Merge branch '7.8'
[mesa.git] / src / mesa / main / mipmap.c
1 /*
2 * Mesa 3-D graphics library
3 * Version: 7.1
4 *
5 * Copyright (C) 1999-2007 Brian Paul All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25
26 /**
27 * \file mipmap.c mipmap generation and teximage resizing functions.
28 */
29
30 #include "imports.h"
31 #include "formats.h"
32 #include "mipmap.h"
33 #include "teximage.h"
34 #include "texstore.h"
35 #include "image.h"
36
37
38
39 static GLint
40 bytes_per_pixel(GLenum datatype, GLuint comps)
41 {
42 GLint b = _mesa_sizeof_packed_type(datatype);
43 assert(b >= 0);
44
45 if (_mesa_type_is_packed(datatype))
46 return b;
47 else
48 return b * comps;
49 }
50
51
52 /**
53 * \name Support macros for do_row and do_row_3d
54 *
55 * The macro madness is here for two reasons. First, it compacts the code
56 * slightly. Second, it makes it much easier to adjust the specifics of the
57 * filter to tune the rounding characteristics.
58 */
59 /*@{*/
60 #define DECLARE_ROW_POINTERS(t, e) \
61 const t(*rowA)[e] = (const t(*)[e]) srcRowA; \
62 const t(*rowB)[e] = (const t(*)[e]) srcRowB; \
63 const t(*rowC)[e] = (const t(*)[e]) srcRowC; \
64 const t(*rowD)[e] = (const t(*)[e]) srcRowD; \
65 t(*dst)[e] = (t(*)[e]) dstRow
66
67 #define DECLARE_ROW_POINTERS0(t) \
68 const t *rowA = (const t *) srcRowA; \
69 const t *rowB = (const t *) srcRowB; \
70 const t *rowC = (const t *) srcRowC; \
71 const t *rowD = (const t *) srcRowD; \
72 t *dst = (t *) dstRow
73
74 #define FILTER_SUM_3D(Aj, Ak, Bj, Bk, Cj, Ck, Dj, Dk) \
75 ((unsigned) Aj + (unsigned) Ak \
76 + (unsigned) Bj + (unsigned) Bk \
77 + (unsigned) Cj + (unsigned) Ck \
78 + (unsigned) Dj + (unsigned) Dk \
79 + 4) >> 3
80
81 #define FILTER_3D(e) \
82 do { \
83 dst[i][e] = FILTER_SUM_3D(rowA[j][e], rowA[k][e], \
84 rowB[j][e], rowB[k][e], \
85 rowC[j][e], rowC[k][e], \
86 rowD[j][e], rowD[k][e]); \
87 } while(0)
88
89 #define FILTER_SUM_3D_SIGNED(Aj, Ak, Bj, Bk, Cj, Ck, Dj, Dk) \
90 (Aj + Ak \
91 + Bj + Bk \
92 + Cj + Ck \
93 + Dj + Dk \
94 + 4) / 8
95
96 #define FILTER_3D_SIGNED(e) \
97 do { \
98 dst[i][e] = FILTER_SUM_3D_SIGNED(rowA[j][e], rowA[k][e], \
99 rowB[j][e], rowB[k][e], \
100 rowC[j][e], rowC[k][e], \
101 rowD[j][e], rowD[k][e]); \
102 } while(0)
103
104 #define FILTER_F_3D(e) \
105 do { \
106 dst[i][e] = (rowA[j][e] + rowA[k][e] \
107 + rowB[j][e] + rowB[k][e] \
108 + rowC[j][e] + rowC[k][e] \
109 + rowD[j][e] + rowD[k][e]) * 0.125F; \
110 } while(0)
111
112 #define FILTER_HF_3D(e) \
113 do { \
114 const GLfloat aj = _mesa_half_to_float(rowA[j][e]); \
115 const GLfloat ak = _mesa_half_to_float(rowA[k][e]); \
116 const GLfloat bj = _mesa_half_to_float(rowB[j][e]); \
117 const GLfloat bk = _mesa_half_to_float(rowB[k][e]); \
118 const GLfloat cj = _mesa_half_to_float(rowC[j][e]); \
119 const GLfloat ck = _mesa_half_to_float(rowC[k][e]); \
120 const GLfloat dj = _mesa_half_to_float(rowD[j][e]); \
121 const GLfloat dk = _mesa_half_to_float(rowD[k][e]); \
122 dst[i][e] = _mesa_float_to_half((aj + ak + bj + bk + cj + ck + dj + dk) \
123 * 0.125F); \
124 } while(0)
125 /*@}*/
126
127
128 /**
129 * Average together two rows of a source image to produce a single new
130 * row in the dest image. It's legal for the two source rows to point
131 * to the same data. The source width must be equal to either the
132 * dest width or two times the dest width.
133 * \param datatype GL_UNSIGNED_BYTE, GL_UNSIGNED_SHORT, GL_FLOAT, etc.
134 * \param comps number of components per pixel (1..4)
135 */
136 static void
137 do_row(GLenum datatype, GLuint comps, GLint srcWidth,
138 const GLvoid *srcRowA, const GLvoid *srcRowB,
139 GLint dstWidth, GLvoid *dstRow)
140 {
141 const GLuint k0 = (srcWidth == dstWidth) ? 0 : 1;
142 const GLuint colStride = (srcWidth == dstWidth) ? 1 : 2;
143
144 ASSERT(comps >= 1);
145 ASSERT(comps <= 4);
146
147 /* This assertion is no longer valid with non-power-of-2 textures
148 assert(srcWidth == dstWidth || srcWidth == 2 * dstWidth);
149 */
150
151 if (datatype == GL_UNSIGNED_BYTE && comps == 4) {
152 GLuint i, j, k;
153 const GLubyte(*rowA)[4] = (const GLubyte(*)[4]) srcRowA;
154 const GLubyte(*rowB)[4] = (const GLubyte(*)[4]) srcRowB;
155 GLubyte(*dst)[4] = (GLubyte(*)[4]) dstRow;
156 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
157 i++, j += colStride, k += colStride) {
158 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
159 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
160 dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
161 dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) / 4;
162 }
163 }
164 else if (datatype == GL_UNSIGNED_BYTE && comps == 3) {
165 GLuint i, j, k;
166 const GLubyte(*rowA)[3] = (const GLubyte(*)[3]) srcRowA;
167 const GLubyte(*rowB)[3] = (const GLubyte(*)[3]) srcRowB;
168 GLubyte(*dst)[3] = (GLubyte(*)[3]) dstRow;
169 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
170 i++, j += colStride, k += colStride) {
171 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
172 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
173 dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
174 }
175 }
176 else if (datatype == GL_UNSIGNED_BYTE && comps == 2) {
177 GLuint i, j, k;
178 const GLubyte(*rowA)[2] = (const GLubyte(*)[2]) srcRowA;
179 const GLubyte(*rowB)[2] = (const GLubyte(*)[2]) srcRowB;
180 GLubyte(*dst)[2] = (GLubyte(*)[2]) dstRow;
181 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
182 i++, j += colStride, k += colStride) {
183 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) >> 2;
184 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) >> 2;
185 }
186 }
187 else if (datatype == GL_UNSIGNED_BYTE && comps == 1) {
188 GLuint i, j, k;
189 const GLubyte *rowA = (const GLubyte *) srcRowA;
190 const GLubyte *rowB = (const GLubyte *) srcRowB;
191 GLubyte *dst = (GLubyte *) dstRow;
192 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
193 i++, j += colStride, k += colStride) {
194 dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) >> 2;
195 }
196 }
197
198 else if (datatype == GL_BYTE && comps == 4) {
199 GLuint i, j, k;
200 const GLbyte(*rowA)[4] = (const GLbyte(*)[4]) srcRowA;
201 const GLbyte(*rowB)[4] = (const GLbyte(*)[4]) srcRowB;
202 GLbyte(*dst)[4] = (GLbyte(*)[4]) dstRow;
203 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
204 i++, j += colStride, k += colStride) {
205 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
206 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
207 dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
208 dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) / 4;
209 }
210 }
211 else if (datatype == GL_BYTE && comps == 3) {
212 GLuint i, j, k;
213 const GLbyte(*rowA)[3] = (const GLbyte(*)[3]) srcRowA;
214 const GLbyte(*rowB)[3] = (const GLbyte(*)[3]) srcRowB;
215 GLbyte(*dst)[3] = (GLbyte(*)[3]) dstRow;
216 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
217 i++, j += colStride, k += colStride) {
218 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
219 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
220 dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
221 }
222 }
223 else if (datatype == GL_BYTE && comps == 2) {
224 GLuint i, j, k;
225 const GLbyte(*rowA)[2] = (const GLbyte(*)[2]) srcRowA;
226 const GLbyte(*rowB)[2] = (const GLbyte(*)[2]) srcRowB;
227 GLbyte(*dst)[2] = (GLbyte(*)[2]) dstRow;
228 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
229 i++, j += colStride, k += colStride) {
230 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
231 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
232 }
233 }
234 else if (datatype == GL_BYTE && comps == 1) {
235 GLuint i, j, k;
236 const GLbyte *rowA = (const GLbyte *) srcRowA;
237 const GLbyte *rowB = (const GLbyte *) srcRowB;
238 GLbyte *dst = (GLbyte *) dstRow;
239 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
240 i++, j += colStride, k += colStride) {
241 dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) / 4;
242 }
243 }
244
245 else if (datatype == GL_UNSIGNED_SHORT && comps == 4) {
246 GLuint i, j, k;
247 const GLushort(*rowA)[4] = (const GLushort(*)[4]) srcRowA;
248 const GLushort(*rowB)[4] = (const GLushort(*)[4]) srcRowB;
249 GLushort(*dst)[4] = (GLushort(*)[4]) dstRow;
