mesa: make _mesa_prepare_mipmap_level() static
[mesa.git] / src / mesa / main / mipmap.c
1 /*
2 * Mesa 3-D graphics library
3 *
4 * Copyright (C) 1999-2007 Brian Paul All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included
14 * in all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
17 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25
26 /**
27 * \file mipmap.c mipmap generation and teximage resizing functions.
28 */
29
30 #include "imports.h"
31 #include "formats.h"
32 #include "glformats.h"
33 #include "mipmap.h"
34 #include "mtypes.h"
35 #include "teximage.h"
36 #include "texobj.h"
37 #include "texstore.h"
38 #include "image.h"
39 #include "macros.h"
40 #include "util/half_float.h"
41 #include "../../gallium/auxiliary/util/u_format_rgb9e5.h"
42 #include "../../gallium/auxiliary/util/u_format_r11g11b10f.h"
43
44
45
46 static GLint
47 bytes_per_pixel(GLenum datatype, GLuint comps)
48 {
49 GLint b;
50
51 if (datatype == GL_UNSIGNED_INT_8_24_REV_MESA ||
52 datatype == GL_UNSIGNED_INT_24_8_MESA)
53 return 4;
54
55 b = _mesa_sizeof_packed_type(datatype);
56 assert(b >= 0);
57
58 if (_mesa_type_is_packed(datatype))
59 return b;
60 else
61 return b * comps;
62 }
63
64
65 /**
66 * \name Support macros for do_row and do_row_3d
67 *
68 * The macro madness is here for two reasons. First, it compacts the code
69 * slightly. Second, it makes it much easier to adjust the specifics of the
70 * filter to tune the rounding characteristics.
71 */
72 /*@{*/
73 #define DECLARE_ROW_POINTERS(t, e) \
74 const t(*rowA)[e] = (const t(*)[e]) srcRowA; \
75 const t(*rowB)[e] = (const t(*)[e]) srcRowB; \
76 const t(*rowC)[e] = (const t(*)[e]) srcRowC; \
77 const t(*rowD)[e] = (const t(*)[e]) srcRowD; \
78 t(*dst)[e] = (t(*)[e]) dstRow
79
80 #define DECLARE_ROW_POINTERS0(t) \
81 const t *rowA = (const t *) srcRowA; \
82 const t *rowB = (const t *) srcRowB; \
83 const t *rowC = (const t *) srcRowC; \
84 const t *rowD = (const t *) srcRowD; \
85 t *dst = (t *) dstRow
86
87 #define FILTER_SUM_3D(Aj, Ak, Bj, Bk, Cj, Ck, Dj, Dk) \
88 ((unsigned) Aj + (unsigned) Ak \
89 + (unsigned) Bj + (unsigned) Bk \
90 + (unsigned) Cj + (unsigned) Ck \
91 + (unsigned) Dj + (unsigned) Dk \
92 + 4) >> 3
93
94 #define FILTER_3D(e) \
95 do { \
96 dst[i][e] = FILTER_SUM_3D(rowA[j][e], rowA[k][e], \
97 rowB[j][e], rowB[k][e], \
98 rowC[j][e], rowC[k][e], \
99 rowD[j][e], rowD[k][e]); \
100 } while(0)
101
102 #define FILTER_SUM_3D_SIGNED(Aj, Ak, Bj, Bk, Cj, Ck, Dj, Dk) \
103 (Aj + Ak \
104 + Bj + Bk \
105 + Cj + Ck \
106 + Dj + Dk \
107 + 4) / 8
108
109 #define FILTER_3D_SIGNED(e) \
110 do { \
111 dst[i][e] = FILTER_SUM_3D_SIGNED(rowA[j][e], rowA[k][e], \
112 rowB[j][e], rowB[k][e], \
113 rowC[j][e], rowC[k][e], \
114 rowD[j][e], rowD[k][e]); \
115 } while(0)
116
117 #define FILTER_F_3D(e) \
118 do { \
119 dst[i][e] = (rowA[j][e] + rowA[k][e] \
120 + rowB[j][e] + rowB[k][e] \
121 + rowC[j][e] + rowC[k][e] \
122 + rowD[j][e] + rowD[k][e]) * 0.125F; \
123 } while(0)
124
125 #define FILTER_HF_3D(e) \
126 do { \
127 const GLfloat aj = _mesa_half_to_float(rowA[j][e]); \
128 const GLfloat ak = _mesa_half_to_float(rowA[k][e]); \
129 const GLfloat bj = _mesa_half_to_float(rowB[j][e]); \
130 const GLfloat bk = _mesa_half_to_float(rowB[k][e]); \
131 const GLfloat cj = _mesa_half_to_float(rowC[j][e]); \
132 const GLfloat ck = _mesa_half_to_float(rowC[k][e]); \
133 const GLfloat dj = _mesa_half_to_float(rowD[j][e]); \
134 const GLfloat dk = _mesa_half_to_float(rowD[k][e]); \
135 dst[i][e] = _mesa_float_to_half((aj + ak + bj + bk + cj + ck + dj + dk) \
136 * 0.125F); \
137 } while(0)
138 /*@}*/
139
140
141 /**
142 * Average together two rows of a source image to produce a single new
143 * row in the dest image. It's legal for the two source rows to point
144 * to the same data. The source width must be equal to either the
145 * dest width or two times the dest width.
146 * \param datatype GL_UNSIGNED_BYTE, GL_UNSIGNED_SHORT, GL_FLOAT, etc.
147 * \param comps number of components per pixel (1..4)
148 */
149 static void
150 do_row(GLenum datatype, GLuint comps, GLint srcWidth,
151 const GLvoid *srcRowA, const GLvoid *srcRowB,
152 GLint dstWidth, GLvoid *dstRow)
153 {
154 const GLuint k0 = (srcWidth == dstWidth) ? 0 : 1;
155 const GLuint colStride = (srcWidth == dstWidth) ? 1 : 2;
156
157 assert(comps >= 1);
158 assert(comps <= 4);
159
160 /* This assertion is no longer valid with non-power-of-2 textures
161 assert(srcWidth == dstWidth || srcWidth == 2 * dstWidth);
162 */
163
164 if (datatype == GL_UNSIGNED_BYTE && comps == 4) {
165 GLuint i, j, k;
166 const GLubyte(*rowA)[4] = (const GLubyte(*)[4]) srcRowA;
167 const GLubyte(*rowB)[4] = (const GLubyte(*)[4]) srcRowB;
168 GLubyte(*dst)[4] = (GLubyte(*)[4]) dstRow;
169 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
170 i++, j += colStride, k += colStride) {
171 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
172 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
173 dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
174 dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) / 4;
175 }
176 }
177 else if (datatype == GL_UNSIGNED_BYTE && comps == 3) {
178 GLuint i, j, k;
179 const GLubyte(*rowA)[3] = (const GLubyte(*)[3]) srcRowA;
180 const GLubyte(*rowB)[3] = (const GLubyte(*)[3]) srcRowB;
181 GLubyte(*dst)[3] = (GLubyte(*)[3]) dstRow;
182 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
183 i++, j += colStride, k += colStride) {
184 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
185 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
186 dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
187 }
188 }
189 else if (datatype == GL_UNSIGNED_BYTE && comps == 2) {
190 GLuint i, j, k;
191 const GLubyte(*rowA)[2] = (const GLubyte(*)[2]) srcRowA;
192 const GLubyte(*rowB)[2] = (const GLubyte(*)[2]) srcRowB;
193 GLubyte(*dst)[2] = (GLubyte(*)[2]) dstRow;
194 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
195 i++, j += colStride, k += colStride) {
196 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) >> 2;
197 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) >> 2;
198 }
199 }
200 else if (datatype == GL_UNSIGNED_BYTE && comps == 1) {
201 GLuint i, j, k;
202 const GLubyte *rowA = (const GLubyte *) srcRowA;
203 const GLubyte *rowB = (const GLubyte *) srcRowB;
204 GLubyte *dst = (GLubyte *) dstRow;
205 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
206 i++, j += colStride, k += colStride) {
207 dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) >> 2;
208 }
209 }
210
211 else if (datatype == GL_BYTE && comps == 4) {
212 GLuint i, j, k;
213 const GLbyte(*rowA)[4] = (const GLbyte(*)[4]) srcRowA;
214 const GLbyte(*rowB)[4] = (const GLbyte(*)[4]) srcRowB;
215 GLbyte(*dst)[4] = (GLbyte(*)[4]) dstRow;
216 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
217 i++, j += colStride, k += colStride) {
218 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
219 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
220 dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
221 dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) / 4;
222 }
223 }
224 else if (datatype == GL_BYTE && comps == 3) {
225 GLuint i, j, k;
226 const GLbyte(*rowA)[3] = (const GLbyte(*)[3]) srcRowA;
227 const GLbyte(*rowB)[3] = (const GLbyte(*)[3]) srcRowB;
228 GLbyte(*dst)[3] = (GLbyte(*)[3]) dstRow;
229 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
230 i++, j += colStride, k += colStride) {
231 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
232 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
233 dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
234 }
235 }
236 else if (datatype == GL_BYTE && comps == 2) {
237 GLuint i, j, k;
238 const GLbyte(*rowA)[2] = (const GLbyte(*)[2]) srcRowA;
239 const GLbyte(*rowB)[2] = (const GLbyte(*)[2]) srcRowB;
240 GLbyte(*dst)[2] = (GLbyte(*)[2]) dstRow;
241 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
242 i++, j += colStride, k += colStride) {
243 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
244 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
245 }
246 }
247 else if (datatype == GL_BYTE && comps == 1) {
248 GLuint i, j, k;
249 const GLbyte *rowA = (const GLbyte *) srcRowA;
250 const GLbyte *rowB = (const GLbyte *) srcRowB;
251 GLbyte *dst = (GLbyte *) dstRow;
252 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
253 i++, j += colStride, k += colStride) {
254 dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) / 4;
255 }
256 }
257
258 else if (datatype == GL_UNSIGNED_SHORT && comps == 4) {
259 GLuint i, j, k;
260 const GLushort(*rowA)[4] = (const GLushort(*)[4]) srcRowA;
261 const GLushort(*rowB)[4] = (const GLushort(*)[4]) srcRowB;
262 GLushort(*dst)[4] = (GLushort(*)[4]) dstRow;
263 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
264 i++, j += colStride, k += colStride) {
265 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
266 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
267 dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
268 dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) / 4;
269 }
270 }
271 else if (datatype == GL_UNSIGNED_SHORT && comps == 3) {
272 GLuint i, j, k;
273 const GLushort(*rowA)[3] = (const GLushort(*)[3]) srcRowA;
274 const GLushort(*rowB)[3] = (const GLushort(*)[3]) srcRowB;
275 GLushort(*dst)[3] = (GLushort(*)[3]) dstRow;
276 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
277 i++, j += colStride, k += colStride) {
278 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
279 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
280 dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
281 }
282 }
283 else if (datatype == GL_UNSIGNED_SHORT && comps == 2) {
284 GLuint i, j, k;
285 const GLushort(*rowA)[2] = (const GLushort(*)[2]) srcRowA;
286 const GLushort(*rowB)[2] = (const GLushort(*)[2]) srcRowB;
287 GLushort(*dst)[2] = (GLushort(*)[2]) dstRow;
288 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
289 i++, j += colStride, k += colStride) {
290 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
291 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
