Mesa: Add support for HALF_FLOAT_OES type.
[mesa.git] / src / mesa / main / pack.c
1 /*
2 * Mesa 3-D graphics library
3 *
4 * Copyright (C) 1999-2008 Brian Paul All Rights Reserved.
5 * Copyright (C) 2009-2010 VMware, Inc. All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THEA AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25
26 /**
27 * \file pack.c
28 * Image and pixel span packing and unpacking.
29 */
30
31
32 /*
33 * XXX: MSVC takes forever to compile this module for x86_64 unless we disable
34 * this global optimization.
35 *
36 * See also:
37 * - http://msdn.microsoft.com/en-us/library/1yk3ydd7.aspx
38 * - http://msdn.microsoft.com/en-us/library/chh3fb0k.aspx
39 */
40 #if defined(_MSC_VER) && defined(_M_X64)
41 # pragma optimize( "g", off )
42 #endif
43
44
45 #include "glheader.h"
46 #include "colormac.h"
47 #include "enums.h"
48 #include "image.h"
49 #include "imports.h"
50 #include "macros.h"
51 #include "mtypes.h"
52 #include "pack.h"
53 #include "pixeltransfer.h"
54 #include "imports.h"
55 #include "glformats.h"
56 #include "format_utils.h"
57 #include "format_pack.h"
58
59
60 /**
61 * Flip the 8 bits in each byte of the given array.
62 *
63 * \param p array.
64 * \param n number of bytes.
65 *
66 * \todo try this trick to flip bytes someday:
67 * \code
68 * v = ((v & 0x55555555) << 1) | ((v >> 1) & 0x55555555);
69 * v = ((v & 0x33333333) << 2) | ((v >> 2) & 0x33333333);
70 * v = ((v & 0x0f0f0f0f) << 4) | ((v >> 4) & 0x0f0f0f0f);
71 * \endcode
72 */
73 static void
74 flip_bytes( GLubyte *p, GLuint n )
75 {
76 GLuint i, a, b;
77 for (i = 0; i < n; i++) {
78 b = (GLuint) p[i]; /* words are often faster than bytes */
79 a = ((b & 0x01) << 7) |
80 ((b & 0x02) << 5) |
81 ((b & 0x04) << 3) |
82 ((b & 0x08) << 1) |
83 ((b & 0x10) >> 1) |
84 ((b & 0x20) >> 3) |
85 ((b & 0x40) >> 5) |
86 ((b & 0x80) >> 7);
87 p[i] = (GLubyte) a;
88 }
89 }
90
91
92
93 /*
94 * Unpack a 32x32 pixel polygon stipple from user memory using the
95 * current pixel unpack settings.
96 */
97 void
98 _mesa_unpack_polygon_stipple( const GLubyte *pattern, GLuint dest[32],
99 const struct gl_pixelstore_attrib *unpacking )
100 {
101 GLubyte *ptrn = (GLubyte *) _mesa_unpack_image(2, 32, 32, 1, GL_COLOR_INDEX,
102 GL_BITMAP, pattern, unpacking);
103 if (ptrn) {
104 /* Convert pattern from GLubytes to GLuints and handle big/little
105 * endian differences
106 */
107 GLubyte *p = ptrn;
108 GLint i;
109 for (i = 0; i < 32; i++) {
110 dest[i] = (p[0] << 24)
111 | (p[1] << 16)
112 | (p[2] << 8)
113 | (p[3] );
114 p += 4;
115 }
116 free(ptrn);
117 }
118 }
119
120
121 /*
122 * Pack polygon stipple into user memory given current pixel packing
123 * settings.
124 */
125 void
126 _mesa_pack_polygon_stipple( const GLuint pattern[32], GLubyte *dest,
127 const struct gl_pixelstore_attrib *packing )
128 {
129 /* Convert pattern from GLuints to GLubytes to handle big/little
130 * endian differences.
131 */
132 GLubyte ptrn[32*4];
133 GLint i;
134 for (i = 0; i < 32; i++) {
135 ptrn[i * 4 + 0] = (GLubyte) ((pattern[i] >> 24) & 0xff);
136 ptrn[i * 4 + 1] = (GLubyte) ((pattern[i] >> 16) & 0xff);
137 ptrn[i * 4 + 2] = (GLubyte) ((pattern[i] >> 8 ) & 0xff);
138 ptrn[i * 4 + 3] = (GLubyte) ((pattern[i] ) & 0xff);
139 }
140
141 _mesa_pack_bitmap(32, 32, ptrn, dest, packing);
142 }
143
144
145 /*
146 * Pack bitmap data.
147 */
148 void
149 _mesa_pack_bitmap( GLint width, GLint height, const GLubyte *source,
150 GLubyte *dest, const struct gl_pixelstore_attrib *packing )
151 {
152 GLint row, width_in_bytes;
153 const GLubyte *src;
154
155 if (!source)
156 return;
157
158 width_in_bytes = CEILING( width, 8 );
159 src = source;
160 for (row = 0; row < height; row++) {
161 GLubyte *dst = (GLubyte *) _mesa_image_address2d(packing, dest,
162 width, height, GL_COLOR_INDEX, GL_BITMAP, row, 0);
163 if (!dst)
164 return;
165
166 if ((packing->SkipPixels & 7) == 0) {
167 memcpy( dst, src, width_in_bytes );
168 if (packing->LsbFirst) {
169 flip_bytes( dst, width_in_bytes );
170 }
171 }
172 else {
173 /* handling SkipPixels is a bit tricky (no pun intended!) */
174 GLint i;
175 if (packing->LsbFirst) {
176 GLubyte srcMask = 128;
177 GLubyte dstMask = 1 << (packing->SkipPixels & 0x7);
178 const GLubyte *s = src;
179 GLubyte *d = dst;
180 *d = 0;
181 for (i = 0; i < width; i++) {
182 if (*s & srcMask) {
183 *d |= dstMask;
184 }
185 if (srcMask == 1) {
186 srcMask = 128;
187 s++;
188 }
189 else {
190 srcMask = srcMask >> 1;
191 }
192 if (dstMask == 128) {
193 dstMask = 1;
194 d++;
195 *d = 0;
196 }
197 else {
198 dstMask = dstMask << 1;
199 }
200 }
201 }
202 else {
203 GLubyte srcMask = 128;
204 GLubyte dstMask = 128 >> (packing->SkipPixels & 0x7);
205 const GLubyte *s = src;
206 GLubyte *d = dst;
207 *d = 0;
208 for (i = 0; i < width; i++) {
209 if (*s & srcMask) {
210 *d |= dstMask;
211 }
212 if (srcMask == 1) {
213 srcMask = 128;
214 s++;
215 }
216 else {
217 srcMask = srcMask >> 1;
218 }
219 if (dstMask == 1) {
220 dstMask = 128;
221 d++;
222 *d = 0;
223 }
224 else {
225 dstMask = dstMask >> 1;
226 }
227 }
228 }
229 }
230 src += width_in_bytes;
231 }
232 }
233
234
235 #define SWAP2BYTE(VALUE) \
236 { \
237 GLubyte *bytes = (GLubyte *) &(VALUE); \
238 GLubyte tmp = bytes[0]; \
