mesa/main: Add a 'spirv' flag to gl_shader_program_data
[mesa.git] / src / mesa / program / ir_to_mesa.cpp
1 /*
2 * Copyright (C) 2005-2007 Brian Paul All Rights Reserved.
3 * Copyright (C) 2008 VMware, Inc. All Rights Reserved.
4 * Copyright © 2010 Intel Corporation
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
22 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
23 * DEALINGS IN THE SOFTWARE.
24 */
25
26 /**
27 * \file ir_to_mesa.cpp
28 *
29 * Translate GLSL IR to Mesa's gl_program representation.
30 */
31
32 #include <stdio.h>
33 #include "main/macros.h"
34 #include "main/mtypes.h"
35 #include "main/shaderapi.h"
36 #include "main/shaderobj.h"
37 #include "main/uniforms.h"
38 #include "main/glspirv.h"
39 #include "compiler/glsl/ast.h"
40 #include "compiler/glsl/ir.h"
41 #include "compiler/glsl/ir_expression_flattening.h"
42 #include "compiler/glsl/ir_visitor.h"
43 #include "compiler/glsl/ir_optimization.h"
44 #include "compiler/glsl/ir_uniform.h"
45 #include "compiler/glsl/glsl_parser_extras.h"
46 #include "compiler/glsl_types.h"
47 #include "compiler/glsl/linker.h"
48 #include "compiler/glsl/program.h"
49 #include "compiler/glsl/shader_cache.h"
50 #include "compiler/glsl/string_to_uint_map.h"
51 #include "program/prog_instruction.h"
52 #include "program/prog_optimize.h"
53 #include "program/prog_print.h"
54 #include "program/program.h"
55 #include "program/prog_parameter.h"
56
57
58 static int swizzle_for_size(int size);
59
60 namespace {
61
62 class src_reg;
63 class dst_reg;
64
65 /**
66 * This struct is a corresponding struct to Mesa prog_src_register, with
67 * wider fields.
68 */
69 class src_reg {
70 public:
71 src_reg(gl_register_file file, int index, const glsl_type *type)
72 {
73 this->file = file;
74 this->index = index;
75 if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
76 this->swizzle = swizzle_for_size(type->vector_elements);
77 else
78 this->swizzle = SWIZZLE_XYZW;
79 this->negate = 0;
80 this->reladdr = NULL;
81 }
82
83 src_reg()
84 {
85 this->file = PROGRAM_UNDEFINED;
86 this->index = 0;
87 this->swizzle = 0;
88 this->negate = 0;
89 this->reladdr = NULL;
90 }
91
92 explicit src_reg(dst_reg reg);
93
94 gl_register_file file; /**< PROGRAM_* from Mesa */
95 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
96 GLuint swizzle; /**< SWIZZLE_XYZWONEZERO swizzles from Mesa. */
97 int negate; /**< NEGATE_XYZW mask from mesa */
98 /** Register index should be offset by the integer in this reg. */
99 src_reg *reladdr;
100 };
101
102 class dst_reg {
103 public:
104 dst_reg(gl_register_file file, int writemask)
105 {
106 this->file = file;
107 this->index = 0;
108 this->writemask = writemask;
109 this->reladdr = NULL;
110 }
111
112 dst_reg()
113 {
114 this->file = PROGRAM_UNDEFINED;
115 this->index = 0;
116 this->writemask = 0;
117 this->reladdr = NULL;
118 }
119
120 explicit dst_reg(src_reg reg);
121
122 gl_register_file file; /**< PROGRAM_* from Mesa */
123 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
124 int writemask; /**< Bitfield of WRITEMASK_[XYZW] */
125 /** Register index should be offset by the integer in this reg. */
126 src_reg *reladdr;
127 };
128
129 } /* anonymous namespace */
130
131 src_reg::src_reg(dst_reg reg)
132 {
133 this->file = reg.file;
134 this->index = reg.index;
135 this->swizzle = SWIZZLE_XYZW;
136 this->negate = 0;
137 this->reladdr = reg.reladdr;
138 }
139
140 dst_reg::dst_reg(src_reg reg)
141 {
142 this->file = reg.file;
143 this->index = reg.index;
144 this->writemask = WRITEMASK_XYZW;
145 this->reladdr = reg.reladdr;
146 }
147
148 namespace {
149
150 class ir_to_mesa_instruction : public exec_node {
151 public:
152 DECLARE_RALLOC_CXX_OPERATORS(ir_to_mesa_instruction)
153
154 enum prog_opcode op;
155 dst_reg dst;
156 src_reg src[3];
157 /** Pointer to the ir source this tree came from for debugging */
158 ir_instruction *ir;
159 bool saturate;
160 int sampler; /**< sampler index */
161 int tex_target; /**< One of TEXTURE_*_INDEX */
162 GLboolean tex_shadow;
163 };
164
165 class variable_storage : public exec_node {
166 public:
167 variable_storage(ir_variable *var, gl_register_file file, int index)
168 : file(file), index(index), var(var)
169 {
170 /* empty */
171 }
172
173 gl_register_file file;
174 int index;
175 ir_variable *var; /* variable that maps to this, if any */
176 };
177
178 class function_entry : public exec_node {
179 public:
180 ir_function_signature *sig;
181
182 /**
183 * identifier of this function signature used by the program.
184 *
185 * At the point that Mesa instructions for function calls are
186 * generated, we don't know the address of the first instruction of
187 * the function body. So we make the BranchTarget that is called a
188 * small integer and rewrite them during set_branchtargets().
189 */
190 int sig_id;
191
192 /**
193 * Pointer to first instruction of the function body.
194 *
195 * Set during function body emits after main() is processed.
196 */
197 ir_to_mesa_instruction *bgn_inst;
198
199 /**
200 * Index of the first instruction of the function body in actual
201 * Mesa IR.
202 *
203 * Set after convertion from ir_to_mesa_instruction to prog_instruction.