292 }
293 }
294 else if (datatype == GL_UNSIGNED_SHORT && comps == 1) {
295 GLuint i, j, k;
296 const GLushort *rowA = (const GLushort *) srcRowA;
297 const GLushort *rowB = (const GLushort *) srcRowB;
298 GLushort *dst = (GLushort *) dstRow;
299 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
300 i++, j += colStride, k += colStride) {
301 dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) / 4;
302 }
303 }
304
305 else if (datatype == GL_SHORT && comps == 4) {
306 GLuint i, j, k;
307 const GLshort(*rowA)[4] = (const GLshort(*)[4]) srcRowA;
308 const GLshort(*rowB)[4] = (const GLshort(*)[4]) srcRowB;
309 GLshort(*dst)[4] = (GLshort(*)[4]) dstRow;
310 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
311 i++, j += colStride, k += colStride) {
312 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
313 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
314 dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
315 dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) / 4;
316 }
317 }
318 else if (datatype == GL_SHORT && comps == 3) {
319 GLuint i, j, k;
320 const GLshort(*rowA)[3] = (const GLshort(*)[3]) srcRowA;
321 const GLshort(*rowB)[3] = (const GLshort(*)[3]) srcRowB;
322 GLshort(*dst)[3] = (GLshort(*)[3]) dstRow;
323 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
324 i++, j += colStride, k += colStride) {
325 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
326 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
327 dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
328 }
329 }
330 else if (datatype == GL_SHORT && comps == 2) {
331 GLuint i, j, k;
332 const GLshort(*rowA)[2] = (const GLshort(*)[2]) srcRowA;
333 const GLshort(*rowB)[2] = (const GLshort(*)[2]) srcRowB;
334 GLshort(*dst)[2] = (GLshort(*)[2]) dstRow;
335 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
336 i++, j += colStride, k += colStride) {
337 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
338 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
339 }
340 }
341 else if (datatype == GL_SHORT && comps == 1) {
342 GLuint i, j, k;
343 const GLshort *rowA = (const GLshort *) srcRowA;
344 const GLshort *rowB = (const GLshort *) srcRowB;
345 GLshort *dst = (GLshort *) dstRow;
346 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
347 i++, j += colStride, k += colStride) {
348 dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) / 4;
349 }
350 }
351
352 else if (datatype == GL_FLOAT && comps == 4) {
353 GLuint i, j, k;
354 const GLfloat(*rowA)[4] = (const GLfloat(*)[4]) srcRowA;
355 const GLfloat(*rowB)[4] = (const GLfloat(*)[4]) srcRowB;
356 GLfloat(*dst)[4] = (GLfloat(*)[4]) dstRow;
357 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
358 i++, j += colStride, k += colStride) {
359 dst[i][0] = (rowA[j][0] + rowA[k][0] +
360 rowB[j][0] + rowB[k][0]) * 0.25F;
361 dst[i][1] = (rowA[j][1] + rowA[k][1] +
362 rowB[j][1] + rowB[k][1]) * 0.25F;
363 dst[i][2] = (rowA[j][2] + rowA[k][2] +
364 rowB[j][2] + rowB[k][2]) * 0.25F;
365 dst[i][3] = (rowA[j][3] + rowA[k][3] +
366 rowB[j][3] + rowB[k][3]) * 0.25F;
367 }
368 }
369 else if (datatype == GL_FLOAT && comps == 3) {
370 GLuint i, j, k;
371 const GLfloat(*rowA)[3] = (const GLfloat(*)[3]) srcRowA;
372 const GLfloat(*rowB)[3] = (const GLfloat(*)[3]) srcRowB;
373 GLfloat(*dst)[3] = (GLfloat(*)[3]) dstRow;
374 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
375 i++, j += colStride, k += colStride) {
376 dst[i][0] = (rowA[j][0] + rowA[k][0] +
377 rowB[j][0] + rowB[k][0]) * 0.25F;
378 dst[i][1] = (rowA[j][1] + rowA[k][1] +
379 rowB[j][1] + rowB[k][1]) * 0.25F;
380 dst[i][2] = (rowA[j][2] + rowA[k][2] +
381 rowB[j][2] + rowB[k][2]) * 0.25F;
382 }
383 }
384 else if (datatype == GL_FLOAT && comps == 2) {
385 GLuint i, j, k;
386 const GLfloat(*rowA)[2] = (const GLfloat(*)[2]) srcRowA;
387 const GLfloat(*rowB)[2] = (const GLfloat(*)[2]) srcRowB;
388 GLfloat(*dst)[2] = (GLfloat(*)[2]) dstRow;
389 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
390 i++, j += colStride, k += colStride) {
391 dst[i][0] = (rowA[j][0] + rowA[k][0] +
392 rowB[j][0] + rowB[k][0]) * 0.25F;
393 dst[i][1] = (rowA[j][1] + rowA[k][1] +
394 rowB[j][1] + rowB[k][1]) * 0.25F;
395 }
396 }
397 else if (datatype == GL_FLOAT && comps == 1) {
398 GLuint i, j, k;
399 const GLfloat *rowA = (const GLfloat *) srcRowA;
400 const GLfloat *rowB = (const GLfloat *) srcRowB;
401 GLfloat *dst = (GLfloat *) dstRow;
402 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
403 i++, j += colStride, k += colStride) {
404 dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) * 0.25F;
405 }
406 }
407
408 else if (datatype == GL_HALF_FLOAT_ARB && comps == 4) {
409 GLuint i, j, k, comp;
410 const GLhalfARB(*rowA)[4] = (const GLhalfARB(*)[4]) srcRowA;
411 const GLhalfARB(*rowB)[4] = (const GLhalfARB(*)[4]) srcRowB;
412 GLhalfARB(*dst)[4] = (GLhalfARB(*)[4]) dstRow;
413 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
414 i++, j += colStride, k += colStride) {
415 for (comp = 0; comp < 4; comp++) {
416 GLfloat aj, ak, bj, bk;
417 aj = _mesa_half_to_float(rowA[j][comp]);
418 ak = _mesa_half_to_float(rowA[k][comp]);
419 bj = _mesa_half_to_float(rowB[j][comp]);
420 bk = _mesa_half_to_float(rowB[k][comp]);
421 dst[i][comp] = _mesa_float_to_half((aj + ak + bj + bk) * 0.25F);
422 }
423 }
424 }
425 else if (datatype == GL_HALF_FLOAT_ARB && comps == 3) {
426 GLuint i, j, k, comp;
427 const GLhalfARB(*rowA)[3] = (const GLhalfARB(*)[3]) srcRowA;
428 const GLhalfARB(*rowB)[3] = (const GLhalfARB(*)[3]) srcRowB;
429 GLhalfARB(*dst)[3] = (GLhalfARB(*)[3]) dstRow;
430 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
431 i++, j += colStride, k += colStride) {
432 for (comp = 0; comp < 3; comp++) {
433 GLfloat aj, ak, bj, bk;
434 aj = _mesa_half_to_float(rowA[j][comp]);
435 ak = _mesa_half_to_float(rowA[k][comp]);
436 bj = _mesa_half_to_float(rowB[j][comp]);
437 bk = _mesa_half_to_float(rowB[k][comp]);
438 dst[i][comp] = _mesa_float_to_half((aj + ak + bj + bk) * 0.25F);
439 }
440 }
441 }
442 else if (datatype == GL_HALF_FLOAT_ARB && comps == 2) {
443 GLuint i, j, k, comp;
444 const GLhalfARB(*rowA)[2] = (const GLhalfARB(*)[2]) srcRowA;
445 const GLhalfARB(*rowB)[2] = (const GLhalfARB(*)[2]) srcRowB;
446 GLhalfARB(*dst)[2] = (GLhalfARB(*)[2]) dstRow;
447 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
448 i++, j += colStride, k += colStride) {
449 for (comp = 0; comp < 2; comp++) {
450 GLfloat aj, ak, bj, bk;
451 aj = _mesa_half_to_float(rowA[j][comp]);
452 ak = _mesa_half_to_float(rowA[k][comp]);
453 bj = _mesa_half_to_float(rowB[j][comp]);
454 bk = _mesa_half_to_float(rowB[k][comp]);
455 dst[i][comp] = _mesa_float_to_half((aj + ak + bj + bk) * 0.25F);
456 }
457 }
458 }
459 else if (datatype == GL_HALF_FLOAT_ARB && comps == 1) {
460 GLuint i, j, k;
461 const GLhalfARB *rowA = (const GLhalfARB *) srcRowA;
462 const GLhalfARB *rowB = (const GLhalfARB *) srcRowB;
463 GLhalfARB *dst = (GLhalfARB *) dstRow;
464 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
465 i++, j += colStride, k += colStride) {
466 GLfloat aj, ak, bj, bk;
467 aj = _mesa_half_to_float(rowA[j]);
468 ak = _mesa_half_to_float(rowA[k]);
469 bj = _mesa_half_to_float(rowB[j]);
470 bk = _mesa_half_to_float(rowB[k]);
471 dst[i] = _mesa_float_to_half((aj + ak + bj + bk) * 0.25F);
472 }
473 }
474
475 else if (datatype == GL_UNSIGNED_INT && comps == 1) {
476 GLuint i, j, k;
477 const GLuint *rowA = (const GLuint *) srcRowA;
478 const GLuint *rowB = (const GLuint *) srcRowB;
479 GLuint *dst = (GLuint *) dstRow;
480 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
481 i++, j += colStride, k += colStride) {
482 dst[i] = rowA[j] / 4 + rowA[k] / 4 + rowB[j] / 4 + rowB[k] / 4;
483 }
484 }
485
486 else if (datatype == GL_UNSIGNED_SHORT_5_6_5 && comps == 3) {
487 GLuint i, j, k;
488 const GLushort *rowA = (const GLushort *) srcRowA;
489 const GLushort *rowB = (const GLushort *) srcRowB;
490 GLushort *dst = (GLushort *) dstRow;
491 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
492 i++, j += colStride, k += colStride) {
493 const GLint rowAr0 = rowA[j] & 0x1f;
494 const GLint rowAr1 = rowA[k] & 0x1f;
495 const GLint rowBr0 = rowB[j] & 0x1f;
496 const GLint rowBr1 = rowB[k] & 0x1f;
497 const GLint rowAg0 = (rowA[j] >> 5) & 0x3f;
498 const GLint rowAg1 = (rowA[k] >> 5) & 0x3f;
499 const GLint rowBg0 = (rowB[j] >> 5) & 0x3f;
500 const GLint rowBg1 = (rowB[k] >> 5) & 0x3f;
501 const GLint rowAb0 = (rowA[j] >> 11) & 0x1f;
502 const GLint rowAb1 = (rowA[k] >> 11) & 0x1f;
503 const GLint rowBb0 = (rowB[j] >> 11) & 0x1f;
504 const GLint rowBb1 = (rowB[k] >> 11) & 0x1f;
505 const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
506 const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
507 const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
508 dst[i] = (blue << 11) | (green << 5) | red;
509 }
510 }
511 else if (datatype == GL_UNSIGNED_SHORT_4_4_4_4 && comps == 4) {
512 GLuint i, j, k;
513 const GLushort *rowA = (const GLushort *) srcRowA;
514 const GLushort *rowB = (const GLushort *) srcRowB;
515 GLushort *dst = (GLushort *) dstRow;
516 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
517 i++, j += colStride, k += colStride) {
518 const GLint rowAr0 = rowA[j] & 0xf;
519 const GLint rowAr1 = rowA[k] & 0xf;
520 const GLint rowBr0 = rowB[j] & 0xf;
521 const GLint rowBr1 = rowB[k] & 0xf;
522 const GLint rowAg0 = (rowA[j] >> 4) & 0xf;
523 const GLint rowAg1 = (rowA[k] >> 4) & 0xf;
524 const GLint rowBg0 = (rowB[j] >> 4) & 0xf;
525 const GLint rowBg1 = (rowB[k] >> 4) & 0xf;
526 const GLint rowAb0 = (rowA[j] >> 8) & 0xf;
527 const GLint rowAb1 = (rowA[k] >> 8) & 0xf;
528 const GLint rowBb0 = (rowB[j] >> 8) & 0xf;
529 const GLint rowBb1 = (rowB[k] >> 8) & 0xf;
530 const GLint rowAa0 = (rowA[j] >> 12) & 0xf;
531 const GLint rowAa1 = (rowA[k] >> 12) & 0xf;
532 const GLint rowBa0 = (rowB[j] >> 12) & 0xf;
533 const GLint rowBa1 = (rowB[k] >> 12) & 0xf;
534 const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
535 const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
536 const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