250 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
251 i++, j += colStride, k += colStride) {
252 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
253 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
254 dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
255 dst[i][3] = (rowA[j][3] + rowA[k][3] + rowB[j][3] + rowB[k][3]) / 4;
256 }
257 }
258 else if (datatype == GL_UNSIGNED_SHORT && comps == 3) {
259 GLuint i, j, k;
260 const GLushort(*rowA)[3] = (const GLushort(*)[3]) srcRowA;
261 const GLushort(*rowB)[3] = (const GLushort(*)[3]) srcRowB;
262 GLushort(*dst)[3] = (GLushort(*)[3]) dstRow;
263 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
264 i++, j += colStride, k += colStride) {
265 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
266 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
267 dst[i][2] = (rowA[j][2] + rowA[k][2] + rowB[j][2] + rowB[k][2]) / 4;
268 }
269 }
270 else if (datatype == GL_UNSIGNED_SHORT && comps == 2) {
271 GLuint i, j, k;
272 const GLushort(*rowA)[2] = (const GLushort(*)[2]) srcRowA;
273 const GLushort(*rowB)[2] = (const GLushort(*)[2]) srcRowB;
274 GLushort(*dst)[2] = (GLushort(*)[2]) dstRow;
275 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
276 i++, j += colStride, k += colStride) {
277 dst[i][0] = (rowA[j][0] + rowA[k][0] + rowB[j][0] + rowB[k][0]) / 4;
278 dst[i][1] = (rowA[j][1] + rowA[k][1] + rowB[j][1] + rowB[k][1]) / 4;
279 }
280 }
281 else if (datatype == GL_UNSIGNED_SHORT && comps == 1) {
282 GLuint i, j, k;
283 const GLushort *rowA = (const GLushort *) srcRowA;
284 const GLushort *rowB = (const GLushort *) srcRowB;
285 GLushort *dst = (GLushort *) dstRow;
286 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
287 i++, j += colStride, k += colStride) {
288 dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) / 4;
289 }
290 }
291 else if (datatype == GL_FLOAT && comps == 4) {
292 GLuint i, j, k;
293 const GLfloat(*rowA)[4] = (const GLfloat(*)[4]) srcRowA;
294 const GLfloat(*rowB)[4] = (const GLfloat(*)[4]) srcRowB;
295 GLfloat(*dst)[4] = (GLfloat(*)[4]) dstRow;
296 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
297 i++, j += colStride, k += colStride) {
298 dst[i][0] = (rowA[j][0] + rowA[k][0] +
299 rowB[j][0] + rowB[k][0]) * 0.25F;
300 dst[i][1] = (rowA[j][1] + rowA[k][1] +
301 rowB[j][1] + rowB[k][1]) * 0.25F;
302 dst[i][2] = (rowA[j][2] + rowA[k][2] +
303 rowB[j][2] + rowB[k][2]) * 0.25F;
304 dst[i][3] = (rowA[j][3] + rowA[k][3] +
305 rowB[j][3] + rowB[k][3]) * 0.25F;
306 }
307 }
308 else if (datatype == GL_FLOAT && comps == 3) {
309 GLuint i, j, k;
310 const GLfloat(*rowA)[3] = (const GLfloat(*)[3]) srcRowA;
311 const GLfloat(*rowB)[3] = (const GLfloat(*)[3]) srcRowB;
312 GLfloat(*dst)[3] = (GLfloat(*)[3]) dstRow;
313 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
314 i++, j += colStride, k += colStride) {
315 dst[i][0] = (rowA[j][0] + rowA[k][0] +
316 rowB[j][0] + rowB[k][0]) * 0.25F;
317 dst[i][1] = (rowA[j][1] + rowA[k][1] +
318 rowB[j][1] + rowB[k][1]) * 0.25F;
319 dst[i][2] = (rowA[j][2] + rowA[k][2] +
320 rowB[j][2] + rowB[k][2]) * 0.25F;
321 }
322 }
323 else if (datatype == GL_FLOAT && comps == 2) {
324 GLuint i, j, k;
325 const GLfloat(*rowA)[2] = (const GLfloat(*)[2]) srcRowA;
326 const GLfloat(*rowB)[2] = (const GLfloat(*)[2]) srcRowB;
327 GLfloat(*dst)[2] = (GLfloat(*)[2]) dstRow;
328 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
329 i++, j += colStride, k += colStride) {
330 dst[i][0] = (rowA[j][0] + rowA[k][0] +
331 rowB[j][0] + rowB[k][0]) * 0.25F;
332 dst[i][1] = (rowA[j][1] + rowA[k][1] +
333 rowB[j][1] + rowB[k][1]) * 0.25F;
334 }
335 }
336 else if (datatype == GL_FLOAT && comps == 1) {
337 GLuint i, j, k;
338 const GLfloat *rowA = (const GLfloat *) srcRowA;
339 const GLfloat *rowB = (const GLfloat *) srcRowB;
340 GLfloat *dst = (GLfloat *) dstRow;
341 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
342 i++, j += colStride, k += colStride) {
343 dst[i] = (rowA[j] + rowA[k] + rowB[j] + rowB[k]) * 0.25F;
344 }
345 }
346
347 else if (datatype == GL_HALF_FLOAT_ARB && comps == 4) {
348 GLuint i, j, k, comp;
349 const GLhalfARB(*rowA)[4] = (const GLhalfARB(*)[4]) srcRowA;
350 const GLhalfARB(*rowB)[4] = (const GLhalfARB(*)[4]) srcRowB;
351 GLhalfARB(*dst)[4] = (GLhalfARB(*)[4]) dstRow;
352 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
353 i++, j += colStride, k += colStride) {
354 for (comp = 0; comp < 4; comp++) {
355 GLfloat aj, ak, bj, bk;
356 aj = _mesa_half_to_float(rowA[j][comp]);
357 ak = _mesa_half_to_float(rowA[k][comp]);
358 bj = _mesa_half_to_float(rowB[j][comp]);
359 bk = _mesa_half_to_float(rowB[k][comp]);
360 dst[i][comp] = _mesa_float_to_half((aj + ak + bj + bk) * 0.25F);
361 }
362 }
363 }
364 else if (datatype == GL_HALF_FLOAT_ARB && comps == 3) {
365 GLuint i, j, k, comp;
366 const GLhalfARB(*rowA)[3] = (const GLhalfARB(*)[3]) srcRowA;
367 const GLhalfARB(*rowB)[3] = (const GLhalfARB(*)[3]) srcRowB;
368 GLhalfARB(*dst)[3] = (GLhalfARB(*)[3]) dstRow;
369 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
370 i++, j += colStride, k += colStride) {
371 for (comp = 0; comp < 3; comp++) {
372 GLfloat aj, ak, bj, bk;
373 aj = _mesa_half_to_float(rowA[j][comp]);
374 ak = _mesa_half_to_float(rowA[k][comp]);
375 bj = _mesa_half_to_float(rowB[j][comp]);
376 bk = _mesa_half_to_float(rowB[k][comp]);
377 dst[i][comp] = _mesa_float_to_half((aj + ak + bj + bk) * 0.25F);
378 }
379 }
380 }
381 else if (datatype == GL_HALF_FLOAT_ARB && comps == 2) {
382 GLuint i, j, k, comp;
383 const GLhalfARB(*rowA)[2] = (const GLhalfARB(*)[2]) srcRowA;
384 const GLhalfARB(*rowB)[2] = (const GLhalfARB(*)[2]) srcRowB;
385 GLhalfARB(*dst)[2] = (GLhalfARB(*)[2]) dstRow;
386 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
387 i++, j += colStride, k += colStride) {
388 for (comp = 0; comp < 2; comp++) {
389 GLfloat aj, ak, bj, bk;
390 aj = _mesa_half_to_float(rowA[j][comp]);
391 ak = _mesa_half_to_float(rowA[k][comp]);
392 bj = _mesa_half_to_float(rowB[j][comp]);
393 bk = _mesa_half_to_float(rowB[k][comp]);
394 dst[i][comp] = _mesa_float_to_half((aj + ak + bj + bk) * 0.25F);
395 }
396 }
397 }
398 else if (datatype == GL_HALF_FLOAT_ARB && comps == 1) {
399 GLuint i, j, k;
400 const GLhalfARB *rowA = (const GLhalfARB *) srcRowA;
401 const GLhalfARB *rowB = (const GLhalfARB *) srcRowB;
402 GLhalfARB *dst = (GLhalfARB *) dstRow;
403 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
404 i++, j += colStride, k += colStride) {
405 GLfloat aj, ak, bj, bk;
406 aj = _mesa_half_to_float(rowA[j]);
407 ak = _mesa_half_to_float(rowA[k]);
408 bj = _mesa_half_to_float(rowB[j]);
409 bk = _mesa_half_to_float(rowB[k]);
410 dst[i] = _mesa_float_to_half((aj + ak + bj + bk) * 0.25F);
411 }
412 }
413
414 else if (datatype == GL_UNSIGNED_INT && comps == 1) {
415 GLuint i, j, k;
416 const GLuint *rowA = (const GLuint *) srcRowA;
417 const GLuint *rowB = (const GLuint *) srcRowB;
418 GLfloat *dst = (GLfloat *) dstRow;
419 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
420 i++, j += colStride, k += colStride) {
421 dst[i] = (GLfloat)(rowA[j] / 4 + rowA[k] / 4 + rowB[j] / 4 + rowB[k] / 4);
422 }
423 }
424
425 else if (datatype == GL_UNSIGNED_SHORT_5_6_5 && comps == 3) {
426 GLuint i, j, k;
427 const GLushort *rowA = (const GLushort *) srcRowA;
428 const GLushort *rowB = (const GLushort *) srcRowB;
429 GLushort *dst = (GLushort *) dstRow;
430 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
431 i++, j += colStride, k += colStride) {
432 const GLint rowAr0 = rowA[j] & 0x1f;
433 const GLint rowAr1 = rowA[k] & 0x1f;
434 const GLint rowBr0 = rowB[j] & 0x1f;
435 const GLint rowBr1 = rowB[k] & 0x1f;
436 const GLint rowAg0 = (rowA[j] >> 5) & 0x3f;
437 const GLint rowAg1 = (rowA[k] >> 5) & 0x3f;
438 const GLint rowBg0 = (rowB[j] >> 5) & 0x3f;
439 const GLint rowBg1 = (rowB[k] >> 5) & 0x3f;
440 const GLint rowAb0 = (rowA[j] >> 11) & 0x1f;
441 const GLint rowAb1 = (rowA[k] >> 11) & 0x1f;
442 const GLint rowBb0 = (rowB[j] >> 11) & 0x1f;
443 const GLint rowBb1 = (rowB[k] >> 11) & 0x1f;
444 const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
445 const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
446 const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