204 */
205 int inst;
206
207 /** Storage for the return value. */
208 src_reg return_reg;
209 };
210
211 class ir_to_mesa_visitor : public ir_visitor {
212 public:
213 ir_to_mesa_visitor();
214 ~ir_to_mesa_visitor();
215
216 function_entry *current_function;
217
218 struct gl_context *ctx;
219 struct gl_program *prog;
220 struct gl_shader_program *shader_program;
221 struct gl_shader_compiler_options *options;
222
223 int next_temp;
224
225 variable_storage *find_variable_storage(const ir_variable *var);
226
227 src_reg get_temp(const glsl_type *type);
228 void reladdr_to_temp(ir_instruction *ir, src_reg *reg, int *num_reladdr);
229
230 src_reg src_reg_for_float(float val);
231
232 /**
233 * \name Visit methods
234 *
235 * As typical for the visitor pattern, there must be one \c visit method for
236 * each concrete subclass of \c ir_instruction. Virtual base classes within
237 * the hierarchy should not have \c visit methods.
238 */
239 /*@{*/
240 virtual void visit(ir_variable *);
241 virtual void visit(ir_loop *);
242 virtual void visit(ir_loop_jump *);
243 virtual void visit(ir_function_signature *);
244 virtual void visit(ir_function *);
245 virtual void visit(ir_expression *);
246 virtual void visit(ir_swizzle *);
247 virtual void visit(ir_dereference_variable *);
248 virtual void visit(ir_dereference_array *);
249 virtual void visit(ir_dereference_record *);
250 virtual void visit(ir_assignment *);
251 virtual void visit(ir_constant *);
252 virtual void visit(ir_call *);
253 virtual void visit(ir_return *);
254 virtual void visit(ir_discard *);
255 virtual void visit(ir_texture *);
256 virtual void visit(ir_if *);
257 virtual void visit(ir_emit_vertex *);
258 virtual void visit(ir_end_primitive *);
259 virtual void visit(ir_barrier *);
260 /*@}*/
261
262 src_reg result;
263
264 /** List of variable_storage */
265 exec_list variables;
266
267 /** List of function_entry */
268 exec_list function_signatures;
269 int next_signature_id;
270
271 /** List of ir_to_mesa_instruction */
272 exec_list instructions;
273
274 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op);
275
276 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
277 dst_reg dst, src_reg src0);
278
279 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
280 dst_reg dst, src_reg src0, src_reg src1);
281
282 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
283 dst_reg dst,
284 src_reg src0, src_reg src1, src_reg src2);
285
286 /**
287 * Emit the correct dot-product instruction for the type of arguments
288 */
289 ir_to_mesa_instruction * emit_dp(ir_instruction *ir,
290 dst_reg dst,
291 src_reg src0,
292 src_reg src1,
293 unsigned elements);
294
295 void emit_scalar(ir_instruction *ir, enum prog_opcode op,
296 dst_reg dst, src_reg src0);
297
298 void emit_scalar(ir_instruction *ir, enum prog_opcode op,
299 dst_reg dst, src_reg src0, src_reg src1);
300
301 bool try_emit_mad(ir_expression *ir,
302 int mul_operand);
303 bool try_emit_mad_for_and_not(ir_expression *ir,
304 int mul_operand);
305
306 void emit_swz(ir_expression *ir);
307
308 void emit_equality_comparison(ir_expression *ir, enum prog_opcode op,
309 dst_reg dst,
310 const src_reg &src0, const src_reg &src1);
311
312 inline void emit_sne(ir_expression *ir, dst_reg dst,
313 const src_reg &src0, const src_reg &src1)
314 {
315 emit_equality_comparison(ir, OPCODE_SLT, dst, src0, src1);
316 }
317
318 inline void emit_seq(ir_expression *ir, dst_reg dst,
319 const src_reg &src0, const src_reg &src1)
320 {
321 emit_equality_comparison(ir, OPCODE_SGE, dst, src0, src1);
322 }
323
324 bool process_move_condition(ir_rvalue *ir);
325
326 void copy_propagate(void);
327
328 void *mem_ctx;
329 };
330
331 } /* anonymous namespace */
332
333 static src_reg undef_src = src_reg(PROGRAM_UNDEFINED, 0, NULL);
334
335 static dst_reg undef_dst = dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP);
336
337 static dst_reg address_reg = dst_reg(PROGRAM_ADDRESS, WRITEMASK_X);
338
339 static int
340 swizzle_for_size(int size)
341 {
342 static const int size_swizzles[4] = {
343 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
344 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
345 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
346 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
347 };
348
349 assert((size >= 1) && (size <= 4));
350 return size_swizzles[size - 1];
351 }
352
353 ir_to_mesa_instruction *
354 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
355 dst_reg dst,
356 src_reg src0, src_reg src1, src_reg src2)
357 {
358 ir_to_mesa_instruction *inst = new(mem_ctx) ir_to_mesa_instruction();
359 int num_reladdr = 0;
360
361 /* If we have to do relative addressing, we want to load the ARL
362 * reg directly for one of the regs, and preload the other reladdr
363 * sources into temps.