239 bytes[0] = bytes[1]; \
240 bytes[1] = tmp; \
241 }
242
243 #define SWAP4BYTE(VALUE) \
244 { \
245 GLubyte *bytes = (GLubyte *) &(VALUE); \
246 GLubyte tmp = bytes[0]; \
247 bytes[0] = bytes[3]; \
248 bytes[3] = tmp; \
249 tmp = bytes[1]; \
250 bytes[1] = bytes[2]; \
251 bytes[2] = tmp; \
252 }
253
254
255 static void
256 extract_uint_indexes(GLuint n, GLuint indexes[],
257 GLenum srcFormat, GLenum srcType, const GLvoid *src,
258 const struct gl_pixelstore_attrib *unpack )
259 {
260 ASSERT(srcFormat == GL_COLOR_INDEX || srcFormat == GL_STENCIL_INDEX);
261
262 ASSERT(srcType == GL_BITMAP ||
263 srcType == GL_UNSIGNED_BYTE ||
264 srcType == GL_BYTE ||
265 srcType == GL_UNSIGNED_SHORT ||
266 srcType == GL_SHORT ||
267 srcType == GL_UNSIGNED_INT ||
268 srcType == GL_INT ||
269 srcType == GL_UNSIGNED_INT_24_8_EXT ||
270 srcType == GL_HALF_FLOAT_ARB ||
271 srcType == GL_HALF_FLOAT_OES ||
272 srcType == GL_FLOAT ||
273 srcType == GL_FLOAT_32_UNSIGNED_INT_24_8_REV);
274
275 switch (srcType) {
276 case GL_BITMAP:
277 {
278 GLubyte *ubsrc = (GLubyte *) src;
279 if (unpack->LsbFirst) {
280 GLubyte mask = 1 << (unpack->SkipPixels & 0x7);
281 GLuint i;
282 for (i = 0; i < n; i++) {
283 indexes[i] = (*ubsrc & mask) ? 1 : 0;
284 if (mask == 128) {
285 mask = 1;
286 ubsrc++;
287 }
288 else {
289 mask = mask << 1;
290 }
291 }
292 }
293 else {
294 GLubyte mask = 128 >> (unpack->SkipPixels & 0x7);
295 GLuint i;
296 for (i = 0; i < n; i++) {
297 indexes[i] = (*ubsrc & mask) ? 1 : 0;
298 if (mask == 1) {
299 mask = 128;
300 ubsrc++;
301 }
302 else {
303 mask = mask >> 1;
304 }
305 }
306 }
307 }
308 break;
309 case GL_UNSIGNED_BYTE:
310 {
311 GLuint i;
312 const GLubyte *s = (const GLubyte *) src;
313 for (i = 0; i < n; i++)
314 indexes[i] = s[i];
315 }
316 break;
317 case GL_BYTE:
318 {
319 GLuint i;
320 const GLbyte *s = (const GLbyte *) src;
321 for (i = 0; i < n; i++)
322 indexes[i] = s[i];
323 }
324 break;
325 case GL_UNSIGNED_SHORT:
326 {
327 GLuint i;
328 const GLushort *s = (const GLushort *) src;
329 if (unpack->SwapBytes) {
330 for (i = 0; i < n; i++) {
331 GLushort value = s[i];
332 SWAP2BYTE(value);
333 indexes[i] = value;
334 }
335 }
336 else {
337 for (i = 0; i < n; i++)
338 indexes[i] = s[i];
339 }
340 }
341 break;
342 case GL_SHORT:
343 {
344 GLuint i;
345 const GLshort *s = (const GLshort *) src;
346 if (unpack->SwapBytes) {
347 for (i = 0; i < n; i++) {
348 GLshort value = s[i];
349 SWAP2BYTE(value);
350 indexes[i] = value;
351 }
352 }
353 else {
354 for (i = 0; i < n; i++)
355 indexes[i] = s[i];
356 }
357 }
358 break;
359 case GL_UNSIGNED_INT:
360 {
361 GLuint i;
362 const GLuint *s = (const GLuint *) src;
363 if (unpack->SwapBytes) {
364 for (i = 0; i < n; i++) {
365 GLuint value = s[i];
366 SWAP4BYTE(value);
367 indexes[i] = value;
368 }
369 }
370 else {
371 for (i = 0; i < n; i++)
372 indexes[i] = s[i];
373 }
374 }
375 break;
376 case GL_INT:
377 {
378 GLuint i;
379 const GLint *s = (const GLint *) src;
380 if (unpack->SwapBytes) {
381 for (i = 0; i < n; i++) {
382 GLint value = s[i];
383 SWAP4BYTE(value);
384 indexes[i] = value;
385 }
386 }
387 else {
388 for (i = 0; i < n; i++)
389 indexes[i] = s[i];
390 }
391 }
392 break;
393 case GL_FLOAT:
394 {
395 GLuint i;
396 const GLfloat *s = (const GLfloat *) src;
397 if (unpack->SwapBytes) {
398 for (i = 0; i < n; i++) {
399 GLfloat value = s[i];
400 SWAP4BYTE(value);
401 indexes[i] = (GLuint) value;
402 }
403 }
404 else {
405 for (i = 0; i < n; i++)
406 indexes[i] = (GLuint) s[i];
407 }
408 }
409 break;
410 case GL_HALF_FLOAT_ARB:
411 case GL_HALF_FLOAT_OES:
412 {
413 GLuint i;
414 const GLhalfARB *s = (const GLhalfARB *) src;
415 if (unpack->SwapBytes) {
416 for (i = 0; i < n; i++) {
417 GLhalfARB value = s[i];
418 SWAP2BYTE(value);
419 indexes[i] = (GLuint) _mesa_half_to_float(value);
420 }
421 }
422 else {
423 for (i = 0; i < n; i++)
424 indexes[i] = (GLuint) _mesa_half_to_float(s[i]);
425 }
426 }
427 break;
428 case GL_UNSIGNED_INT_24_8_EXT:
429 {
430 GLuint i;
431 const GLuint *s = (const GLuint *) src;
432 if (unpack->SwapBytes) {
433 for (i = 0; i < n; i++) {
434 GLuint value = s[i];
435 SWAP4BYTE(value);
436 indexes[i] = value & 0xff; /* lower 8 bits */
437 }
438 }
439 else {
440 for (i = 0; i < n; i++)
441 indexes[i] = s[i] & 0xff; /* lower 8 bits */
442 }
443 }
444 break;
445 case GL_FLOAT_32_UNSIGNED_INT_24_8_REV:
446 {
447 GLuint i;
448 const GLuint *s = (const GLuint *) src;
449 if (unpack->SwapBytes) {
450 for (i = 0; i < n; i++) {
451 GLuint value = s[i*2+1];
452 SWAP4BYTE(value);
453 indexes[i] = value & 0xff; /* lower 8 bits */
454 }
455 }
456 else {
457 for (i = 0; i < n; i++)
458 indexes[i] = s[i*2+1] & 0xff; /* lower 8 bits */
459 }
460 }
461 break;
462
463 default:
464 _mesa_problem(NULL, "bad srcType in extract_uint_indexes");
465 return;
466 }
467 }
468
469
470 static inline GLuint
471 clamp_float_to_uint(GLfloat f)
472 {
473 return f < 0.0F ? 0 : F_TO_I(f);
474 }
475
476
477 static inline GLuint
478 clamp_half_to_uint(GLhalfARB h)
479 {
480 GLfloat f = _mesa_half_to_float(h);
481 return f < 0.0F ? 0 : F_TO_I(f);
482 }
483
484
485 /*
486 * Unpack a row of stencil data from a client buffer according to
487 * the pixel unpacking parameters.
