride) {
241 dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) / 4;
242 }
243 }
244
245 else if (datatype == GL_UNSIGNED_SHORT && comps == 4) {
246 GLuint i, j, k;
247 const GLushort(*rowA)[4] = (const GLushort(*)[4]) srcRowA;
248 const GLushort(*rowB)[4] = (const GLushort(*)[4]) srcRowB;
249 GLushort(*dst)[4] = (GLushort(*)[4]) dstRow;
250 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
251 i++, j += colStride, k += colStride) {
252 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
253 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
254 dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
255 dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) / 4;
256 }
257 }
258 else if (datatype == GL_UNSIGNED_SHORT && comps == 3) {
259 GLuint i, j, k;
260 const GLushort(*rowA)[3] = (const GLushort(*)[3]) srcRowA;
261 const GLushort(*rowB)[3] = (const GLushort(*)[3]) srcRowB;
262 GLushort(*dst)[3] = (GLushort(*)[3]) dstRow;
263 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
264 i++, j += colStride, k += colStride) {
265 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
266 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
267 dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
268 }
269 }
270 else if (datatype == GL_UNSIGNED_SHORT && comps == 2) {
271 GLuint i, j, k;
272 const GLushort(*rowA)[2] = (const GLushort(*)[2]) srcRowA;
273 const GLushort(*rowB)[2] = (const GLushort(*)[2]) srcRowB;
274 GLushort(*dst)[2] = (GLushort(*)[2]) dstRow;
275 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
276 i++, j += colStride, k += colStride) {
277 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
278 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
279 }
280 }
281 else if (datatype == GL_UNSIGNED_SHORT && comps == 1) {
282 GLuint i, j, k;
283 const GLushort *rowA = (const GLushort *) srcRowA;
284 const GLushort *rowB = (const GLushort *) srcRowB;
285 GLushort *dst = (GLushort *) dstRow;
286 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
287 i++, j += colStride, k += colStride) {
288 dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) / 4;
289 }
290 }
291 else if (datatype == GL_FLOAT && comps == 4) {
292 GLuint i, j, k;
293 const GLfloat(*rowA)[4] = (const GLfloat(*)[4]) srcRowA;
294 const GLfloat(*rowB)[4] = (const GLfloat(*)[4]) srcRowB;
295 GLfloat(*dst)[4] = (GLfloat(*)[4]) dstRow;
296 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
297 i++, j += colStride, k += colStride) {
298 dst[i][0] = (rowA[j][0] + rowA[k][0] +
299 rowB[j][0] + rowB[k][0]) * 0.25F;
300 dst[i][1] = (rowA[j][1] + rowA[k][1] +
301 rowB[j][1] + rowB[k][1]) * 0.25F;
302 dst[i][2] = (rowA[j][2] + rowA[k][2] +
303 rowB[j][2] + rowB[k][2]) * 0.25F;
304 dst[i][3] = (rowA[j][3] + rowA[k][3] +
305 rowB[j][3] + rowB[k][3]) * 0.25F;
306 }
307 }
308 else if (datatype == GL_FLOAT && comps == 3) {
309 GLuint i, j, k;
310 const GLfloat(*rowA)[3] = (const GLfloat(*)[3]) srcRowA;
311 const GLfloat(*rowB)[3] = (const GLfloat(*)[3]) srcRowB;
312 GLfloat(*dst)[3] = (GLfloat(*)[3]) dstRow;
313 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
314 i++, j += colStride, k += colStride) {
315 dst[i][0] = (rowA[j][0] + rowA[k][0] +
316 rowB[j][0] + rowB[k][0]) * 0.25F;
317 dst[i][1] = (rowA[j][1] + rowA[k][1] +
318 rowB[j][1] + rowB[k][1]) * 0.25F;
319 dst[i][2] = (rowA[j][2] + rowA[k][2] +
320 rowB[j][2] + rowB[k][2]) * 0.25F;
321 }
322 }
323 else if (datatype == GL_FLOAT && comps == 2) {
324 GLuint i, j, k;
325 const GLfloat(*rowA)[2] = (const GLfloat(*)[2]) srcRowA;
326 const GLfloat(*rowB)[2] = (const GLfloat(*)[2]) srcRowB;
327 GLfloat(*dst)[2] = (GLfloat(*)[2]) dstRow;
328 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
329 i++, j += colStride, k += colStride) {
330 dst[i][0] = (rowA[j][0] + rowA[k][0] +
331 rowB[j][0] + rowB[k][0]) * 0.25F;
332 dst[i][1] = (rowA[j][1] + rowA[k][1] +
333 rowB[j][1] + rowB[k][1]) * 0.25F;
334 }
335 }
336 else if (datatype == GL_FLOAT && comps == 1) {
337 GLuint i, j, k;
338 const GLfloat *rowA = (const GLfloat *) srcRowA;
339 const GLfloat *rowB = (const GLfloat *) srcRowB;
340 GLfloat *dst = (GLfloat *) dstRow;
341 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
342 i++, j += colStride, k += colStride) {
343 dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) * 0.25F;
344 }
345 }
346
347 else if (datatype == GL_HALF_FLOAT_ARB && comps == 4) {
348 GLuint i, j, k, comp;
349 const GLhalfARB(*rowA)[4] = (const GLhalfARB(*)[4]) srcRowA;
350 const GLhalfARB(*rowB)[4] = (const GLhalfARB(*)[4]) srcRowB;
351 GLhalfARB(*dst)[4] = (GLhalfARB(*)[4]) dstRow;
352 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
353 i++, j += colStride, k += colStride) {
354 for (comp = 0; comp < 4; comp++) {
355 GLfloat aj, ak, bj, bk;
356 aj = _mesa_half_to_float(rowA[j][comp]);
357 ak = _mesa_half_to_float(rowA[k][comp]);
358 bj = _mesa_half_to_float(rowB[j][comp]);
359 bk = _mesa_half_to_float(rowB[k][comp]);
360 dst[i][comp] = _mesa_float_to_half((aj + ak + bj + bk) * 0.25F);
361 }
362 }
363 }
364 else if (datatype == GL_HALF_FLOAT_ARB && comps == 3) {
365 GLuint i, j, k, comp;
366 const GLhalfARB(*rowA)[3] = (const GLhalfARB(*)[3]) srcRowA;
367 const GLhalfARB(*rowB)[3] = (const GLhalfARB(*)[3]) srcRowB;
368 GLhalfARB(*dst)[3] = (GLhalfARB(*)[3]) dstRow;
369 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
370 i++, j += colStride, k += colStride) {
371 for (comp = 0; comp < 3; comp++) {
372 GLfloat aj, ak, bj, bk;
373 aj = _mesa_half_to_float(rowA[j][comp]);
374 ak = _mesa_half_to_float(rowA[k][comp]);
375 bj = _mesa_half_to_float(rowB[j][comp]);
376 bk = _mesa_half_to_float(rowB[k][comp]);
377 dst[i][comp] = _mesa_float_to_half((aj + ak + bj + bk) * 0.25F);
378 }
379 }
380 }
381 else if (datatype == GL_HALF_FLOAT_ARB && comps == 2) {
382 GLuint i, j, k, comp;
383 const GLhalfARB(*rowA)[2] = (const GLhalfARB(*)[2]) srcRowA;
384 const GLhalfARB(*rowB)[2] = (const GLhalfARB(*)[2]) srcRowB;
385 GLhalfARB(*dst)[2] = (GLhalfARB(*)[2]) dstRow;
386 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
387 i++, j += colStride, k += colStride) {
388 for (comp = 0; comp < 2; comp++) {
389 GLfloat aj, ak, bj, bk;
390 aj = _mesa_half_to_float(rowA[j][comp]);
391 ak = _mesa_half_to_float(rowA[k][comp]);
392 bj = _mesa_half_to_float(rowB[j][comp]);
393 bk = _mesa_half_to_float(rowB[k][comp]);
394 dst[i][comp] = _mesa_float_to_half((aj + ak + bj + bk) * 0.25F);
395 }
396 }
397 }
398 else if (datatype == GL_HALF_FLOAT_ARB && comps == 1) {