364 */
365 num_reladdr += dst.reladdr != NULL;
366 num_reladdr += src0.reladdr != NULL;
367 num_reladdr += src1.reladdr != NULL;
368 num_reladdr += src2.reladdr != NULL;
369
370 reladdr_to_temp(ir, &src2, &num_reladdr);
371 reladdr_to_temp(ir, &src1, &num_reladdr);
372 reladdr_to_temp(ir, &src0, &num_reladdr);
373
374 if (dst.reladdr) {
375 emit(ir, OPCODE_ARL, address_reg, *dst.reladdr);
376 num_reladdr--;
377 }
378 assert(num_reladdr == 0);
379
380 inst->op = op;
381 inst->dst = dst;
382 inst->src[0] = src0;
383 inst->src[1] = src1;
384 inst->src[2] = src2;
385 inst->ir = ir;
386
387 this->instructions.push_tail(inst);
388
389 return inst;
390 }
391
392
393 ir_to_mesa_instruction *
394 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
395 dst_reg dst, src_reg src0, src_reg src1)
396 {
397 return emit(ir, op, dst, src0, src1, undef_src);
398 }
399
400 ir_to_mesa_instruction *
401 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
402 dst_reg dst, src_reg src0)
403 {
404 assert(dst.writemask != 0);
405 return emit(ir, op, dst, src0, undef_src, undef_src);
406 }
407
408 ir_to_mesa_instruction *
409 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op)
410 {
411 return emit(ir, op, undef_dst, undef_src, undef_src, undef_src);
412 }
413
414 ir_to_mesa_instruction *
415 ir_to_mesa_visitor::emit_dp(ir_instruction *ir,
416 dst_reg dst, src_reg src0, src_reg src1,
417 unsigned elements)
418 {
419 static const enum prog_opcode dot_opcodes[] = {
420 OPCODE_DP2, OPCODE_DP3, OPCODE_DP4
421 };
422
423 return emit(ir, dot_opcodes[elements - 2], dst, src0, src1);
424 }
425
426 /**
427 * Emits Mesa scalar opcodes to produce unique answers across channels.
428 *
429 * Some Mesa opcodes are scalar-only, like ARB_fp/vp. The src X
430 * channel determines the result across all channels. So to do a vec4
431 * of this operation, we want to emit a scalar per source channel used
432 * to produce dest channels.
433 */
434 void
435 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
436 dst_reg dst,
437 src_reg orig_src0, src_reg orig_src1)
438 {
439 int i, j;
440 int done_mask = ~dst.writemask;
441
442 /* Mesa RCP is a scalar operation splatting results to all channels,
443 * like ARB_fp/vp. So emit as many RCPs as necessary to cover our
444 * dst channels.
445 */
446 for (i = 0; i < 4; i++) {
447 GLuint this_mask = (1 << i);
448 ir_to_mesa_instruction *inst;
449 src_reg src0 = orig_src0;
450 src_reg src1 = orig_src1;
451
452 if (done_mask & this_mask)
453 continue;
454
455 GLuint src0_swiz = GET_SWZ(src0.swizzle, i);
456 GLuint src1_swiz = GET_SWZ(src1.swizzle, i);
457 for (j = i + 1; j < 4; j++) {
458 /* If there is another enabled component in the destination that is
459 * derived from the same inputs, generate its value on this pass as
460 * well.
461 */
462 if (!(done_mask & (1 << j)) &&
463 GET_SWZ(src0.swizzle, j) == src0_swiz &&
464 GET_SWZ(src1.swizzle, j) == src1_swiz) {
465 this_mask |= (1 << j);
466 }
467 }
468 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
469 src0_swiz, src0_swiz);
470 src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz,
471 src1_swiz, src1_swiz);
472
473 inst = emit(ir, op, dst, src0, src1);
474 inst->dst.writemask = this_mask;
475 done_mask |= this_mask;
476 }
477 }
478
479 void
480 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
481 dst_reg dst, src_reg src0)
482 {
483 src_reg undef = undef_src;
484
485 undef.swizzle = SWIZZLE_XXXX;
486
487 emit_scalar(ir, op, dst, src0, undef);
488 }
489
490 src_reg
491 ir_to_mesa_visitor::src_reg_for_float(float val)
492 {
493 src_reg src(PROGRAM_CONSTANT, -1, NULL);
494
495 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
496 (const gl_constant_value *)&val, 1, &src.swizzle);
497
498 return src;
499 }
500
501 static int
502 storage_type_size(const struct glsl_type *type, bool bindless)
503 {
504 unsigned int i;
505 int size;
506
507 switch (type->base_type) {
508 case GLSL_TYPE_UINT:
509 case GLSL_TYPE_INT:
510 case GLSL_TYPE_UINT8:
511 case GLSL_TYPE_INT8:
512 case GLSL_TYPE_UINT16:
513 case GLSL_TYPE_INT16:
514 case GLSL_TYPE_FLOAT:
515 case GLSL_TYPE_FLOAT16:
516 case GLSL_TYPE_BOOL:
517 if (type->is_matrix()) {
518 return type->matrix_columns;
519 } else {
520 /* Regardless of size of vector, it gets a vec4. This is bad
521 * packing for things like floats, but otherwise arrays become a
522 * mess. Hopefully a later pass over the code can pack scalars
523 * down if appropriate.
524 */
525 return 1;
526 }
527 break;
528 case GLSL_TYPE_DOUBLE:
529 if (type->is_matrix()) {
530 if (type->vector_elements > 2)
531 return type->matrix_columns * 2;
532 else
533 return type->matrix_columns;
534 } else {
535 if (type->vector_elements > 2)
536 return 2;
537 else
538 return 1;
539 }
540 break;
541 case GLSL_TYPE_UINT64:
542 case GLSL_TYPE_INT64:
543 if (type->vector_elements > 2)
544 return 2;
545 else
546 return 1;
547 case GLSL_TYPE_ARRAY:
548 assert(type->length > 0);
549 return storage_type_size(type->fields.array, bindless) * type->length;
550 case GLSL_TYPE_STRUCT:
551 size = 0;
552 for (i = 0; i < type->length; i++) {
553 size += storage_type_size(type->fields.structure[i].type, bindless);
554 }
555 return size;
556 case GLSL_TYPE_SAMPLER:
557 case GLSL_TYPE_IMAGE:
558 if (!bindless)
559 return 0;
560 /* fall through */
561 case GLSL_TYPE_SUBROUTINE:
562 return 1;
563 case GLSL_TYPE_ATOMIC_UINT:
564 case GLSL_TYPE_VOID:
565 case GLSL_TYPE_ERROR:
566 case GLSL_TYPE_INTERFACE:
567 case GLSL_TYPE_FUNCTION:
568 assert(!"Invalid type in type_size");
569 break;
570 }
571
572 return 0;
573 }
574
575 static int
576 type_size(const struct glsl_type *type)
577 {
578 return storage_type_size(type, false);
579 }
580
581 /**
582 * In the initial pass of codegen, we assign temporary numbers to
583 * intermediate results. (not SSA -- variable assignments will reuse
584 * storage). Actual register allocation for the Mesa VM occurs in a
585 * pass over the Mesa IR later.