488 * This is (or will be) used by glDrawPixels
489 *
490 * Args: ctx - the context
491 * n - number of pixels
492 * dstType - destination data type
493 * dest - destination array
494 * srcType - source pixel type
495 * source - source data pointer
496 * srcPacking - pixel unpacking parameters
497 * transferOps - apply offset/bias/lookup ops?
498 */
499 void
500 _mesa_unpack_stencil_span( struct gl_context *ctx, GLuint n,
501 GLenum dstType, GLvoid *dest,
502 GLenum srcType, const GLvoid *source,
503 const struct gl_pixelstore_attrib *srcPacking,
504 GLbitfield transferOps )
505 {
506 ASSERT(srcType == GL_BITMAP ||
507 srcType == GL_UNSIGNED_BYTE ||
508 srcType == GL_BYTE ||
509 srcType == GL_UNSIGNED_SHORT ||
510 srcType == GL_SHORT ||
511 srcType == GL_UNSIGNED_INT ||
512 srcType == GL_INT ||
513 srcType == GL_UNSIGNED_INT_24_8_EXT ||
514 srcType == GL_HALF_FLOAT_ARB ||
515 srcType == GL_HALF_FLOAT_OES ||
516 srcType == GL_FLOAT ||
517 srcType == GL_FLOAT_32_UNSIGNED_INT_24_8_REV);
518
519 ASSERT(dstType == GL_UNSIGNED_BYTE ||
520 dstType == GL_UNSIGNED_SHORT ||
521 dstType == GL_UNSIGNED_INT ||
522 dstType == GL_FLOAT_32_UNSIGNED_INT_24_8_REV);
523
524 /* only shift and offset apply to stencil */
525 transferOps &= IMAGE_SHIFT_OFFSET_BIT;
526
527 /*
528 * Try simple cases first
529 */
530 if (transferOps == 0 &&
531 !ctx->Pixel.MapStencilFlag &&
532 srcType == GL_UNSIGNED_BYTE &&
533 dstType == GL_UNSIGNED_BYTE) {
534 memcpy(dest, source, n * sizeof(GLubyte));
535 }
536 else if (transferOps == 0 &&
537 !ctx->Pixel.MapStencilFlag &&
538 srcType == GL_UNSIGNED_INT &&
539 dstType == GL_UNSIGNED_INT &&
540 !srcPacking->SwapBytes) {
541 memcpy(dest, source, n * sizeof(GLuint));
542 }
543 else {
544 /*
545 * general solution
546 */
547 GLuint *indexes = malloc(n * sizeof(GLuint));
548
549 if (!indexes) {
550 _mesa_error(ctx, GL_OUT_OF_MEMORY, "stencil unpacking");
551 return;
552 }
553
554 extract_uint_indexes(n, indexes, GL_STENCIL_INDEX, srcType, source,
555 srcPacking);
556
557 if (transferOps & IMAGE_SHIFT_OFFSET_BIT) {
558 /* shift and offset indexes */
559 _mesa_shift_and_offset_ci(ctx, n, indexes);
560 }
561
562 if (ctx->Pixel.MapStencilFlag) {
563 /* Apply stencil lookup table */
564 const GLuint mask = ctx->PixelMaps.StoS.Size - 1;
565 GLuint i;
566 for (i = 0; i < n; i++) {
567 indexes[i] = (GLuint)ctx->PixelMaps.StoS.Map[ indexes[i] & mask ];
568 }
569 }
570
571 /* convert to dest type */
572 switch (dstType) {
573 case GL_UNSIGNED_BYTE:
574 {
575 GLubyte *dst = (GLubyte *) dest;
576 GLuint i;
577 for (i = 0; i < n; i++) {
578 dst[i] = (GLubyte) (indexes[i] & 0xff);
579 }
580 }
581 break;
582 case GL_UNSIGNED_SHORT:
583 {
584 GLuint *dst = (GLuint *) dest;
585 GLuint i;
586 for (i = 0; i < n; i++) {
587 dst[i] = (GLushort) (indexes[i] & 0xffff);
588 }
589 }
590 break;
591 case GL_UNSIGNED_INT:
592 memcpy(dest, indexes, n * sizeof(GLuint));
593 break;
594 case GL_FLOAT_32_UNSIGNED_INT_24_8_REV:
595 {
596 GLuint *dst = (GLuint *) dest;
597 GLuint i;
598 for (i = 0; i < n; i++) {
599 dst[i*2+1] = indexes[i] & 0xff; /* lower 8 bits */
600 }
601 }
602 break;
603 default:
604 _mesa_problem(ctx, "bad dstType in _mesa_unpack_stencil_span");
605 }
606
607 free(indexes);
608 }
609 }
610
611
612 void
613 _mesa_pack_stencil_span( struct gl_context *ctx, GLuint n,
614 GLenum dstType, GLvoid *dest, const GLubyte *source,
615 const struct gl_pixelstore_attrib *dstPacking )
616 {
617 GLubyte *stencil = malloc(n * sizeof(GLubyte));
618
619 if (!stencil) {
620 _mesa_error(ctx, GL_OUT_OF_MEMORY, "stencil packing");
621 return;
622 }
623
624 if (ctx->Pixel.IndexShift || ctx->Pixel.IndexOffset ||
625 ctx->Pixel.MapStencilFlag) {
626 /* make a copy of input */
627 memcpy(stencil, source, n * sizeof(GLubyte));
628 _mesa_apply_stencil_transfer_ops(ctx, n, stencil);
629 source = stencil;
630 }
631
632 switch (dstType) {
633 case GL_UNSIGNED_BYTE:
634 memcpy(dest, source, n);
635 break;
636 case GL_BYTE:
637 {
638 GLbyte *dst = (GLbyte *) dest;
639 GLuint i;
640 for (i=0;i<n;i++) {
641 dst[i] = (GLbyte) (source[i] & 0x7f);
642 }
643 }
644 break;
645 case GL_UNSIGNED_SHORT:
646 {
647 GLushort *dst = (GLushort *) dest;
648 GLuint i;
649 for (i=0;i<n;i++) {
650 dst[i] = (GLushort) source[i];
651 }
652 if (dstPacking->SwapBytes) {
653 _mesa_swap2( (GLushort *) dst, n );
654 }
655 }
656 break;
657 case GL_SHORT:
658 {
659 GLshort *dst = (GLshort *) dest;
660 GLuint i;
661 for (i=0;i<n;i++) {
662 dst[i] = (GLshort) source[i];
663 }
664 if (dstPacking->SwapBytes) {
665 _mesa_swap2( (GLushort *) dst, n );