537 const GLint alpha = (rowAa0 + rowAa1 + rowBa0 + rowBa1) >> 2;
538 dst[i] = (alpha << 12) | (blue << 8) | (green << 4) | red;
539 }
540 }
541 else if (datatype == GL_UNSIGNED_SHORT_1_5_5_5_REV && comps == 4) {
542 GLuint i, j, k;
543 const GLushort *rowA = (const GLushort *) srcRowA;
544 const GLushort *rowB = (const GLushort *) srcRowB;
545 GLushort *dst = (GLushort *) dstRow;
546 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
547 i++, j += colStride, k += colStride) {
548 const GLint rowAr0 = rowA[j] & 0x1f;
549 const GLint rowAr1 = rowA[k] & 0x1f;
550 const GLint rowBr0 = rowB[j] & 0x1f;
551 const GLint rowBr1 = rowB[k] & 0x1f;
552 const GLint rowAg0 = (rowA[j] >> 5) & 0x1f;
553 const GLint rowAg1 = (rowA[k] >> 5) & 0x1f;
554 const GLint rowBg0 = (rowB[j] >> 5) & 0x1f;
555 const GLint rowBg1 = (rowB[k] >> 5) & 0x1f;
556 const GLint rowAb0 = (rowA[j] >> 10) & 0x1f;
557 const GLint rowAb1 = (rowA[k] >> 10) & 0x1f;
558 const GLint rowBb0 = (rowB[j] >> 10) & 0x1f;
559 const GLint rowBb1 = (rowB[k] >> 10) & 0x1f;
560 const GLint rowAa0 = (rowA[j] >> 15) & 0x1;
561 const GLint rowAa1 = (rowA[k] >> 15) & 0x1;
562 const GLint rowBa0 = (rowB[j] >> 15) & 0x1;
563 const GLint rowBa1 = (rowB[k] >> 15) & 0x1;
564 const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
565 const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
566 const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
567 const GLint alpha = (rowAa0 + rowAa1 + rowBa0 + rowBa1) >> 2;
568 dst[i] = (alpha << 15) | (blue << 10) | (green << 5) | red;
569 }
570 }
571 else if (datatype == GL_UNSIGNED_SHORT_5_5_5_1 && comps == 4) {
572 GLuint i, j, k;
573 const GLushort *rowA = (const GLushort *) srcRowA;
574 const GLushort *rowB = (const GLushort *) srcRowB;
575 GLushort *dst = (GLushort *) dstRow;
576 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
577 i++, j += colStride, k += colStride) {
578 const GLint rowAr0 = (rowA[j] >> 11) & 0x1f;
579 const GLint rowAr1 = (rowA[k] >> 11) & 0x1f;
580 const GLint rowBr0 = (rowB[j] >> 11) & 0x1f;
581 const GLint rowBr1 = (rowB[k] >> 11) & 0x1f;
582 const GLint rowAg0 = (rowA[j] >> 6) & 0x1f;
583 const GLint rowAg1 = (rowA[k] >> 6) & 0x1f;
584 const GLint rowBg0 = (rowB[j] >> 6) & 0x1f;
585 const GLint rowBg1 = (rowB[k] >> 6) & 0x1f;
586 const GLint rowAb0 = (rowA[j] >> 1) & 0x1f;
587 const GLint rowAb1 = (rowA[k] >> 1) & 0x1f;
588 const GLint rowBb0 = (rowB[j] >> 1) & 0x1f;
589 const GLint rowBb1 = (rowB[k] >> 1) & 0x1f;
590 const GLint rowAa0 = (rowA[j] & 0x1);
591 const GLint rowAa1 = (rowA[k] & 0x1);
592 const GLint rowBa0 = (rowB[j] & 0x1);
593 const GLint rowBa1 = (rowB[k] & 0x1);
594 const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
595 const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
596 const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
597 const GLint alpha = (rowAa0 + rowAa1 + rowBa0 + rowBa1) >> 2;
598 dst[i] = (red << 11) | (green << 6) | (blue << 1) | alpha;
599 }
600 }
601
602 else if (datatype == GL_UNSIGNED_BYTE_3_3_2 && comps == 3) {
603 GLuint i, j, k;
604 const GLubyte *rowA = (const GLubyte *) srcRowA;
605 const GLubyte *rowB = (const GLubyte *) srcRowB;
606 GLubyte *dst = (GLubyte *) dstRow;
607 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
608 i++, j += colStride, k += colStride) {
609 const GLint rowAr0 = rowA[j] & 0x3;
610 const GLint rowAr1 = rowA[k] & 0x3;
611 const GLint rowBr0 = rowB[j] & 0x3;
612 const GLint rowBr1 = rowB[k] & 0x3;
613 const GLint rowAg0 = (rowA[j] >> 2) & 0x7;
614 const GLint rowAg1 = (rowA[k] >> 2) & 0x7;
615 const GLint rowBg0 = (rowB[j] >> 2) & 0x7;
616 const GLint rowBg1 = (rowB[k] >> 2) & 0x7;
617 const GLint rowAb0 = (rowA[j] >> 5) & 0x7;
618 const GLint rowAb1 = (rowA[k] >> 5) & 0x7;
619 const GLint rowBb0 = (rowB[j] >> 5) & 0x7;
620 const GLint rowBb1 = (rowB[k] >> 5) & 0x7;
621 const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
622 const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
623 const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
624 dst[i] = (blue << 5) | (green << 2) | red;
625 }
626 }
627
628 else if (datatype == MESA_UNSIGNED_BYTE_4_4 && comps == 2) {
629 GLuint i, j, k;
630 const GLubyte *rowA = (const GLubyte *) srcRowA;
631 const GLubyte *rowB = (const GLubyte *) srcRowB;
632 GLubyte *dst = (GLubyte *) dstRow;
633 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
634 i++, j += colStride, k += colStride) {
635 const GLint rowAr0 = rowA[j] & 0xf;
636 const GLint rowAr1 = rowA[k] & 0xf;
637 const GLint rowBr0 = rowB[j] & 0xf;
638 const GLint rowBr1 = rowB[k] & 0xf;
639 const GLint rowAg0 = (rowA[j] >> 4) & 0xf;
640 const GLint rowAg1 = (rowA[k] >> 4) & 0xf;
641 const GLint rowBg0 = (rowB[j] >> 4) & 0xf;
642 const GLint rowBg1 = (rowB[k] >> 4) & 0xf;
643 const GLint r = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
644 const GLint g = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
645 dst[i] = (g << 4) | r;
646 }
647 }
648
649 else if (datatype == GL_UNSIGNED_INT_2_10_10_10_REV && comps == 4) {
650 GLuint i, j, k;
651 const GLuint *rowA = (const GLuint *) srcRowA;
652 const GLuint *rowB = (const GLuint *) srcRowB;
653 GLuint *dst = (GLuint *) dstRow;
654 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
655 i++, j += colStride, k += colStride) {
656 const GLint rowAr0 = rowA[j] & 0x3ff;
657 const GLint rowAr1 = rowA[k] & 0x3ff;
658 const GLint rowBr0 = rowB[j] & 0x3ff;
659 const GLint rowBr1 = rowB[k] & 0x3ff;
660 const GLint rowAg0 = (rowA[j] >> 10) & 0x3ff;
661 const GLint rowAg1 = (rowA[k] >> 10) & 0x3ff;
662 const GLint rowBg0 = (rowB[j] >> 10) & 0x3ff;
663 const GLint rowBg1 = (rowB[k] >> 10) & 0x3ff;
664 const GLint rowAb0 = (rowA[j] >> 20) & 0x3ff;
665 const GLint rowAb1 = (rowA[k] >> 20) & 0x3ff;
666 const GLint rowBb0 = (rowB[j] >> 20) & 0x3ff;
667 const GLint rowBb1 = (rowB[k] >> 20) & 0x3ff;
668 const GLint rowAa0 = (rowA[j] >> 30) & 0x3;
669 const GLint rowAa1 = (rowA[k] >> 30) & 0x3;
670 const GLint rowBa0 = (rowB[j] >> 30) & 0x3;
671 const GLint rowBa1 = (rowB[k] >> 30) & 0x3;
672 const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
673 const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
674 const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
675 const GLint alpha = (rowAa0 + rowAa1 + rowBa0 + rowBa1) >> 2;
676 dst[i] = (alpha << 30) | (blue << 20) | (green << 10) | red;
677 }
678 }
679
680 else if (datatype == GL_UNSIGNED_INT_5_9_9_9_REV && comps == 3) {
681 GLuint i, j, k;
682 const GLuint *rowA = (const GLuint*) srcRowA;
683 const GLuint *rowB = (const GLuint*) srcRowB;
684 GLuint *dst = (GLuint*)dstRow;
685 GLfloat res[3], rowAj[3], rowBj[3], rowAk[3], rowBk[3];
686 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
687 i++, j += colStride, k += colStride) {
688 rgb9e5_to_float3(rowA[j], rowAj);
689 rgb9e5_to_float3(rowB[j], rowBj);
690 rgb9e5_to_float3(rowA[k], rowAk);
691 rgb9e5_to_float3(rowB[k], rowBk);
692 res[0] = (rowAj[0] + rowAk[0] + rowBj[0] + rowBk[0]) * 0.25F;
693 res[1] = (rowAj[1] + rowAk[1] + rowBj[1] + rowBk[1]) * 0.25F;
694 res[2] = (rowAj[2] + rowAk[2] + rowBj[2] + rowBk[2]) * 0.25F;
695 dst[i] = float3_to_rgb9e5(res);
696 }
697 }
698
699 else if (datatype == GL_UNSIGNED_INT_10F_11F_11F_REV && comps == 3) {
700 GLuint i, j, k;
701 const GLuint *rowA = (const GLuint*) srcRowA;
702 const GLuint *rowB = (const GLuint*) srcRowB;
703 GLuint *dst = (GLuint*)dstRow;
704 GLfloat res[3], rowAj[3], rowBj[3], rowAk[3], rowBk[3];
705 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
706 i++, j += colStride, k += colStride) {
707 r11g11b10f_to_float3(rowA[j], rowAj);
708 r11g11b10f_to_float3(rowB[j], rowBj);
709 r11g11b10f_to_float3(rowA[k], rowAk);
710 r11g11b10f_to_float3(rowB[k], rowBk);
711 res[0] = (rowAj[0] + rowAk[0] + rowBj[0] + rowBk[0]) * 0.25F;
712 res[1] = (rowAj[1] + rowAk[1] + rowBj[1] + rowBk[1]) * 0.25F;
713 res[2] = (rowAj[2] + rowAk[2] + rowBj[2] + rowBk[2]) * 0.25F;
714 dst[i] = float3_to_r11g11b10f(res);
715 }
716 }
717
718 else if (datatype == GL_FLOAT_32_UNSIGNED_INT_24_8_REV && comps == 1) {
719 GLuint i, j, k;
720 const GLfloat *rowA = (const GLfloat *) srcRowA;
721 const GLfloat *rowB = (const GLfloat *) srcRowB;
722 GLfloat *dst = (GLfloat *) dstRow;
723 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
724 i++, j += colStride, k += colStride) {
725 dst[i*2] = (rowA[j*2] + rowA[k*2] + rowB[j*2] + rowB[k*2]) * 0.25F;
726 }
727 }
728
729 else if (datatype == GL_UNSIGNED_INT_24_8_MESA && comps == 2) {
730 GLuint i, j, k;
731 const GLuint *rowA = (const GLuint *) srcRowA;
732 const GLuint *rowB = (const GLuint *) srcRowB;
733 GLuint *dst = (GLuint *) dstRow;
734 /* note: averaging stencil values seems weird, but what else? */
735 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
736 i++, j += colStride, k += colStride) {
737 GLuint z = (((rowA[j] >> 8) + (rowA[k] >> 8) +
738 (rowB[j] >> 8) + (rowB[k] >> 8)) / 4) << 8;
739 GLuint s = ((rowA[j] & 0xff) + (rowA[k] & 0xff) +
740 (rowB[j] & 0xff) + (rowB[k] & 0xff)) / 4;
741 dst[i] = z | s;
742 }
743 }
744 else if (datatype == GL_UNSIGNED_INT_8_24_REV_MESA && comps == 2) {
745 GLuint i, j, k;
746 const GLuint *rowA = (const GLuint *) srcRowA;
747 const GLuint *rowB = (const GLuint *) srcRowB;
748 GLuint *dst = (GLuint *) dstRow;
749 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
750 i++, j += colStride, k += colStride) {
751 GLuint z = ((rowA[j] & 0xffffff) + (rowA[k] & 0xffffff) +
752 (rowB[j] & 0xffffff) + (rowB[k] & 0xffffff)) / 4;
753 GLuint s = (((rowA[j] >> 24) + (rowA[k] >> 24) +
754 (rowB[j] >> 24) + (rowB[k] >> 24)) / 4) << 24;
755 dst[i] = z | s;
756 }
757 }
758
759 else {
760 _mesa_problem(NULL, "bad format in do_row()");
761 }
762 }
763
764
765 /**
766 * Average together four rows of a source image to produce a single new
767 * row in the dest image. It's legal for the two source rows to point
768 * to the same data. The source width must be equal to either the
769 * dest width or two times the dest width.
770 *
771 * \param datatype GL pixel type \c GL_UNSIGNED_BYTE, \c GL_UNSIGNED_SHORT,
772 * \c GL_FLOAT, etc.