586 */
587 src_reg
588 ir_to_mesa_visitor::get_temp(const glsl_type *type)
589 {
590 src_reg src;
591
592 src.file = PROGRAM_TEMPORARY;
593 src.index = next_temp;
594 src.reladdr = NULL;
595 next_temp += type_size(type);
596
597 if (type->is_array() || type->is_record()) {
598 src.swizzle = SWIZZLE_NOOP;
599 } else {
600 src.swizzle = swizzle_for_size(type->vector_elements);
601 }
602 src.negate = 0;
603
604 return src;
605 }
606
607 variable_storage *
608 ir_to_mesa_visitor::find_variable_storage(const ir_variable *var)
609 {
610 foreach_in_list(variable_storage, entry, &this->variables) {
611 if (entry->var == var)
612 return entry;
613 }
614
615 return NULL;
616 }
617
618 void
619 ir_to_mesa_visitor::visit(ir_variable *ir)
620 {
621 if (strcmp(ir->name, "gl_FragCoord") == 0) {
622 this->prog->OriginUpperLeft = ir->data.origin_upper_left;
623 this->prog->PixelCenterInteger = ir->data.pixel_center_integer;
624 }
625
626 if (ir->data.mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) {
627 unsigned int i;
628 const ir_state_slot *const slots = ir->get_state_slots();
629 assert(slots != NULL);
630
631 /* Check if this statevar's setup in the STATE file exactly
632 * matches how we'll want to reference it as a
633 * struct/array/whatever. If not, then we need to move it into
634 * temporary storage and hope that it'll get copy-propagated
635 * out.
636 */
637 for (i = 0; i < ir->get_num_state_slots(); i++) {
638 if (slots[i].swizzle != SWIZZLE_XYZW) {
639 break;
640 }
641 }
642
643 variable_storage *storage;
644 dst_reg dst;
645 if (i == ir->get_num_state_slots()) {
646 /* We'll set the index later. */
647 storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1);
648 this->variables.push_tail(storage);
649
650 dst = undef_dst;
651 } else {
652 /* The variable_storage constructor allocates slots based on the size
653 * of the type. However, this had better match the number of state
654 * elements that we're going to copy into the new temporary.
655 */
656 assert((int) ir->get_num_state_slots() == type_size(ir->type));
657
658 storage = new(mem_ctx) variable_storage(ir, PROGRAM_TEMPORARY,
659 this->next_temp);
660 this->variables.push_tail(storage);
661 this->next_temp += type_size(ir->type);
662
663 dst = dst_reg(src_reg(PROGRAM_TEMPORARY, storage->index, NULL));
664 }
665
666
667 for (unsigned int i = 0; i < ir->get_num_state_slots(); i++) {
668 int index = _mesa_add_state_reference(this->prog->Parameters,
669 slots[i].tokens);
670
671 if (storage->file == PROGRAM_STATE_VAR) {
672 if (storage->index == -1) {
673 storage->index = index;
674 } else {
675 assert(index == storage->index + (int)i);
676 }
677 } else {
678 src_reg src(PROGRAM_STATE_VAR, index, NULL);
679 src.swizzle = slots[i].swizzle;
680 emit(ir, OPCODE_MOV, dst, src);
681 /* even a float takes up a whole vec4 reg in a struct/array. */
682 dst.index++;
683 }
684 }
685
686 if (storage->file == PROGRAM_TEMPORARY &&
687 dst.index != storage->index + (int) ir->get_num_state_slots()) {
688 linker_error(this->shader_program,
689 "failed to load builtin uniform `%s' "
690 "(%d/%d regs loaded)\n",
691 ir->name, dst.index - storage->index,
692 type_size(ir->type));
693 }
694 }
695 }
696
697 void
698 ir_to_mesa_visitor::visit(ir_loop *ir)
699 {
700 emit(NULL, OPCODE_BGNLOOP);
701
702 visit_exec_list(&ir->body_instructions, this);
703
704 emit(NULL, OPCODE_ENDLOOP);
705 }
706
707 void
708 ir_to_mesa_visitor::visit(ir_loop_jump *ir)
709 {
710 switch (ir->mode) {
711 case ir_loop_jump::jump_break:
712 emit(NULL, OPCODE_BRK);
713 break;
714 case ir_loop_jump::jump_continue:
715 emit(NULL, OPCODE_CONT);
716 break;
717 }
718 }
719
720
721 void
722 ir_to_mesa_visitor::visit(ir_function_signature *ir)
723 {
724 assert(0);
725 (void)ir;
726 }
727
728 void
729 ir_to_mesa_visitor::visit(ir_function *ir)
730 {
731 /* Ignore function bodies other than main() -- we shouldn't see calls to
732 * them since they should all be inlined before we get to ir_to_mesa.