399 GLuint i, j, k;
400 const GLhalfARB *rowA = (const GLhalfARB *) srcRowA;
401 const GLhalfARB *rowB = (const GLhalfARB *) srcRowB;
402 GLhalfARB *dst = (GLhalfARB *) dstRow;
403 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
404 i++, j += colStride, k += colStride) {
405 GLfloat aj, ak, bj, bk;
406 aj = _mesa_half_to_float(rowA[j]);
407 ak = _mesa_half_to_float(rowA[k]);
408 bj = _mesa_half_to_float(rowB[j]);
409 bk = _mesa_half_to_float(rowB[k]);
410 dst[i] = _mesa_float_to_half((aj + ak + bj + bk) * 0.25F);
411 }
412 }
413
414 else if (datatype == GL_UNSIGNED_INT && comps == 1) {
415 GLuint i, j, k;
416 const GLuint *rowA = (const GLuint *) srcRowA;
417 const GLuint *rowB = (const GLuint *) srcRowB;
418 GLfloat *dst = (GLfloat *) dstRow;
419 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
420 i++, j += colStride, k += colStride) {
421 dst[i] = (GLfloat)(rowA[j] / 4 + rowA[k] / 4 + rowB[j] / 4 + rowB[k] / 4);
422 }
423 }
424
425 else if (datatype == GL_UNSIGNED_SHORT_5_6_5 && comps == 3) {
426 GLuint i, j, k;
427 const GLushort *rowA = (const GLushort *) srcRowA;
428 const GLushort *rowB = (const GLushort *) srcRowB;
429 GLushort *dst = (GLushort *) dstRow;
430 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
431 i++, j += colStride, k += colStride) {
432 const GLint rowAr0 = rowA[j] & 0x1f;
433 const GLint rowAr1 = rowA[k] & 0x1f;
434 const GLint rowBr0 = rowB[j] & 0x1f;
435 const GLint rowBr1 = rowB[k] & 0x1f;
436 const GLint rowAg0 = (rowA[j] >> 5) & 0x3f;
437 const GLint rowAg1 = (rowA[k] >> 5) & 0x3f;
438 const GLint rowBg0 = (rowB[j] >> 5) & 0x3f;
439 const GLint rowBg1 = (rowB[k] >> 5) & 0x3f;
440 const GLint rowAb0 = (rowA[j] >> 11) & 0x1f;
441 const GLint rowAb1 = (rowA[k] >> 11) & 0x1f;
442 const GLint rowBb0 = (rowB[j] >> 11) & 0x1f;
443 const GLint rowBb1 = (rowB[k] >> 11) & 0x1f;
444 const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
445 const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
446 const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
447 dst[i] = (blue << 11) | (green << 5) | red;
448 }
449 }
450 else if (datatype == GL_UNSIGNED_SHORT_4_4_4_4 && comps == 4) {
451 GLuint i, j, k;
452 const GLushort *rowA = (const GLushort *) srcRowA;
453 const GLushort *rowB = (const GLushort *) srcRowB;
454 GLushort *dst = (GLushort *) dstRow;
455 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
456 i++, j += colStride, k += colStride) {
457 const GLint rowAr0 = rowA[j] & 0xf;
458 const GLint rowAr1 = rowA[k] & 0xf;
459 const GLint rowBr0 = rowB[j] & 0xf;
460 const GLint rowBr1 = rowB[k] & 0xf;
461 const GLint rowAg0 = (rowA[j] >> 4) & 0xf;
462 const GLint rowAg1 = (rowA[k] >> 4) & 0xf;
463 const GLint rowBg0 = (rowB[j] >> 4) & 0xf;
464 const GLint rowBg1 = (rowB[k] >> 4) & 0xf;
465 const GLint rowAb0 = (rowA[j] >> 8) & 0xf;
466 const GLint rowAb1 = (rowA[k] >> 8) & 0xf;
467 const GLint rowBb0 = (rowB[j] >> 8) & 0xf;
468 const GLint rowBb1 = (rowB[k] >> 8) & 0xf;
469 const GLint rowAa0 = (rowA[j] >> 12) & 0xf;
470 const GLint rowAa1 = (rowA[k] >> 12) & 0xf;
471 const GLint rowBa0 = (rowB[j] >> 12) & 0xf;
472 const GLint rowBa1 = (rowB[k] >> 12) & 0xf;
473 const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
474 const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
475 const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
476 const GLint alpha = (rowAa0 + rowAa1 + rowBa0 + rowBa1) >> 2;
477 dst[i] = (alpha << 12) | (blue << 8) | (green << 4) | red;
478 }
479 }
480 else if (datatype == GL_UNSIGNED_SHORT_1_5_5_5_REV && comps == 4) {
481 GLuint i, j, k;
482 const GLushort *rowA = (const GLushort *) srcRowA;
483 const GLushort *rowB = (const GLushort *) srcRowB;
484 GLushort *dst = (GLushort *) dstRow;
485 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
486 i++, j += colStride, k += colStride) {
487 const GLint rowAr0 = rowA[j] & 0x1f;
488 const GLint rowAr1 = rowA[k] & 0x1f;
489 const GLint rowBr0 = rowB[j] & 0x1f;
490 const GLint rowBr1 = rowB[k] & 0x1f;
491 const GLint rowAg0 = (rowA[j] >> 5) & 0x1f;
492 const GLint rowAg1 = (rowA[k] >> 5) & 0x1f;
493 const GLint rowBg0 = (rowB[j] >> 5) & 0x1f;
494 const GLint rowBg1 = (rowB[k] >> 5) & 0x1f;
495 const GLint rowAb0 = (rowA[j] >> 10) & 0x1f;
496 const GLint rowAb1 = (rowA[k] >> 10) & 0x1f;
497 const GLint rowBb0 = (rowB[j] >> 10) & 0x1f;
498 const GLint rowBb1 = (rowB[k] >> 10) & 0x1f;
499 const GLint rowAa0 = (rowA[j] >> 15) & 0x1;
500 const GLint rowAa1 = (rowA[k] >> 15) & 0x1;
501 const GLint rowBa0 = (rowB[j] >> 15) & 0x1;
502 const GLint rowBa1 = (rowB[k] >> 15) & 0x1;
503 const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
504 const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
505 const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
506 const GLint alpha = (rowAa0 + rowAa1 + rowBa0 + rowBa1) >> 2;
507 dst[i] = (alpha << 15) | (blue << 10) | (green << 5) | red;
508 }
509 }
510 else if (datatype == GL_UNSIGNED_BYTE_3_3_2 && comps == 3) {
511 GLuint i, j, k;
512 const GLubyte *rowA = (const GLubyte *) srcRowA;
513 const GLubyte *rowB = (const GLubyte *) srcRowB;
514 GLubyte *dst = (GLubyte *) dstRow;
515 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
516 i++, j += colStride, k += colStride) {
517 const GLint rowAr0 = rowA[j] & 0x3;
518 const GLint rowAr1 = rowA[k] & 0x3;
519 const GLint rowBr0 = rowB[j] & 0x3;
520 const GLint rowBr1 = rowB[k] & 0x3;
521 const GLint rowAg0 = (rowA[j] >> 2) & 0x7;
522 const GLint rowAg1 = (rowA[k] >> 2) & 0x7;
523 const GLint rowBg0 = (rowB[j] >> 2) & 0x7;
524 const GLint rowBg1 = (rowB[k] >> 2) & 0x7;
525 const GLint rowAb0 = (rowA[j] >> 5) & 0x7;
526 const GLint rowAb1 = (rowA[k] >> 5) & 0x7;
527 const GLint rowBb0 = (rowB[j] >> 5) & 0x7;
528 const GLint rowBb1 = (rowB[k] >> 5) & 0x7;
529 const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
530 const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
531 const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
532 dst[i] = (blue << 5) | (green << 2) | red;
533 }
534 }
535 else {
536 _mesa_problem(NULL, "bad format in do_row()");
537 }
538 }
539
540
541 /**
542 * Average together four rows of a source image to produce a single new
543 * row in the dest image. It's legal for the two source rows to point
544 * to the same data. The source width must be equal to either the
545 * dest width or two times the dest width.
546 *
547 * \param datatype GL pixel type \c GL_UNSIGNED_BYTE, \c GL_UNSIGNED_SHORT,
548 * \c GL_FLOAT, etc.