447 dst[i] = (blue << 11) | (green << 5) | red;
448 }
449 }
450 else if (datatype == GL_UNSIGNED_SHORT_4_4_4_4 && comps == 4) {
451 GLuint i, j, k;
452 const GLushort *rowA = (const GLushort *) srcRowA;
453 const GLushort *rowB = (const GLushort *) srcRowB;
454 GLushort *dst = (GLushort *) dstRow;
455 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
456 i++, j += colStride, k += colStride) {
457 const GLint rowAr0 = rowA[j] & 0xf;
458 const GLint rowAr1 = rowA[k] & 0xf;
459 const GLint rowBr0 = rowB[j] & 0xf;
460 const GLint rowBr1 = rowB[k] & 0xf;
461 const GLint rowAg0 = (rowA[j] >> 4) & 0xf;
462 const GLint rowAg1 = (rowA[k] >> 4) & 0xf;
463 const GLint rowBg0 = (rowB[j] >> 4) & 0xf;
464 const GLint rowBg1 = (rowB[k] >> 4) & 0xf;
465 const GLint rowAb0 = (rowA[j] >> 8) & 0xf;
466 const GLint rowAb1 = (rowA[k] >> 8) & 0xf;
467 const GLint rowBb0 = (rowB[j] >> 8) & 0xf;
468 const GLint rowBb1 = (rowB[k] >> 8) & 0xf;
469 const GLint rowAa0 = (rowA[j] >> 12) & 0xf;
470 const GLint rowAa1 = (rowA[k] >> 12) & 0xf;
471 const GLint rowBa0 = (rowB[j] >> 12) & 0xf;
472 const GLint rowBa1 = (rowB[k] >> 12) & 0xf;
473 const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
474 const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
475 const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
476 const GLint alpha = (rowAa0 + rowAa1 + rowBa0 + rowBa1) >> 2;
477 dst[i] = (alpha << 12) | (blue << 8) | (green << 4) | red;
478 }
479 }
480 else if (datatype == GL_UNSIGNED_SHORT_1_5_5_5_REV && comps == 4) {
481 GLuint i, j, k;
482 const GLushort *rowA = (const GLushort *) srcRowA;
483 const GLushort *rowB = (const GLushort *) srcRowB;
484 GLushort *dst = (GLushort *) dstRow;
485 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
486 i++, j += colStride, k += colStride) {
487 const GLint rowAr0 = rowA[j] & 0x1f;
488 const GLint rowAr1 = rowA[k] & 0x1f;
489 const GLint rowBr0 = rowB[j] & 0x1f;
490 const GLint rowBr1 = rowB[k] & 0x1f;
491 const GLint rowAg0 = (rowA[j] >> 5) & 0x1f;
492 const GLint rowAg1 = (rowA[k] >> 5) & 0x1f;
493 const GLint rowBg0 = (rowB[j] >> 5) & 0x1f;
494 const GLint rowBg1 = (rowB[k] >> 5) & 0x1f;
495 const GLint rowAb0 = (rowA[j] >> 10) & 0x1f;
496 const GLint rowAb1 = (rowA[k] >> 10) & 0x1f;
497 const GLint rowBb0 = (rowB[j] >> 10) & 0x1f;
498 const GLint rowBb1 = (rowB[k] >> 10) & 0x1f;
499 const GLint rowAa0 = (rowA[j] >> 15) & 0x1;
500 const GLint rowAa1 = (rowA[k] >> 15) & 0x1;
501 const GLint rowBa0 = (rowB[j] >> 15) & 0x1;
502 const GLint rowBa1 = (rowB[k] >> 15) & 0x1;
503 const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
504 const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
505 const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
506 const GLint alpha = (rowAa0 + rowAa1 + rowBa0 + rowBa1) >> 2;
507 dst[i] = (alpha << 15) | (blue << 10) | (green << 5) | red;
508 }
509 }
510 else if (datatype == GL_UNSIGNED_BYTE_3_3_2 && comps == 3) {
511 GLuint i, j, k;
512 const GLubyte *rowA = (const GLubyte *) srcRowA;
513 const GLubyte *rowB = (const GLubyte *) srcRowB;
514 GLubyte *dst = (GLubyte *) dstRow;
515 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
516 i++, j += colStride, k += colStride) {
517 const GLint rowAr0 = rowA[j] & 0x3;
518 const GLint rowAr1 = rowA[k] & 0x3;
519 const GLint rowBr0 = rowB[j] & 0x3;
520 const GLint rowBr1 = rowB[k] & 0x3;
521 const GLint rowAg0 = (rowA[j] >> 2) & 0x7;
522 const GLint rowAg1 = (rowA[k] >> 2) & 0x7;
523 const GLint rowBg0 = (rowB[j] >> 2) & 0x7;
524 const GLint rowBg1 = (rowB[k] >> 2) & 0x7;
525 const GLint rowAb0 = (rowA[j] >> 5) & 0x7;
526 const GLint rowAb1 = (rowA[k] >> 5) & 0x7;
527 const GLint rowBb0 = (rowB[j] >> 5) & 0x7;
528 const GLint rowBb1 = (rowB[k] >> 5) & 0x7;
529 const GLint red = (rowAr0 + rowAr1 + rowBr0 + rowBr1) >> 2;
530 const GLint green = (rowAg0 + rowAg1 + rowBg0 + rowBg1) >> 2;
531 const GLint blue = (rowAb0 + rowAb1 + rowBb0 + rowBb1) >> 2;
532 dst[i] = (blue << 5) | (green << 2) | red;
533 }
534 }
535 else {
536 _mesa_problem(NULL, "bad format in do_row()");
537 }
538 }
539
540
541 /**
542 * Average together four rows of a source image to produce a single new
543 * row in the dest image. It's legal for the two source rows to point
544 * to the same data. The source width must be equal to either the
545 * dest width or two times the dest width.
546 *
547 * \param datatype GL pixel type \c GL_UNSIGNED_BYTE, \c GL_UNSIGNED_SHORT,
548 * \c GL_FLOAT, etc.
549 * \param comps number of components per pixel (1..4)
550 * \param srcWidth Width of a row in the source data
551 * \param srcRowA Pointer to one of the rows of source data
552 * \param srcRowB Pointer to one of the rows of source data
553 * \param srcRowC Pointer to one of the rows of source data
554 * \param srcRowD Pointer to one of the rows of source data
555 * \param dstWidth Width of a row in the destination data
556 * \param srcRowA Pointer to the row of destination data
557 */
558 static void
559 do_row_3D(GLenum datatype, GLuint comps, GLint srcWidth,
560 const GLvoid *srcRowA, const GLvoid *srcRowB,
561 const GLvoid *srcRowC, const GLvoid *srcRowD,
562 GLint dstWidth, GLvoid *dstRow)
563 {
564 const GLuint k0 = (srcWidth == dstWidth) ? 0 : 1;
565 const GLuint colStride = (srcWidth == dstWidth) ? 1 : 2;
566 GLuint i, j, k;
567
568 ASSERT(comps >= 1);
569 ASSERT(comps <= 4);
570
571 if ((datatype == GL_UNSIGNED_BYTE) && (comps == 4)) {
572 DECLARE_ROW_POINTERS(GLubyte, 4);
573
574 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
575 i++, j += colStride, k += colStride) {
576 FILTER_3D(0);
577 FILTER_3D(1);
578 FILTER_3D(2);
579 FILTER_3D(3);
580 }
581 }
582 else if ((datatype == GL_UNSIGNED_BYTE) && (comps == 3)) {
583 DECLARE_ROW_POINTERS(GLubyte, 3);
584
585 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
586 i++, j += colStride, k += colStride) {
587 FILTER_3D(0);
588 FILTER_3D(1);
589 FILTER_3D(2);
590 }
591 }
592 else if ((datatype == GL_UNSIGNED_BYTE) && (comps == 2)) {
593 DECLARE_ROW_POINTERS(GLubyte, 2);
594
595 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
596 i++, j += colStride, k += colStride) {
597 FILTER_3D(0);
598 FILTER_3D(1);
599 }
600 }
601 else if ((datatype == GL_UNSIGNED_BYTE) && (comps == 1)) {
602 DECLARE_ROW_POINTERS(GLubyte, 1);
603
604 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
605 i++, j += colStride, k += colStride) {
606 FILTER_3D(0);
607 }
608 }
609 if ((datatype == GL_BYTE) && (comps == 4)) {
610 DECLARE_ROW_POINTERS(GLbyte, 4);
611
612 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
613 i++, j += colStride, k += colStride) {
614 FILTER_3D_SIGNED(0);
615 FILTER_3D_SIGNED(1);
616 FILTER_3D_SIGNED(2);
617 FILTER_3D_SIGNED(3);
618 }
619 }
620 else if ((datatype == GL_BYTE) && (comps == 3)) {
621 DECLARE_ROW_POINTERS(GLbyte, 3);
622
623 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
624 i++, j += colStride, k += colStride) {
625 FILTER_3D_SIGNED(0);
626 FILTER_3D_SIGNED(1);
627 FILTER_3D_SIGNED(2);
628 }
629 }
630 else if ((datatype == GL_BYTE) && (comps == 2)) {
631 DECLARE_ROW_POINTERS(GLbyte, 2);
632
633 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
634 i++, j += colStride, k += colStride) {
635 FILTER_3D_SIGNED(0);
636 FILTER_3D_SIGNED(1);
637 }
638 }
639 else if ((datatype == GL_BYTE) && (comps == 1)) {
640 DECLARE_ROW_POINTERS(GLbyte, 1);
641
642 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
643 i++, j += colStride, k += colStride) {
644 FILTER_3D_SIGNED(0);
645 }
646 }
647 else if ((datatype == GL_UNSIGNED_SHORT) && (comps == 4)) {
648 DECLARE_ROW_POINTERS(GLushort, 4);
649
650 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
651 i++, j += colStride, k += colStride) {
652 FILTER_3D(0);
653 FILTER_3D(1);
654 FILTER_3D(2);
655 FILTER_3D(3);
656 }
657 }
658 else if ((datatype == GL_UNSIGNED_SHORT) && (comps == 3)) {
659 DECLARE_ROW_POINTERS(GLushort, 3);
660
661 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
662 i++, j += colStride, k += colStride) {
663 FILTER_3D(0);
664 FILTER_3D(1);
665 FILTER_3D(2);
666 }
667 }
668 else if ((datatype == GL_UNSIGNED_SHORT) && (comps == 2)) {
669 DECLARE_ROW_POINTERS(GLushort, 2);
670
671 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