666 }
667 }
668 break;
669 case GL_UNSIGNED_INT:
670 {
671 GLuint *dst = (GLuint *) dest;
672 GLuint i;
673 for (i=0;i<n;i++) {
674 dst[i] = (GLuint) source[i];
675 }
676 if (dstPacking->SwapBytes) {
677 _mesa_swap4( (GLuint *) dst, n );
678 }
679 }
680 break;
681 case GL_INT:
682 {
683 GLint *dst = (GLint *) dest;
684 GLuint i;
685 for (i=0;i<n;i++) {
686 dst[i] = (GLint) source[i];
687 }
688 if (dstPacking->SwapBytes) {
689 _mesa_swap4( (GLuint *) dst, n );
690 }
691 }
692 break;
693 case GL_FLOAT:
694 {
695 GLfloat *dst = (GLfloat *) dest;
696 GLuint i;
697 for (i=0;i<n;i++) {
698 dst[i] = (GLfloat) source[i];
699 }
700 if (dstPacking->SwapBytes) {
701 _mesa_swap4( (GLuint *) dst, n );
702 }
703 }
704 break;
705 case GL_HALF_FLOAT_ARB:
706 case GL_HALF_FLOAT_OES:
707 {
708 GLhalfARB *dst = (GLhalfARB *) dest;
709 GLuint i;
710 for (i=0;i<n;i++) {
711 dst[i] = _mesa_float_to_half( (float) source[i] );
712 }
713 if (dstPacking->SwapBytes) {
714 _mesa_swap2( (GLushort *) dst, n );
715 }
716 }
717 break;
718 case GL_BITMAP:
719 if (dstPacking->LsbFirst) {
720 GLubyte *dst = (GLubyte *) dest;
721 GLint shift = 0;
722 GLuint i;
723 for (i = 0; i < n; i++) {
724 if (shift == 0)
725 *dst = 0;
726 *dst |= ((source[i] != 0) << shift);
727 shift++;
728 if (shift == 8) {
729 shift = 0;
730 dst++;
731 }
732 }
733 }
734 else {
735 GLubyte *dst = (GLubyte *) dest;
736 GLint shift = 7;
737 GLuint i;
738 for (i = 0; i < n; i++) {
739 if (shift == 7)
740 *dst = 0;
741 *dst |= ((source[i] != 0) << shift);
742 shift--;
743 if (shift < 0) {
744 shift = 7;
745 dst++;
746 }
747 }
748 }
749 break;
750 default:
751 _mesa_problem(ctx, "bad type in _mesa_pack_index_span");
752 }
753
754 free(stencil);
755 }
756
757 #define DEPTH_VALUES(GLTYPE, GLTYPE2FLOAT) \
758 do { \
759 GLuint i; \
760 const GLTYPE *src = (const GLTYPE *)source; \
761 for (i = 0; i < n; i++) { \
762 GLTYPE value = src[i]; \
763 if (srcPacking->SwapBytes) { \
764 if (sizeof(GLTYPE) == 2) { \
765 SWAP2BYTE(value); \
766 } else if (sizeof(GLTYPE) == 4) { \
767 SWAP4BYTE(value); \
768 } \
769 } \
770 depthValues[i] = GLTYPE2FLOAT(value); \
771 } \
772 } while (0)
773
774
775 /**
776 * Unpack a row of depth/z values from memory, returning GLushort, GLuint
777 * or GLfloat values.
778 * The glPixelTransfer (scale/bias) params will be applied.
779 *
780 * \param dstType one of GL_UNSIGNED_SHORT, GL_UNSIGNED_INT, GL_FLOAT
781 * \param depthMax max value for returned GLushort or GLuint values
782 * (ignored for GLfloat).
783 */
784 void
785 _mesa_unpack_depth_span( struct gl_context *ctx, GLuint n,
786 GLenum dstType, GLvoid *dest, GLuint depthMax,
787 GLenum srcType, const GLvoid *source,
788 const struct gl_pixelstore_attrib *srcPacking )
789 {
790 GLfloat *depthTemp = NULL, *depthValues;
791 GLboolean needClamp = GL_FALSE;
792
793 /* Look for special cases first.
794 * Not only are these faster, they're less prone to numeric conversion
795 * problems. Otherwise, converting from an int type to a float then
796 * back to an int type can introduce errors that will show up as
797 * artifacts in things like depth peeling which uses glCopyTexImage.
798 */
799 if (ctx->Pixel.DepthScale == 1.0 && ctx->Pixel.DepthBias == 0.0) {
800 if (srcType == GL_UNSIGNED_INT && dstType == GL_UNSIGNED_SHORT) {
801 const GLuint *src = (const GLuint *) source;
802 GLushort *dst = (GLushort *) dest;
803 GLuint i;
804 for (i = 0; i < n; i++) {
805 dst[i] = src[i] >> 16;
806 }
807 return;
808 }
809 if (srcType == GL_UNSIGNED_SHORT
810 && dstType == GL_UNSIGNED_INT
811 && depthMax == 0xffffffff) {
812 const GLushort *src = (const GLushort *) source;
813 GLuint *dst = (GLuint *) dest;
814 GLuint i;
815 for (i = 0; i < n; i++) {
816 dst[i] = src[i] | (src[i] << 16);
817 }
818 return;
819 }
820 if (srcType == GL_UNSIGNED_INT_24_8
821 && dstType == GL_UNSIGNED_INT
822 && depthMax == 0xffffff) {
823 const GLuint *src = (const GLuint *) source;
824 GLuint *dst = (GLuint *) dest;
825 GLuint i;
826 for (i = 0; i < n; i++) {
827 dst[i] = src[i] >> 8;
828 }
829 return;
830 }
831 /* XXX may want to add additional cases here someday */
832 }
833
834 /* general case path follows */
835
836 if (dstType == GL_FLOAT) {
837 depthValues = (GLfloat *) dest;
838 }
839 else {
840 depthTemp = malloc(n * sizeof(GLfloat));
841 if (!depthTemp) {
842 _mesa_error(ctx, GL_OUT_OF_MEMORY, "pixel unpacking");
843 return;
844 }
845
846 depthValues = depthTemp;
847 }
848
849 /* Convert incoming values to GLfloat. Some conversions will require
850 * clamping, below.