549 * \param comps number of components per pixel (1..4)
550 * \param srcWidth Width of a row in the source data
551 * \param srcRowA Pointer to one of the rows of source data
552 * \param srcRowB Pointer to one of the rows of source data
553 * \param srcRowC Pointer to one of the rows of source data
554 * \param srcRowD Pointer to one of the rows of source data
555 * \param dstWidth Width of a row in the destination data
556 * \param srcRowA Pointer to the row of destination data
557 */
558 static void
559 do_row_3D(GLenum datatype, GLuint comps, GLint srcWidth,
560 const GLvoid *srcRowA, const GLvoid *srcRowB,
561 const GLvoid *srcRowC, const GLvoid *srcRowD,
562 GLint dstWidth, GLvoid *dstRow)
563 {
564 const GLuint k0 = (srcWidth == dstWidth) ? 0 : 1;
565 const GLuint colStride = (srcWidth == dstWidth) ? 1 : 2;
566 GLuint i, j, k;
567
568 ASSERT(comps >= 1);
569 ASSERT(comps <= 4);
570
571 if ((datatype == GL_UNSIGNED_BYTE) && (comps == 4)) {
572 DECLARE_ROW_POINTERS(GLubyte, 4);
573
574 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
575 i++, j += colStride, k += colStride) {
576 FILTER_3D(0);
577 FILTER_3D(1);
578 FILTER_3D(2);
579 FILTER_3D(3);
580 }
581 }
582 else if ((datatype == GL_UNSIGNED_BYTE) && (comps == 3)) {
583 DECLARE_ROW_POINTERS(GLubyte, 3);
584
585 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
586 i++, j += colStride, k += colStride) {
587 FILTER_3D(0);
588 FILTER_3D(1);
589 FILTER_3D(2);
590 }
591 }
592 else if ((datatype == GL_UNSIGNED_BYTE) && (comps == 2)) {
593 DECLARE_ROW_POINTERS(GLubyte, 2);
594
595 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
596 i++, j += colStride, k += colStride) {
597 FILTER_3D(0);
598 FILTER_3D(1);
599 }
600 }
601 else if ((datatype == GL_UNSIGNED_BYTE) && (comps == 1)) {
602 DECLARE_ROW_POINTERS(GLubyte, 1);
603
604 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
605 i++, j += colStride, k += colStride) {
606 FILTER_3D(0);
607 }
608 }
609 if ((datatype == GL_BYTE) && (comps == 4)) {
610 DECLARE_ROW_POINTERS(GLbyte, 4);
611
612 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
613 i++, j += colStride, k += colStride) {
614 FILTER_3D_SIGNED(0);
615 FILTER_3D_SIGNED(1);
616 FILTER_3D_SIGNED(2);
617 FILTER_3D_SIGNED(3);
618 }
619 }
620 else if ((datatype == GL_BYTE) && (comps == 3)) {
621 DECLARE_ROW_POINTERS(GLbyte, 3);
622
623 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
624 i++, j += colStride, k += colStride) {
625 FILTER_3D_SIGNED(0);
626 FILTER_3D_SIGNED(1);
627 FILTER_3D_SIGNED(2);
628 }
629 }
630 else if ((datatype == GL_BYTE) && (comps == 2)) {
631 DECLARE_ROW_POINTERS(GLbyte, 2);
632
633 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
634 i++, j += colStride, k += colStride) {
635 FILTER_3D_SIGNED(0);
636 FILTER_3D_SIGNED(1);
637 }
638 }
639 else if ((datatype == GL_BYTE) && (comps == 1)) {
640 DECLARE_ROW_POINTERS(GLbyte, 1);
641
642 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
643 i++, j += colStride, k += colStride) {
644 FILTER_3D_SIGNED(0);
645 }
646 }
647 else if ((datatype == GL_UNSIGNED_SHORT) && (comps == 4)) {
648 DECLARE_ROW_POINTERS(GLushort, 4);
649
650 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
651 i++, j += colStride, k += colStride) {
652 FILTER_3D(0);
653 FILTER_3D(1);
654 FILTER_3D(2);
655 FILTER_3D(3);
656 }
657 }
658 else if ((datatype == GL_UNSIGNED_SHORT) && (comps == 3)) {
659 DECLARE_ROW_POINTERS(GLushort, 3);
660
661 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
662 i++, j += colStride, k += colStride) {
663 FILTER_3D(0);
664 FILTER_3D(1);
665 FILTER_3D(2);
666 }
667 }
668 else if ((datatype == GL_UNSIGNED_SHORT) && (comps == 2)) {
669 DECLARE_ROW_POINTERS(GLushort, 2);
670
671 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
672 i++, j += colStride, k += colStride) {
673 FILTER_3D(0);
674 FILTER_3D(1);
675 }
676 }
677 else if ((datatype == GL_UNSIGNED_SHORT) && (comps == 1)) {
678 DECLARE_ROW_POINTERS(GLushort, 1);
679
680 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
681 i++, j += colStride, k += colStride) {
682 FILTER_3D(0);
683 }
684 }
685 else if ((datatype == GL_FLOAT) && (comps == 4)) {
686 DECLARE_ROW_POINTERS(GLfloat, 4);
687
688 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
689 i++, j += colStride, k += colStride) {
690 FILTER_F_3D(0);
691 FILTER_F_3D(1);
692 FILTER_F_3D(2);
693 FILTER_F_3D(3);
694 }
695 }
696 else if ((datatype == GL_FLOAT) && (comps == 3)) {
697 DECLARE_ROW_POINTERS(GLfloat, 3);
698
699 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
700 i++, j += colStride, k += colStride) {
701 FILTER_F_3D(0);
702 FILTER_F_3D(1);
703 FILTER_F_3D(2);
704 }
705 }
706 else if ((datatype == GL_FLOAT) && (comps == 2)) {
707 DECLARE_ROW_POINTERS(GLfloat, 2);
708
709 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
710 i++, j += colStride, k += colStride) {
711 FILTER_F_3D(0);
712 FILTER_F_3D(1);
713 }
714 }
715 else if ((datatype == GL_FLOAT) && (comps == 1)) {
716 DECLARE_ROW_POINTERS(GLfloat, 1);
717
718 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
719 i++, j += colStride, k += colStride) {
720 FILTER_F_3D(0);
721 }
722 }
723 else if ((datatype == GL_HALF_FLOAT_ARB) && (comps == 4)) {
724 DECLARE_ROW_POINTERS(GLhalfARB, 4);
725
726 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
727 i++, j += colStride, k += colStride) {
728 FILTER_HF_3D(0);
729 FILTER_HF_3D(1);
730 FILTER_HF_3D(2);
731 FILTER_HF_3D(3);
732 }
733 }
734 else if ((datatype == GL_HALF_FLOAT_ARB) && (comps == 3)) {
735 DECLARE_ROW_POINTERS(GLhalfARB, 4);
736
737 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
738 i++, j += colStride, k += colStride) {
739 FILTER_HF_3D(0);
740 FILTER_HF_3D(1);
741 FILTER_HF_3D(2);
742 }
743 }
744 else if ((datatype == GL_HALF_FLOAT_ARB) && (comps == 2)) {
745 DECLARE_ROW_POINTERS(GLhalfARB, 4);
746
747 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
748 i++, j += colStride, k += colStride) {
749 FILTER_HF_3D(0);
750 FILTER_HF_3D(1);
751 }
752 }
753 else if ((datatype == GL_HALF_FLOAT_ARB) && (comps == 1)) {
754 DECLARE_ROW_POINTERS(GLhalfARB, 4);
755
756 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
757 i++, j += colStride, k += colStride) {
758 FILTER_HF_3D(0);
759 }
760 }
761 else if ((datatype == GL_UNSIGNED_INT) && (comps == 1)) {
762 const GLuint *rowA = (const GLuint *) srcRowA;
763 const GLuint *rowB = (const GLuint *) srcRowB;
764 const GLuint *rowC = (const GLuint *) srcRowC;
765 const GLuint *rowD = (const GLuint *) srcRowD;
766 GLfloat *dst = (GLfloat *) dstRow;
767
768 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
769 i++, j += colStride, k += colStride) {
770 const uint64_t tmp = (((uint64_t) rowA[j] + (uint64_t) rowA[k])
771 + ((uint64_t) rowB[j] + (uint64_t) rowB[k])
772 + ((uint64_t) rowC[j] + (uint64_t) rowC[k])
773 + ((uint64_t) rowD[j] + (uint64_t) rowD[k]));
774 dst[i] = (GLfloat)((double) tmp * 0.125);
775 }
776 }
777 else if ((datatype == GL_UNSIGNED_SHORT_5_6_5) && (comps == 3)) {
778 DECLARE_ROW_POINTERS0(GLushort);
779
780 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
781 i++, j += colStride, k += colStride) {
782 const GLint rowAr0 = rowA[j] & 0x1f;
783 const GLint rowAr1 = rowA[k] & 0x1f;
784 const GLint rowBr0 = rowB[j] & 0x1f;
785 const GLint rowBr1 = rowB[k] & 0x1f;
786 const GLint rowCr0 = rowC[j] & 0x1f;
787 const GLint rowCr1 = rowC[k] & 0x1f;
788 const GLint rowDr0 = rowD[j] & 0x1f;
789 const GLint rowDr1 = rowD[k] & 0x1f;