672 i++, j += colStride, k += colStride) {
673 FILTER_3D(0);
674 FILTER_3D(1);
675 }
676 }
677 else if ((datatype == GL_UNSIGNED_SHORT) && (comps == 1)) {
678 DECLARE_ROW_POINTERS(GLushort, 1);
679
680 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
681 i++, j += colStride, k += colStride) {
682 FILTER_3D(0);
683 }
684 }
685 else if ((datatype == GL_FLOAT) && (comps == 4)) {
686 DECLARE_ROW_POINTERS(GLfloat, 4);
687
688 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
689 i++, j += colStride, k += colStride) {
690 FILTER_F_3D(0);
691 FILTER_F_3D(1);
692 FILTER_F_3D(2);
693 FILTER_F_3D(3);
694 }
695 }
696 else if ((datatype == GL_FLOAT) && (comps == 3)) {
697 DECLARE_ROW_POINTERS(GLfloat, 3);
698
699 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
700 i++, j += colStride, k += colStride) {
701 FILTER_F_3D(0);
702 FILTER_F_3D(1);
703 FILTER_F_3D(2);
704 }
705 }
706 else if ((datatype == GL_FLOAT) && (comps == 2)) {
707 DECLARE_ROW_POINTERS(GLfloat, 2);
708
709 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
710 i++, j += colStride, k += colStride) {
711 FILTER_F_3D(0);
712 FILTER_F_3D(1);
713 }
714 }
715 else if ((datatype == GL_FLOAT) && (comps == 1)) {
716 DECLARE_ROW_POINTERS(GLfloat, 1);
717
718 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
719 i++, j += colStride, k += colStride) {
720 FILTER_F_3D(0);
721 }
722 }
723 else if ((datatype == GL_HALF_FLOAT_ARB) && (comps == 4)) {
724 DECLARE_ROW_POINTERS(GLhalfARB, 4);
725
726 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
727 i++, j += colStride, k += colStride) {
728 FILTER_HF_3D(0);
729 FILTER_HF_3D(1);
730 FILTER_HF_3D(2);
731 FILTER_HF_3D(3);
732 }
733 }
734 else if ((datatype == GL_HALF_FLOAT_ARB) && (comps == 3)) {
735 DECLARE_ROW_POINTERS(GLhalfARB, 4);
736
737 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
738 i++, j += colStride, k += colStride) {
739 FILTER_HF_3D(0);
740 FILTER_HF_3D(1);
741 FILTER_HF_3D(2);
742 }
743 }
744 else if ((datatype == GL_HALF_FLOAT_ARB) && (comps == 2)) {
745 DECLARE_ROW_POINTERS(GLhalfARB, 4);
746
747 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
748 i++, j += colStride, k += colStride) {
749 FILTER_HF_3D(0);
750 FILTER_HF_3D(1);
751 }
752 }
753 else if ((datatype == GL_HALF_FLOAT_ARB) && (comps == 1)) {
754 DECLARE_ROW_POINTERS(GLhalfARB, 4);
755
756 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
757 i++, j += colStride, k += colStride) {
758 FILTER_HF_3D(0);
759 }
760 }
761 else if ((datatype == GL_UNSIGNED_INT) && (comps == 1)) {
762 const GLuint *rowA = (const GLuint *) srcRowA;
763 const GLuint *rowB = (const GLuint *) srcRowB;
764 const GLuint *rowC = (const GLuint *) srcRowC;
765 const GLuint *rowD = (const GLuint *) srcRowD;
766 GLfloat *dst = (GLfloat *) dstRow;
767
768 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
769 i++, j += colStride, k += colStride) {
770 const uint64_t tmp = (((uint64_t) rowA[j] + (uint64_t) rowA[k])
771 + ((uint64_t) rowB[j] + (uint64_t) rowB[k])
772 + ((uint64_t) rowC[j] + (uint64_t) rowC[k])
773 + ((uint64_t) rowD[j] + (uint64_t) rowD[k]));
774 dst[i] = (GLfloat)((double) tmp * 0.125);
775 }
776 }
777 else if ((datatype == GL_UNSIGNED_SHORT_5_6_5) && (comps == 3)) {
778 DECLARE_ROW_POINTERS0(GLushort);
779
780 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
781 i++, j += colStride, k += colStride) {
782 const GLint rowAr0 = rowA[j] & 0x1f;
783 const GLint rowAr1 = rowA[k] & 0x1f;
784 const GLint rowBr0 = rowB[j] & 0x1f;
785 const GLint rowBr1 = rowB[k] & 0x1f;
786 const GLint rowCr0 = rowC[j] & 0x1f;
787 const GLint rowCr1 = rowC[k] & 0x1f;
788 const GLint rowDr0 = rowD[j] & 0x1f;
789 const GLint rowDr1 = rowD[k] & 0x1f;
790 const GLint rowAg0 = (rowA[j] >> 5) & 0x3f;
791 const GLint rowAg1 = (rowA[k] >> 5) & 0x3f;
792 const GLint rowBg0 = (rowB[j] >> 5) & 0x3f;
793 const GLint rowBg1 = (rowB[k] >> 5) & 0x3f;
794 const GLint rowCg0 = (rowC[j] >> 5) & 0x3f;
795 const GLint rowCg1 = (rowC[k] >> 5) & 0x3f;
796 const GLint rowDg0 = (rowD[j] >> 5) & 0x3f;
797 const GLint rowDg1 = (rowD[k] >> 5) & 0x3f;
798 const GLint rowAb0 = (rowA[j] >> 11) & 0x1f;
799 const GLint rowAb1 = (rowA[k] >> 11) & 0x1f;
800 const GLint rowBb0 = (rowB[j] >> 11) & 0x1f;
801 const GLint rowBb1 = (rowB[k] >> 11) & 0x1f;
802 const GLint rowCb0 = (rowC[j] >> 11) & 0x1f;
803 const GLint rowCb1 = (rowC[k] >> 11) & 0x1f;
804 const GLint rowDb0 = (rowD[j] >> 11) & 0x1f;
805 const GLint rowDb1 = (rowD[k] >> 11) & 0x1f;
806 const GLint r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
807 rowCr0, rowCr1, rowDr0, rowDr1);
808 const GLint g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
809 rowCg0, rowCg1, rowDg0, rowDg1);
810 const GLint b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
811 rowCb0, rowCb1, rowDb0, rowDb1);
812 dst[i] = (b << 11) | (g << 5) | r;
813 }
814 }
815 else if ((datatype == GL_UNSIGNED_SHORT_4_4_4_4) && (comps == 4)) {
816 DECLARE_ROW_POINTERS0(GLushort);
817
818 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
819 i++, j += colStride, k += colStride) {
820 const GLint rowAr0 = rowA[j] & 0xf;
821 const GLint rowAr1 = rowA[k] & 0xf;
822 const GLint rowBr0 = rowB[j] & 0xf;
823 const GLint rowBr1 = rowB[k] & 0xf;
824 const GLint rowCr0 = rowC[j] & 0xf;
825 const GLint rowCr1 = rowC[k] & 0xf;
826 const GLint rowDr0 = rowD[j] & 0xf;
827 const GLint rowDr1 = rowD[k] & 0xf;
828 const GLint rowAg0 = (rowA[j] >> 4) & 0xf;
829 const GLint rowAg1 = (rowA[k] >> 4) & 0xf;
830 const GLint rowBg0 = (rowB[j] >> 4) & 0xf;
831 const GLint rowBg1 = (rowB[k] >> 4) & 0xf;
832 const GLint rowCg0 = (rowC[j] >> 4) & 0xf;
833 const GLint rowCg1 = (rowC[k] >> 4) & 0xf;
834 const GLint rowDg0 = (rowD[j] >> 4) & 0xf;
835 const GLint rowDg1 = (rowD[k] >> 4) & 0xf;
836 const GLint rowAb0 = (rowA[j] >> 8) & 0xf;
837 const GLint rowAb1 = (rowA[k] >> 8) & 0xf;
838 const GLint rowBb0 = (rowB[j] >> 8) & 0xf;
839 const GLint rowBb1 = (rowB[k] >> 8) & 0xf;
840 const GLint rowCb0 = (rowC[j] >> 8) & 0xf;
841 const GLint rowCb1 = (rowC[k] >> 8) & 0xf;
842 const GLint rowDb0 = (rowD[j] >> 8) & 0xf;
843 const GLint rowDb1 = (rowD[k] >> 8) & 0xf;
844 const GLint rowAa0 = (rowA[j] >> 12) & 0xf;
845 const GLint rowAa1 = (rowA[k] >> 12) & 0xf;
846 const GLint rowBa0 = (rowB[j] >> 12) & 0xf;
847 const GLint rowBa1 = (rowB[k] >> 12) & 0xf;
848 const GLint rowCa0 = (rowC[j] >> 12) & 0xf;
849 const GLint rowCa1 = (rowC[k] >> 12) & 0xf;
850 const GLint rowDa0 = (rowD[j] >> 12) & 0xf;
851 const GLint rowDa1 = (rowD[k] >> 12) & 0xf;
852 const GLint r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
853 rowCr0, rowCr1, rowDr0, rowDr1);
854 const GLint g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
855 rowCg0, rowCg1, rowDg0, rowDg1);
856 const GLint b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
857 rowCb0, rowCb1, rowDb0, rowDb1);
858 const GLint a = FILTER_SUM_3D(rowAa0, rowAa1, rowBa0, rowBa1,
859 rowCa0, rowCa1, rowDa0, rowDa1);
860
861 dst[i] = (a << 12) | (b << 8) | (g << 4) | r;
862 }
863 }
864 else if ((datatype == GL_UNSIGNED_SHORT_1_5_5_5_REV) && (comps == 4)) {
865 DECLARE_ROW_POINTERS0(GLushort);
866
867 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
868 i++, j += colStride, k += colStride) {
869 const GLint rowAr0 = rowA[j] & 0x1f;
870 const GLint rowAr1 = rowA[k] & 0x1f;
871 const GLint rowBr0 = rowB[j] & 0x1f;
872 const GLint rowBr1 = rowB[k] & 0x1f;
873 const GLint rowCr0 = rowC[j] & 0x1f;
874 const GLint rowCr1 = rowC[k] & 0x1f;
875 const GLint rowDr0 = rowD[j] & 0x1f;
876 const GLint rowDr1 = rowD[k] & 0x1f;
877 const GLint rowAg0 = (rowA[j] >> 5) & 0x1f;
878 const GLint rowAg1 = (rowA[k] >> 5) & 0x1f;
879 const GLint rowBg0 = (rowB[j] >> 5) & 0x1f;
880 const GLint rowBg1 = (rowB[k] >> 5) & 0x1f;
881 const GLint rowCg0 = (rowC[j] >> 5) & 0x1f;
882 const GLint rowCg1 = (rowC[k] >> 5) & 0x1f;
883 const GLint rowDg0 = (rowD[j] >> 5) & 0x1f;
884 const GLint rowDg1 = (rowD[k] >> 5) & 0x1f;
885 const GLint rowAb0 = (rowA[j] >> 10) & 0x1f;
886 const GLint rowAb1 = (rowA[k] >> 10) & 0x1f;
887 const GLint rowBb0 = (rowB[j] >> 10) & 0x1f;
888 const GLint rowBb1 = (rowB[k] >> 10) & 0x1f;
889 const GLint rowCb0 = (rowC[j] >> 10) & 0x1f;
890 const GLint rowCb1 = (rowC[k] >> 10) & 0x1f;