773 * \param comps number of components per pixel (1..4)
774 * \param srcWidth Width of a row in the source data
775 * \param srcRowA Pointer to one of the rows of source data
776 * \param srcRowB Pointer to one of the rows of source data
777 * \param srcRowC Pointer to one of the rows of source data
778 * \param srcRowD Pointer to one of the rows of source data
779 * \param dstWidth Width of a row in the destination data
780 * \param srcRowA Pointer to the row of destination data
781 */
782 static void
783 do_row_3D(GLenum datatype, GLuint comps, GLint srcWidth,
784 const GLvoid *srcRowA, const GLvoid *srcRowB,
785 const GLvoid *srcRowC, const GLvoid *srcRowD,
786 GLint dstWidth, GLvoid *dstRow)
787 {
788 const GLuint k0 = (srcWidth == dstWidth) ? 0 : 1;
789 const GLuint colStride = (srcWidth == dstWidth) ? 1 : 2;
790 GLuint i, j, k;
791
792 assert(comps >= 1);
793 assert(comps <= 4);
794
795 if ((datatype == GL_UNSIGNED_BYTE) && (comps == 4)) {
796 DECLARE_ROW_POINTERS(GLubyte, 4);
797
798 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
799 i++, j += colStride, k += colStride) {
800 FILTER_3D(0);
801 FILTER_3D(1);
802 FILTER_3D(2);
803 FILTER_3D(3);
804 }
805 }
806 else if ((datatype == GL_UNSIGNED_BYTE) && (comps == 3)) {
807 DECLARE_ROW_POINTERS(GLubyte, 3);
808
809 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
810 i++, j += colStride, k += colStride) {
811 FILTER_3D(0);
812 FILTER_3D(1);
813 FILTER_3D(2);
814 }
815 }
816 else if ((datatype == GL_UNSIGNED_BYTE) && (comps == 2)) {
817 DECLARE_ROW_POINTERS(GLubyte, 2);
818
819 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
820 i++, j += colStride, k += colStride) {
821 FILTER_3D(0);
822 FILTER_3D(1);
823 }
824 }
825 else if ((datatype == GL_UNSIGNED_BYTE) && (comps == 1)) {
826 DECLARE_ROW_POINTERS(GLubyte, 1);
827
828 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
829 i++, j += colStride, k += colStride) {
830 FILTER_3D(0);
831 }
832 }
833 else if ((datatype == GL_BYTE) && (comps == 4)) {
834 DECLARE_ROW_POINTERS(GLbyte, 4);
835
836 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
837 i++, j += colStride, k += colStride) {
838 FILTER_3D_SIGNED(0);
839 FILTER_3D_SIGNED(1);
840 FILTER_3D_SIGNED(2);
841 FILTER_3D_SIGNED(3);
842 }
843 }
844 else if ((datatype == GL_BYTE) && (comps == 3)) {
845 DECLARE_ROW_POINTERS(GLbyte, 3);
846
847 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
848 i++, j += colStride, k += colStride) {
849 FILTER_3D_SIGNED(0);
850 FILTER_3D_SIGNED(1);
851 FILTER_3D_SIGNED(2);
852 }
853 }
854 else if ((datatype == GL_BYTE) && (comps == 2)) {
855 DECLARE_ROW_POINTERS(GLbyte, 2);
856
857 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
858 i++, j += colStride, k += colStride) {
859 FILTER_3D_SIGNED(0);
860 FILTER_3D_SIGNED(1);
861 }
862 }
863 else if ((datatype == GL_BYTE) && (comps == 1)) {
864 DECLARE_ROW_POINTERS(GLbyte, 1);
865
866 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
867 i++, j += colStride, k += colStride) {
868 FILTER_3D_SIGNED(0);
869 }
870 }
871 else if ((datatype == GL_UNSIGNED_SHORT) && (comps == 4)) {
872 DECLARE_ROW_POINTERS(GLushort, 4);
873
874 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
875 i++, j += colStride, k += colStride) {
876 FILTER_3D(0);
877 FILTER_3D(1);
878 FILTER_3D(2);
879 FILTER_3D(3);
880 }
881 }
882 else if ((datatype == GL_UNSIGNED_SHORT) && (comps == 3)) {
883 DECLARE_ROW_POINTERS(GLushort, 3);
884
885 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
886 i++, j += colStride, k += colStride) {
887 FILTER_3D(0);
888 FILTER_3D(1);
889 FILTER_3D(2);
890 }
891 }
892 else if ((datatype == GL_UNSIGNED_SHORT) && (comps == 2)) {
893 DECLARE_ROW_POINTERS(GLushort, 2);
894
895 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
896 i++, j += colStride, k += colStride) {
897 FILTER_3D(0);
898 FILTER_3D(1);
899 }
900 }
901 else if ((datatype == GL_UNSIGNED_SHORT) && (comps == 1)) {
902 DECLARE_ROW_POINTERS(GLushort, 1);
903
904 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
905 i++, j += colStride, k += colStride) {
906 FILTER_3D(0);
907 }
908 }
909 else if ((datatype == GL_SHORT) && (comps == 4)) {
910 DECLARE_ROW_POINTERS(GLshort, 4);
911
912 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
913 i++, j += colStride, k += colStride) {
914 FILTER_3D(0);
915 FILTER_3D(1);
916 FILTER_3D(2);
917 FILTER_3D(3);
918 }
919 }
920 else if ((datatype == GL_SHORT) && (comps == 3)) {
921 DECLARE_ROW_POINTERS(GLshort, 3);
922
923 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
924 i++, j += colStride, k += colStride) {
925 FILTER_3D(0);
926 FILTER_3D(1);
927 FILTER_3D(2);
928 }
929 }
930 else if ((datatype == GL_SHORT) && (comps == 2)) {
931 DECLARE_ROW_POINTERS(GLshort, 2);
932
933 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
934 i++, j += colStride, k += colStride) {
935 FILTER_3D(0);
936 FILTER_3D(1);
937 }
938 }
939 else if ((datatype == GL_SHORT) && (comps == 1)) {
940 DECLARE_ROW_POINTERS(GLshort, 1);
941
942 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
943 i++, j += colStride, k += colStride) {
944 FILTER_3D(0);
945 }
946 }
947 else if ((datatype == GL_FLOAT) && (comps == 4)) {
948 DECLARE_ROW_POINTERS(GLfloat, 4);
949
950 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
951 i++, j += colStride, k += colStride) {
952 FILTER_F_3D(0);
953 FILTER_F_3D(1);
954 FILTER_F_3D(2);
955 FILTER_F_3D(3);
956 }
957 }
958 else if ((datatype == GL_FLOAT) && (comps == 3)) {
959 DECLARE_ROW_POINTERS(GLfloat, 3);
960
961 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
962 i++, j += colStride, k += colStride) {
963 FILTER_F_3D(0);
964 FILTER_F_3D(1);
965 FILTER_F_3D(2);
966 }
967 }
968 else if ((datatype == GL_FLOAT) && (comps == 2)) {
969 DECLARE_ROW_POINTERS(GLfloat, 2);
970
971 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
972 i++, j += colStride, k += colStride) {
973 FILTER_F_3D(0);
974 FILTER_F_3D(1);
975 }
976 }
977 else if ((datatype == GL_FLOAT) && (comps == 1)) {
978 DECLARE_ROW_POINTERS(GLfloat, 1);
979
980 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
981 i++, j += colStride, k += colStride) {
982 FILTER_F_3D(0);
983 }
984 }
985 else if ((datatype == GL_HALF_FLOAT_ARB) && (comps == 4)) {
986 DECLARE_ROW_POINTERS(GLhalfARB, 4);
987
988 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
989 i++, j += colStride, k += colStride) {
990 FILTER_HF_3D(0);
991 FILTER_HF_3D(1);
992 FILTER_HF_3D(2);
993 FILTER_HF_3D(3);
994 }
995 }
996 else if ((datatype == GL_HALF_FLOAT_ARB) && (comps == 3)) {
997 DECLARE_ROW_POINTERS(GLhalfARB, 3);
998
999 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1000 i++, j += colStride, k += colStride) {
1001 FILTER_HF_3D(0);
1002 FILTER_HF_3D(1);
1003 FILTER_HF_3D(2);
1004 }
1005 }
1006 else if ((datatype == GL_HALF_FLOAT_ARB) && (comps == 2)) {
1007 DECLARE_ROW_POINTERS(GLhalfARB, 2);
1008
1009 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1010 i++, j += colStride, k += colStride) {
1011 FILTER_HF_3D(0);
1012 FILTER_HF_3D(1);
1013 }
1014 }
1015 else if ((datatype == GL_HALF_FLOAT_ARB) && (comps == 1)) {
1016 DECLARE_ROW_POINTERS(GLhalfARB, 1);
1017
1018 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1019 i++, j += colStride, k += colStride) {
1020 FILTER_HF_3D(0);
1021 }
1022 }
1023 else if ((datatype == GL_UNSIGNED_INT) && (comps == 1)) {
1024 const GLuint *rowA = (const GLuint *) srcRowA;
1025 const GLuint *rowB = (const GLuint *) srcRowB;
1026 const GLuint *rowC = (const GLuint *) srcRowC;
1027 const GLuint *rowD = (const GLuint *) srcRowD;
1028 GLfloat *dst = (GLfloat *) dstRow;
1029
1030 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1031 i++, j += colStride, k += colStride) {
1032 const uint64_t tmp = (((uint64_t) rowA[j] + (uint64_t) rowA[k])
1033 + ((uint64_t) rowB[j] + (uint64_t) rowB[k])
1034 + ((uint64_t) rowC[j] + (uint64_t) rowC[k])
1035 + ((uint64_t) rowD[j] + (uint64_t) rowD[k]));
1036 dst[i] = (GLfloat)((double) tmp * 0.125);
1037 }
1038 }
1039 else if ((datatype == GL_UNSIGNED_SHORT_5_6_5) && (comps == 3)) {
1040 DECLARE_ROW_POINTERS0(GLushort);
1041
1042 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1043 i++, j += colStride, k += colStride) {
1044 const GLint rowAr0 = rowA[j] & 0x1f;
1045 const GLint rowAr1 = rowA[k] & 0x1f;
1046 const GLint rowBr0 = rowB[j] & 0x1f;
1047 const GLint rowBr1 = rowB[k] & 0x1f;
1048 const GLint rowCr0 = rowC[j] & 0x1f;
1049 const GLint rowCr1 = rowC[k] & 0x1f;
1050 const GLint rowDr0 = rowD[j] & 0x1f;
1051 const GLint rowDr1 = rowD[k] & 0x1f;
1052 const GLint rowAg0 = (rowA[j] >> 5) & 0x3f;
1053 const GLint rowAg1 = (rowA[k] >> 5) & 0x3f;
1054 const GLint rowBg0 = (rowB[j] >> 5) & 0x3f;
1055 const GLint rowBg1 = (rowB[k] >> 5) & 0x3f;
1056 const GLint rowCg0 = (rowC[j] >> 5) & 0x3f;
1057 const GLint rowCg1 = (rowC[k] >> 5) & 0x3f;
1058 const GLint rowDg0 = (rowD[j] >> 5) & 0x3f;
1059 const GLint rowDg1 = (rowD[k] >> 5) & 0x3f;
1060 const GLint rowAb0 = (rowA[j] >> 11) & 0x1f;
1061 const GLint rowAb1 = (rowA[k] >> 11) & 0x1f;
1062 const GLint rowBb0 = (rowB[j] >> 11) & 0x1f;
1063 const GLint rowBb1 = (rowB[k] >> 11) & 0x1f;
1064 const GLint rowCb0 = (rowC[j] >> 11) & 0x1f;
1065 const GLint rowCb1 = (rowC[k] >> 11) & 0x1f;
1066 const GLint rowDb0 = (rowD[j] >> 11) & 0x1f;
1067 const GLint rowDb1 = (rowD[k] >> 11) & 0x1f;
1068 const GLint r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
1069 rowCr0, rowCr1, rowDr0, rowDr1);
1070 const GLint g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
1071 rowCg0, rowCg1, rowDg0, rowDg1);
1072 const GLint b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
1073 rowCb0, rowCb1, rowDb0, rowDb1);
1074 dst[i] = (b << 11) | (g << 5) | r;
1075 }
1076 }
1077 else if ((datatype == GL_UNSIGNED_SHORT_4_4_4_4) && (comps == 4)) {
1078 DECLARE_ROW_POINTERS0(GLushort);
1079
1080 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1081 i++, j += colStride, k += colStride) {
1082 const GLint rowAr0 = rowA[j] & 0xf;