790 const GLint rowAg0 = (rowA[j] >> 5) & 0x3f;
791 const GLint rowAg1 = (rowA[k] >> 5) & 0x3f;
792 const GLint rowBg0 = (rowB[j] >> 5) & 0x3f;
793 const GLint rowBg1 = (rowB[k] >> 5) & 0x3f;
794 const GLint rowCg0 = (rowC[j] >> 5) & 0x3f;
795 const GLint rowCg1 = (rowC[k] >> 5) & 0x3f;
796 const GLint rowDg0 = (rowD[j] >> 5) & 0x3f;
797 const GLint rowDg1 = (rowD[k] >> 5) & 0x3f;
798 const GLint rowAb0 = (rowA[j] >> 11) & 0x1f;
799 const GLint rowAb1 = (rowA[k] >> 11) & 0x1f;
800 const GLint rowBb0 = (rowB[j] >> 11) & 0x1f;
801 const GLint rowBb1 = (rowB[k] >> 11) & 0x1f;
802 const GLint rowCb0 = (rowC[j] >> 11) & 0x1f;
803 const GLint rowCb1 = (rowC[k] >> 11) & 0x1f;
804 const GLint rowDb0 = (rowD[j] >> 11) & 0x1f;
805 const GLint rowDb1 = (rowD[k] >> 11) & 0x1f;
806 const GLint r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
807 rowCr0, rowCr1, rowDr0, rowDr1);
808 const GLint g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
809 rowCg0, rowCg1, rowDg0, rowDg1);
810 const GLint b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
811 rowCb0, rowCb1, rowDb0, rowDb1);
812 dst[i] = (b << 11) | (g << 5) | r;
813 }
814 }
815 else if ((datatype == GL_UNSIGNED_SHORT_4_4_4_4) && (comps == 4)) {
816 DECLARE_ROW_POINTERS0(GLushort);
817
818 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
819 i++, j += colStride, k += colStride) {
820 const GLint rowAr0 = rowA[j] & 0xf;
821 const GLint rowAr1 = rowA[k] & 0xf;
822 const GLint rowBr0 = rowB[j] & 0xf;
823 const GLint rowBr1 = rowB[k] & 0xf;
824 const GLint rowCr0 = rowC[j] & 0xf;
825 const GLint rowCr1 = rowC[k] & 0xf;
826 const GLint rowDr0 = rowD[j] & 0xf;
827 const GLint rowDr1 = rowD[k] & 0xf;
828 const GLint rowAg0 = (rowA[j] >> 4) & 0xf;
829 const GLint rowAg1 = (rowA[k] >> 4) & 0xf;
830 const GLint rowBg0 = (rowB[j] >> 4) & 0xf;
831 const GLint rowBg1 = (rowB[k] >> 4) & 0xf;
832 const GLint rowCg0 = (rowC[j] >> 4) & 0xf;
833 const GLint rowCg1 = (rowC[k] >> 4) & 0xf;
834 const GLint rowDg0 = (rowD[j] >> 4) & 0xf;
835 const GLint rowDg1 = (rowD[k] >> 4) & 0xf;
836 const GLint rowAb0 = (rowA[j] >> 8) & 0xf;
837 const GLint rowAb1 = (rowA[k] >> 8) & 0xf;
838 const GLint rowBb0 = (rowB[j] >> 8) & 0xf;
839 const GLint rowBb1 = (rowB[k] >> 8) & 0xf;
840 const GLint rowCb0 = (rowC[j] >> 8) & 0xf;
841 const GLint rowCb1 = (rowC[k] >> 8) & 0xf;
842 const GLint rowDb0 = (rowD[j] >> 8) & 0xf;
843 const GLint rowDb1 = (rowD[k] >> 8) & 0xf;
844 const GLint rowAa0 = (rowA[j] >> 12) & 0xf;
845 const GLint rowAa1 = (rowA[k] >> 12) & 0xf;
846 const GLint rowBa0 = (rowB[j] >> 12) & 0xf;
847 const GLint rowBa1 = (rowB[k] >> 12) & 0xf;
848 const GLint rowCa0 = (rowC[j] >> 12) & 0xf;
849 const GLint rowCa1 = (rowC[k] >> 12) & 0xf;
850 const GLint rowDa0 = (rowD[j] >> 12) & 0xf;
851 const GLint rowDa1 = (rowD[k] >> 12) & 0xf;
852 const GLint r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
853 rowCr0, rowCr1, rowDr0, rowDr1);
854 const GLint g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
855 rowCg0, rowCg1, rowDg0, rowDg1);
856 const GLint b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
857 rowCb0, rowCb1, rowDb0, rowDb1);
858 const GLint a = FILTER_SUM_3D(rowAa0, rowAa1, rowBa0, rowBa1,
859 rowCa0, rowCa1, rowDa0, rowDa1);
860
861 dst[i] = (a << 12) | (b << 8) | (g << 4) | r;
862 }
863 }
864 else if ((datatype == GL_UNSIGNED_SHORT_1_5_5_5_REV) && (comps == 4)) {
865 DECLARE_ROW_POINTERS0(GLushort);
866
867 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
868 i++, j += colStride, k += colStride) {
869 const GLint rowAr0 = rowA[j] & 0x1f;
870 const GLint rowAr1 = rowA[k] & 0x1f;
871 const GLint rowBr0 = rowB[j] & 0x1f;
872 const GLint rowBr1 = rowB[k] & 0x1f;
873 const GLint rowCr0 = rowC[j] & 0x1f;
874 const GLint rowCr1 = rowC[k] & 0x1f;
875 const GLint rowDr0 = rowD[j] & 0x1f;
876 const GLint rowDr1 = rowD[k] & 0x1f;
877 const GLint rowAg0 = (rowA[j] >> 5) & 0x1f;
878 const GLint rowAg1 = (rowA[k] >> 5) & 0x1f;
879 const GLint rowBg0 = (rowB[j] >> 5) & 0x1f;
880 const GLint rowBg1 = (rowB[k] >> 5) & 0x1f;
881 const GLint rowCg0 = (rowC[j] >> 5) & 0x1f;
882 const GLint rowCg1 = (rowC[k] >> 5) & 0x1f;
883 const GLint rowDg0 = (rowD[j] >> 5) & 0x1f;
884 const GLint rowDg1 = (rowD[k] >> 5) & 0x1f;
885 const GLint rowAb0 = (rowA[j] >> 10) & 0x1f;
886 const GLint rowAb1 = (rowA[k] >> 10) & 0x1f;
887 const GLint rowBb0 = (rowB[j] >> 10) & 0x1f;
888 const GLint rowBb1 = (rowB[k] >> 10) & 0x1f;
889 const GLint rowCb0 = (rowC[j] >> 10) & 0x1f;
890 const GLint rowCb1 = (rowC[k] >> 10) & 0x1f;
891 const GLint rowDb0 = (rowD[j] >> 10) & 0x1f;
892 const GLint rowDb1 = (rowD[k] >> 10) & 0x1f;
893 const GLint rowAa0 = (rowA[j] >> 15) & 0x1;
894 const GLint rowAa1 = (rowA[k] >> 15) & 0x1;
895 const GLint rowBa0 = (rowB[j] >> 15) & 0x1;
896 const GLint rowBa1 = (rowB[k] >> 15) & 0x1;
897 const GLint rowCa0 = (rowC[j] >> 15) & 0x1;
898 const GLint rowCa1 = (rowC[k] >> 15) & 0x1;
899 const GLint rowDa0 = (rowD[j] >> 15) & 0x1;
900 const GLint rowDa1 = (rowD[k] >> 15) & 0x1;
901 const GLint r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
902 rowCr0, rowCr1, rowDr0, rowDr1);
903 const GLint g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
904 rowCg0, rowCg1, rowDg0, rowDg1);
905 const GLint b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
906 rowCb0, rowCb1, rowDb0, rowDb1);
907 const GLint a = FILTER_SUM_3D(rowAa0, rowAa1, rowBa0, rowBa1,
908 rowCa0, rowCa1, rowDa0, rowDa1);
909
910 dst[i] = (a << 15) | (b << 10) | (g << 5) | r;
911 }
912 }
913 else if ((datatype == GL_UNSIGNED_BYTE_3_3_2) && (comps == 3)) {
914 DECLARE_ROW_POINTERS0(GLushort);
915
916 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
917 i++, j += colStride, k += colStride) {
918 const GLint rowAr0 = rowA[j] & 0x3;
919 const GLint rowAr1 = rowA[k] & 0x3;
920 const GLint rowBr0 = rowB[j] & 0x3;
921 const GLint rowBr1 = rowB[k] & 0x3;
922 const GLint rowCr0 = rowC[j] & 0x3;
923 const GLint rowCr1 = rowC[k] & 0x3;
924 const GLint rowDr0 = rowD[j] & 0x3;
925 const GLint rowDr1 = rowD[k] & 0x3;
926 const GLint rowAg0 = (rowA[j] >> 2) & 0x7;
927 const GLint rowAg1 = (rowA[k] >> 2) & 0x7;
928 const GLint rowBg0 = (rowB[j] >> 2) & 0x7;
929 const GLint rowBg1 = (rowB[k] >> 2) & 0x7;
930 const GLint rowCg0 = (rowC[j] >> 2) & 0x7;
931 const GLint rowCg1 = (rowC[k] >> 2) & 0x7;
932 const GLint rowDg0 = (rowD[j] >> 2) & 0x7;
933 const GLint rowDg1 = (rowD[k] >> 2) & 0x7;
934 const GLint rowAb0 = (rowA[j] >> 5) & 0x7;
935 const GLint rowAb1 = (rowA[k] >> 5) & 0x7;
936 const GLint rowBb0 = (rowB[j] >> 5) & 0x7;
937 const GLint rowBb1 = (rowB[k] >> 5) & 0x7;
938 const GLint rowCb0 = (rowC[j] >> 5) & 0x7;
939 const GLint rowCb1 = (rowC[k] >> 5) & 0x7;
940 const GLint rowDb0 = (rowD[j] >> 5) & 0x7;
941 const GLint rowDb1 = (rowD[k] >> 5) & 0x7;
942 const GLint r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
943 rowCr0, rowCr1, rowDr0, rowDr1);
944 const GLint g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
945 rowCg0, rowCg1, rowDg0, rowDg1);
946 const GLint b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
947 rowCb0, rowCb1, rowDb0, rowDb1);
948 dst[i] = (b << 5) | (g << 2) | r;
949 }
950 }
951 else {
952 _mesa_problem(NULL, "bad format in do_row()");
953 }
954 }
955
956
957 /*
958 * These functions generate a 1/2-size mipmap image from a source image.
959 * Texture borders are handled by copying or averaging the source image's
960 * border texels, depending on the scale-down factor.