851 */
852 switch (srcType) {
853 case GL_BYTE:
854 DEPTH_VALUES(GLbyte, BYTE_TO_FLOATZ);
855 needClamp = GL_TRUE;
856 break;
857 case GL_UNSIGNED_BYTE:
858 DEPTH_VALUES(GLubyte, UBYTE_TO_FLOAT);
859 break;
860 case GL_SHORT:
861 DEPTH_VALUES(GLshort, SHORT_TO_FLOATZ);
862 needClamp = GL_TRUE;
863 break;
864 case GL_UNSIGNED_SHORT:
865 DEPTH_VALUES(GLushort, USHORT_TO_FLOAT);
866 break;
867 case GL_INT:
868 DEPTH_VALUES(GLint, INT_TO_FLOAT);
869 needClamp = GL_TRUE;
870 break;
871 case GL_UNSIGNED_INT:
872 DEPTH_VALUES(GLuint, UINT_TO_FLOAT);
873 break;
874 case GL_UNSIGNED_INT_24_8_EXT: /* GL_EXT_packed_depth_stencil */
875 if (dstType == GL_UNSIGNED_INT_24_8_EXT &&
876 depthMax == 0xffffff &&
877 ctx->Pixel.DepthScale == 1.0 &&
878 ctx->Pixel.DepthBias == 0.0) {
879 const GLuint *src = (const GLuint *) source;
880 GLuint *zValues = (GLuint *) dest;
881 GLuint i;
882 for (i = 0; i < n; i++) {
883 GLuint value = src[i];
884 if (srcPacking->SwapBytes) {
885 SWAP4BYTE(value);
886 }
887 zValues[i] = value & 0xffffff00;
888 }
889 free(depthTemp);
890 return;
891 }
892 else {
893 const GLuint *src = (const GLuint *) source;
894 const GLfloat scale = 1.0f / 0xffffff;
895 GLuint i;
896 for (i = 0; i < n; i++) {
897 GLuint value = src[i];
898 if (srcPacking->SwapBytes) {
899 SWAP4BYTE(value);
900 }
901 depthValues[i] = (value >> 8) * scale;
902 }
903 }
904 break;
905 case GL_FLOAT_32_UNSIGNED_INT_24_8_REV:
906 {
907 GLuint i;
908 const GLfloat *src = (const GLfloat *)source;
909 for (i = 0; i < n; i++) {
910 GLfloat value = src[i * 2];
911 if (srcPacking->SwapBytes) {
912 SWAP4BYTE(value);
913 }
914 depthValues[i] = value;
915 }
916 needClamp = GL_TRUE;
917 }
918 break;
919 case GL_FLOAT:
920 DEPTH_VALUES(GLfloat, 1*);
921 needClamp = GL_TRUE;
922 break;
923 case GL_HALF_FLOAT_ARB:
924 case GL_HALF_FLOAT_OES:
925 {
926 GLuint i;
927 const GLhalfARB *src = (const GLhalfARB *) source;
928 for (i = 0; i < n; i++) {
929 GLhalfARB value = src[i];
930 if (srcPacking->SwapBytes) {
931 SWAP2BYTE(value);
932 }
933 depthValues[i] = _mesa_half_to_float(value);
934 }
935 needClamp = GL_TRUE;
936 }
937 break;
938 default:
939 _mesa_problem(NULL, "bad type in _mesa_unpack_depth_span()");
940 free(depthTemp);
941 return;
942 }
943
944 /* apply depth scale and bias */
945 {
946 const GLfloat scale = ctx->Pixel.DepthScale;
947 const GLfloat bias = ctx->Pixel.DepthBias;
948 if (scale != 1.0 || bias != 0.0) {
949 GLuint i;
950 for (i = 0; i < n; i++) {
951 depthValues[i] = depthValues[i] * scale + bias;
952 }
953 needClamp = GL_TRUE;
954 }
955 }
956
957 /* clamp to [0, 1] */
958 if (needClamp) {
959 GLuint i;
960 for (i = 0; i < n; i++) {
961 depthValues[i] = (GLfloat)CLAMP(depthValues[i], 0.0, 1.0);
962 }
963 }
964
965 /*
966 * Convert values to dstType
967 */
968 if (dstType == GL_UNSIGNED_INT) {
969 GLuint *zValues = (GLuint *) dest;
970 GLuint i;
971 if (depthMax <= 0xffffff) {
972 /* no overflow worries */
973 for (i = 0; i < n; i++) {
974 zValues[i] = (GLuint) (depthValues[i] * (GLfloat) depthMax);
975 }
976 }
977 else {
978 /* need to use double precision to prevent overflow problems */
979 for (i = 0; i < n; i++) {
980 GLdouble z = depthValues[i] * (GLdouble) depthMax;
981 if (z >= (GLdouble) 0xffffffff)
982 zValues[i] = 0xffffffff;
983 else
984 zValues[i] = (GLuint) z;
985 }
986 }
987 }
988 else if (dstType == GL_UNSIGNED_SHORT) {
989 GLushort *zValues = (GLushort *) dest;
990 GLuint i;
991 ASSERT(depthMax <= 0xffff);
992 for (i = 0; i < n; i++) {
993 zValues[i] = (GLushort) (depthValues[i] * (GLfloat) depthMax);
994 }
995 }
996 else if (dstType == GL_FLOAT) {
997 /* Nothing to do. depthValues is pointing to dest. */
998 }
999 else if (dstType == GL_FLOAT_32_UNSIGNED_INT_24_8_REV) {
1000 GLfloat *zValues = (GLfloat*) dest;
1001 GLuint i;
1002 for (i = 0; i < n; i++) {
1003 zValues[i*2] = depthValues[i];
1004 }
1005 }
1006 else {
1007 ASSERT(0);
1008 }
1009
1010 free(depthTemp);
1011 }
1012
1013
1014 /*
1015 * Pack an array of depth values. The values are floats in [0,1].
1016 */
1017 void
1018 _mesa_pack_depth_span( struct gl_context *ctx, GLuint n, GLvoid *dest,
1019 GLenum dstType, const GLfloat *depthSpan,
1020 const struct gl_pixelstore_attrib *dstPacking )
1021 {
1022 GLfloat *depthCopy = malloc(n * sizeof(GLfloat));
1023 if (!depthCopy) {
1024 _mesa_error(ctx, GL_OUT_OF_MEMORY, "pixel packing");
1025 return;
1026 }
1027
1028 if (ctx->Pixel.DepthScale != 1.0 || ctx->Pixel.DepthBias != 0.0) {
1029 memcpy(depthCopy, depthSpan, n * sizeof(GLfloat));
1030 _mesa_scale_and_bias_depth(ctx, n, depthCopy);
1031 depthSpan = depthCopy;
1032 }
1033
1034 switch (dstType) {
1035 case GL_UNSIGNED_BYTE:
1036 {
1037 GLubyte *dst = (GLubyte *) dest;
1038 GLuint i;
1039 for (i = 0; i < n; i++) {
1040 dst[i] = FLOAT_TO_UBYTE( depthSpan[i] );
1041 }
1042 }
1043 break;
1044 case GL_BYTE:
1045 {
1046 GLbyte *dst = (GLbyte *) dest;
1047 GLuint i;
1048 for (i = 0; i < n; i++) {
1049 dst[i] = FLOAT_TO_BYTE( depthSpan[i] );
1050 }
1051 }
1052 break;
1053 case GL_UNSIGNED_SHORT:
1054 {
1055 GLushort *dst = (GLushort *) dest;
1056 GLuint i;
1057 for (i = 0; i < n; i++) {
1058 CLAMPED_FLOAT_TO_USHORT(dst[i], depthSpan[i]);
1059 }
1060 if (dstPacking->SwapBytes) {
1061 _mesa_swap2( (GLushort *) dst, n );