891 const GLint rowDb0 = (rowD[j] >> 10) & 0x1f;
892 const GLint rowDb1 = (rowD[k] >> 10) & 0x1f;
893 const GLint rowAa0 = (rowA[j] >> 15) & 0x1;
894 const GLint rowAa1 = (rowA[k] >> 15) & 0x1;
895 const GLint rowBa0 = (rowB[j] >> 15) & 0x1;
896 const GLint rowBa1 = (rowB[k] >> 15) & 0x1;
897 const GLint rowCa0 = (rowC[j] >> 15) & 0x1;
898 const GLint rowCa1 = (rowC[k] >> 15) & 0x1;
899 const GLint rowDa0 = (rowD[j] >> 15) & 0x1;
900 const GLint rowDa1 = (rowD[k] >> 15) & 0x1;
901 const GLint r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
902 rowCr0, rowCr1, rowDr0, rowDr1);
903 const GLint g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
904 rowCg0, rowCg1, rowDg0, rowDg1);
905 const GLint b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
906 rowCb0, rowCb1, rowDb0, rowDb1);
907 const GLint a = FILTER_SUM_3D(rowAa0, rowAa1, rowBa0, rowBa1,
908 rowCa0, rowCa1, rowDa0, rowDa1);
909
910 dst[i] = (a << 15) | (b << 10) | (g << 5) | r;
911 }
912 }
913 else if ((datatype == GL_UNSIGNED_BYTE_3_3_2) && (comps == 3)) {
914 DECLARE_ROW_POINTERS0(GLushort);
915
916 for (i = j = 0, k = k0; i < (GLuint) dstWidth;
917 i++, j += colStride, k += colStride) {
918 const GLint rowAr0 = rowA[j] & 0x3;
919 const GLint rowAr1 = rowA[k] & 0x3;
920 const GLint rowBr0 = rowB[j] & 0x3;
921 const GLint rowBr1 = rowB[k] & 0x3;
922 const GLint rowCr0 = rowC[j] & 0x3;
923 const GLint rowCr1 = rowC[k] & 0x3;
924 const GLint rowDr0 = rowD[j] & 0x3;
925 const GLint rowDr1 = rowD[k] & 0x3;
926 const GLint rowAg0 = (rowA[j] >> 2) & 0x7;
927 const GLint rowAg1 = (rowA[k] >> 2) & 0x7;
928 const GLint rowBg0 = (rowB[j] >> 2) & 0x7;
929 const GLint rowBg1 = (rowB[k] >> 2) & 0x7;
930 const GLint rowCg0 = (rowC[j] >> 2) & 0x7;
931 const GLint rowCg1 = (rowC[k] >> 2) & 0x7;
932 const GLint rowDg0 = (rowD[j] >> 2) & 0x7;
933 const GLint rowDg1 = (rowD[k] >> 2) & 0x7;
934 const GLint rowAb0 = (rowA[j] >> 5) & 0x7;
935 const GLint rowAb1 = (rowA[k] >> 5) & 0x7;
936 const GLint rowBb0 = (rowB[j] >> 5) & 0x7;
937 const GLint rowBb1 = (rowB[k] >> 5) & 0x7;
938 const GLint rowCb0 = (rowC[j] >> 5) & 0x7;
939 const GLint rowCb1 = (rowC[k] >> 5) & 0x7;
940 const GLint rowDb0 = (rowD[j] >> 5) & 0x7;
941 const GLint rowDb1 = (rowD[k] >> 5) & 0x7;
942 const GLint r = FILTER_SUM_3D(rowAr0, rowAr1, rowBr0, rowBr1,
943 rowCr0, rowCr1, rowDr0, rowDr1);
944 const GLint g = FILTER_SUM_3D(rowAg0, rowAg1, rowBg0, rowBg1,
945 rowCg0, rowCg1, rowDg0, rowDg1);
946 const GLint b = FILTER_SUM_3D(rowAb0, rowAb1, rowBb0, rowBb1,
947 rowCb0, rowCb1, rowDb0, rowDb1);
948 dst[i] = (b << 5) | (g << 2) | r;
949 }
950 }
951 else {
952 _mesa_problem(NULL, "bad format in do_row()");
953 }
954 }
955
956
957 /*
958 * These functions generate a 1/2-size mipmap image from a source image.
959 * Texture borders are handled by copying or averaging the source image's
960 * border texels, depending on the scale-down factor.
961 */
962
963 static void
964 make_1d_mipmap(GLenum datatype, GLuint comps, GLint border,
965 GLint srcWidth, const GLubyte *srcPtr,
966 GLint dstWidth, GLubyte *dstPtr)
967 {
968 const GLint bpt = bytes_per_pixel(datatype, comps);
969 const GLubyte *src;
970 GLubyte *dst;
971
972 /* skip the border pixel, if any */
973 src = srcPtr + border * bpt;
974 dst = dstPtr + border * bpt;
975
976 /* we just duplicate the input row, kind of hack, saves code */
977 do_row(datatype, comps, srcWidth - 2 * border, src, src,
978 dstWidth - 2 * border, dst);
979
980 if (border) {
981 /* copy left-most pixel from source */
982 assert(dstPtr);
983 assert(srcPtr);
984 memcpy(dstPtr, srcPtr, bpt);
985 /* copy right-most pixel from source */
986 memcpy(dstPtr + (dstWidth - 1) * bpt,
987 srcPtr + (srcWidth - 1) * bpt,
988 bpt);
989 }
990 }
991
992
993 static void
994 make_2d_mipmap(GLenum datatype, GLuint comps, GLint border,
995 GLint srcWidth, GLint srcHeight,
996 const GLubyte *srcPtr, GLint srcRowStride,
997 GLint dstWidth, GLint dstHeight,
998 GLubyte *dstPtr, GLint dstRowStride)
999 {
1000 const GLint bpt = bytes_per_pixel(datatype, comps);
1001 const GLint srcWidthNB = srcWidth - 2 * border; /* sizes w/out border */
1002 const GLint dstWidthNB = dstWidth - 2 * border;
1003 const GLint dstHeightNB = dstHeight - 2 * border;
1004 const GLint srcRowBytes = bpt * srcRowStride;
1005 const GLint dstRowBytes = bpt * dstRowStride;
1006 const GLubyte *srcA, *srcB;
1007 GLubyte *dst;
1008 GLint row;
1009
1010 /* Compute src and dst pointers, skipping any border */
1011 srcA = srcPtr + border * ((srcWidth + 1) * bpt);
1012 if (srcHeight > 1)
1013 srcB = srcA + srcRowBytes;
1014 else
1015 srcB = srcA;
1016 dst = dstPtr + border * ((dstWidth + 1) * bpt);
1017
1018 for (row = 0; row < dstHeightNB; row++) {
1019 do_row(datatype, comps, srcWidthNB, srcA, srcB,
1020 dstWidthNB, dst);
1021 srcA += 2 * srcRowBytes;
1022 srcB += 2 * srcRowBytes;
1023 dst += dstRowBytes;
1024 }
1025
1026 /* This is ugly but probably won't be used much */
1027 if (border > 0) {
1028 /* fill in dest border */
1029 /* lower-left border pixel */
1030 assert(dstPtr);
1031 assert(srcPtr);
1032 memcpy(dstPtr, srcPtr, bpt);
1033 /* lower-right border pixel */
1034 memcpy(dstPtr + (dstWidth - 1) * bpt,
1035 srcPtr + (srcWidth - 1) * bpt, bpt);
1036 /* upper-left border pixel */
1037 memcpy(dstPtr + dstWidth * (dstHeight - 1) * bpt,
1038 srcPtr + srcWidth * (srcHeight - 1) * bpt, bpt);
1039 /* upper-right border pixel */
1040 memcpy(dstPtr + (dstWidth * dstHeight - 1) * bpt,
1041 srcPtr + (srcWidth * srcHeight - 1) * bpt, bpt);
1042 /* lower border */
1043 do_row(datatype, comps, srcWidthNB,
1044 srcPtr + bpt,
1045 srcPtr + bpt,
1046 dstWidthNB, dstPtr + bpt);
1047 /* upper border */
1048 do_row(datatype, comps, srcWidthNB,
1049 srcPtr + (srcWidth * (srcHeight - 1) + 1) * bpt,
1050 srcPtr + (srcWidth * (srcHeight - 1) + 1) * bpt,
1051 dstWidthNB,
1052 dstPtr + (dstWidth * (dstHeight - 1) + 1) * bpt);
1053 /* left and right borders */
1054 if (srcHeight == dstHeight) {
1055 /* copy border pixel from src to dst */
1056 for (row = 1; row < srcHeight; row++) {
1057 memcpy(dstPtr + dstWidth * row * bpt,
1058 srcPtr + srcWidth * row * bpt, bpt);
1059 memcpy(dstPtr + (dstWidth * row + dstWidth - 1) * bpt,
1060 srcPtr + (srcWidth * row + srcWidth - 1) * bpt, bpt);
1061 }
1062 }
1063 else {
1064 /* average two src pixels each dest pixel */
1065 for (row = 0; row < dstHeightNB; row += 2) {
1066 do_row(datatype, comps, 1,
1067 srcPtr + (srcWidth * (row * 2 + 1)) * bpt,
1068 srcPtr + (srcWidth * (row * 2 + 2)) * bpt,
1069 1, dstPtr + (dstWidth * row + 1) * bpt);
1070 do_row(datatype, comps, 1,
1071 srcPtr + (srcWidth * (row * 2 + 1) + srcWidth - 1) * bpt,
1072 srcPtr + (srcWidth * (row * 2 + 2) + srcWidth - 1) * bpt,
1073 1, dstPtr + (dstWidth * row + 1 + dstWidth - 1) * bpt);
1074 }
1075 }
1076 }
1077 }
1078
1079
1080 static void
1081 make_3d_mipmap(GLenum datatype, GLuint comps, GLint border,
1082 GLint srcWidth, GLint srcHeight, GLint srcDepth,
1083 const GLubyte *srcPtr, GLint srcRowStride,
1084 GLint dstWidth, GLint dstHeight, GLint dstDepth,
1085 GLubyte *dstPtr, GLint dstRowStride)
1086 {
1087 const GLint bpt = bytes_per_pixel(datatype, comps);
1088 const GLint srcWidthNB = srcWidth - 2 * border; /* sizes w/out border */
1089 const GLint srcDepthNB = srcDepth - 2 * border;
1090 const GLint dstWidthNB = dstWidth - 2 * border;
1091 const GLint dstHeightNB = dstHeight - 2 * border;
1092 const GLint dstDepthNB = dstDepth - 2 * border;
1093 GLint img, row;
1094 GLint bytesPerSrcImage, bytesPerDstImage;
1095 GLint bytesPerSrcRow, bytesPerDstRow;
1096 GLint srcImageOffset, srcRowOffset;
1097
1098 (void) srcDepthNB; /* silence warnings */
1099
1100
1101 bytesPerSrcImage = srcWidth * srcHeight * bpt;
1102 bytesPerDstImage = dstWidth * dstHeight * bpt;
1103
1104 bytesPerSrcRow = srcWidth * bpt;
1105 bytesPerDstRow = dstWidth * bpt;
1106
1107 /* Offset between adjacent src images to be averaged together */
1108 srcImageOffset = (srcDepth == dstDepth) ? 0 : bytesPerSrcImage;
1109
1110 /* Offset between adjacent src rows to be averaged together */
1111 srcRowOffset = (srcHeight == dstHeight) ? 0 : srcWidth * bpt;
1112
1113 /*
1114 * Need to average together up to 8 src pixels for each dest pixel.