733 */
734 if (strcmp(ir->name, "main") == 0) {
735 const ir_function_signature *sig;
736 exec_list empty;
737
738 sig = ir->matching_signature(NULL, &empty, false);
739
740 assert(sig);
741
742 foreach_in_list(ir_instruction, ir, &sig->body) {
743 ir->accept(this);
744 }
745 }
746 }
747
748 bool
749 ir_to_mesa_visitor::try_emit_mad(ir_expression *ir, int mul_operand)
750 {
751 int nonmul_operand = 1 - mul_operand;
752 src_reg a, b, c;
753
754 ir_expression *expr = ir->operands[mul_operand]->as_expression();
755 if (!expr || expr->operation != ir_binop_mul)
756 return false;
757
758 expr->operands[0]->accept(this);
759 a = this->result;
760 expr->operands[1]->accept(this);
761 b = this->result;
762 ir->operands[nonmul_operand]->accept(this);
763 c = this->result;
764
765 this->result = get_temp(ir->type);
766 emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, c);
767
768 return true;
769 }
770
771 /**
772 * Emit OPCODE_MAD(a, -b, a) instead of AND(a, NOT(b))
773 *
774 * The logic values are 1.0 for true and 0.0 for false. Logical-and is
775 * implemented using multiplication, and logical-or is implemented using
776 * addition. Logical-not can be implemented as (true - x), or (1.0 - x).
777 * As result, the logical expression (a & !b) can be rewritten as:
778 *
779 * - a * !b
780 * - a * (1 - b)
781 * - (a * 1) - (a * b)
782 * - a + -(a * b)
783 * - a + (a * -b)
784 *
785 * This final expression can be implemented as a single MAD(a, -b, a)
786 * instruction.
787 */
788 bool
789 ir_to_mesa_visitor::try_emit_mad_for_and_not(ir_expression *ir, int try_operand)
790 {
791 const int other_operand = 1 - try_operand;
792 src_reg a, b;
793
794 ir_expression *expr = ir->operands[try_operand]->as_expression();
795 if (!expr || expr->operation != ir_unop_logic_not)
796 return false;
797
798 ir->operands[other_operand]->accept(this);
799 a = this->result;
800 expr->operands[0]->accept(this);
801 b = this->result;
802
803 b.negate = ~b.negate;
804
805 this->result = get_temp(ir->type);
806 emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, a);
807
808 return true;
809 }
810
811 void
812 ir_to_mesa_visitor::reladdr_to_temp(ir_instruction *ir,
813 src_reg *reg, int *num_reladdr)
814 {
815 if (!reg->reladdr)
816 return;
817
818 emit(ir, OPCODE_ARL, address_reg, *reg->reladdr);
819
820 if (*num_reladdr != 1) {
821 src_reg temp = get_temp(glsl_type::vec4_type);
822
823 emit(ir, OPCODE_MOV, dst_reg(temp), *reg);
824 *reg = temp;
825 }
826
827 (*num_reladdr)--;
828 }
829
830 void
831 ir_to_mesa_visitor::emit_swz(ir_expression *ir)
832 {
833 /* Assume that the vector operator is in a form compatible with OPCODE_SWZ.
834 * This means that each of the operands is either an immediate value of -1,
835 * 0, or 1, or is a component from one source register (possibly with
836 * negation).
837 */
838 uint8_t components[4] = { 0 };
839 bool negate[4] = { false };
840 ir_variable *var = NULL;
841
842 for (unsigned i = 0; i < ir->type->vector_elements; i++) {
843 ir_rvalue *op = ir->operands[i];
844
845 assert(op->type->is_scalar());
846
847 while (op != NULL) {
848 switch (op->ir_type) {
849 case ir_type_constant: {
850
851 assert(op->type->is_scalar());
852
853 const ir_constant *const c = op->as_constant();
854 if (c->is_one()) {
855 components[i] = SWIZZLE_ONE;
856 } else if (c->is_zero()) {
857 components[i] = SWIZZLE_ZERO;
858 } else if (c->is_negative_one()) {
859 components[i] = SWIZZLE_ONE;
860 negate[i] = true;
861 } else {
862 assert(!"SWZ constant must be 0.0 or 1.0.");
863 }
864
865 op = NULL;
866 break;
867 }
868
869 case ir_type_dereference_variable: {
870 ir_dereference_variable *const deref =
871 (ir_dereference_variable *) op;
872
873 assert((var == NULL) || (deref->var == var));
874 components[i] = SWIZZLE_X;
875 var = deref->var;
876 op = NULL;
877 break;
878 }
879
880 case ir_type_expression: {
881 ir_expression *const expr = (ir_expression *) op;
882
883 assert(expr->operation == ir_unop_neg);
884 negate[i] = true;
885
886 op = expr->operands[0];
887 break;
888 }
889
890 case ir_type_swizzle: {
891 ir_swizzle *const swiz = (ir_swizzle *) op;
892
893 components[i] = swiz->mask.x;
894 op = swiz->val;
895 break;
896 }
897
898 default:
899 assert(!"Should not get here.");
900 return;
901 }
902 }
903 }
904
905 assert(var != NULL);
906
907 ir_dereference_variable *const deref =
908 new(mem_ctx) ir_dereference_variable(var);
909
910 this->result.file = PROGRAM_UNDEFINED;
911 deref->accept(this);
912 if (this->result.file == PROGRAM_UNDEFINED) {
913 printf("Failed to get tree for expression operand:\n");
914 deref->print();
915 printf("\n");
916 exit(1);
917 }
918
919 src_reg src;
920
921 src = this->result;
922 src.swizzle = MAKE_SWIZZLE4(components[0],
923 components[1],
924 components[2],
925 components[3]);
926 src.negate = ((unsigned(negate[0]) << 0)
927 | (unsigned(negate[1]) << 1)
928 | (unsigned(negate[2]) << 2)
929 | (unsigned(negate[3]) << 3));
930
931 /* Storage for our result. Ideally for an assignment we'd be using the
932 * actual storage for the result here, instead.
933 */
934 const src_reg result_src = get_temp(ir->type);
935 dst_reg result_dst = dst_reg(result_src);
936
937 /* Limit writes to the channels that will be used by result_src later.
938 * This does limit this temp's use as a temporary for multi-instruction
939 * sequences.