1083 const GLint rowAr1 = rowA[k] & 0xf;
1084 const GLint rowBr0 = rowB[j] & 0xf;
1085 const GLint rowBr1 = rowB[k] & 0xf;
1086 const GLint rowCr0 = rowC[j] & 0xf;
1087 const GLint rowCr1 = rowC[k] & 0xf;
1088 const GLint rowDr0 = rowD[j] & 0xf;
1089 const GLint rowDr1 = rowD[k] & 0xf;
1090 const GLint rowAg0 = (rowA[j] >> 4) & 0xf;
1091 const GLint rowAg1 = (rowA[k] >> 4) & 0xf;
1092 const GLint rowBg0 = (rowB[j] >> 4) & 0xf;
1093 const GLint rowBg1 = (rowB[k] >> 4) & 0xf;
1094 const GLint rowCg0 = (rowC[j] >> 4) & 0xf;
1095 const GLint rowCg1 = (rowC[k] >> 4) & 0xf;
1096 const GLint rowDg0 = (rowD[j] >> 4) & 0xf;
1097 const GLint rowDg1 = (rowD[k] >> 4) & 0xf;
1098 const GLint rowAb0 = (rowA[j] >> 8) & 0xf;
1099 const GLint rowAb1 = (rowA[k] >> 8) & 0xf;
1100 const GLint rowBb0 = (rowB[j] >> 8) & 0xf;
1101 const GLint rowBb1 = (rowB[k] >> 8) & 0xf;
1102 const GLint rowCb0 = (rowC[j] >> 8) & 0xf;
1103 const GLint rowCb1 = (rowC[k] >> 8) & 0xf;
1104 const GLint rowDb0 = (rowD[j] >> 8) & 0xf;
1105 const GLint rowDb1 = (rowD[k] >> 8) & 0xf;
1106 const GLint rowAa0 = (rowA[j] >> 12) & 0xf;
1107 const GLint rowAa1 = (rowA[k] >> 12) & 0xf;
1108 const GLint rowBa0 = (rowB[j] >> 12) & 0xf;
1109 const GLint rowBa1 = (rowB[k] >> 12) & 0xf;
1110 const GLint rowCa0 = (rowC[j] >> 12) & 0xf;
1111 const GLint rowCa1 = (rowC[k] >> 12) & 0xf;
1112 const GLint rowDa0 = (rowD[j] >> 12) & 0xf;
1113 const GLint rowDa1 = (rowD[k] >> 12) & 0xf;
1114 const GLint r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
1115 rowCr0, rowCr1, rowDr0, rowDr1);
1116 const GLint g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
1117 rowCg0, rowCg1, rowDg0, rowDg1);
1118 const GLint b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
1119 rowCb0, rowCb1, rowDb0, rowDb1);
1120 const GLint a = FILTER_SUM_3D(rowAa0, rowAa1, rowBa0, rowBa1,
1121 rowCa0, rowCa1, rowDa0, rowDa1);
1122
1123 dst[i] = (a << 12) | (b << 8) | (g << 4) | r;
1124 }
1125 }
1126 else if ((datatype == GL_UNSIGNED_SHORT_1_5_5_5_REV) && (comps == 4)) {
1127 DECLARE_ROW_POINTERS0(GLushort);
1128
1129 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1130 i++, j += colStride, k += colStride) {
1131 const GLint rowAr0 = rowA[j] & 0x1f;
1132 const GLint rowAr1 = rowA[k] & 0x1f;
1133 const GLint rowBr0 = rowB[j] & 0x1f;
1134 const GLint rowBr1 = rowB[k] & 0x1f;
1135 const GLint rowCr0 = rowC[j] & 0x1f;
1136 const GLint rowCr1 = rowC[k] & 0x1f;
1137 const GLint rowDr0 = rowD[j] & 0x1f;
1138 const GLint rowDr1 = rowD[k] & 0x1f;
1139 const GLint rowAg0 = (rowA[j] >> 5) & 0x1f;
1140 const GLint rowAg1 = (rowA[k] >> 5) & 0x1f;
1141 const GLint rowBg0 = (rowB[j] >> 5) & 0x1f;
1142 const GLint rowBg1 = (rowB[k] >> 5) & 0x1f;
1143 const GLint rowCg0 = (rowC[j] >> 5) & 0x1f;
1144 const GLint rowCg1 = (rowC[k] >> 5) & 0x1f;
1145 const GLint rowDg0 = (rowD[j] >> 5) & 0x1f;
1146 const GLint rowDg1 = (rowD[k] >> 5) & 0x1f;
1147 const GLint rowAb0 = (rowA[j] >> 10) & 0x1f;
1148 const GLint rowAb1 = (rowA[k] >> 10) & 0x1f;
1149 const GLint rowBb0 = (rowB[j] >> 10) & 0x1f;
1150 const GLint rowBb1 = (rowB[k] >> 10) & 0x1f;
1151 const GLint rowCb0 = (rowC[j] >> 10) & 0x1f;
1152 const GLint rowCb1 = (rowC[k] >> 10) & 0x1f;
1153 const GLint rowDb0 = (rowD[j] >> 10) & 0x1f;
1154 const GLint rowDb1 = (rowD[k] >> 10) & 0x1f;
1155 const GLint rowAa0 = (rowA[j] >> 15) & 0x1;
1156 const GLint rowAa1 = (rowA[k] >> 15) & 0x1;
1157 const GLint rowBa0 = (rowB[j] >> 15) & 0x1;
1158 const GLint rowBa1 = (rowB[k] >> 15) & 0x1;
1159 const GLint rowCa0 = (rowC[j] >> 15) & 0x1;
1160 const GLint rowCa1 = (rowC[k] >> 15) & 0x1;
1161 const GLint rowDa0 = (rowD[j] >> 15) & 0x1;
1162 const GLint rowDa1 = (rowD[k] >> 15) & 0x1;
1163 const GLint r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
1164 rowCr0, rowCr1, rowDr0, rowDr1);
1165 const GLint g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
1166 rowCg0, rowCg1, rowDg0, rowDg1);
1167 const GLint b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
1168 rowCb0, rowCb1, rowDb0, rowDb1);
1169 const GLint a = FILTER_SUM_3D(rowAa0, rowAa1, rowBa0, rowBa1,
1170 rowCa0, rowCa1, rowDa0, rowDa1);
1171
1172 dst[i] = (a << 15) | (b << 10) | (g << 5) | r;
1173 }
1174 }
1175 else if ((datatype == GL_UNSIGNED_SHORT_5_5_5_1) && (comps == 4)) {
1176 DECLARE_ROW_POINTERS0(GLushort);
1177
1178 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1179 i++, j += colStride, k += colStride) {
1180 const GLint rowAr0 = (rowA[j] >> 11) & 0x1f;
1181 const GLint rowAr1 = (rowA[k] >> 11) & 0x1f;
1182 const GLint rowBr0 = (rowB[j] >> 11) & 0x1f;
1183 const GLint rowBr1 = (rowB[k] >> 11) & 0x1f;
1184 const GLint rowCr0 = (rowC[j] >> 11) & 0x1f;
1185 const GLint rowCr1 = (rowC[k] >> 11) & 0x1f;
1186 const GLint rowDr0 = (rowD[j] >> 11) & 0x1f;
1187 const GLint rowDr1 = (rowD[k] >> 11) & 0x1f;
1188 const GLint rowAg0 = (rowA[j] >> 6) & 0x1f;
1189 const GLint rowAg1 = (rowA[k] >> 6) & 0x1f;
1190 const GLint rowBg0 = (rowB[j] >> 6) & 0x1f;
1191 const GLint rowBg1 = (rowB[k] >> 6) & 0x1f;
1192 const GLint rowCg0 = (rowC[j] >> 6) & 0x1f;
1193 const GLint rowCg1 = (rowC[k] >> 6) & 0x1f;
1194 const GLint rowDg0 = (rowD[j] >> 6) & 0x1f;
1195 const GLint rowDg1 = (rowD[k] >> 6) & 0x1f;
1196 const GLint rowAb0 = (rowA[j] >> 1) & 0x1f;
1197 const GLint rowAb1 = (rowA[k] >> 1) & 0x1f;
1198 const GLint rowBb0 = (rowB[j] >> 1) & 0x1f;
1199 const GLint rowBb1 = (rowB[k] >> 1) & 0x1f;
1200 const GLint rowCb0 = (rowC[j] >> 1) & 0x1f;
1201 const GLint rowCb1 = (rowC[k] >> 1) & 0x1f;
1202 const GLint rowDb0 = (rowD[j] >> 1) & 0x1f;
1203 const GLint rowDb1 = (rowD[k] >> 1) & 0x1f;
1204 const GLint rowAa0 = (rowA[j] & 0x1);
1205 const GLint rowAa1 = (rowA[k] & 0x1);
1206 const GLint rowBa0 = (rowB[j] & 0x1);
1207 const GLint rowBa1 = (rowB[k] & 0x1);
1208 const GLint rowCa0 = (rowC[j] & 0x1);
1209 const GLint rowCa1 = (rowC[k] & 0x1);
1210 const GLint rowDa0 = (rowD[j] & 0x1);
1211 const GLint rowDa1 = (rowD[k] & 0x1);
1212 const GLint r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
1213 rowCr0, rowCr1, rowDr0, rowDr1);
1214 const GLint g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
1215 rowCg0, rowCg1, rowDg0, rowDg1);
1216 const GLint b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
1217 rowCb0, rowCb1, rowDb0, rowDb1);
1218 const GLint a = FILTER_SUM_3D(rowAa0, rowAa1, rowBa0, rowBa1,
1219 rowCa0, rowCa1, rowDa0, rowDa1);
1220
1221 dst[i] = (r << 11) | (g << 6) | (b << 1) | a;
1222 }
1223 }
1224 else if ((datatype == GL_UNSIGNED_BYTE_3_3_2) && (comps == 3)) {
1225 DECLARE_ROW_POINTERS0(GLubyte);
1226
1227 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1228 i++, j += colStride, k += colStride) {
1229 const GLint rowAr0 = rowA[j] & 0x3;
1230 const GLint rowAr1 = rowA[k] & 0x3;
1231 const GLint rowBr0 = rowB[j] & 0x3;
1232 const GLint rowBr1 = rowB[k] & 0x3;
1233 const GLint rowCr0 = rowC[j] & 0x3;
1234 const GLint rowCr1 = rowC[k] & 0x3;
1235 const GLint rowDr0 = rowD[j] & 0x3;
1236 const GLint rowDr1 = rowD[k] & 0x3;
1237 const GLint rowAg0 = (rowA[j] >> 2) & 0x7;
1238 const GLint rowAg1 = (rowA[k] >> 2) & 0x7;
1239 const GLint rowBg0 = (rowB[j] >> 2) & 0x7;
1240 const GLint rowBg1 = (rowB[k] >> 2) & 0x7;
1241 const GLint rowCg0 = (rowC[j] >> 2) & 0x7;
1242 const GLint rowCg1 = (rowC[k] >> 2) & 0x7;
1243 const GLint rowDg0 = (rowD[j] >> 2) & 0x7;
1244 const GLint rowDg1 = (rowD[k] >> 2) & 0x7;
1245 const GLint rowAb0 = (rowA[j] >> 5) & 0x7;
1246 const GLint rowAb1 = (rowA[k] >> 5) & 0x7;
1247 const GLint rowBb0 = (rowB[j] >> 5) & 0x7;
1248 const GLint rowBb1 = (rowB[k] >> 5) & 0x7;
1249 const GLint rowCb0 = (rowC[j] >> 5) & 0x7;
1250 const GLint rowCb1 = (rowC[k] >> 5) & 0x7;
1251 const GLint rowDb0 = (rowD[j] >> 5) & 0x7;
1252 const GLint rowDb1 = (rowD[k] >> 5) & 0x7;
1253 const GLint r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
1254 rowCr0, rowCr1, rowDr0, rowDr1);
1255 const GLint g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
1256 rowCg0, rowCg1, rowDg0, rowDg1);
1257 const GLint b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
1258 rowCb0, rowCb1, rowDb0, rowDb1);
1259 dst[i] = (b << 5) | (g << 2) | r;
1260 }
1261 }
1262 else if (datatype == MESA_UNSIGNED_BYTE_4_4 && comps == 2) {
1263 DECLARE_ROW_POINTERS0(GLubyte);
1264
1265 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1266 i++, j += colStride, k += colStride) {
1267 const GLint rowAr0 = rowA[j] & 0xf;
1268 const GLint rowAr1 = rowA[k] & 0xf;
1269 const GLint rowBr0 = rowB[j] & 0xf;
1270 const GLint rowBr1 = rowB[k] & 0xf;
1271 const GLint rowCr0 = rowC[j] & 0xf;
1272 const GLint rowCr1 = rowC[k] & 0xf;
1273 const GLint rowDr0 = rowD[j] & 0xf;
1274 const GLint rowDr1 = rowD[k] & 0xf;
1275 const GLint rowAg0 = (rowA[j] >> 4) & 0xf;
1276 const GLint rowAg1 = (rowA[k] >> 4) & 0xf;
1277 const GLint rowBg0 = (rowB[j] >> 4) & 0xf;
1278 const GLint rowBg1 = (rowB[k] >> 4) & 0xf;
1279 const GLint rowCg0 = (rowC[j] >> 4) & 0xf;
1280 const GLint rowCg1 = (rowC[k] >> 4) & 0xf;
1281 const GLint rowDg0 = (rowD[j] >> 4) & 0xf;
1282 const GLint rowDg1 = (rowD[k] >> 4) & 0xf;
1283 const GLint r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
1284 rowCr0, rowCr1, rowDr0, rowDr1);
1285 const GLint g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
1286 rowCg0, rowCg1, rowDg0, rowDg1);
1287 dst[i] = (g << 4) | r;
1288 }
1289 }
1290 else if ((datatype == GL_UNSIGNED_INT_2_10_10_10_REV) && (comps == 4)) {
1291 DECLARE_ROW_POINTERS0(GLuint);
1292
1293 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1294 i++, j += colStride, k += colStride) {
1295 const GLint rowAr0 = rowA[j] & 0x3ff;
1296 const GLint rowAr1 = rowA[k] & 0x3ff;
1297 const GLint rowBr0 = rowB[j] & 0x3ff;
1298 const GLint rowBr1 = rowB[k] & 0x3ff;
1299 const GLint rowCr0 = rowC[j] & 0x3ff;
1300 const GLint rowCr1 = rowC[k] & 0x3ff;
1301 const GLint rowDr0 = rowD[j] & 0x3ff;
1302 const GLint rowDr1 = rowD[k] & 0x3ff;
1303 const GLint rowAg0 = (rowA[j] >> 10) & 0x3ff;
1304 const GLint rowAg1 = (rowA[k] >> 10) & 0x3ff;