961 */
962
963 static void
964 make_1d_mipmap(GLenum datatype, GLuint comps, GLint border,
965 GLint srcWidth, const GLubyte *srcPtr,
966 GLint dstWidth, GLubyte *dstPtr)
967 {
968 const GLint bpt = bytes_per_pixel(datatype, comps);
969 const GLubyte *src;
970 GLubyte *dst;
971
972 /* skip the border pixel, if any */
973 src = srcPtr + border * bpt;
974 dst = dstPtr + border * bpt;
975
976 /* we just duplicate the input row, kind of hack, saves code */
977 do_row(datatype, comps, srcWidth - 2 * border, src, src,
978 dstWidth - 2 * border, dst);
979
980 if (border) {
981 /* copy left-most pixel from source */
982 MEMCPY(dstPtr, srcPtr, bpt);
983 /* copy right-most pixel from source */
984 MEMCPY(dstPtr + (dstWidth - 1) * bpt,
985 srcPtr + (srcWidth - 1) * bpt,
986 bpt);
987 }
988 }
989
990
991 static void
992 make_2d_mipmap(GLenum datatype, GLuint comps, GLint border,
993 GLint srcWidth, GLint srcHeight,
994 const GLubyte *srcPtr, GLint srcRowStride,
995 GLint dstWidth, GLint dstHeight,
996 GLubyte *dstPtr, GLint dstRowStride)
997 {
998 const GLint bpt = bytes_per_pixel(datatype, comps);
999 const GLint srcWidthNB = srcWidth - 2 * border; /* sizes w/out border */
1000 const GLint dstWidthNB = dstWidth - 2 * border;
1001 const GLint dstHeightNB = dstHeight - 2 * border;
1002 const GLint srcRowBytes = bpt * srcRowStride;
1003 const GLint dstRowBytes = bpt * dstRowStride;
1004 const GLubyte *srcA, *srcB;
1005 GLubyte *dst;
1006 GLint row;
1007
1008 /* Compute src and dst pointers, skipping any border */
1009 srcA = srcPtr + border * ((srcWidth + 1) * bpt);
1010 if (srcHeight > 1)
1011 srcB = srcA + srcRowBytes;
1012 else
1013 srcB = srcA;
1014 dst = dstPtr + border * ((dstWidth + 1) * bpt);
1015
1016 for (row = 0; row < dstHeightNB; row++) {
1017 do_row(datatype, comps, srcWidthNB, srcA, srcB,
1018 dstWidthNB, dst);
1019 srcA += 2 * srcRowBytes;
1020 srcB += 2 * srcRowBytes;
1021 dst += dstRowBytes;
1022 }
1023
1024 /* This is ugly but probably won't be used much */
1025 if (border > 0) {
1026 /* fill in dest border */
1027 /* lower-left border pixel */
1028 MEMCPY(dstPtr, srcPtr, bpt);
1029 /* lower-right border pixel */
1030 MEMCPY(dstPtr + (dstWidth - 1) * bpt,
1031 srcPtr + (srcWidth - 1) * bpt, bpt);
1032 /* upper-left border pixel */
1033 MEMCPY(dstPtr + dstWidth * (dstHeight - 1) * bpt,
1034 srcPtr + srcWidth * (srcHeight - 1) * bpt, bpt);
1035 /* upper-right border pixel */
1036 MEMCPY(dstPtr + (dstWidth * dstHeight - 1) * bpt,
1037 srcPtr + (srcWidth * srcHeight - 1) * bpt, bpt);
1038 /* lower border */
1039 do_row(datatype, comps, srcWidthNB,
1040 srcPtr + bpt,
1041 srcPtr + bpt,
1042 dstWidthNB, dstPtr + bpt);
1043 /* upper border */
1044 do_row(datatype, comps, srcWidthNB,
1045 srcPtr + (srcWidth * (srcHeight - 1) + 1) * bpt,
1046 srcPtr + (srcWidth * (srcHeight - 1) + 1) * bpt,
1047 dstWidthNB,
1048 dstPtr + (dstWidth * (dstHeight - 1) + 1) * bpt);
1049 /* left and right borders */
1050 if (srcHeight == dstHeight) {
1051 /* copy border pixel from src to dst */
1052 for (row = 1; row < srcHeight; row++) {
1053 MEMCPY(dstPtr + dstWidth * row * bpt,
1054 srcPtr + srcWidth * row * bpt, bpt);
1055 MEMCPY(dstPtr + (dstWidth * row + dstWidth - 1) * bpt,
1056 srcPtr + (srcWidth * row + srcWidth - 1) * bpt, bpt);
1057 }
1058 }
1059 else {
1060 /* average two src pixels each dest pixel */
1061 for (row = 0; row < dstHeightNB; row += 2) {
1062 do_row(datatype, comps, 1,
1063 srcPtr + (srcWidth * (row * 2 + 1)) * bpt,
1064 srcPtr + (srcWidth * (row * 2 + 2)) * bpt,
1065 1, dstPtr + (dstWidth * row + 1) * bpt);
1066 do_row(datatype, comps, 1,
1067 srcPtr + (srcWidth * (row * 2 + 1) + srcWidth - 1) * bpt,
1068 srcPtr + (srcWidth * (row * 2 + 2) + srcWidth - 1) * bpt,
1069 1, dstPtr + (dstWidth * row + 1 + dstWidth - 1) * bpt);
1070 }
1071 }
1072 }
1073 }
1074
1075
1076 static void
1077 make_3d_mipmap(GLenum datatype, GLuint comps, GLint border,
1078 GLint srcWidth, GLint srcHeight, GLint srcDepth,
1079 const GLubyte *srcPtr, GLint srcRowStride,
1080 GLint dstWidth, GLint dstHeight, GLint dstDepth,
1081 GLubyte *dstPtr, GLint dstRowStride)
1082 {
1083 const GLint bpt = bytes_per_pixel(datatype, comps);
1084 const GLint srcWidthNB = srcWidth - 2 * border; /* sizes w/out border */
1085 const GLint srcDepthNB = srcDepth - 2 * border;
1086 const GLint dstWidthNB = dstWidth - 2 * border;
1087 const GLint dstHeightNB = dstHeight - 2 * border;
1088 const GLint dstDepthNB = dstDepth - 2 * border;
1089 GLint img, row;
1090 GLint bytesPerSrcImage, bytesPerDstImage;
1091 GLint bytesPerSrcRow, bytesPerDstRow;
1092 GLint srcImageOffset, srcRowOffset;
1093
1094 (void) srcDepthNB; /* silence warnings */
1095
1096
1097 bytesPerSrcImage = srcWidth * srcHeight * bpt;
1098 bytesPerDstImage = dstWidth * dstHeight * bpt;
1099
1100 bytesPerSrcRow = srcWidth * bpt;
1101 bytesPerDstRow = dstWidth * bpt;
1102
1103 /* Offset between adjacent src images to be averaged together */
1104 srcImageOffset = (srcDepth == dstDepth) ? 0 : bytesPerSrcImage;
1105
1106 /* Offset between adjacent src rows to be averaged together */
1107 srcRowOffset = (srcHeight == dstHeight) ? 0 : srcWidth * bpt;
1108
1109 /*
1110 * Need to average together up to 8 src pixels for each dest pixel.
1111 * Break that down into 3 operations:
1112 * 1. take two rows from source image and average them together.
1113 * 2. take two rows from next source image and average them together.
1114 * 3. take the two averaged rows and average them for the final dst row.