1062 }
1063 }
1064 break;
1065 case GL_SHORT:
1066 {
1067 GLshort *dst = (GLshort *) dest;
1068 GLuint i;
1069 for (i = 0; i < n; i++) {
1070 dst[i] = FLOAT_TO_SHORT( depthSpan[i] );
1071 }
1072 if (dstPacking->SwapBytes) {
1073 _mesa_swap2( (GLushort *) dst, n );
1074 }
1075 }
1076 break;
1077 case GL_UNSIGNED_INT:
1078 {
1079 GLuint *dst = (GLuint *) dest;
1080 GLuint i;
1081 for (i = 0; i < n; i++) {
1082 dst[i] = FLOAT_TO_UINT( depthSpan[i] );
1083 }
1084 if (dstPacking->SwapBytes) {
1085 _mesa_swap4( (GLuint *) dst, n );
1086 }
1087 }
1088 break;
1089 case GL_INT:
1090 {
1091 GLint *dst = (GLint *) dest;
1092 GLuint i;
1093 for (i = 0; i < n; i++) {
1094 dst[i] = FLOAT_TO_INT( depthSpan[i] );
1095 }
1096 if (dstPacking->SwapBytes) {
1097 _mesa_swap4( (GLuint *) dst, n );
1098 }
1099 }
1100 break;
1101 case GL_FLOAT:
1102 {
1103 GLfloat *dst = (GLfloat *) dest;
1104 GLuint i;
1105 for (i = 0; i < n; i++) {
1106 dst[i] = depthSpan[i];
1107 }
1108 if (dstPacking->SwapBytes) {
1109 _mesa_swap4( (GLuint *) dst, n );
1110 }
1111 }
1112 break;
1113 case GL_HALF_FLOAT_ARB:
1114 case GL_HALF_FLOAT_OES:
1115 {
1116 GLhalfARB *dst = (GLhalfARB *) dest;
1117 GLuint i;
1118 for (i = 0; i < n; i++) {
1119 dst[i] = _mesa_float_to_half(depthSpan[i]);
1120 }
1121 if (dstPacking->SwapBytes) {
1122 _mesa_swap2( (GLushort *) dst, n );
1123 }
1124 }
1125 break;
1126 default:
1127 _mesa_problem(ctx, "bad type in _mesa_pack_depth_span");
1128 }
1129
1130 free(depthCopy);
1131 }
1132
1133
1134
1135 /**
1136 * Pack depth and stencil values as GL_DEPTH_STENCIL (GL_UNSIGNED_INT_24_8 etc)
1137 */
1138 void
1139 _mesa_pack_depth_stencil_span(struct gl_context *ctx,GLuint n,
1140 GLenum dstType, GLuint *dest,
1141 const GLfloat *depthVals,
1142 const GLubyte *stencilVals,
1143 const struct gl_pixelstore_attrib *dstPacking)
1144 {
1145 GLfloat *depthCopy = malloc(n * sizeof(GLfloat));
1146 GLubyte *stencilCopy = malloc(n * sizeof(GLubyte));
1147 GLuint i;
1148
1149 if (!depthCopy || !stencilCopy) {
1150 _mesa_error(ctx, GL_OUT_OF_MEMORY, "pixel packing");
1151 free(depthCopy);
1152 free(stencilCopy);
1153 return;
1154 }
1155
1156 if (ctx->Pixel.DepthScale != 1.0 || ctx->Pixel.DepthBias != 0.0) {
1157 memcpy(depthCopy, depthVals, n * sizeof(GLfloat));
1158 _mesa_scale_and_bias_depth(ctx, n, depthCopy);
1159 depthVals = depthCopy;
1160 }
1161
1162 if (ctx->Pixel.IndexShift ||
1163 ctx->Pixel.IndexOffset ||
1164 ctx->Pixel.MapStencilFlag) {
1165 memcpy(stencilCopy, stencilVals, n * sizeof(GLubyte));
1166 _mesa_apply_stencil_transfer_ops(ctx, n, stencilCopy);
1167 stencilVals = stencilCopy;
1168 }
1169
1170 switch (dstType) {
1171 case GL_UNSIGNED_INT_24_8:
1172 for (i = 0; i < n; i++) {
1173 GLuint z = (GLuint) (depthVals[i] * 0xffffff);
1174 dest[i] = (z << 8) | (stencilVals[i] & 0xff);
1175 }
1176 break;
1177 case GL_FLOAT_32_UNSIGNED_INT_24_8_REV:
1178 for (i = 0; i < n; i++) {
1179 ((GLfloat*)dest)[i*2] = depthVals[i];
1180 dest[i*2+1] = stencilVals[i] & 0xff;
1181 }
1182 break;
1183 }
1184
1185 if (dstPacking->SwapBytes) {
1186 _mesa_swap4(dest, n);
1187 }
1188
1189 free(depthCopy);
1190 free(stencilCopy);
1191 }
1192
1193
1194
1195 /**
1196 * Unpack image data. Apply byte swapping, byte flipping (bitmap).
1197 * Return all image data in a contiguous block. This is used when we
1198 * compile glDrawPixels, glTexImage, etc into a display list. We
1199 * need a copy of the data in a standard format.
1200 */
1201 void *
1202 _mesa_unpack_image( GLuint dimensions,
1203 GLsizei width, GLsizei height, GLsizei depth,
1204 GLenum format, GLenum type, const GLvoid *pixels,
1205 const struct gl_pixelstore_attrib *unpack )
1206 {
1207 GLint bytesPerRow, compsPerRow;
1208 GLboolean flipBytes, swap2, swap4;
1209
1210 if (!pixels)
1211 return NULL; /* not necessarily an error */
1212
1213 if (width <= 0 || height <= 0 || depth <= 0)
1214 return NULL; /* generate error later */
1215
1216 if (type == GL_BITMAP) {
1217 bytesPerRow = (width + 7) >> 3;
1218 flipBytes = unpack->LsbFirst;
1219 swap2 = swap4 = GL_FALSE;
1220 compsPerRow = 0;
1221 }
1222 else {
1223 const GLint bytesPerPixel = _mesa_bytes_per_pixel(format, type);
1224 GLint components = _mesa_components_in_format(format);
1225 GLint bytesPerComp;
1226
1227 if (_mesa_type_is_packed(type))
1228 components = 1;
1229
1230 if (bytesPerPixel <= 0 || components <= 0)
1231 return NULL; /* bad format or type. generate error later */
1232 bytesPerRow = bytesPerPixel * width;
1233 bytesPerComp = bytesPerPixel / components;
1234 flipBytes = GL_FALSE;
1235 swap2 = (bytesPerComp == 2) && unpack->SwapBytes;
1236 swap4 = (bytesPerComp == 4) && unpack->SwapBytes;
1237 compsPerRow = components * width;
1238 assert(compsPerRow >= width);
1239 }
1240
1241 {
1242 GLubyte *destBuffer
1243 = malloc(bytesPerRow * height * depth);
1244 GLubyte *dst;
1245 GLint img, row;
1246 if (!destBuffer)
1247 return NULL; /* generate GL_OUT_OF_MEMORY later */
1248
1249 dst = destBuffer;
1250 for (img = 0; img < depth; img++) {
1251 for (row = 0; row < height; row++) {
1252 const GLvoid *src = _mesa_image_address(dimensions, unpack, pixels,
1253 width, height, format, type, img, row, 0);
1254
1255 if ((type == GL_BITMAP) && (unpack->SkipPixels & 0x7)) {
1256 GLint i;