1115 * Break that down into 3 operations:
1116 * 1. take two rows from source image and average them together.
1117 * 2. take two rows from next source image and average them together.
1118 * 3. take the two averaged rows and average them for the final dst row.
1119 */
1120
1121 /*
1122 printf("mip3d %d x %d x %d -> %d x %d x %d\n",
1123 srcWidth, srcHeight, srcDepth, dstWidth, dstHeight, dstDepth);
1124 */
1125
1126 for (img = 0; img < dstDepthNB; img++) {
1127 /* first source image pointer, skipping border */
1128 const GLubyte *imgSrcA = srcPtr
1129 + (bytesPerSrcImage + bytesPerSrcRow + border) * bpt * border
1130 + img * (bytesPerSrcImage + srcImageOffset);
1131 /* second source image pointer, skipping border */
1132 const GLubyte *imgSrcB = imgSrcA + srcImageOffset;
1133 /* address of the dest image, skipping border */
1134 GLubyte *imgDst = dstPtr
1135 + (bytesPerDstImage + bytesPerDstRow + border) * bpt * border
1136 + img * bytesPerDstImage;
1137
1138 /* setup the four source row pointers and the dest row pointer */
1139 const GLubyte *srcImgARowA = imgSrcA;
1140 const GLubyte *srcImgARowB = imgSrcA + srcRowOffset;
1141 const GLubyte *srcImgBRowA = imgSrcB;
1142 const GLubyte *srcImgBRowB = imgSrcB + srcRowOffset;
1143 GLubyte *dstImgRow = imgDst;
1144
1145 for (row = 0; row < dstHeightNB; row++) {
1146 do_row_3D(datatype, comps, srcWidthNB,
1147 srcImgARowA, srcImgARowB,
1148 srcImgBRowA, srcImgBRowB,
1149 dstWidthNB, dstImgRow);
1150
1151 /* advance to next rows */
1152 srcImgARowA += bytesPerSrcRow + srcRowOffset;
1153 srcImgARowB += bytesPerSrcRow + srcRowOffset;
1154 srcImgBRowA += bytesPerSrcRow + srcRowOffset;
1155 srcImgBRowB += bytesPerSrcRow + srcRowOffset;
1156 dstImgRow += bytesPerDstRow;
1157 }
1158 }
1159
1160
1161 /* Luckily we can leverage the make_2d_mipmap() function here! */
1162 if (border > 0) {
1163 /* do front border image */
1164 make_2d_mipmap(datatype, comps, 1, srcWidth, srcHeight, srcPtr, srcRowStride,
1165 dstWidth, dstHeight, dstPtr, dstRowStride);
1166 /* do back border image */
1167 make_2d_mipmap(datatype, comps, 1, srcWidth, srcHeight,
1168 srcPtr + bytesPerSrcImage * (srcDepth - 1), srcRowStride,
1169 dstWidth, dstHeight,
1170 dstPtr + bytesPerDstImage * (dstDepth - 1), dstRowStride);
1171 /* do four remaining border edges that span the image slices */
1172 if (srcDepth == dstDepth) {
1173 /* just copy border pixels from src to dst */
1174 for (img = 0; img < dstDepthNB; img++) {
1175 const GLubyte *src;
1176 GLubyte *dst;
1177
1178 /* do border along [img][row=0][col=0] */
1179 src = srcPtr + (img + 1) * bytesPerSrcImage;
1180 dst = dstPtr + (img + 1) * bytesPerDstImage;
1181 memcpy(dst, src, bpt);
1182
1183 /* do border along [img][row=dstHeight-1][col=0] */
1184 src = srcPtr + (img * 2 + 1) * bytesPerSrcImage
1185 + (srcHeight - 1) * bytesPerSrcRow;
1186 dst = dstPtr + (img + 1) * bytesPerDstImage
1187 + (dstHeight - 1) * bytesPerDstRow;
1188 memcpy(dst, src, bpt);
1189
1190 /* do border along [img][row=0][col=dstWidth-1] */
1191 src = srcPtr + (img * 2 + 1) * bytesPerSrcImage
1192 + (srcWidth - 1) * bpt;
1193 dst = dstPtr + (img + 1) * bytesPerDstImage
1194 + (dstWidth - 1) * bpt;
1195 memcpy(dst, src, bpt);
1196
1197 /* do border along [img][row=dstHeight-1][col=dstWidth-1] */
1198 src = srcPtr + (img * 2 + 1) * bytesPerSrcImage
1199 + (bytesPerSrcImage - bpt);
1200 dst = dstPtr + (img + 1) * bytesPerDstImage
1201 + (bytesPerDstImage - bpt);
1202 memcpy(dst, src, bpt);
1203 }
1204 }
1205 else {
1206 /* average border pixels from adjacent src image pairs */
1207 ASSERT(srcDepthNB == 2 * dstDepthNB);
1208 for (img = 0; img < dstDepthNB; img++) {
1209 const GLubyte *src;
1210 GLubyte *dst;
1211
1212 /* do border along [img][row=0][col=0] */
1213 src = srcPtr + (img * 2 + 1) * bytesPerSrcImage;
1214 dst = dstPtr + (img + 1) * bytesPerDstImage;
1215 do_row(datatype, comps, 1, src, src + srcImageOffset, 1, dst);
1216
1217 /* do border along [img][row=dstHeight-1][col=0] */
1218 src = srcPtr + (img * 2 + 1) * bytesPerSrcImage
1219 + (srcHeight - 1) * bytesPerSrcRow;
1220 dst = dstPtr + (img + 1) * bytesPerDstImage
1221 + (dstHeight - 1) * bytesPerDstRow;
1222 do_row(datatype, comps, 1, src, src + srcImageOffset, 1, dst);
1223
1224 /* do border along [img][row=0][col=dstWidth-1] */
1225 src = srcPtr + (img * 2 + 1) * bytesPerSrcImage
1226 + (srcWidth - 1) * bpt;
1227 dst = dstPtr + (img + 1) * bytesPerDstImage
1228 + (dstWidth - 1) * bpt;
1229 do_row(datatype, comps, 1, src, src + srcImageOffset, 1, dst);
1230
1231 /* do border along [img][row=dstHeight-1][col=dstWidth-1] */
1232 src = srcPtr + (img * 2 + 1) * bytesPerSrcImage
1233 + (bytesPerSrcImage - bpt);
1234 dst = dstPtr + (img + 1) * bytesPerDstImage
1235 + (bytesPerDstImage - bpt);
1236 do_row(datatype, comps, 1, src, src + srcImageOffset, 1, dst);
1237 }
1238 }
1239 }
1240 }
1241
1242
1243 static void
1244 make_1d_stack_mipmap(GLenum datatype, GLuint comps, GLint border,
1245 GLint srcWidth, const GLubyte *srcPtr, GLuint srcRowStride,
1246 GLint dstWidth, GLint dstHeight,
1247 GLubyte *dstPtr, GLuint dstRowStride )
1248 {
1249 const GLint bpt = bytes_per_pixel(datatype, comps);
1250 const GLint srcWidthNB = srcWidth - 2 * border; /* sizes w/out border */
1251 const GLint dstWidthNB = dstWidth - 2 * border;
1252 const GLint dstHeightNB = dstHeight - 2 * border;
1253 const GLint srcRowBytes = bpt * srcRowStride;
1254 const GLint dstRowBytes = bpt * dstRowStride;
1255 const GLubyte *src;
1256 GLubyte *dst;
1257 GLint row;
1258
1259 /* Compute src and dst pointers, skipping any border */
1260 src = srcPtr + border * ((srcWidth + 1) * bpt);
1261 dst = dstPtr + border * ((dstWidth + 1) * bpt);
1262
1263 for (row = 0; row < dstHeightNB; row++) {
1264 do_row(datatype, comps, srcWidthNB, src, src,
1265 dstWidthNB, dst);
1266 src += srcRowBytes;
1267 dst += dstRowBytes;
1268 }
1269
1270 if (border) {
1271 /* copy left-most pixel from source */
1272 assert(dstPtr);
1273 assert(srcPtr);
1274 memcpy(dstPtr, srcPtr, bpt);
1275 /* copy right-most pixel from source */
1276 memcpy(dstPtr + (dstWidth - 1) * bpt,
1277 srcPtr + (srcWidth - 1) * bpt,
1278 bpt);
1279 }
1280 }
1281
1282
1283 /**
1284 * \bug
1285 * There is quite a bit of refactoring that could be done with this function
1286 * and \c make_2d_mipmap.