1115 */
1116
1117 /*
1118 _mesa_printf("mip3d %d x %d x %d -> %d x %d x %d\n",
1119 srcWidth, srcHeight, srcDepth, dstWidth, dstHeight, dstDepth);
1120 */
1121
1122 for (img = 0; img < dstDepthNB; img++) {
1123 /* first source image pointer, skipping border */
1124 const GLubyte *imgSrcA = srcPtr
1125 + (bytesPerSrcImage + bytesPerSrcRow + border) * bpt * border
1126 + img * (bytesPerSrcImage + srcImageOffset);
1127 /* second source image pointer, skipping border */
1128 const GLubyte *imgSrcB = imgSrcA + srcImageOffset;
1129 /* address of the dest image, skipping border */
1130 GLubyte *imgDst = dstPtr
1131 + (bytesPerDstImage + bytesPerDstRow + border) * bpt * border
1132 + img * bytesPerDstImage;
1133
1134 /* setup the four source row pointers and the dest row pointer */
1135 const GLubyte *srcImgARowA = imgSrcA;
1136 const GLubyte *srcImgARowB = imgSrcA + srcRowOffset;
1137 const GLubyte *srcImgBRowA = imgSrcB;
1138 const GLubyte *srcImgBRowB = imgSrcB + srcRowOffset;
1139 GLubyte *dstImgRow = imgDst;
1140
1141 for (row = 0; row < dstHeightNB; row++) {
1142 do_row_3D(datatype, comps, srcWidthNB,
1143 srcImgARowA, srcImgARowB,
1144 srcImgBRowA, srcImgBRowB,
1145 dstWidthNB, dstImgRow);
1146
1147 /* advance to next rows */
1148 srcImgARowA += bytesPerSrcRow + srcRowOffset;
1149 srcImgARowB += bytesPerSrcRow + srcRowOffset;
1150 srcImgBRowA += bytesPerSrcRow + srcRowOffset;
1151 srcImgBRowB += bytesPerSrcRow + srcRowOffset;
1152 dstImgRow += bytesPerDstRow;
1153 }
1154 }
1155
1156
1157 /* Luckily we can leverage the make_2d_mipmap() function here! */
1158 if (border > 0) {
1159 /* do front border image */
1160 make_2d_mipmap(datatype, comps, 1, srcWidth, srcHeight, srcPtr, srcRowStride,
1161 dstWidth, dstHeight, dstPtr, dstRowStride);
1162 /* do back border image */
1163 make_2d_mipmap(datatype, comps, 1, srcWidth, srcHeight,
1164 srcPtr + bytesPerSrcImage * (srcDepth - 1), srcRowStride,
1165 dstWidth, dstHeight,
1166 dstPtr + bytesPerDstImage * (dstDepth - 1), dstRowStride);
1167 /* do four remaining border edges that span the image slices */
1168 if (srcDepth == dstDepth) {
1169 /* just copy border pixels from src to dst */
1170 for (img = 0; img < dstDepthNB; img++) {
1171 const GLubyte *src;
1172 GLubyte *dst;
1173
1174 /* do border along [img][row=0][col=0] */
1175 src = srcPtr + (img + 1) * bytesPerSrcImage;
1176 dst = dstPtr + (img + 1) * bytesPerDstImage;
1177 MEMCPY(dst, src, bpt);
1178
1179 /* do border along [img][row=dstHeight-1][col=0] */
1180 src = srcPtr + (img * 2 + 1) * bytesPerSrcImage
1181 + (srcHeight - 1) * bytesPerSrcRow;
1182 dst = dstPtr + (img + 1) * bytesPerDstImage
1183 + (dstHeight - 1) * bytesPerDstRow;
1184 MEMCPY(dst, src, bpt);
1185
1186 /* do border along [img][row=0][col=dstWidth-1] */
1187 src = srcPtr + (img * 2 + 1) * bytesPerSrcImage
1188 + (srcWidth - 1) * bpt;
1189 dst = dstPtr + (img + 1) * bytesPerDstImage
1190 + (dstWidth - 1) * bpt;
1191 MEMCPY(dst, src, bpt);
1192
1193 /* do border along [img][row=dstHeight-1][col=dstWidth-1] */
1194 src = srcPtr + (img * 2 + 1) * bytesPerSrcImage
1195 + (bytesPerSrcImage - bpt);
1196 dst = dstPtr + (img + 1) * bytesPerDstImage
1197 + (bytesPerDstImage - bpt);
1198 MEMCPY(dst, src, bpt);
1199 }
1200 }
1201 else {
1202 /* average border pixels from adjacent src image pairs */
1203 ASSERT(srcDepthNB == 2 * dstDepthNB);
1204 for (img = 0; img < dstDepthNB; img++) {
1205 const GLubyte *src;
1206 GLubyte *dst;
1207
1208 /* do border along [img][row=0][col=0] */
1209 src = srcPtr + (img * 2 + 1) * bytesPerSrcImage;
1210 dst = dstPtr + (img + 1) * bytesPerDstImage;
1211 do_row(datatype, comps, 1, src, src + srcImageOffset, 1, dst);
1212
1213 /* do border along [img][row=dstHeight-1][col=0] */
1214 src = srcPtr + (img * 2 + 1) * bytesPerSrcImage
1215 + (srcHeight - 1) * bytesPerSrcRow;
1216 dst = dstPtr + (img + 1) * bytesPerDstImage
1217 + (dstHeight - 1) * bytesPerDstRow;
1218 do_row(datatype, comps, 1, src, src + srcImageOffset, 1, dst);
1219
1220 /* do border along [img][row=0][col=dstWidth-1] */
1221 src = srcPtr + (img * 2 + 1) * bytesPerSrcImage
1222 + (srcWidth - 1) * bpt;
1223 dst = dstPtr + (img + 1) * bytesPerDstImage
1224 + (dstWidth - 1) * bpt;
1225 do_row(datatype, comps, 1, src, src + srcImageOffset, 1, dst);
1226
1227 /* do border along [img][row=dstHeight-1][col=dstWidth-1] */
1228 src = srcPtr + (img * 2 + 1) * bytesPerSrcImage
1229 + (bytesPerSrcImage - bpt);
1230 dst = dstPtr + (img + 1) * bytesPerDstImage
1231 + (bytesPerDstImage - bpt);
1232 do_row(datatype, comps, 1, src, src + srcImageOffset, 1, dst);
1233 }
1234 }
1235 }
1236 }
1237
1238
1239 static void
1240 make_1d_stack_mipmap(GLenum datatype, GLuint comps, GLint border,
1241 GLint srcWidth, const GLubyte *srcPtr, GLuint srcRowStride,
1242 GLint dstWidth, GLint dstHeight,
1243 GLubyte *dstPtr, GLuint dstRowStride )
1244 {
1245 const GLint bpt = bytes_per_pixel(datatype, comps);
1246 const GLint srcWidthNB = srcWidth - 2 * border; /* sizes w/out border */
1247 const GLint dstWidthNB = dstWidth - 2 * border;
1248 const GLint dstHeightNB = dstHeight - 2 * border;
1249 const GLint srcRowBytes = bpt * srcRowStride;
1250 const GLint dstRowBytes = bpt * dstRowStride;
1251 const GLubyte *src;
1252 GLubyte *dst;
1253 GLint row;
1254
1255 /* Compute src and dst pointers, skipping any border */
1256 src = srcPtr + border * ((srcWidth + 1) * bpt);
1257 dst = dstPtr + border * ((dstWidth + 1) * bpt);
1258
1259 for (row = 0; row < dstHeightNB; row++) {
1260 do_row(datatype, comps, srcWidthNB, src, src,
1261 dstWidthNB, dst);
1262 src += srcRowBytes;
1263 dst += dstRowBytes;
1264 }
1265
1266 if (border) {
1267 /* copy left-most pixel from source */
1268 MEMCPY(dstPtr, srcPtr, bpt);
1269 /* copy right-most pixel from source */
1270 MEMCPY(dstPtr + (dstWidth - 1) * bpt,
1271 srcPtr + (srcWidth - 1) * bpt,
1272 bpt);
1273 }
1274 }
1275
1276
1277 /**
1278 * \bug
1279 * There is quite a bit of refactoring that could be done with this function
1280 * and \c make_2d_mipmap.
1281 */
1282 static void
1283 make_2d_stack_mipmap(GLenum datatype, GLuint comps, GLint border,
1284 GLint srcWidth, GLint srcHeight,
1285 const GLubyte *srcPtr, GLint srcRowStride,
1286 GLint dstWidth, GLint dstHeight, GLint dstDepth,
1287 GLubyte *dstPtr, GLint dstRowStride)
1288 {
1289 const GLint bpt = bytes_per_pixel(datatype, comps);
1290 const GLint srcWidthNB = srcWidth - 2 * border; /* sizes w/out border */
1291 const GLint dstWidthNB = dstWidth - 2 * border;
1292 const GLint dstHeightNB = dstHeight - 2 * border;
1293 const GLint dstDepthNB = dstDepth - 2 * border;
1294 const GLint srcRowBytes = bpt * srcRowStride;
1295 const GLint dstRowBytes = bpt * dstRowStride;
1296 const GLubyte *srcA, *srcB;
1297 GLubyte *dst;
1298 GLint layer;
1299 GLint row;
1300
1301 /* Compute src and dst pointers, skipping any border */
1302 srcA = srcPtr + border * ((srcWidth + 1) * bpt);
1303 if (srcHeight > 1)
1304 srcB = srcA + srcRowBytes;
1305 else
1306 srcB = srcA;
1307 dst = dstPtr + border * ((dstWidth + 1) * bpt);
1308
1309 for (layer = 0; layer < dstDepthNB; layer++) {
1310 for (row = 0; row < dstHeightNB; row++) {
1311 do_row(datatype, comps, srcWidthNB, srcA, srcB,
1312 dstWidthNB, dst);
1313 srcA += 2 * srcRowBytes;
1314 srcB += 2 * srcRowBytes;
1315 dst += dstRowBytes;
1316 }
1317
1318 /* This is ugly but probably won't be used much */
1319 if (border > 0) {
1320 /* fill in dest border */
1321 /* lower-left border pixel */
1322 MEMCPY(dstPtr, srcPtr, bpt);
1323 /* lower-right border pixel */
1324 MEMCPY(dstPtr + (dstWidth - 1) * bpt,
1325 srcPtr + (srcWidth - 1) * bpt, bpt);
1326 /* upper-left border pixel */
1327 MEMCPY(dstPtr + dstWidth * (dstHeight - 1) * bpt,
1328 srcPtr + srcWidth * (srcHeight - 1) * bpt, bpt);
1329 /* upper-right border pixel */
1330 MEMCPY(dstPtr + (dstWidth * dstHeight - 1) * bpt,
1331 srcPtr + (srcWidth * srcHeight - 1) * bpt, bpt);
1332 /* lower border */
1333 do_row(datatype, comps, srcWidthNB,
1334 srcPtr + bpt,
1335 srcPtr + bpt,
1336 dstWidthNB, dstPtr + bpt);
1337 /* upper border */
1338 do_row(datatype, comps, srcWidthNB,
1339 srcPtr + (srcWidth * (srcHeight - 1) + 1) * bpt,
1340 srcPtr + (srcWidth * (srcHeight - 1) + 1) * bpt,
1341 dstWidthNB,
1342 dstPtr + (dstWidth * (dstHeight - 1) + 1) * bpt);
1343 /* left and right borders */
1344 if (srcHeight == dstHeight) {
1345 /* copy border pixel from src to dst */
1346 for (row = 1; row < srcHeight; row++) {
1347 MEMCPY(dstPtr + dstWidth * row * bpt,
1348 srcPtr + srcWidth * row * bpt, bpt);
1349 MEMCPY(dstPtr + (dstWidth * row + dstWidth - 1) * bpt,
1350 srcPtr + (srcWidth * row + srcWidth - 1) * bpt, bpt);
1351 }
1352 }
1353 else {
1354 /* average two src pixels each dest pixel */
1355 for (row = 0; row < dstHeightNB; row += 2) {
1356 do_row(datatype, comps, 1,
1357 srcPtr + (srcWidth * (row * 2 + 1)) * bpt,
1358 srcPtr + (srcWidth * (row * 2 + 2)) * bpt,
1359 1, dstPtr + (dstWidth * row + 1) * bpt);
1360 do_row(datatype, comps, 1,
1361 srcPtr + (srcWidth * (row * 2 + 1) + srcWidth - 1) * bpt,
1362 srcPtr + (srcWidth * (row * 2 + 2) + srcWidth - 1) * bpt,
1363 1, dstPtr + (dstWidth * row + 1 + dstWidth - 1) * bpt);
1364 }
1365 }
1366 }
1367 }
1368 }
1369
1370
1371 /**
1372 * Down-sample a texture image to produce the next lower mipmap level.