1305 const GLint rowBg0 = (rowB[j] >> 10) & 0x3ff;
1306 const GLint rowBg1 = (rowB[k] >> 10) & 0x3ff;
1307 const GLint rowCg0 = (rowC[j] >> 10) & 0x3ff;
1308 const GLint rowCg1 = (rowC[k] >> 10) & 0x3ff;
1309 const GLint rowDg0 = (rowD[j] >> 10) & 0x3ff;
1310 const GLint rowDg1 = (rowD[k] >> 10) & 0x3ff;
1311 const GLint rowAb0 = (rowA[j] >> 20) & 0x3ff;
1312 const GLint rowAb1 = (rowA[k] >> 20) & 0x3ff;
1313 const GLint rowBb0 = (rowB[j] >> 20) & 0x3ff;
1314 const GLint rowBb1 = (rowB[k] >> 20) & 0x3ff;
1315 const GLint rowCb0 = (rowC[j] >> 20) & 0x3ff;
1316 const GLint rowCb1 = (rowC[k] >> 20) & 0x3ff;
1317 const GLint rowDb0 = (rowD[j] >> 20) & 0x3ff;
1318 const GLint rowDb1 = (rowD[k] >> 20) & 0x3ff;
1319 const GLint rowAa0 = (rowA[j] >> 30) & 0x3;
1320 const GLint rowAa1 = (rowA[k] >> 30) & 0x3;
1321 const GLint rowBa0 = (rowB[j] >> 30) & 0x3;
1322 const GLint rowBa1 = (rowB[k] >> 30) & 0x3;
1323 const GLint rowCa0 = (rowC[j] >> 30) & 0x3;
1324 const GLint rowCa1 = (rowC[k] >> 30) & 0x3;
1325 const GLint rowDa0 = (rowD[j] >> 30) & 0x3;
1326 const GLint rowDa1 = (rowD[k] >> 30) & 0x3;
1327 const GLint r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
1328 rowCr0, rowCr1, rowDr0, rowDr1);
1329 const GLint g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
1330 rowCg0, rowCg1, rowDg0, rowDg1);
1331 const GLint b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
1332 rowCb0, rowCb1, rowDb0, rowDb1);
1333 const GLint a = FILTER_SUM_3D(rowAa0, rowAa1, rowBa0, rowBa1,
1334 rowCa0, rowCa1, rowDa0, rowDa1);
1335
1336 dst[i] = (a << 30) | (b << 20) | (g << 10) | r;
1337 }
1338 }
1339
1340 else if (datatype == GL_UNSIGNED_INT_5_9_9_9_REV && comps == 3) {
1341 DECLARE_ROW_POINTERS0(GLuint);
1342
1343 GLfloat res[3];
1344 GLfloat rowAj[3], rowBj[3], rowCj[3], rowDj[3];
1345 GLfloat rowAk[3], rowBk[3], rowCk[3], rowDk[3];
1346
1347 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1348 i++, j += colStride, k += colStride) {
1349 rgb9e5_to_float3(rowA[j], rowAj);
1350 rgb9e5_to_float3(rowB[j], rowBj);
1351 rgb9e5_to_float3(rowC[j], rowCj);
1352 rgb9e5_to_float3(rowD[j], rowDj);
1353 rgb9e5_to_float3(rowA[k], rowAk);
1354 rgb9e5_to_float3(rowB[k], rowBk);
1355 rgb9e5_to_float3(rowC[k], rowCk);
1356 rgb9e5_to_float3(rowD[k], rowDk);
1357 res[0] = (rowAj[0] + rowAk[0] + rowBj[0] + rowBk[0] +
1358 rowCj[0] + rowCk[0] + rowDj[0] + rowDk[0]) * 0.125F;
1359 res[1] = (rowAj[1] + rowAk[1] + rowBj[1] + rowBk[1] +
1360 rowCj[1] + rowCk[1] + rowDj[1] + rowDk[1]) * 0.125F;
1361 res[2] = (rowAj[2] + rowAk[2] + rowBj[2] + rowBk[2] +
1362 rowCj[2] + rowCk[2] + rowDj[2] + rowDk[2]) * 0.125F;
1363 dst[i] = float3_to_rgb9e5(res);
1364 }
1365 }
1366
1367 else if (datatype == GL_UNSIGNED_INT_10F_11F_11F_REV && comps == 3) {
1368 DECLARE_ROW_POINTERS0(GLuint);
1369
1370 GLfloat res[3];
1371 GLfloat rowAj[3], rowBj[3], rowCj[3], rowDj[3];
1372 GLfloat rowAk[3], rowBk[3], rowCk[3], rowDk[3];
1373
1374 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1375 i++, j += colStride, k += colStride) {
1376 r11g11b10f_to_float3(rowA[j], rowAj);
1377 r11g11b10f_to_float3(rowB[j], rowBj);
1378 r11g11b10f_to_float3(rowC[j], rowCj);
1379 r11g11b10f_to_float3(rowD[j], rowDj);
1380 r11g11b10f_to_float3(rowA[k], rowAk);
1381 r11g11b10f_to_float3(rowB[k], rowBk);
1382 r11g11b10f_to_float3(rowC[k], rowCk);
1383 r11g11b10f_to_float3(rowD[k], rowDk);
1384 res[0] = (rowAj[0] + rowAk[0] + rowBj[0] + rowBk[0] +
1385 rowCj[0] + rowCk[0] + rowDj[0] + rowDk[0]) * 0.125F;
1386 res[1] = (rowAj[1] + rowAk[1] + rowBj[1] + rowBk[1] +
1387 rowCj[1] + rowCk[1] + rowDj[1] + rowDk[1]) * 0.125F;
1388 res[2] = (rowAj[2] + rowAk[2] + rowBj[2] + rowBk[2] +
1389 rowCj[2] + rowCk[2] + rowDj[2] + rowDk[2]) * 0.125F;
1390 dst[i] = float3_to_r11g11b10f(res);
1391 }
1392 }
1393
1394 else if (datatype == GL_FLOAT_32_UNSIGNED_INT_24_8_REV && comps == 1) {
1395 DECLARE_ROW_POINTERS(GLfloat, 2);
1396
1397 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
1398 i++, j += colStride, k += colStride) {
1399 FILTER_F_3D(0);
1400 }
1401 }
1402
1403 else {
1404 _mesa_problem(NULL, "bad format in do_row()");
1405 }
1406 }
1407
1408
1409 /*
1410 * These functions generate a 1/2-size mipmap image from a source image.
1411 * Texture borders are handled by copying or averaging the source image's
1412 * border texels, depending on the scale-down factor.
1413 */
1414
1415 static void
1416 make_1d_mipmap(GLenum datatype, GLuint comps, GLint border,
1417 GLint srcWidth, const GLubyte *srcPtr,
1418 GLint dstWidth, GLubyte *dstPtr)
1419 {
1420 const GLint bpt = bytes_per_pixel(datatype, comps);
1421 const GLubyte *src;
1422 GLubyte *dst;
1423
1424 /* skip the border pixel, if any */
1425 src = srcPtr + border * bpt;
1426 dst = dstPtr + border * bpt;
1427
1428 /* we just duplicate the input row, kind of hack, saves code */
1429 do_row(datatype, comps, srcWidth - 2 * border, src, src,
1430 dstWidth - 2 * border, dst);
1431
1432 if (border) {
1433 /* copy left-most pixel from source */
1434 assert(dstPtr);
1435 assert(srcPtr);
1436 memcpy(dstPtr, srcPtr, bpt);
1437 /* copy right-most pixel from source */
1438 memcpy(dstPtr + (dstWidth - 1) * bpt,
1439 srcPtr + (srcWidth - 1) * bpt,
1440 bpt);
1441 }
1442 }
1443
1444
1445 static void
1446 make_2d_mipmap(GLenum datatype, GLuint comps, GLint border,
1447 GLint srcWidth, GLint srcHeight,
1448 const GLubyte *srcPtr, GLint srcRowStride,
1449 GLint dstWidth, GLint dstHeight,
1450 GLubyte *dstPtr, GLint dstRowStride)
1451 {
1452 const GLint bpt = bytes_per_pixel(datatype, comps);
1453 const GLint srcWidthNB = srcWidth - 2 * border; /* sizes w/out border */
1454 const GLint dstWidthNB = dstWidth - 2 * border;
1455 const GLint dstHeightNB = dstHeight - 2 * border;
1456 const GLubyte *srcA, *srcB;
1457 GLubyte *dst;
1458 GLint row, srcRowStep;
1459
1460 /* Compute src and dst pointers, skipping any border */
1461 srcA = srcPtr + border * ((srcWidth + 1) * bpt);
1462 if (srcHeight > 1 && srcHeight > dstHeight) {
1463 /* sample from two source rows */
1464 srcB = srcA + srcRowStride;
1465 srcRowStep = 2;
1466 }
1467 else {
1468 /* sample from one source row */
1469 srcB = srcA;
1470 srcRowStep = 1;
1471 }
1472
1473 dst = dstPtr + border * ((dstWidth + 1) * bpt);
1474
1475 for (row = 0; row < dstHeightNB; row++) {
1476 do_row(datatype, comps, srcWidthNB, srcA, srcB,
1477 dstWidthNB, dst);
1478 srcA += srcRowStep * srcRowStride;
1479 srcB += srcRowStep * srcRowStride;
1480 dst += dstRowStride;
1481 }
1482
1483 /* This is ugly but probably won't be used much */
1484 if (border > 0) {
1485 /* fill in dest border */
1486 /* lower-left border pixel */
1487 assert(dstPtr);
1488 assert(srcPtr);
1489 memcpy(dstPtr, srcPtr, bpt);
1490 /* lower-right border pixel */
1491 memcpy(dstPtr + (dstWidth - 1) * bpt,
1492 srcPtr + (srcWidth - 1) * bpt, bpt);
1493 /* upper-left border pixel */
1494 memcpy(dstPtr + dstWidth * (dstHeight - 1) * bpt,
1495 srcPtr + srcWidth * (srcHeight - 1) * bpt, bpt);
1496 /* upper-right border pixel */
1497 memcpy(dstPtr + (dstWidth * dstHeight - 1) * bpt,
1498 srcPtr + (srcWidth * srcHeight - 1) * bpt, bpt);
1499 /* lower border */
1500 do_row(datatype, comps, srcWidthNB,
1501 srcPtr + bpt,
1502 srcPtr + bpt,
1503 dstWidthNB, dstPtr + bpt);
1504 /* upper border */
1505 do_row(datatype, comps, srcWidthNB,
1506 srcPtr + (srcWidth * (srcHeight - 1) + 1) * bpt,
1507 srcPtr + (srcWidth * (srcHeight - 1) + 1) * bpt,
1508 dstWidthNB,
1509 dstPtr + (dstWidth * (dstHeight - 1) + 1) * bpt);
1510 /* left and right borders */
1511 if (srcHeight == dstHeight) {
1512 /* copy border pixel from src to dst */
1513 for (row = 1; row < srcHeight; row++) {
1514 memcpy(dstPtr + dstWidth * row * bpt,
1515 srcPtr + srcWidth * row * bpt, bpt);
1516 memcpy(dstPtr + (dstWidth * row + dstWidth - 1) * bpt,
1517 srcPtr + (srcWidth * row + srcWidth - 1) * bpt, bpt);
1518 }
1519 }
1520 else {
1521 /* average two src pixels each dest pixel */
1522 for (row = 0; row < dstHeightNB; row += 2) {
1523 do_row(datatype, comps, 1,
1524 srcPtr + (srcWidth * (row * 2 + 1)) * bpt,
1525 srcPtr + (srcWidth * (row * 2 + 2)) * bpt,
1526 1, dstPtr + (dstWidth * row + 1) * bpt);
1527 do_row(datatype, comps, 1,
1528 srcPtr + (srcWidth * (row * 2 + 1) + srcWidth - 1) * bpt,
1529 srcPtr + (srcWidth * (row * 2 + 2) + srcWidth - 1) * bpt,
1530 1, dstPtr + (dstWidth * row + 1 + dstWidth - 1) * bpt);
1531 }
1532 }
1533 }
1534 }
1535
1536
1537 static void
1538 make_3d_mipmap(GLenum datatype, GLuint comps, GLint border,
1539 GLint srcWidth, GLint srcHeight, GLint srcDepth,
1540 const GLubyte **srcPtr, GLint srcRowStride,
1541 GLint dstWidth, GLint dstHeight, GLint dstDepth,
1542 GLubyte **dstPtr, GLint dstRowStride)
1543 {
1544 const GLint bpt = bytes_per_pixel(datatype, comps);
1545 const GLint srcWidthNB = srcWidth - 2 * border; /* sizes w/out border */
1546 const GLint srcDepthNB = srcDepth - 2 * border;
1547 const GLint dstWidthNB = dstWidth - 2 * border;
1548 const GLint dstHeightNB = dstHeight - 2 * border;
1549 const GLint dstDepthNB = dstDepth - 2 * border;
1550 GLint img, row;
1551 GLint bytesPerSrcImage, bytesPerDstImage;
1552 GLint srcImageOffset, srcRowOffset;
1553
1554 (void) srcDepthNB; /* silence warnings */
1555
1556 bytesPerSrcImage = srcRowStride * srcHeight * bpt;
1557 bytesPerDstImage = dstRowStride * dstHeight * bpt;
1558
1559 /* Offset between adjacent src images to be averaged together */
1560 srcImageOffset = (srcDepth == dstDepth) ? 0 : 1;
1561
1562 /* Offset between adjacent src rows to be averaged together */
1563 srcRowOffset = (srcHeight == dstHeight) ? 0 : srcRowStride;
1564
1565 /*
1566 * Need to average together up to 8 src pixels for each dest pixel.
1567 * Break that down into 3 operations:
1568 * 1. take two rows from source image and average them together.
1569 * 2. take two rows from next source image and average them together.
1570 * 3. take the two averaged rows and average them for the final dst row.