1287 */
1288 static void
1289 make_2d_stack_mipmap(GLenum datatype, GLuint comps, GLint border,
1290 GLint srcWidth, GLint srcHeight,
1291 const GLubyte *srcPtr, GLint srcRowStride,
1292 GLint dstWidth, GLint dstHeight, GLint dstDepth,
1293 GLubyte *dstPtr, GLint dstRowStride)
1294 {
1295 const GLint bpt = bytes_per_pixel(datatype, comps);
1296 const GLint srcWidthNB = srcWidth - 2 * border; /* sizes w/out border */
1297 const GLint dstWidthNB = dstWidth - 2 * border;
1298 const GLint dstHeightNB = dstHeight - 2 * border;
1299 const GLint dstDepthNB = dstDepth - 2 * border;
1300 const GLint srcRowBytes = bpt * srcRowStride;
1301 const GLint dstRowBytes = bpt * dstRowStride;
1302 const GLubyte *srcA, *srcB;
1303 GLubyte *dst;
1304 GLint layer;
1305 GLint row;
1306
1307 /* Compute src and dst pointers, skipping any border */
1308 srcA = srcPtr + border * ((srcWidth + 1) * bpt);
1309 if (srcHeight > 1)
1310 srcB = srcA + srcRowBytes;
1311 else
1312 srcB = srcA;
1313 dst = dstPtr + border * ((dstWidth + 1) * bpt);
1314
1315 for (layer = 0; layer < dstDepthNB; layer++) {
1316 for (row = 0; row < dstHeightNB; row++) {
1317 do_row(datatype, comps, srcWidthNB, srcA, srcB,
1318 dstWidthNB, dst);
1319 srcA += 2 * srcRowBytes;
1320 srcB += 2 * srcRowBytes;
1321 dst += dstRowBytes;
1322 }
1323
1324 /* This is ugly but probably won't be used much */
1325 if (border > 0) {
1326 /* fill in dest border */
1327 /* lower-left border pixel */
1328 assert(dstPtr);
1329 assert(srcPtr);
1330 memcpy(dstPtr, srcPtr, bpt);
1331 /* lower-right border pixel */
1332 memcpy(dstPtr + (dstWidth - 1) * bpt,
1333 srcPtr + (srcWidth - 1) * bpt, bpt);
1334 /* upper-left border pixel */
1335 memcpy(dstPtr + dstWidth * (dstHeight - 1) * bpt,
1336 srcPtr + srcWidth * (srcHeight - 1) * bpt, bpt);
1337 /* upper-right border pixel */
1338 memcpy(dstPtr + (dstWidth * dstHeight - 1) * bpt,
1339 srcPtr + (srcWidth * srcHeight - 1) * bpt, bpt);
1340 /* lower border */
1341 do_row(datatype, comps, srcWidthNB,
1342 srcPtr + bpt,
1343 srcPtr + bpt,
1344 dstWidthNB, dstPtr + bpt);
1345 /* upper border */
1346 do_row(datatype, comps, srcWidthNB,
1347 srcPtr + (srcWidth * (srcHeight - 1) + 1) * bpt,
1348 srcPtr + (srcWidth * (srcHeight - 1) + 1) * bpt,
1349 dstWidthNB,
1350 dstPtr + (dstWidth * (dstHeight - 1) + 1) * bpt);
1351 /* left and right borders */
1352 if (srcHeight == dstHeight) {
1353 /* copy border pixel from src to dst */
1354 for (row = 1; row < srcHeight; row++) {
1355 memcpy(dstPtr + dstWidth * row * bpt,
1356 srcPtr + srcWidth * row * bpt, bpt);
1357 memcpy(dstPtr + (dstWidth * row + dstWidth - 1) * bpt,
1358 srcPtr + (srcWidth * row + srcWidth - 1) * bpt, bpt);
1359 }
1360 }
1361 else {
1362 /* average two src pixels each dest pixel */
1363 for (row = 0; row < dstHeightNB; row += 2) {
1364 do_row(datatype, comps, 1,
1365 srcPtr + (srcWidth * (row * 2 + 1)) * bpt,
1366 srcPtr + (srcWidth * (row * 2 + 2)) * bpt,
1367 1, dstPtr + (dstWidth * row + 1) * bpt);
1368 do_row(datatype, comps, 1,
1369 srcPtr + (srcWidth * (row * 2 + 1) + srcWidth - 1) * bpt,
1370 srcPtr + (srcWidth * (row * 2 + 2) + srcWidth - 1) * bpt,
1371 1, dstPtr + (dstWidth * row + 1 + dstWidth - 1) * bpt);
1372 }
1373 }
1374 }
1375 }
1376 }
1377
1378
1379 /**
1380 * Down-sample a texture image to produce the next lower mipmap level.
1381 * \param comps components per texel (1, 2, 3 or 4)
1382 * \param srcRowStride stride between source rows, in texels
1383 * \param dstRowStride stride between destination rows, in texels
1384 */
1385 void
1386 _mesa_generate_mipmap_level(GLenum target,
1387 GLenum datatype, GLuint comps,
1388 GLint border,
1389 GLint srcWidth, GLint srcHeight, GLint srcDepth,
1390 const GLubyte *srcData,
1391 GLint srcRowStride,
1392 GLint dstWidth, GLint dstHeight, GLint dstDepth,
1393 GLubyte *dstData,
1394 GLint dstRowStride)
1395 {
1396 /*
1397 * We use simple 2x2 averaging to compute the next mipmap level.
1398 */
1399 switch (target) {
1400 case GL_TEXTURE_1D:
1401 make_1d_mipmap(datatype, comps, border,
1402 srcWidth, srcData,
1403 dstWidth, dstData);
1404 break;
1405 case GL_TEXTURE_2D:
1406 case GL_TEXTURE_CUBE_MAP_POSITIVE_X_ARB:
1407 case GL_TEXTURE_CUBE_MAP_NEGATIVE_X_ARB:
1408 case GL_TEXTURE_CUBE_MAP_POSITIVE_Y_ARB:
1409 case GL_TEXTURE_CUBE_MAP_NEGATIVE_Y_ARB:
1410 case GL_TEXTURE_CUBE_MAP_POSITIVE_Z_ARB:
1411 case GL_TEXTURE_CUBE_MAP_NEGATIVE_Z_ARB:
1412 make_2d_mipmap(datatype, comps, border,
1413 srcWidth, srcHeight, srcData, srcRowStride,
1414 dstWidth, dstHeight, dstData, dstRowStride);
1415 break;
1416 case GL_TEXTURE_3D:
1417 make_3d_mipmap(datatype, comps, border,
1418 srcWidth, srcHeight, srcDepth,
1419 srcData, srcRowStride,
1420 dstWidth, dstHeight, dstDepth,
1421 dstData, dstRowStride);
1422 break;
1423 case GL_TEXTURE_1D_ARRAY_EXT:
1424 make_1d_stack_mipmap(datatype, comps, border,
1425 srcWidth, srcData, srcRowStride,
1426 dstWidth, dstHeight,
1427 dstData, dstRowStride);
1428 break;
1429 case GL_TEXTURE_2D_ARRAY_EXT:
1430 make_2d_stack_mipmap(datatype, comps, border,
1431 srcWidth, srcHeight,
1432 srcData, srcRowStride,
1433 dstWidth, dstHeight,
1434 dstDepth, dstData, dstRowStride);
1435 break;
1436 case GL_TEXTURE_RECTANGLE_NV:
1437 /* no mipmaps, do nothing */
1438 break;
1439 default:
1440 _mesa_problem(NULL, "bad dimensions in _mesa_generate_mipmaps");
1441 return;
1442 }
1443 }
1444
1445
1446 /**
1447 * compute next (level+1) image size
1448 * \return GL_FALSE if no smaller size can be generated (eg. src is 1x1x1 size)
1449 */
1450 static GLboolean
1451 next_mipmap_level_size(GLenum target, GLint border,
1452 GLint srcWidth, GLint srcHeight, GLint srcDepth,
1453 GLint *dstWidth, GLint *dstHeight, GLint *dstDepth)
1454 {
1455 if (srcWidth - 2 * border > 1) {
1456 *dstWidth = (srcWidth - 2 * border) / 2 + 2 * border;
1457 }
1458 else {
1459 *dstWidth = srcWidth; /* can't go smaller */
1460 }
1461
1462 if ((srcHeight - 2 * border > 1) &&
1463 (target != GL_TEXTURE_1D_ARRAY_EXT)) {
1464 *dstHeight = (srcHeight - 2 * border) / 2 + 2 * border;
1465 }
1466 else {
1467 *dstHeight = srcHeight; /* can't go smaller */
1468 }
1469
1470 if ((srcDepth - 2 * border > 1) &&
1471 (target != GL_TEXTURE_2D_ARRAY_EXT)) {
1472 *dstDepth = (srcDepth - 2 * border) / 2 + 2 * border;
1473 }
1474 else {
1475 *dstDepth = srcDepth; /* can't go smaller */
1476 }
1477
1478 if (*dstWidth == srcWidth &&
1479 *dstHeight == srcHeight &&
1480 *dstDepth == srcDepth) {
1481 return GL_FALSE;
1482 }
1483 else {
1484 return GL_TRUE;
1485 }
1486 }
1487
1488
1489
1490
1491 /**
1492 * Automatic mipmap generation.
1493 * This is the fallback/default function for ctx->Driver.GenerateMipmap().
1494 * Generate a complete set of mipmaps from texObj's BaseLevel image.
1495 * Stop at texObj's MaxLevel or when we get to the 1x1 texture.
1496 * For cube maps, target will be one of
1497 * GL_TEXTURE_CUBE_MAP_POSITIVE/NEGATIVE_X/Y/Z; never GL_TEXTURE_CUBE_MAP.
1498 */
1499 void
1500 _mesa_generate_mipmap(GLcontext *ctx, GLenum target,
1501 struct gl_texture_object *texObj)
1502 {
1503 const struct gl_texture_image *srcImage;
1504 gl_format convertFormat;
1505 const GLubyte *srcData = NULL;
1506 GLubyte *dstData = NULL;
1507 GLint level, maxLevels;
1508 GLenum datatype;
1509 GLuint comps;
1510
1511 ASSERT(texObj);
1512 srcImage = _mesa_select_tex_image(ctx, texObj, target, texObj->BaseLevel);
1513 ASSERT(srcImage);
1514
1515 maxLevels = _mesa_max_texture_levels(ctx, texObj->Target);
1516 ASSERT(maxLevels > 0); /* bad target */
1517
1518 /* Find convertFormat - the format that do_row() will process */
1519
1520 if (_mesa_is_format_compressed(srcImage->TexFormat)) {
1521 /* setup for compressed textures - need to allocate temporary
1522 * image buffers to hold uncompressed images.