940 */
941 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
942
943 emit(ir, OPCODE_SWZ, result_dst, src);
944 this->result = result_src;
945 }
946
947 void
948 ir_to_mesa_visitor::emit_equality_comparison(ir_expression *ir,
949 enum prog_opcode op,
950 dst_reg dst,
951 const src_reg &src0,
952 const src_reg &src1)
953 {
954 src_reg difference;
955 src_reg abs_difference = get_temp(glsl_type::vec4_type);
956 const src_reg zero = src_reg_for_float(0.0);
957
958 /* x == y is equivalent to -abs(x-y) >= 0. Since all of the code that
959 * consumes the generated IR is pretty dumb, take special care when one
960 * of the operands is zero.
961 *
962 * Similarly, x != y is equivalent to -abs(x-y) < 0.
963 */
964 if (src0.file == zero.file &&
965 src0.index == zero.index &&
966 src0.swizzle == zero.swizzle) {
967 difference = src1;
968 } else if (src1.file == zero.file &&
969 src1.index == zero.index &&
970 src1.swizzle == zero.swizzle) {
971 difference = src0;
972 } else {
973 difference = get_temp(glsl_type::vec4_type);
974
975 src_reg tmp_src = src0;
976 tmp_src.negate = ~tmp_src.negate;
977
978 emit(ir, OPCODE_ADD, dst_reg(difference), tmp_src, src1);
979 }
980
981 emit(ir, OPCODE_ABS, dst_reg(abs_difference), difference);
982
983 abs_difference.negate = ~abs_difference.negate;
984 emit(ir, op, dst, abs_difference, zero);
985 }
986
987 void
988 ir_to_mesa_visitor::visit(ir_expression *ir)
989 {
990 unsigned int operand;
991 src_reg op[ARRAY_SIZE(ir->operands)];
992 src_reg result_src;
993 dst_reg result_dst;
994
995 /* Quick peephole: Emit OPCODE_MAD(a, b, c) instead of ADD(MUL(a, b), c)
996 */
997 if (ir->operation == ir_binop_add) {
998 if (try_emit_mad(ir, 1))
999 return;
1000 if (try_emit_mad(ir, 0))
1001 return;
1002 }
1003
1004 /* Quick peephole: Emit OPCODE_MAD(-a, -b, a) instead of AND(a, NOT(b))
1005 */
1006 if (ir->operation == ir_binop_logic_and) {
1007 if (try_emit_mad_for_and_not(ir, 1))
1008 return;
1009 if (try_emit_mad_for_and_not(ir, 0))
1010 return;
1011 }
1012
1013 if (ir->operation == ir_quadop_vector) {
1014 this->emit_swz(ir);
1015 return;
1016 }
1017
1018 for (operand = 0; operand < ir->num_operands; operand++) {
1019 this->result.file = PROGRAM_UNDEFINED;
1020 ir->operands[operand]->accept(this);
1021 if (this->result.file == PROGRAM_UNDEFINED) {
1022 printf("Failed to get tree for expression operand:\n");
1023 ir->operands[operand]->print();
1024 printf("\n");
1025 exit(1);
1026 }
1027 op[operand] = this->result;
1028
1029 /* Matrix expression operands should have been broken down to vector
1030 * operations already.
1031 */
1032 assert(!ir->operands[operand]->type->is_matrix());
1033 }
1034
1035 int vector_elements = ir->operands[0]->type->vector_elements;
1036 if (ir->operands[1]) {
1037 vector_elements = MAX2(vector_elements,
1038 ir->operands[1]->type->vector_elements);
1039 }
1040
1041 this->result.file = PROGRAM_UNDEFINED;
1042
1043 /* Storage for our result. Ideally for an assignment we'd be using
1044 * the actual storage for the result here, instead.
1045 */
1046 result_src = get_temp(ir->type);
1047 /* convenience for the emit functions below. */
1048 result_dst = dst_reg(result_src);
1049 /* Limit writes to the channels that will be used by result_src later.
1050 * This does limit this temp's use as a temporary for multi-instruction
1051 * sequences.
1052 */
1053 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1054
1055 switch (ir->operation) {
1056 case ir_unop_logic_not:
1057 /* Previously 'SEQ dst, src, 0.0' was used for this. However, many
1058 * older GPUs implement SEQ using multiple instructions (i915 uses two
1059 * SGE instructions and a MUL instruction). Since our logic values are
1060 * 0.0 and 1.0, 1-x also implements !x.