1257 flipBytes = GL_FALSE;
1258 if (unpack->LsbFirst) {
1259 GLubyte srcMask = 1 << (unpack->SkipPixels & 0x7);
1260 GLubyte dstMask = 128;
1261 const GLubyte *s = src;
1262 GLubyte *d = dst;
1263 *d = 0;
1264 for (i = 0; i < width; i++) {
1265 if (*s & srcMask) {
1266 *d |= dstMask;
1267 }
1268 if (srcMask == 128) {
1269 srcMask = 1;
1270 s++;
1271 }
1272 else {
1273 srcMask = srcMask << 1;
1274 }
1275 if (dstMask == 1) {
1276 dstMask = 128;
1277 d++;
1278 *d = 0;
1279 }
1280 else {
1281 dstMask = dstMask >> 1;
1282 }
1283 }
1284 }
1285 else {
1286 GLubyte srcMask = 128 >> (unpack->SkipPixels & 0x7);
1287 GLubyte dstMask = 128;
1288 const GLubyte *s = src;
1289 GLubyte *d = dst;
1290 *d = 0;
1291 for (i = 0; i < width; i++) {
1292 if (*s & srcMask) {
1293 *d |= dstMask;
1294 }
1295 if (srcMask == 1) {
1296 srcMask = 128;
1297 s++;
1298 }
1299 else {
1300 srcMask = srcMask >> 1;
1301 }
1302 if (dstMask == 1) {
1303 dstMask = 128;
1304 d++;
1305 *d = 0;
1306 }
1307 else {
1308 dstMask = dstMask >> 1;
1309 }
1310 }
1311 }
1312 }
1313 else {
1314 memcpy(dst, src, bytesPerRow);
1315 }
1316
1317 /* byte flipping/swapping */
1318 if (flipBytes) {
1319 flip_bytes((GLubyte *) dst, bytesPerRow);
1320 }
1321 else if (swap2) {
1322 _mesa_swap2((GLushort*) dst, compsPerRow);
1323 }
1324 else if (swap4) {
1325 _mesa_swap4((GLuint*) dst, compsPerRow);
1326 }
1327 dst += bytesPerRow;
1328 }
1329 }
1330 return destBuffer;
1331 }
1332 }
1333
1334 void
1335 _mesa_pack_luminance_from_rgba_float(GLuint n, GLfloat rgba[][4],
1336 GLvoid *dstAddr, GLenum dst_format,
1337 GLbitfield transferOps)
1338 {
1339 int i;
1340 GLfloat *dst = (GLfloat *) dstAddr;
1341
1342 switch (dst_format) {
1343 case GL_LUMINANCE:
1344 if (transferOps & IMAGE_CLAMP_BIT) {
1345 for (i = 0; i < n; i++) {
1346 GLfloat sum = rgba[i][RCOMP] + rgba[i][GCOMP] + rgba[i][BCOMP];
1347 dst[i] = CLAMP(sum, 0.0F, 1.0F);
1348 }
1349 } else {
1350 for (i = 0; i < n; i++) {
1351 dst[i] = rgba[i][RCOMP] + rgba[i][GCOMP] + rgba[i][BCOMP];
1352 }
1353 }
1354 return;
1355 case GL_LUMINANCE_ALPHA:
1356 if (transferOps & IMAGE_CLAMP_BIT) {
1357 for (i = 0; i < n; i++) {
1358 GLfloat sum = rgba[i][RCOMP] + rgba[i][GCOMP] + rgba[i][BCOMP];
1359 dst[2*i] = CLAMP(sum, 0.0F, 1.0F);
1360 dst[2*i+1] = rgba[i][ACOMP];
1361 }
1362 } else {
1363 for (i = 0; i < n; i++) {
1364 dst[2*i] = rgba[i][RCOMP] + rgba[i][GCOMP] + rgba[i][BCOMP];
1365 dst[2*i+1] = rgba[i][ACOMP];
1366 }
1367 }
1368 return;
1369 default:
1370 assert(!"Unsupported format");
1371 }
1372 }
1373
1374 static int32_t
1375 clamp_sint64_to_sint32(int64_t src)
1376 {
1377 return CLAMP(src, INT32_MIN, INT32_MAX);
1378 }
1379
1380 static int32_t
1381 clamp_sint64_to_uint32(int64_t src)
1382 {
1383 return CLAMP(src, 0, UINT32_MAX);
1384 }
1385
1386 static int32_t
1387 clamp_uint64_to_uint32(uint64_t src)
1388 {
1389 return MIN2(src, UINT32_MAX);
1390 }
1391
1392 static int32_t
1393 clamp_uint64_to_sint32(uint64_t src)
1394 {
1395 return MIN2(src, INT32_MAX);
1396 }
1397
1398 static int32_t
1399 convert_integer_luminance64(int64_t src64, int bits,
1400 bool dst_is_signed, bool src_is_signed)
1401 {
1402 int32_t src32;
1403
1404 /* Clamp Luminance value from 64-bit to 32-bit. Consider if we need
1405 * any signed<->unsigned conversion too.
1406 */
1407 if (src_is_signed && dst_is_signed)
1408 src32 = clamp_sint64_to_sint32(src64);
1409 else if (src_is_signed && !dst_is_signed)
1410 src32 = clamp_sint64_to_uint32(src64);
1411 else if (!src_is_signed && dst_is_signed)
1412 src32 = clamp_uint64_to_sint32(src64);
1413 else
1414 src32 = clamp_uint64_to_uint32(src64);
1415
1416 /* If the dst type is < 32-bit, we need an extra clamp */
1417 if (bits == 32) {
1418 return src32;
1419 } else {
1420 if (dst_is_signed)
1421 return _mesa_signed_to_signed(src32, bits);
1422 else
1423 return _mesa_unsigned_to_unsigned(src32, bits);
1424 }
1425 }
1426
1427 static int32_t
1428 convert_integer(int32_t src, int bits, bool dst_is_signed, bool src_is_signed)
1429 {
1430 if (src_is_signed && dst_is_signed)
1431 return _mesa_signed_to_signed(src, bits);
1432 else if (src_is_signed && !dst_is_signed)
1433 return _mesa_signed_to_unsigned(src, bits);
1434 else if (!src_is_signed && dst_is_signed)
1435 return _mesa_unsigned_to_signed(src, bits);
1436 else
1437 return _mesa_unsigned_to_unsigned(src, bits);
1438 }
1439
1440 void
1441 _mesa_pack_luminance_from_rgba_integer(GLuint n,
1442 GLuint rgba[][4], bool rgba_is_signed,
1443 GLvoid *dstAddr,
1444 GLenum dst_format,
1445 GLenum dst_type)
1446 {
1447 int i;
1448 int64_t lum64;
1449 int32_t lum32, alpha;
1450 bool dst_is_signed;
1451 int dst_bits;
1452
1453 assert(dst_format == GL_LUMINANCE_INTEGER_EXT ||
1454 dst_format == GL_LUMINANCE_ALPHA_INTEGER_EXT);
1455
1456 /* We first compute luminance values as a 64-bit addition of the
1457 * 32-bit R,G,B components, then we clamp the result to the dst type size.
1458 *
1459 * Notice that this operation involves casting the 32-bit R,G,B components
1460 * to 64-bit before the addition. Since rgba is defined as a GLuint array
1461 * we need to be careful when rgba packs signed data and make sure
1462 * that we cast to a 32-bit signed integer values before casting them to
1463 * 64-bit signed integers.