1571 */
1572
1573 /*
1574 printf("mip3d %d x %d x %d -> %d x %d x %d\n",
1575 srcWidth, srcHeight, srcDepth, dstWidth, dstHeight, dstDepth);
1576 */
1577
1578 for (img = 0; img < dstDepthNB; img++) {
1579 /* first source image pointer, skipping border */
1580 const GLubyte *imgSrcA = srcPtr[img * 2 + border]
1581 + srcRowStride * border + bpt * border;
1582 /* second source image pointer, skipping border */
1583 const GLubyte *imgSrcB = srcPtr[img * 2 + srcImageOffset + border]
1584 + srcRowStride * border + bpt * border;
1585
1586 /* address of the dest image, skipping border */
1587 GLubyte *imgDst = dstPtr[img + border]
1588 + dstRowStride * border + bpt * border;
1589
1590 /* setup the four source row pointers and the dest row pointer */
1591 const GLubyte *srcImgARowA = imgSrcA;
1592 const GLubyte *srcImgARowB = imgSrcA + srcRowOffset;
1593 const GLubyte *srcImgBRowA = imgSrcB;
1594 const GLubyte *srcImgBRowB = imgSrcB + srcRowOffset;
1595 GLubyte *dstImgRow = imgDst;
1596
1597 for (row = 0; row < dstHeightNB; row++) {
1598 do_row_3D(datatype, comps, srcWidthNB,
1599 srcImgARowA, srcImgARowB,
1600 srcImgBRowA, srcImgBRowB,
1601 dstWidthNB, dstImgRow);
1602
1603 /* advance to next rows */
1604 srcImgARowA += srcRowStride + srcRowOffset;
1605 srcImgARowB += srcRowStride + srcRowOffset;
1606 srcImgBRowA += srcRowStride + srcRowOffset;
1607 srcImgBRowB += srcRowStride + srcRowOffset;
1608 dstImgRow += dstRowStride;
1609 }
1610 }
1611
1612
1613 /* Luckily we can leverage the make_2d_mipmap() function here! */
1614 if (border > 0) {
1615 /* do front border image */
1616 make_2d_mipmap(datatype, comps, 1,
1617 srcWidth, srcHeight, srcPtr[0], srcRowStride,
1618 dstWidth, dstHeight, dstPtr[0], dstRowStride);
1619 /* do back border image */
1620 make_2d_mipmap(datatype, comps, 1,
1621 srcWidth, srcHeight, srcPtr[srcDepth - 1], srcRowStride,
1622 dstWidth, dstHeight, dstPtr[dstDepth - 1], dstRowStride);
1623
1624 /* do four remaining border edges that span the image slices */
1625 if (srcDepth == dstDepth) {
1626 /* just copy border pixels from src to dst */
1627 for (img = 0; img < dstDepthNB; img++) {
1628 const GLubyte *src;
1629 GLubyte *dst;
1630
1631 /* do border along [img][row=0][col=0] */
1632 src = srcPtr[img * 2];
1633 dst = dstPtr[img];
1634 memcpy(dst, src, bpt);
1635
1636 /* do border along [img][row=dstHeight-1][col=0] */
1637 src = srcPtr[img * 2] + (srcHeight - 1) * srcRowStride;
1638 dst = dstPtr[img] + (dstHeight - 1) * dstRowStride;
1639 memcpy(dst, src, bpt);
1640
1641 /* do border along [img][row=0][col=dstWidth-1] */
1642 src = srcPtr[img * 2] + (srcWidth - 1) * bpt;
1643 dst = dstPtr[img] + (dstWidth - 1) * bpt;
1644 memcpy(dst, src, bpt);
1645
1646 /* do border along [img][row=dstHeight-1][col=dstWidth-1] */
1647 src = srcPtr[img * 2] + (bytesPerSrcImage - bpt);
1648 dst = dstPtr[img] + (bytesPerDstImage - bpt);
1649 memcpy(dst, src, bpt);
1650 }
1651 }
1652 else {
1653 /* average border pixels from adjacent src image pairs */
1654 assert(srcDepthNB == 2 * dstDepthNB);
1655 for (img = 0; img < dstDepthNB; img++) {
1656 const GLubyte *srcA, *srcB;
1657 GLubyte *dst;
1658
1659 /* do border along [img][row=0][col=0] */
1660 srcA = srcPtr[img * 2 + 0];
1661 srcB = srcPtr[img * 2 + srcImageOffset];
1662 dst = dstPtr[img];
1663 do_row(datatype, comps, 1, srcA, srcB, 1, dst);
1664
1665 /* do border along [img][row=dstHeight-1][col=0] */
1666 srcA = srcPtr[img * 2 + 0]
1667 + (srcHeight - 1) * srcRowStride;
1668 srcB = srcPtr[img * 2 + srcImageOffset]
1669 + (srcHeight - 1) * srcRowStride;
1670 dst = dstPtr[img] + (dstHeight - 1) * dstRowStride;
1671 do_row(datatype, comps, 1, srcA, srcB, 1, dst);
1672
1673 /* do border along [img][row=0][col=dstWidth-1] */
1674 srcA = srcPtr[img * 2 + 0] + (srcWidth - 1) * bpt;
1675 srcB = srcPtr[img * 2 + srcImageOffset] + (srcWidth - 1) * bpt;
1676 dst = dstPtr[img] + (dstWidth - 1) * bpt;
1677 do_row(datatype, comps, 1, srcA, srcB, 1, dst);
1678
1679 /* do border along [img][row=dstHeight-1][col=dstWidth-1] */
1680 srcA = srcPtr[img * 2 + 0] + (bytesPerSrcImage - bpt);
1681 srcB = srcPtr[img * 2 + srcImageOffset] + (bytesPerSrcImage - bpt);
1682 dst = dstPtr[img] + (bytesPerDstImage - bpt);
1683 do_row(datatype, comps, 1, srcA, srcB, 1, dst);
1684 }
1685 }
1686 }
1687 }
1688
1689
1690 /**
1691 * Down-sample a texture image to produce the next lower mipmap level.
1692 * \param comps components per texel (1, 2, 3 or 4)
1693 * \param srcData array[slice] of pointers to source image slices
1694 * \param dstData array[slice] of pointers to dest image slices
1695 * \param srcRowStride stride between source rows, in bytes
1696 * \param dstRowStride stride between destination rows, in bytes
1697 */
1698 void
1699 _mesa_generate_mipmap_level(GLenum target,
1700 GLenum datatype, GLuint comps,
1701 GLint border,
1702 GLint srcWidth, GLint srcHeight, GLint srcDepth,
1703 const GLubyte **srcData,
1704 GLint srcRowStride,
1705 GLint dstWidth, GLint dstHeight, GLint dstDepth,
1706 GLubyte **dstData,
1707 GLint dstRowStride)
1708 {
1709 int i;
1710
1711 switch (target) {
1712 case GL_TEXTURE_1D:
1713 make_1d_mipmap(datatype, comps, border,
1714 srcWidth, srcData[0],
1715 dstWidth, dstData[0]);
1716 break;
1717 case GL_TEXTURE_2D:
1718 case GL_TEXTURE_CUBE_MAP_POSITIVE_X:
1719 case GL_TEXTURE_CUBE_MAP_NEGATIVE_X:
1720 case GL_TEXTURE_CUBE_MAP_POSITIVE_Y:
1721 case GL_TEXTURE_CUBE_MAP_NEGATIVE_Y:
1722 case GL_TEXTURE_CUBE_MAP_POSITIVE_Z:
1723 case GL_TEXTURE_CUBE_MAP_NEGATIVE_Z:
1724 make_2d_mipmap(datatype, comps, border,
1725 srcWidth, srcHeight, srcData[0], srcRowStride,
1726 dstWidth, dstHeight, dstData[0], dstRowStride);
1727 break;
1728 case GL_TEXTURE_3D:
1729 make_3d_mipmap(datatype, comps, border,
1730 srcWidth, srcHeight, srcDepth,
1731 srcData, srcRowStride,
1732 dstWidth, dstHeight, dstDepth,
1733 dstData, dstRowStride);
1734 break;
1735 case GL_TEXTURE_1D_ARRAY_EXT:
1736 assert(srcHeight == 1);
1737 assert(dstHeight == 1);
1738 for (i = 0; i < dstDepth; i++) {
1739 make_1d_mipmap(datatype, comps, border,
1740 srcWidth, srcData[i],
1741 dstWidth, dstData[i]);
1742 }
1743 break;
1744 case GL_TEXTURE_2D_ARRAY_EXT:
1745 case GL_TEXTURE_CUBE_MAP_ARRAY:
1746 for (i = 0; i < dstDepth; i++) {
1747 make_2d_mipmap(datatype, comps, border,
1748 srcWidth, srcHeight, srcData[i], srcRowStride,
1749 dstWidth, dstHeight, dstData[i], dstRowStride);
1750 }
1751 break;
1752 case GL_TEXTURE_RECTANGLE_NV:
1753 case GL_TEXTURE_EXTERNAL_OES:
1754 /* no mipmaps, do nothing */
1755 break;
1756 default:
1757 _mesa_problem(NULL, "bad tex target in _mesa_generate_mipmaps");
1758 return;
1759 }
1760 }
1761
1762
1763 /**
1764 * compute next (level+1) image size
1765 * \return GL_FALSE if no smaller size can be generated (eg. src is 1x1x1 size)
1766 */
1767 GLboolean
1768 _mesa_next_mipmap_level_size(GLenum target, GLint border,
1769 GLint srcWidth, GLint srcHeight, GLint srcDepth,
1770 GLint *dstWidth, GLint *dstHeight, GLint *dstDepth)
1771 {
1772 if (srcWidth - 2 * border > 1) {
1773 *dstWidth = (srcWidth - 2 * border) / 2 + 2 * border;
1774 }
1775 else {
1776 *dstWidth = srcWidth; /* can't go smaller */
1777 }
1778
1779 if ((srcHeight - 2 * border > 1) &&
1780 (target != GL_TEXTURE_1D_ARRAY_EXT)) {
1781 *dstHeight = (srcHeight - 2 * border) / 2 + 2 * border;
1782 }
1783 else {
1784 *dstHeight = srcHeight; /* can't go smaller */
1785 }
1786
1787 if ((srcDepth - 2 * border > 1) &&
1788 (target != GL_TEXTURE_2D_ARRAY_EXT &&
1789 target != GL_TEXTURE_CUBE_MAP_ARRAY)) {
1790 *dstDepth = (srcDepth - 2 * border) / 2 + 2 * border;
1791 }
1792 else {
1793 *dstDepth = srcDepth; /* can't go smaller */
1794 }
1795
1796 if (*dstWidth == srcWidth &&
1797 *dstHeight == srcHeight &&
1798 *dstDepth == srcDepth) {
1799 return GL_FALSE;
1800 }
1801 else {
1802 return GL_TRUE;
1803 }
1804 }
1805
1806
1807 /**
1808 * Helper function for mipmap generation.
1809 * Make sure the specified destination mipmap level is the right size/format
1810 * for mipmap generation. If not, (re) allocate it.
1811 * \return GL_TRUE if successful, GL_FALSE if mipmap generation should stop
1812 */
1813 static GLboolean
1814 prepare_mipmap_level(struct gl_context *ctx,
1815 struct gl_texture_object *texObj, GLuint level,
1816 GLsizei width, GLsizei height, GLsizei depth,
1817 GLsizei border, GLenum intFormat, mesa_format format)
1818 {
1819 const GLuint numFaces = _mesa_num_tex_faces(texObj->Target);
1820 GLuint face;
1821
1822 if (texObj->Immutable) {
1823 /* The texture was created with glTexStorage() so the number/size of
1824 * mipmap levels is fixed and the storage for all images is already
1825 * allocated.
1826 */
1827 if (!texObj->Image[0][level]) {
1828 /* No more levels to create - we're done */
1829 return GL_FALSE;
1830 }
1831 else {
1832 /* Nothing to do - the texture memory must have already been
1833 * allocated to the right size so we're all set.
1834 */
1835 return GL_TRUE;
1836 }
1837 }
1838
1839 for (face = 0; face < numFaces; face++) {
1840 struct gl_texture_image *dstImage;
1841 const GLenum target = _mesa_cube_face_target(texObj->Target, face);
1842
1843 dstImage = _mesa_get_tex_image(ctx, texObj, target, level);
1844 if (!dstImage) {
1845 /* out of memory */
1846 return GL_FALSE;
1847 }
1848
1849 if (dstImage->Width != width ||
1850 dstImage->Height != height ||
1851 dstImage->Depth != depth ||
1852 dstImage->Border != border ||
1853 dstImage->InternalFormat != intFormat ||
1854 dstImage->TexFormat != format) {
1855 /* need to (re)allocate image */
1856 ctx->Driver.FreeTextureImageBuffer(ctx, dstImage);
1857
1858 _mesa_init_teximage_fields(ctx, dstImage,
1859 width, height, depth,
1860 border, intFormat, format);
1861
1862 ctx->Driver.AllocTextureImageBuffer(ctx, dstImage);
1863
1864 /* in case the mipmap level is part of an FBO: */
1865 _mesa_update_fbo_texture(ctx, texObj, face, level);
1866
1867 ctx->NewState |= _NEW_TEXTURE;
1868 }
1869 }
1870
1871 return GL_TRUE;
1872 }
1873
1874
1875 /**
1876 * Prepare all mipmap levels beyond 'baseLevel' for mipmap generation.
1877 * When finished, all the gl_texture_image structures for the smaller
1878 * mipmap levels will be consistent with the base level (in terms of
1879 * dimensions, format, etc).