1061 */
1062 op[0].negate = ~op[0].negate;
1063 emit(ir, OPCODE_ADD, result_dst, op[0], src_reg_for_float(1.0));
1064 break;
1065 case ir_unop_neg:
1066 op[0].negate = ~op[0].negate;
1067 result_src = op[0];
1068 break;
1069 case ir_unop_abs:
1070 emit(ir, OPCODE_ABS, result_dst, op[0]);
1071 break;
1072 case ir_unop_sign:
1073 emit(ir, OPCODE_SSG, result_dst, op[0]);
1074 break;
1075 case ir_unop_rcp:
1076 emit_scalar(ir, OPCODE_RCP, result_dst, op[0]);
1077 break;
1078
1079 case ir_unop_exp2:
1080 emit_scalar(ir, OPCODE_EX2, result_dst, op[0]);
1081 break;
1082 case ir_unop_exp:
1083 assert(!"not reached: should be handled by exp_to_exp2");
1084 break;
1085 case ir_unop_log:
1086 assert(!"not reached: should be handled by log_to_log2");
1087 break;
1088 case ir_unop_log2:
1089 emit_scalar(ir, OPCODE_LG2, result_dst, op[0]);
1090 break;
1091 case ir_unop_sin:
1092 emit_scalar(ir, OPCODE_SIN, result_dst, op[0]);
1093 break;
1094 case ir_unop_cos:
1095 emit_scalar(ir, OPCODE_COS, result_dst, op[0]);
1096 break;
1097
1098 case ir_unop_dFdx:
1099 emit(ir, OPCODE_DDX, result_dst, op[0]);
1100 break;
1101 case ir_unop_dFdy:
1102 emit(ir, OPCODE_DDY, result_dst, op[0]);
1103 break;
1104
1105 case ir_unop_saturate: {
1106 ir_to_mesa_instruction *inst = emit(ir, OPCODE_MOV,
1107 result_dst, op[0]);
1108 inst->saturate = true;
1109 break;
1110 }
1111 case ir_unop_noise: {
1112 const enum prog_opcode opcode =
1113 prog_opcode(OPCODE_NOISE1
1114 + (ir->operands[0]->type->vector_elements) - 1);
1115 assert((opcode >= OPCODE_NOISE1) && (opcode <= OPCODE_NOISE4));
1116
1117 emit(ir, opcode, result_dst, op[0]);
1118 break;
1119 }
1120
1121 case ir_binop_add:
1122 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1123 break;
1124 case ir_binop_sub:
1125 emit(ir, OPCODE_SUB, result_dst, op[0], op[1]);
1126 break;
1127
1128 case ir_binop_mul:
1129 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1130 break;
1131 case ir_binop_div:
1132 assert(!"not reached: should be handled by ir_div_to_mul_rcp");
1133 break;
1134 case ir_binop_mod:
1135 /* Floating point should be lowered by MOD_TO_FLOOR in the compiler. */
1136 assert(ir->type->is_integer());
1137 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1138 break;
1139
1140 case ir_binop_less:
1141 emit(ir, OPCODE_SLT, result_dst, op[0], op[1]);
1142 break;
1143 case ir_binop_gequal:
1144 emit(ir, OPCODE_SGE, result_dst, op[0], op[1]);
1145 break;
1146 case ir_binop_equal:
1147 emit_seq(ir, result_dst, op[0], op[1]);
1148 break;
1149 case ir_binop_nequal:
1150 emit_sne(ir, result_dst, op[0], op[1]);
1151 break;
1152 case ir_binop_all_equal:
1153 /* "==" operator producing a scalar boolean. */
1154 if (ir->operands[0]->type->is_vector() ||
1155 ir->operands[1]->type->is_vector()) {
1156 src_reg temp = get_temp(glsl_type::vec4_type);
1157 emit_sne(ir, dst_reg(temp), op[0], op[1]);
1158
1159 /* After the dot-product, the value will be an integer on the
1160 * range [0,4]. Zero becomes 1.0, and positive values become zero.
1161 */
1162 emit_dp(ir, result_dst, temp, temp, vector_elements);
1163
1164 /* Negating the result of the dot-product gives values on the range
1165 * [-4, 0]. Zero becomes 1.0, and negative values become zero. This
1166 * achieved using SGE.
1167 */
1168 src_reg sge_src = result_src;
1169 sge_src.negate = ~sge_src.negate;
1170 emit(ir, OPCODE_SGE, result_dst, sge_src, src_reg_for_float(0.0));
1171 } else {
1172 emit_seq(ir, result_dst, op[0], op[1]);
1173 }
1174 break;
1175 case ir_binop_any_nequal:
1176 /* "!=" operator producing a scalar boolean. */
1177 if (ir->operands[0]->type->is_vector() ||
1178 ir->operands[1]->type->is_vector()) {
1179 src_reg temp = get_temp(glsl_type::vec4_type);
1180 if (ir->operands[0]->type->is_boolean() &&
1181 ir->operands[1]->as_constant() &&
1182 ir->operands[1]->as_constant()->is_zero()) {
1183 temp = op[0];
1184 } else {
1185 emit_sne(ir, dst_reg(temp), op[0], op[1]);
1186 }
1187
1188 /* After the dot-product, the value will be an integer on the
1189 * range [0,4]. Zero stays zero, and positive values become 1.0.
1190 */
1191 ir_to_mesa_instruction *const dp =
1192 emit_dp(ir, result_dst, temp, temp, vector_elements);
1193 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1194 /* The clamping to [0,1] can be done for free in the fragment
1195 * shader with a saturate.
1196 */
1197 dp->saturate = true;
1198 } else {
1199 /* Negating the result of the dot-product gives values on the range
1200 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1201 * achieved using SLT.
1202 */
1203 src_reg slt_src = result_src;
1204 slt_src.negate = ~slt_src.negate;
1205 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1206 }
1207 } else {
1208 emit_sne(ir, result_dst, op[0], op[1]);
1209 }
1210 break;
1211
1212 case ir_binop_logic_xor:
1213 emit_sne(ir, result_dst, op[0], op[1]);
1214 break;
1215
1216 case ir_binop_logic_or: {
1217 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1218 /* After the addition, the value will be an integer on the
1219 * range [0,2]. Zero stays zero, and positive values become 1.0.
1220 */
1221 ir_to_mesa_instruction *add =
1222 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1223 add->saturate = true;
1224 } else {
1225 /* The Boolean arguments are stored as float 0.0 and 1.0. If either
1226 * value is 1.0, the result of the logcal-or should be 1.0. If both
1227 * values are 0.0, the result should be 0.0. This is exactly what
1228 * MAX does.