1373 * \param comps components per texel (1, 2, 3 or 4)
1374 * \param srcRowStride stride between source rows, in texels
1375 * \param dstRowStride stride between destination rows, in texels
1376 */
1377 void
1378 _mesa_generate_mipmap_level(GLenum target,
1379 GLenum datatype, GLuint comps,
1380 GLint border,
1381 GLint srcWidth, GLint srcHeight, GLint srcDepth,
1382 const GLubyte *srcData,
1383 GLint srcRowStride,
1384 GLint dstWidth, GLint dstHeight, GLint dstDepth,
1385 GLubyte *dstData,
1386 GLint dstRowStride)
1387 {
1388 /*
1389 * We use simple 2x2 averaging to compute the next mipmap level.
1390 */
1391 switch (target) {
1392 case GL_TEXTURE_1D:
1393 make_1d_mipmap(datatype, comps, border,
1394 srcWidth, srcData,
1395 dstWidth, dstData);
1396 break;
1397 case GL_TEXTURE_2D:
1398 case GL_TEXTURE_CUBE_MAP_POSITIVE_X_ARB:
1399 case GL_TEXTURE_CUBE_MAP_NEGATIVE_X_ARB:
1400 case GL_TEXTURE_CUBE_MAP_POSITIVE_Y_ARB:
1401 case GL_TEXTURE_CUBE_MAP_NEGATIVE_Y_ARB:
1402 case GL_TEXTURE_CUBE_MAP_POSITIVE_Z_ARB:
1403 case GL_TEXTURE_CUBE_MAP_NEGATIVE_Z_ARB:
1404 make_2d_mipmap(datatype, comps, border,
1405 srcWidth, srcHeight, srcData, srcRowStride,
1406 dstWidth, dstHeight, dstData, dstRowStride);
1407 break;
1408 case GL_TEXTURE_3D:
1409 make_3d_mipmap(datatype, comps, border,
1410 srcWidth, srcHeight, srcDepth,
1411 srcData, srcRowStride,
1412 dstWidth, dstHeight, dstDepth,
1413 dstData, dstRowStride);
1414 break;
1415 case GL_TEXTURE_1D_ARRAY_EXT:
1416 make_1d_stack_mipmap(datatype, comps, border,
1417 srcWidth, srcData, srcRowStride,
1418 dstWidth, dstHeight,
1419 dstData, dstRowStride);
1420 break;
1421 case GL_TEXTURE_2D_ARRAY_EXT:
1422 make_2d_stack_mipmap(datatype, comps, border,
1423 srcWidth, srcHeight,
1424 srcData, srcRowStride,
1425 dstWidth, dstHeight,
1426 dstDepth, dstData, dstRowStride);
1427 break;
1428 case GL_TEXTURE_RECTANGLE_NV:
1429 /* no mipmaps, do nothing */
1430 break;
1431 default:
1432 _mesa_problem(NULL, "bad dimensions in _mesa_generate_mipmaps");
1433 return;
1434 }
1435 }
1436
1437
1438 /**
1439 * compute next (level+1) image size
1440 * \return GL_FALSE if no smaller size can be generated (eg. src is 1x1x1 size)
1441 */
1442 static GLboolean
1443 next_mipmap_level_size(GLenum target, GLint border,
1444 GLint srcWidth, GLint srcHeight, GLint srcDepth,
1445 GLint *dstWidth, GLint *dstHeight, GLint *dstDepth)
1446 {
1447 if (srcWidth - 2 * border > 1) {
1448 *dstWidth = (srcWidth - 2 * border) / 2 + 2 * border;
1449 }
1450 else {
1451 *dstWidth = srcWidth; /* can't go smaller */
1452 }
1453
1454 if ((srcHeight - 2 * border > 1) &&
1455 (target != GL_TEXTURE_1D_ARRAY_EXT)) {
1456 *dstHeight = (srcHeight - 2 * border) / 2 + 2 * border;
1457 }
1458 else {
1459 *dstHeight = srcHeight; /* can't go smaller */
1460 }
1461
1462 if ((srcDepth - 2 * border > 1) &&
1463 (target != GL_TEXTURE_2D_ARRAY_EXT)) {
1464 *dstDepth = (srcDepth - 2 * border) / 2 + 2 * border;
1465 }
1466 else {
1467 *dstDepth = srcDepth; /* can't go smaller */
1468 }
1469
1470 if (*dstWidth == srcWidth &&
1471 *dstHeight == srcHeight &&
1472 *dstDepth == srcDepth) {
1473 return GL_FALSE;
1474 }
1475 else {
1476 return GL_TRUE;
1477 }
1478 }
1479
1480
1481
1482
1483 /**
1484 * Automatic mipmap generation.
1485 * This is the fallback/default function for ctx->Driver.GenerateMipmap().
1486 * Generate a complete set of mipmaps from texObj's BaseLevel image.
1487 * Stop at texObj's MaxLevel or when we get to the 1x1 texture.
1488 * For cube maps, target will be one of
1489 * GL_TEXTURE_CUBE_MAP_POSITIVE/NEGATIVE_X/Y/Z; never GL_TEXTURE_CUBE_MAP.
1490 */
1491 void
1492 _mesa_generate_mipmap(GLcontext *ctx, GLenum target,
1493 struct gl_texture_object *texObj)
1494 {
1495 const struct gl_texture_image *srcImage;
1496 const struct gl_texture_format *convertFormat;
1497 const GLubyte *srcData = NULL;
1498 GLubyte *dstData = NULL;
1499 GLint level, maxLevels;
1500 GLenum datatype;
1501 GLuint comps;
1502
1503 ASSERT(texObj);
1504 /* XXX choose cube map face here??? */
1505 srcImage = texObj->Image[0][texObj->BaseLevel];
1506 ASSERT(srcImage);
1507
1508 maxLevels = _mesa_max_texture_levels(ctx, texObj->Target);
1509 ASSERT(maxLevels > 0); /* bad target */
1510
1511 /* Find convertFormat - the format that do_row() will process */
1512 if (srcImage->IsCompressed) {
1513 /* setup for compressed textures - need to allocate temporary
1514 * image buffers to hold uncompressed images.