1880 */
1881 void
1882 _mesa_prepare_mipmap_levels(struct gl_context *ctx,
1883 struct gl_texture_object *texObj,
1884 unsigned baseLevel, unsigned maxLevel)
1885 {
1886 const struct gl_texture_image *baseImage =
1887 _mesa_select_tex_image(texObj, texObj->Target, baseLevel);
1888 const GLint border = 0;
1889 GLint width = baseImage->Width;
1890 GLint height = baseImage->Height;
1891 GLint depth = baseImage->Depth;
1892 const GLenum intFormat = baseImage->InternalFormat;
1893 const mesa_format texFormat = baseImage->TexFormat;
1894 GLint newWidth, newHeight, newDepth;
1895
1896 /* Prepare baseLevel + 1, baseLevel + 2, ... */
1897 for (unsigned level = baseLevel + 1; level <= maxLevel; level++) {
1898 if (!_mesa_next_mipmap_level_size(texObj->Target, border,
1899 width, height, depth,
1900 &newWidth, &newHeight, &newDepth)) {
1901 /* all done */
1902 break;
1903 }
1904
1905 if (!prepare_mipmap_level(ctx, texObj, level,
1906 newWidth, newHeight, newDepth,
1907 border, intFormat, texFormat)) {
1908 break;
1909 }
1910
1911 width = newWidth;
1912 height = newHeight;
1913 depth = newDepth;
1914 }
1915 }
1916
1917
1918 static void
1919 generate_mipmap_uncompressed(struct gl_context *ctx, GLenum target,
1920 struct gl_texture_object *texObj,
1921 const struct gl_texture_image *srcImage,
1922 GLuint maxLevel)
1923 {
1924 GLuint level;
1925 GLenum datatype;
1926 GLuint comps;
1927
1928 _mesa_uncompressed_format_to_type_and_comps(srcImage->TexFormat, &datatype, &comps);
1929
1930 for (level = texObj->BaseLevel; level < maxLevel; level++) {
1931 /* generate image[level+1] from image[level] */
1932 struct gl_texture_image *srcImage, *dstImage;
1933 GLint srcRowStride, dstRowStride;
1934 GLint srcWidth, srcHeight, srcDepth;
1935 GLint dstWidth, dstHeight, dstDepth;
1936 GLint border;
1937 GLint slice;
1938 GLubyte **srcMaps, **dstMaps;
1939 GLboolean success = GL_TRUE;
1940
1941 /* get src image parameters */
1942 srcImage = _mesa_select_tex_image(texObj, target, level);
1943 assert(srcImage);
1944 srcWidth = srcImage->Width;
1945 srcHeight = srcImage->Height;
1946 srcDepth = srcImage->Depth;
1947 border = srcImage->Border;
1948
1949 /* get dest gl_texture_image */
1950 dstImage = _mesa_select_tex_image(texObj, target, level + 1);
1951 if (!dstImage) {
1952 break;
1953 }
1954 dstWidth = dstImage->Width;
1955 dstHeight = dstImage->Height;
1956 dstDepth = dstImage->Depth;
1957
1958 if (target == GL_TEXTURE_1D_ARRAY) {
1959 srcDepth = srcHeight;
1960 dstDepth = dstHeight;
1961 srcHeight = 1;
1962 dstHeight = 1;
1963 }
1964
1965 /* Map src texture image slices */
1966 srcMaps = calloc(srcDepth, sizeof(GLubyte *));
1967 if (srcMaps) {
1968 for (slice = 0; slice < srcDepth; slice++) {
1969 ctx->Driver.MapTextureImage(ctx, srcImage, slice,
1970 0, 0, srcWidth, srcHeight,
1971 GL_MAP_READ_BIT,
1972 &srcMaps[slice], &srcRowStride);
1973 if (!srcMaps[slice]) {
1974 success = GL_FALSE;
1975 break;
1976 }
1977 }
1978 }
1979 else {
1980 success = GL_FALSE;
1981 }
1982
1983 /* Map dst texture image slices */
1984 dstMaps = calloc(dstDepth, sizeof(GLubyte *));
1985 if (dstMaps) {
1986 for (slice = 0; slice < dstDepth; slice++) {
1987 ctx->Driver.MapTextureImage(ctx, dstImage, slice,
1988 0, 0, dstWidth, dstHeight,
1989 GL_MAP_WRITE_BIT,
1990 &dstMaps[slice], &dstRowStride);
1991 if (!dstMaps[slice]) {
1992 success = GL_FALSE;
1993 break;
1994 }
1995 }
1996 }
1997 else {
1998 success = GL_FALSE;
1999 }
2000
2001 if (success) {
2002 /* generate one mipmap level (for 1D/2D/3D/array/etc texture) */
2003 _mesa_generate_mipmap_level(target, datatype, comps, border,
2004 srcWidth, srcHeight, srcDepth,
2005 (const GLubyte **) srcMaps, srcRowStride,
2006 dstWidth, dstHeight, dstDepth,
2007 dstMaps, dstRowStride);
2008 }
2009
2010 /* Unmap src image slices */
2011 if (srcMaps) {
2012 for (slice = 0; slice < srcDepth; slice++) {
2013 if (srcMaps[slice]) {
2014 ctx->Driver.UnmapTextureImage(ctx, srcImage, slice);
2015 }
2016 }
2017 free(srcMaps);
2018 }
2019
2020 /* Unmap dst image slices */
2021 if (dstMaps) {
2022 for (slice = 0; slice < dstDepth; slice++) {
2023 if (dstMaps[slice]) {
2024 ctx->Driver.UnmapTextureImage(ctx, dstImage, slice);
2025 }
2026 }
2027 free(dstMaps);
2028 }
2029
2030 if (!success) {
2031 _mesa_error(ctx, GL_OUT_OF_MEMORY, "mipmap generation");
2032 break;
2033 }
2034 } /* loop over mipmap levels */
2035 }
2036
2037
2038 static void
2039 generate_mipmap_compressed(struct gl_context *ctx, GLenum target,
2040 struct gl_texture_object *texObj,
2041 struct gl_texture_image *srcImage,
2042 GLuint maxLevel)
2043 {
2044 GLuint level;
2045 mesa_format temp_format;
2046 GLint components;
2047 GLuint temp_src_row_stride, temp_src_img_stride; /* in bytes */
2048 GLubyte *temp_src = NULL, *temp_dst = NULL;
2049 GLenum temp_datatype;
2050 GLenum temp_base_format;
2051 GLubyte **temp_src_slices = NULL, **temp_dst_slices = NULL;
2052
2053 /* only two types of compressed textures at this time */
2054 assert(texObj->Target == GL_TEXTURE_2D ||
2055 texObj->Target == GL_TEXTURE_2D_ARRAY ||
2056 texObj->Target == GL_TEXTURE_CUBE_MAP ||
2057 texObj->Target == GL_TEXTURE_CUBE_MAP_ARRAY);
2058
2059 /*
2060 * Choose a format for the temporary, uncompressed base image.
2061 * Then, get number of components, choose temporary image datatype,
2062 * and get base format.
2063 */
2064 temp_format = _mesa_get_uncompressed_format(srcImage->TexFormat);
2065
2066 components = _mesa_format_num_components(temp_format);
2067
2068 switch (_mesa_get_format_datatype(srcImage->TexFormat)) {
2069 case GL_FLOAT:
2070 temp_datatype = GL_FLOAT;
2071 break;
2072 case GL_SIGNED_NORMALIZED:
2073 /* Revisit this if we get compressed formats with >8 bits per component */
2074 temp_datatype = GL_BYTE;
2075 break;
2076 default:
2077 temp_datatype = GL_UNSIGNED_BYTE;
2078 }
2079
2080 temp_base_format = _mesa_get_format_base_format(temp_format);
2081
2082
2083 /* allocate storage for the temporary, uncompressed image */
2084 temp_src_row_stride = _mesa_format_row_stride(temp_format, srcImage->Width);
2085 temp_src_img_stride = _mesa_format_image_size(temp_format, srcImage->Width,
2086 srcImage->Height, 1);
2087 temp_src = malloc(temp_src_img_stride * srcImage->Depth);
2088
2089 /* Allocate storage for arrays of slice pointers */
2090 temp_src_slices = malloc(srcImage->Depth * sizeof(GLubyte *));
2091 temp_dst_slices = malloc(srcImage->Depth * sizeof(GLubyte *));
2092
2093 if (!temp_src || !temp_src_slices || !temp_dst_slices) {
2094 _mesa_error(ctx, GL_OUT_OF_MEMORY, "generate mipmaps");
2095 goto end;
2096 }
2097
2098 /* decompress base image to the temporary src buffer */
2099 {
2100 /* save pixel packing mode */
2101 struct gl_pixelstore_attrib save = ctx->Pack;
2102 /* use default/tight packing parameters */
2103 ctx->Pack = ctx->DefaultPacking;
2104
2105 /* Get the uncompressed image */
2106 assert(srcImage->Level == texObj->BaseLevel);
2107 ctx->Driver.GetTexSubImage(ctx,
2108 0, 0, 0,
2109 srcImage->Width, srcImage->Height,
2110 srcImage->Depth,
2111 temp_base_format, temp_datatype,
2112 temp_src, srcImage);
2113 /* restore packing mode */
2114 ctx->Pack = save;
2115 }
2116
2117 for (level = texObj->BaseLevel; level < maxLevel; level++) {
2118 /* generate image[level+1] from image[level] */
2119 const struct gl_texture_image *srcImage;
2120 struct gl_texture_image *dstImage;
2121 GLint srcWidth, srcHeight, srcDepth;
2122 GLint dstWidth, dstHeight, dstDepth;
2123 GLint border;
2124 GLuint temp_dst_row_stride, temp_dst_img_stride; /* in bytes */
2125 GLint i;
2126
2127 /* get src image parameters */
2128 srcImage = _mesa_select_tex_image(texObj, target, level);
2129 assert(srcImage);
2130 srcWidth = srcImage->Width;
2131 srcHeight = srcImage->Height;
2132 srcDepth = srcImage->Depth;
2133 border = srcImage->Border;
2134
2135 /* get dest gl_texture_image */
2136 dstImage = _mesa_select_tex_image(texObj, target, level + 1);
2137 if (!dstImage) {
2138 break;
2139 }
2140 dstWidth = dstImage->Width;
2141 dstHeight = dstImage->Height;
2142 dstDepth = dstImage->Depth;
2143
2144 /* Compute dst image strides and alloc memory on first iteration */
2145 temp_dst_row_stride = _mesa_format_row_stride(temp_format, dstWidth);
2146 temp_dst_img_stride = _mesa_format_image_size(temp_format, dstWidth,
2147 dstHeight, 1);
2148 if (!temp_dst) {
2149 temp_dst = malloc(temp_dst_img_stride * dstDepth);
2150 if (!temp_dst) {
2151 _mesa_error(ctx, GL_OUT_OF_MEMORY, "generate mipmaps");
2152 goto end;
2153 }
2154 }
2155
2156 /* for 2D arrays, setup array[depth] of slice pointers */
2157 for (i = 0; i < srcDepth; i++) {
2158 temp_src_slices[i] = temp_src + temp_src_img_stride * i;
2159 }
2160 for (i = 0; i < dstDepth; i++) {
2161 temp_dst_slices[i] = temp_dst + temp_dst_img_stride * i;
2162 }
2163
2164 /* Rescale src image to dest image.
2165 * This will loop over the slices of a 2D array.
2166 */
2167 _mesa_generate_mipmap_level(target, temp_datatype, components, border,
2168 srcWidth, srcHeight, srcDepth,
2169 (const GLubyte **) temp_src_slices,
2170 temp_src_row_stride,
2171 dstWidth, dstHeight, dstDepth,
2172 temp_dst_slices, temp_dst_row_stride);
2173
2174 /* The image space was allocated above so use glTexSubImage now */
2175 ctx->Driver.TexSubImage(ctx, 2, dstImage,
2176 0, 0, 0, dstWidth, dstHeight, dstDepth,
2177 temp_base_format, temp_datatype,
2178 temp_dst, &ctx->DefaultPacking);
2179
2180 /* swap src and dest pointers */
2181 {
2182 GLubyte *temp = temp_src;
2183 temp_src = temp_dst;
2184 temp_dst = temp;
2185 temp_src_row_stride = temp_dst_row_stride;
2186 temp_src_img_stride = temp_dst_img_stride;
2187 }
2188 } /* loop over mipmap levels */
2189
2190 end:
2191 free(temp_src);
2192 free(temp_dst);
2193 free(temp_src_slices);
2194 free(temp_dst_slices);
2195 }
2196
2197 /**
2198 * Automatic mipmap generation.
2199 * This is the fallback/default function for ctx->Driver.GenerateMipmap().
2200 * Generate a complete set of mipmaps from texObj's BaseLevel image.
2201 * Stop at texObj's MaxLevel or when we get to the 1x1 texture.
2202 * For cube maps, target will be one of
2203 * GL_TEXTURE_CUBE_MAP_POSITIVE/NEGATIVE_X/Y/Z; never GL_TEXTURE_CUBE_MAP.
2204 */
2205 void
2206 _mesa_generate_mipmap(struct gl_context *ctx, GLenum target,
2207 struct gl_texture_object *texObj)
2208 {
2209 struct gl_texture_image *srcImage;
2210 GLint maxLevel;
2211
2212 assert(texObj);
2213 srcImage = _mesa_select_tex_image(texObj, target, texObj->BaseLevel);
2214 assert(srcImage);
2215
2216 maxLevel = _mesa_max_texture_levels(ctx, texObj->Target) - 1;
2217 assert(maxLevel >= 0); /* bad target */
2218
2219 maxLevel = MIN2(maxLevel, texObj->MaxLevel);
2220
2221 _mesa_prepare_mipmap_levels(ctx, texObj, texObj->BaseLevel, maxLevel);
2222
2223 if (_mesa_is_format_compressed(srcImage->TexFormat)) {
2224 generate_mipmap_compressed(ctx, target, texObj, srcImage, maxLevel);
2225 } else {
2226 generate_mipmap_uncompressed(ctx, target, texObj, srcImage, maxLevel);
2227 }
2228 }