1464 */
1465 dst_is_signed = (dst_type == GL_BYTE || dst_type == GL_SHORT ||
1466 dst_type == GL_INT);
1467
1468 dst_bits = _mesa_sizeof_type(dst_type) * 8;
1469 assert(dst_bits > 0);
1470
1471 switch (dst_format) {
1472 case GL_LUMINANCE_INTEGER_EXT:
1473 for (i = 0; i < n; i++) {
1474 if (!rgba_is_signed) {
1475 lum64 = (uint64_t) rgba[i][RCOMP] +
1476 (uint64_t) rgba[i][GCOMP] +
1477 (uint64_t) rgba[i][BCOMP];
1478 } else {
1479 lum64 = (int64_t) ((int32_t) rgba[i][RCOMP]) +
1480 (int64_t) ((int32_t) rgba[i][GCOMP]) +
1481 (int64_t) ((int32_t) rgba[i][BCOMP]);
1482 }
1483 lum32 = convert_integer_luminance64(lum64, dst_bits,
1484 dst_is_signed, rgba_is_signed);
1485 switch (dst_type) {
1486 case GL_BYTE:
1487 case GL_UNSIGNED_BYTE: {
1488 GLbyte *dst = (GLbyte *) dstAddr;
1489 dst[i] = lum32;
1490 }
1491 break;
1492 case GL_SHORT:
1493 case GL_UNSIGNED_SHORT: {
1494 GLshort *dst = (GLshort *) dstAddr;
1495 dst[i] = lum32;
1496 }
1497 break;
1498 case GL_INT:
1499 case GL_UNSIGNED_INT: {
1500 GLint *dst = (GLint *) dstAddr;
1501 dst[i] = lum32;
1502 }
1503 break;
1504 }
1505 }
1506 return;
1507 case GL_LUMINANCE_ALPHA_INTEGER_EXT:
1508 for (i = 0; i < n; i++) {
1509 if (!rgba_is_signed) {
1510 lum64 = (uint64_t) rgba[i][RCOMP] +
1511 (uint64_t) rgba[i][GCOMP] +
1512 (uint64_t) rgba[i][BCOMP];
1513 } else {
1514 lum64 = (int64_t) ((int32_t) rgba[i][RCOMP]) +
1515 (int64_t) ((int32_t) rgba[i][GCOMP]) +
1516 (int64_t) ((int32_t) rgba[i][BCOMP]);
1517 }
1518 lum32 = convert_integer_luminance64(lum64, dst_bits,
1519 dst_is_signed, rgba_is_signed);
1520 alpha = convert_integer(rgba[i][ACOMP], dst_bits,
1521 dst_is_signed, rgba_is_signed);
1522 switch (dst_type) {
1523 case GL_BYTE:
1524 case GL_UNSIGNED_BYTE: {
1525 GLbyte *dst = (GLbyte *) dstAddr;
1526 dst[2*i] = lum32;
1527 dst[2*i+1] = alpha;
1528 }
1529 case GL_SHORT:
1530 case GL_UNSIGNED_SHORT: {
1531 GLshort *dst = (GLshort *) dstAddr;
1532 dst[i] = lum32;
1533 dst[2*i+1] = alpha;
1534 }
1535 break;
1536 case GL_INT:
1537 case GL_UNSIGNED_INT: {
1538 GLint *dst = (GLint *) dstAddr;
1539 dst[i] = lum32;
1540 dst[2*i+1] = alpha;
1541 }
1542 break;
1543 }
1544 }
1545 return;
1546 }
1547 }
1548
1549 GLfloat *
1550 _mesa_unpack_color_index_to_rgba_float(struct gl_context *ctx, GLuint dims,
1551 const void *src, GLenum srcFormat, GLenum srcType,
1552 int srcWidth, int srcHeight, int srcDepth,
1553 const struct gl_pixelstore_attrib *srcPacking,
1554 GLbitfield transferOps)
1555 {
1556 int count, img;
1557 GLuint *indexes;
1558 GLfloat *rgba, *dstPtr;
1559
1560 count = srcWidth * srcHeight;
1561 indexes = malloc(count * sizeof(GLuint));
1562 if (!indexes) {
1563 _mesa_error(ctx, GL_OUT_OF_MEMORY, "pixel unpacking");
1564 return NULL;
1565 }
1566
1567 rgba = malloc(4 * count * srcDepth * sizeof(GLfloat));
1568 if (!rgba) {
1569 free(indexes);
1570 _mesa_error(ctx, GL_OUT_OF_MEMORY, "pixel unpacking");
1571 return NULL;
1572 }
1573
1574 /* Convert indexes to RGBA float */
1575 dstPtr = rgba;
1576 for (img = 0; img < srcDepth; img++) {
1577 const GLubyte *srcPtr =
1578 (const GLubyte *) _mesa_image_address(dims, srcPacking, src,
1579 srcWidth, srcHeight,
1580 srcFormat, srcType,
1581 img, 0, 0);
1582
1583 extract_uint_indexes(count, indexes, srcFormat, srcType, srcPtr, srcPacking);
1584
1585 if (transferOps & IMAGE_SHIFT_OFFSET_BIT)
1586 _mesa_shift_and_offset_ci(ctx, count, indexes);
1587
1588 _mesa_map_ci_to_rgba(ctx, count, indexes, (float (*)[4])dstPtr);
1589
1590 /* Don't do RGBA scale/bias or RGBA->RGBA mapping if starting
1591 * with color indexes.
1592 */
1593 transferOps &= ~(IMAGE_SCALE_BIAS_BIT | IMAGE_MAP_COLOR_BIT);
1594 _mesa_apply_rgba_transfer_ops(ctx, transferOps, count, (float (*)[4])dstPtr);
1595
1596 dstPtr += srcHeight * srcWidth * 4;
1597 }
1598
1599 free(indexes);
1600
1601 return rgba;
1602 }
1603
1604 GLubyte *
1605 _mesa_unpack_color_index_to_rgba_ubyte(struct gl_context *ctx, GLuint dims,
1606 const void *src, GLenum srcFormat, GLenum srcType,
1607 int srcWidth, int srcHeight, int srcDepth,
1608 const struct gl_pixelstore_attrib *srcPacking,
1609 GLbitfield transferOps)
1610 {
1611 GLfloat *rgba;
1612 GLubyte *dst;
1613 int count, i;
1614
1615 transferOps |= IMAGE_CLAMP_BIT;
1616 rgba = _mesa_unpack_color_index_to_rgba_float(ctx, dims,
1617 src, srcFormat, srcType,
1618 srcWidth, srcHeight, srcDepth,
1619 srcPacking, transferOps);
1620
1621 count = srcWidth * srcHeight * srcDepth;
1622 dst = malloc(count * 4 * sizeof(GLubyte));
1623 for (i = 0; i < count; i++) {
1624 CLAMPED_FLOAT_TO_UBYTE(dst[i * 4 + 0], rgba[i * 4 + 0]);
1625 CLAMPED_FLOAT_TO_UBYTE(dst[i * 4 + 1], rgba[i * 4 + 1]);
1626 CLAMPED_FLOAT_TO_UBYTE(dst[i * 4 + 2], rgba[i * 4 + 2]);
1627 CLAMPED_FLOAT_TO_UBYTE(dst[i * 4 + 3], rgba[i * 4 + 3]);
1628 }
1629
1630 free(rgba);
1631
1632 return dst;
1633 }