1523 */
1524 GLuint row;
1525 GLint components, size;
1526 GLchan *dst;
1527
1528 assert(texObj->Target == GL_TEXTURE_2D ||
1529 texObj->Target == GL_TEXTURE_CUBE_MAP_ARB);
1530
1531 if (srcImage->_BaseFormat == GL_RGB) {
1532 convertFormat = MESA_FORMAT_RGB888;
1533 components = 3;
1534 }
1535 else if (srcImage->_BaseFormat == GL_RGBA) {
1536 convertFormat = MESA_FORMAT_RGBA8888;
1537 components = 4;
1538 }
1539 else {
1540 _mesa_problem(ctx, "bad srcImage->_BaseFormat in _mesa_generate_mipmaps");
1541 return;
1542 }
1543
1544 /* allocate storage for uncompressed GL_RGB or GL_RGBA images */
1545 size = _mesa_bytes_per_pixel(srcImage->_BaseFormat, CHAN_TYPE)
1546 * srcImage->Width * srcImage->Height * srcImage->Depth + 20;
1547 /* 20 extra bytes, just be safe when calling last FetchTexel */
1548 srcData = (GLubyte *) malloc(size);
1549 if (!srcData) {
1550 _mesa_error(ctx, GL_OUT_OF_MEMORY, "generate mipmaps");
1551 return;
1552 }
1553 dstData = (GLubyte *) malloc(size / 2); /* 1/4 would probably be OK */
1554 if (!dstData) {
1555 _mesa_error(ctx, GL_OUT_OF_MEMORY, "generate mipmaps");
1556 free((void *) srcData);
1557 return;
1558 }
1559
1560 /* decompress base image here */
1561 dst = (GLchan *) srcData;
1562 for (row = 0; row < srcImage->Height; row++) {
1563 GLuint col;
1564 for (col = 0; col < srcImage->Width; col++) {
1565 srcImage->FetchTexelc(srcImage, col, row, 0, dst);
1566 dst += components;
1567 }
1568 }
1569 }
1570 else {
1571 /* uncompressed */
1572 convertFormat = srcImage->TexFormat;
1573 }
1574
1575 _mesa_format_to_type_and_comps(convertFormat, &datatype, &comps);
1576
1577 for (level = texObj->BaseLevel; level < texObj->MaxLevel
1578 && level < maxLevels - 1; level++) {
1579 /* generate image[level+1] from image[level] */
1580 const struct gl_texture_image *srcImage;
1581 struct gl_texture_image *dstImage;
1582 GLint srcWidth, srcHeight, srcDepth;
1583 GLint dstWidth, dstHeight, dstDepth;
1584 GLint border;
1585 GLboolean nextLevel;
1586
1587 /* get src image parameters */
1588 srcImage = _mesa_select_tex_image(ctx, texObj, target, level);
1589 ASSERT(srcImage);
1590 srcWidth = srcImage->Width;
1591 srcHeight = srcImage->Height;
1592 srcDepth = srcImage->Depth;
1593 border = srcImage->Border;
1594
1595 nextLevel = next_mipmap_level_size(target, border,
1596 srcWidth, srcHeight, srcDepth,
1597 &dstWidth, &dstHeight, &dstDepth);
1598 if (!nextLevel) {
1599 /* all done */
1600 if (_mesa_is_format_compressed(srcImage->TexFormat)) {
1601 free((void *) srcData);
1602 free(dstData);
1603 }
1604 return;
1605 }
1606
1607 /* get dest gl_texture_image */
1608 dstImage = _mesa_get_tex_image(ctx, texObj, target, level + 1);
1609 if (!dstImage) {
1610 _mesa_error(ctx, GL_OUT_OF_MEMORY, "generating mipmaps");
1611 return;
1612 }
1613
1614 /* Free old image data */
1615 if (dstImage->Data)
1616 ctx->Driver.FreeTexImageData(ctx, dstImage);
1617
1618 /* initialize new image */
1619 _mesa_init_teximage_fields(ctx, target, dstImage, dstWidth, dstHeight,
1620 dstDepth, border, srcImage->InternalFormat);
1621 dstImage->DriverData = NULL;
1622 dstImage->TexFormat = srcImage->TexFormat;
1623 dstImage->FetchTexelc = srcImage->FetchTexelc;
1624 dstImage->FetchTexelf = srcImage->FetchTexelf;
1625
1626 /* Alloc new teximage data buffer */
1627 {
1628 GLuint size = _mesa_format_image_size(dstImage->TexFormat,
1629 dstWidth, dstHeight, dstDepth);
1630 dstImage->Data = _mesa_alloc_texmemory(size);
1631 if (!dstImage->Data) {
1632 _mesa_error(ctx, GL_OUT_OF_MEMORY, "generating mipmaps");
1633 return;
1634 }
1635 }
1636
1637 /* Setup src and dest data pointers */
1638 if (_mesa_is_format_compressed(dstImage->TexFormat)) {
1639 /* srcData and dstData are already set */
1640 ASSERT(srcData);
1641 ASSERT(dstData);
1642 }
1643 else {
1644 srcData = (const GLubyte *) srcImage->Data;
1645 dstData = (GLubyte *) dstImage->Data;
1646 }
1647
1648 ASSERT(dstImage->TexFormat);
1649 ASSERT(dstImage->FetchTexelc);
1650 ASSERT(dstImage->FetchTexelf);
1651
1652 _mesa_generate_mipmap_level(target, datatype, comps, border,
1653 srcWidth, srcHeight, srcDepth,
1654 srcData, srcImage->RowStride,
1655 dstWidth, dstHeight, dstDepth,
1656 dstData, dstImage->RowStride);
1657
1658
1659 if (_mesa_is_format_compressed(dstImage->TexFormat)) {
1660 GLubyte *temp;
1661 /* compress image from dstData into dstImage->Data */
1662 const GLenum srcFormat = _mesa_get_format_base_format(convertFormat);
1663 GLint dstRowStride
1664 = _mesa_format_row_stride(dstImage->TexFormat, dstWidth);
1665 ASSERT(srcFormat == GL_RGB || srcFormat == GL_RGBA);
1666
1667 _mesa_texstore(ctx, 2, dstImage->_BaseFormat,
1668 dstImage->TexFormat,
1669 dstImage->Data,
1670 0, 0, 0, /* dstX/Y/Zoffset */
1671 dstRowStride, 0, /* strides */
1672 dstWidth, dstHeight, 1, /* size */
1673 srcFormat, CHAN_TYPE,
1674 dstData, /* src data, actually */
1675 &ctx->DefaultPacking);
1676
1677 /* swap src and dest pointers */
1678 temp = (GLubyte *) srcData;
1679 srcData = dstData;
1680 dstData = temp;
1681 }
1682
1683 } /* loop over mipmap levels */
1684 }
1685
1686
1687 /**
1688 * Helper function for drivers which need to rescale texture images to
1689 * certain aspect ratios.
1690 * Nearest filtering only (for broken hardware that can't support
1691 * all aspect ratios). This can be made a lot faster, but I don't
1692 * really care enough...
1693 */
1694 void
1695 _mesa_rescale_teximage2d(GLuint bytesPerPixel,
1696 GLuint srcStrideInPixels,
1697 GLuint dstRowStride,
1698 GLint srcWidth, GLint srcHeight,
1699 GLint dstWidth, GLint dstHeight,
1700 const GLvoid *srcImage, GLvoid *dstImage)
1701 {
1702 GLint row, col;
1703
1704 #define INNER_LOOP( TYPE, HOP, WOP ) \
1705 for ( row = 0 ; row < dstHeight ; row++ ) { \
1706 GLint srcRow = row HOP hScale; \
1707 for ( col = 0 ; col < dstWidth ; col++ ) { \
1708 GLint srcCol = col WOP wScale; \
1709 dst[col] = src[srcRow * srcStrideInPixels + srcCol]; \
1710 } \
1711 dst = (TYPE *) ((GLubyte *) dst + dstRowStride); \
1712 } \
1713
1714 #define RESCALE_IMAGE( TYPE ) \
1715 do { \
1716 const TYPE *src = (const TYPE *)srcImage; \
1717 TYPE *dst = (TYPE *)dstImage; \
1718 \
1719 if ( srcHeight < dstHeight ) { \
1720 const GLint hScale = dstHeight / srcHeight; \
1721 if ( srcWidth < dstWidth ) { \
1722 const GLint wScale = dstWidth / srcWidth; \
1723 INNER_LOOP( TYPE, /, / ); \
1724 } \
1725 else { \
1726 const GLint wScale = srcWidth / dstWidth; \
1727 INNER_LOOP( TYPE, /, * ); \
1728 } \
1729 } \
1730 else { \
1731 const GLint hScale = srcHeight / dstHeight; \
1732 if ( srcWidth < dstWidth ) { \
1733 const GLint wScale = dstWidth / srcWidth; \
1734 INNER_LOOP( TYPE, *, / ); \
1735 } \
1736 else { \
1737 const GLint wScale = srcWidth / dstWidth; \
1738 INNER_LOOP( TYPE, *, * ); \
1739 } \
1740 } \
1741 } while (0)
1742
1743 switch ( bytesPerPixel ) {
1744 case 4:
1745 RESCALE_IMAGE( GLuint );
1746 break;
1747
1748 case 2:
1749 RESCALE_IMAGE( GLushort );
1750 break;
1751
1752 case 1:
1753 RESCALE_IMAGE( GLubyte );
1754 break;
1755 default:
1756 _mesa_problem(NULL,"unexpected bytes/pixel in _mesa_rescale_teximage2d");
1757 }
1758 }
1759
1760
1761 /**
1762 * Upscale an image by replication, not (typical) stretching.
1763 * We use this when the image width or height is less than a
1764 * certain size (4, 8) and we need to upscale an image.
1765 */
1766 void
1767 _mesa_upscale_teximage2d(GLsizei inWidth, GLsizei inHeight,
1768 GLsizei outWidth, GLsizei outHeight,
1769 GLint comps, const GLchan *src, GLint srcRowStride,
1770 GLchan *dest )
1771 {
1772 GLint i, j, k;
1773
1774 ASSERT(outWidth >= inWidth);
1775 ASSERT(outHeight >= inHeight);
1776 #if 0
1777 ASSERT(inWidth == 1 || inWidth == 2 || inHeight == 1 || inHeight == 2);
1778 ASSERT((outWidth & 3) == 0);
1779 ASSERT((outHeight & 3) == 0);
1780 #endif
1781
1782 for (i = 0; i < outHeight; i++) {
1783 const GLint ii = i % inHeight;
1784 for (j = 0; j < outWidth; j++) {
1785 const GLint jj = j % inWidth;
1786 for (k = 0; k < comps; k++) {
1787 dest[(i * outWidth + j) * comps + k]
1788 = src[ii * srcRowStride + jj * comps + k];
1789 }
1790 }
1791 }
1792 }
1793