1515 */
1516 GLuint row;
1517 GLint components, size;
1518 GLchan *dst;
1519
1520 assert(texObj->Target == GL_TEXTURE_2D ||
1521 texObj->Target == GL_TEXTURE_CUBE_MAP_ARB);
1522
1523 if (srcImage->_BaseFormat == GL_RGB) {
1524 convertFormat = &_mesa_texformat_rgb;
1525 components = 3;
1526 }
1527 else if (srcImage->_BaseFormat == GL_RGBA) {
1528 convertFormat = &_mesa_texformat_rgba;
1529 components = 4;
1530 }
1531 else {
1532 _mesa_problem(ctx, "bad srcImage->_BaseFormat in _mesa_generate_mipmaps");
1533 return;
1534 }
1535
1536 /* allocate storage for uncompressed GL_RGB or GL_RGBA images */
1537 size = _mesa_bytes_per_pixel(srcImage->_BaseFormat, CHAN_TYPE)
1538 * srcImage->Width * srcImage->Height * srcImage->Depth + 20;
1539 /* 20 extra bytes, just be safe when calling last FetchTexel */
1540 srcData = (GLubyte *) _mesa_malloc(size);
1541 if (!srcData) {
1542 _mesa_error(ctx, GL_OUT_OF_MEMORY, "generate mipmaps");
1543 return;
1544 }
1545 dstData = (GLubyte *) _mesa_malloc(size / 2); /* 1/4 would probably be OK */
1546 if (!dstData) {
1547 _mesa_error(ctx, GL_OUT_OF_MEMORY, "generate mipmaps");
1548 _mesa_free((void *) srcData);
1549 return;
1550 }
1551
1552 /* decompress base image here */
1553 dst = (GLchan *) srcData;
1554 for (row = 0; row < srcImage->Height; row++) {
1555 GLuint col;
1556 for (col = 0; col < srcImage->Width; col++) {
1557 srcImage->FetchTexelc(srcImage, col, row, 0, dst);
1558 dst += components;
1559 }
1560 }
1561 }
1562 else {
1563 /* uncompressed */
1564 convertFormat = srcImage->TexFormat;
1565 }
1566
1567 _mesa_format_to_type_and_comps(convertFormat, &datatype, &comps);
1568
1569 for (level = texObj->BaseLevel; level < texObj->MaxLevel
1570 && level < maxLevels - 1; level++) {
1571 /* generate image[level+1] from image[level] */
1572 const struct gl_texture_image *srcImage;
1573 struct gl_texture_image *dstImage;
1574 GLint srcWidth, srcHeight, srcDepth;
1575 GLint dstWidth, dstHeight, dstDepth;
1576 GLint border, bytesPerTexel;
1577 GLboolean nextLevel;
1578
1579 /* get src image parameters */
1580 srcImage = _mesa_select_tex_image(ctx, texObj, target, level);
1581 ASSERT(srcImage);
1582 srcWidth = srcImage->Width;
1583 srcHeight = srcImage->Height;
1584 srcDepth = srcImage->Depth;
1585 border = srcImage->Border;
1586
1587 nextLevel = next_mipmap_level_size(target, border,
1588 srcWidth, srcHeight, srcDepth,
1589 &dstWidth, &dstHeight, &dstDepth);
1590 if (!nextLevel) {
1591 /* all done */
1592 break;
1593 }
1594
1595 /* get dest gl_texture_image */
1596 dstImage = _mesa_get_tex_image(ctx, texObj, target, level + 1);
1597 if (!dstImage) {
1598 _mesa_error(ctx, GL_OUT_OF_MEMORY, "generating mipmaps");
1599 return;
1600 }
1601
1602 /* Free old image data */
1603 if (dstImage->Data)
1604 ctx->Driver.FreeTexImageData(ctx, dstImage);
1605
1606 /* initialize new image */
1607 _mesa_init_teximage_fields(ctx, target, dstImage, dstWidth, dstHeight,
1608 dstDepth, border, srcImage->InternalFormat);
1609 dstImage->DriverData = NULL;
1610 dstImage->TexFormat = srcImage->TexFormat;
1611 dstImage->FetchTexelc = srcImage->FetchTexelc;
1612 dstImage->FetchTexelf = srcImage->FetchTexelf;
1613 dstImage->IsCompressed = srcImage->IsCompressed;
1614 if (dstImage->IsCompressed) {
1615 dstImage->CompressedSize
1616 = ctx->Driver.CompressedTextureSize(ctx, dstImage->Width,
1617 dstImage->Height,
1618 dstImage->Depth,
1619 dstImage->TexFormat->MesaFormat);
1620 ASSERT(dstImage->CompressedSize > 0);
1621 }
1622
1623 ASSERT(dstImage->TexFormat);
1624 ASSERT(dstImage->FetchTexelc);
1625 ASSERT(dstImage->FetchTexelf);
1626
1627 /* Alloc new teximage data buffer.
1628 * Setup src and dest data pointers.
1629 */
1630 if (dstImage->IsCompressed) {
1631 dstImage->Data = _mesa_alloc_texmemory(dstImage->CompressedSize);
1632 if (!dstImage->Data) {
1633 _mesa_error(ctx, GL_OUT_OF_MEMORY, "generating mipmaps");
1634 return;
1635 }
1636 /* srcData and dstData are already set */
1637 ASSERT(srcData);
1638 ASSERT(dstData);
1639 }
1640 else {
1641 bytesPerTexel = dstImage->TexFormat->TexelBytes;
1642 ASSERT(dstWidth * dstHeight * dstDepth * bytesPerTexel > 0);
1643 dstImage->Data = _mesa_alloc_texmemory(dstWidth * dstHeight
1644 * dstDepth * bytesPerTexel);
1645 if (!dstImage->Data) {
1646 _mesa_error(ctx, GL_OUT_OF_MEMORY, "generating mipmaps");
1647 return;
1648 }
1649 srcData = (const GLubyte *) srcImage->Data;
1650 dstData = (GLubyte *) dstImage->Data;
1651 }
1652
1653 _mesa_generate_mipmap_level(target, datatype, comps, border,
1654 srcWidth, srcHeight, srcDepth,
1655 srcData, srcImage->RowStride,
1656 dstWidth, dstHeight, dstDepth,
1657 dstData, dstImage->RowStride);
1658
1659
1660 if (dstImage->IsCompressed) {
1661 GLubyte *temp;
1662 /* compress image from dstData into dstImage->Data */
1663 const GLenum srcFormat = convertFormat->BaseFormat;
1664 GLint dstRowStride
1665 = _mesa_compressed_row_stride(dstImage->TexFormat->MesaFormat, dstWidth);
1666 ASSERT(srcFormat == GL_RGB || srcFormat == GL_RGBA);
1667 dstImage->TexFormat->StoreImage(ctx, 2, dstImage->_BaseFormat,
1668 dstImage->TexFormat,
1669 dstImage->Data,
1670 0, 0, 0, /* dstX/Y/Zoffset */
1671 dstRowStride, 0, /* strides */
1672 dstWidth, dstHeight, 1, /* size */
1673 srcFormat, CHAN_TYPE,
1674 dstData, /* src data, actually */
1675 &ctx->DefaultPacking);
1676 /* swap src and dest pointers */
1677 temp = (GLubyte *) srcData;
1678 srcData = dstData;
1679 dstData = temp;
1680 }
1681
1682 } /* loop over mipmap levels */
1683
1684 if (srcImage->IsCompressed) {
1685 /* free uncompressed image buffers */
1686 _mesa_free((void *) srcData);
1687 _mesa_free(dstData);
1688 }
1689 }
1690
1691
1692 /**
1693 * Helper function for drivers which need to rescale texture images to
1694 * certain aspect ratios.
1695 * Nearest filtering only (for broken hardware that can't support
1696 * all aspect ratios). This can be made a lot faster, but I don't
1697 * really care enough...
1698 */
1699 void
1700 _mesa_rescale_teximage2d(GLuint bytesPerPixel,
1701 GLuint srcStrideInPixels,
1702 GLuint dstRowStride,
1703 GLint srcWidth, GLint srcHeight,
1704 GLint dstWidth, GLint dstHeight,
1705 const GLvoid *srcImage, GLvoid *dstImage)
1706 {
1707 GLint row, col;
1708
1709 #define INNER_LOOP( TYPE, HOP, WOP ) \
1710 for ( row = 0 ; row < dstHeight ; row++ ) { \
1711 GLint srcRow = row HOP hScale; \
1712 for ( col = 0 ; col < dstWidth ; col++ ) { \
1713 GLint srcCol = col WOP wScale; \
1714 dst[col] = src[srcRow * srcStrideInPixels + srcCol]; \
1715 } \
1716 dst = (TYPE *) ((GLubyte *) dst + dstRowStride); \
1717 } \
1718
1719 #define RESCALE_IMAGE( TYPE ) \
1720 do { \
1721 const TYPE *src = (const TYPE *)srcImage; \
1722 TYPE *dst = (TYPE *)dstImage; \
1723 \
1724 if ( srcHeight < dstHeight ) { \
1725 const GLint hScale = dstHeight / srcHeight; \
1726 if ( srcWidth < dstWidth ) { \
1727 const GLint wScale = dstWidth / srcWidth; \
1728 INNER_LOOP( TYPE, /, / ); \
1729 } \
1730 else { \
1731 const GLint wScale = srcWidth / dstWidth; \
1732 INNER_LOOP( TYPE, /, * ); \
1733 } \
1734 } \
1735 else { \
1736 const GLint hScale = srcHeight / dstHeight; \
1737 if ( srcWidth < dstWidth ) { \
1738 const GLint wScale = dstWidth / srcWidth; \
1739 INNER_LOOP( TYPE, *, / ); \
1740 } \
1741 else { \
1742 const GLint wScale = srcWidth / dstWidth; \
1743 INNER_LOOP( TYPE, *, * ); \
1744 } \
1745 } \
1746 } while (0)
1747
1748 switch ( bytesPerPixel ) {
1749 case 4:
1750 RESCALE_IMAGE( GLuint );
1751 break;
1752
1753 case 2:
1754 RESCALE_IMAGE( GLushort );
1755 break;
1756
1757 case 1:
1758 RESCALE_IMAGE( GLubyte );
1759 break;
1760 default:
1761 _mesa_problem(NULL,"unexpected bytes/pixel in _mesa_rescale_teximage2d");
1762 }
1763 }
1764
1765
1766 /**
1767 * Upscale an image by replication, not (typical) stretching.
1768 * We use this when the image width or height is less than a
1769 * certain size (4, 8) and we need to upscale an image.
1770 */
1771 void
1772 _mesa_upscale_teximage2d(GLsizei inWidth, GLsizei inHeight,
1773 GLsizei outWidth, GLsizei outHeight,
1774 GLint comps, const GLchan *src, GLint srcRowStride,
1775 GLchan *dest )
1776 {
1777 GLint i, j, k;
1778
1779 ASSERT(outWidth >= inWidth);
1780 ASSERT(outHeight >= inHeight);
1781 #if 0
1782 ASSERT(inWidth == 1 || inWidth == 2 || inHeight == 1 || inHeight == 2);
1783 ASSERT((outWidth & 3) == 0);
1784 ASSERT((outHeight & 3) == 0);
1785 #endif
1786
1787 for (i = 0; i < outHeight; i++) {
1788 const GLint ii = i % inHeight;
1789 for (j = 0; j < outWidth; j++) {
1790 const GLint jj = j % inWidth;
1791 for (k = 0; k < comps; k++) {
1792 dest[(i * outWidth + j) * comps + k]
1793 = src[ii * srcRowStride + jj * comps + k];
1794 }
1795 }
1796 }
1797 }
1798