1229 */
1230 emit(ir, OPCODE_MAX, result_dst, op[0], op[1]);
1231 }
1232 break;
1233 }
1234
1235 case ir_binop_logic_and:
1236 /* the bool args are stored as float 0.0 or 1.0, so "mul" gives us "and". */
1237 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1238 break;
1239
1240 case ir_binop_dot:
1241 assert(ir->operands[0]->type->is_vector());
1242 assert(ir->operands[0]->type == ir->operands[1]->type);
1243 emit_dp(ir, result_dst, op[0], op[1],
1244 ir->operands[0]->type->vector_elements);
1245 break;
1246
1247 case ir_unop_sqrt:
1248 /* sqrt(x) = x * rsq(x). */
1249 emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1250 emit(ir, OPCODE_MUL, result_dst, result_src, op[0]);
1251 /* For incoming channels <= 0, set the result to 0. */
1252 op[0].negate = ~op[0].negate;
1253 emit(ir, OPCODE_CMP, result_dst,
1254 op[0], result_src, src_reg_for_float(0.0));
1255 break;
1256 case ir_unop_rsq:
1257 emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1258 break;
1259 case ir_unop_i2f:
1260 case ir_unop_u2f:
1261 case ir_unop_b2f:
1262 case ir_unop_b2i:
1263 case ir_unop_i2u:
1264 case ir_unop_u2i:
1265 /* Mesa IR lacks types, ints are stored as truncated floats. */
1266 result_src = op[0];
1267 break;
1268 case ir_unop_f2i:
1269 case ir_unop_f2u:
1270 emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1271 break;
1272 case ir_unop_f2b:
1273 case ir_unop_i2b:
1274 emit_sne(ir, result_dst, op[0], src_reg_for_float(0.0));
1275 break;
1276 case ir_unop_bitcast_f2i: // Ignore these 4, they can't happen here anyway
1277 case ir_unop_bitcast_f2u:
1278 case ir_unop_bitcast_i2f:
1279 case ir_unop_bitcast_u2f:
1280 break;
1281 case ir_unop_trunc:
1282 emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1283 break;
1284 case ir_unop_ceil:
1285 op[0].negate = ~op[0].negate;
1286 emit(ir, OPCODE_FLR, result_dst, op[0]);
1287 result_src.negate = ~result_src.negate;
1288 break;
1289 case ir_unop_floor:
1290 emit(ir, OPCODE_FLR, result_dst, op[0]);
1291 break;
1292 case ir_unop_fract:
1293 emit(ir, OPCODE_FRC, result_dst, op[0]);
1294 break;
1295 case ir_unop_pack_snorm_2x16:
1296 case ir_unop_pack_snorm_4x8:
1297 case ir_unop_pack_unorm_2x16:
1298 case ir_unop_pack_unorm_4x8:
1299 case ir_unop_pack_half_2x16:
1300 case ir_unop_pack_double_2x32:
1301 case ir_unop_unpack_snorm_2x16:
1302 case ir_unop_unpack_snorm_4x8:
1303 case ir_unop_unpack_unorm_2x16:
1304 case ir_unop_unpack_unorm_4x8:
1305 case ir_unop_unpack_half_2x16:
1306 case ir_unop_unpack_double_2x32:
1307 case ir_unop_bitfield_reverse:
1308 case ir_unop_bit_count:
1309 case ir_unop_find_msb:
1310 case ir_unop_find_lsb:
1311 case ir_unop_d2f:
1312 case ir_unop_f2d:
1313 case ir_unop_d2i:
1314 case ir_unop_i2d:
1315 case ir_unop_d2u:
1316 case ir_unop_u2d:
1317 case ir_unop_d2b:
1318 case ir_unop_frexp_sig:
1319 case ir_unop_frexp_exp:
1320 assert(!"not supported");
1321 break;
1322 case ir_binop_min:
1323 emit(ir, OPCODE_MIN, result_dst, op[0], op[1]);
1324 break;
1325 case ir_binop_max:
1326 emit(ir, OPCODE_MAX, result_dst, op[0], op[1]);
1327 break;
1328 case ir_binop_pow:
1329 emit_scalar(ir, OPCODE_POW, result_dst, op[0], op[1]);
1330 break;
1331
1332 /* GLSL 1.30 integer ops are unsupported in Mesa IR, but since
1333 * hardware backends have no way to avoid Mesa IR generation
1334 * even if they don't use it, we need to emit "something" and
1335 * continue.
1336 */
1337 case ir_binop_lshift:
1338 case ir_binop_rshift:
1339 case ir_binop_bit_and:
1340 case ir_binop_bit_xor:
1341 case ir_binop_bit_or:
1342 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1343 break;
1344
1345 case ir_unop_bit_not:
1346 case ir_unop_round_even:
1347 emit(ir, OPCODE_MOV, result_dst, op[0]);
1348 break;
1349
1350 case ir_binop_ubo_load:
1351 assert(!"not supported");
1352 break;
1353
1354 case ir_triop_lrp:
1355 /* ir_triop_lrp operands are (x, y, a) while
1356 * OPCODE_LRP operands are (a, y, x) to match ARB_fragment_program.
1357 */
1358 emit(ir, OPCODE_LRP, result_dst, op[2], op[1], op[0]);
1359 break;
1360
1361 case ir_triop_csel:
1362 /* We assume that boolean true and false are 1.0 and 0.0. OPCODE_CMP
1363 * selects src1 if src0 is < 0, src2 otherwise.
1364 */
1365 op[0].negate = ~op[0].negate;
1366 emit(ir, OPCODE_CMP, result_dst, op[0], op[1], op[2]);
1367 break;
1368
1369 case ir_binop_vector_extract:
1370 case ir_triop_fma:
1371 case ir_triop_bitfield_extract:
1372 case ir_triop_vector_insert:
1373 case ir_quadop_bitfield_insert:
1374 case ir_binop_ldexp:
1375 case ir_binop_carry:
1376 case ir_binop_borrow:
1377 case ir_binop_imul_high:
1378 case ir_unop_interpolate_at_centroid:
1379 case ir_binop_interpolate_at_offset:
1380 case ir_binop_interpolate_at_sample:
1381 case ir_unop_dFdx_coarse:
1382 case ir_unop_dFdx_fine:
1383 case ir_unop_dFdy_coarse:
1384 case ir_unop_dFdy_fine:
1385 case ir_unop_subroutine_to_int:
1386 case ir_unop_get_buffer_size:
1387 case ir_unop_bitcast_u642d:
1388 case ir_unop_bitcast_i642d:
1389 case ir_unop_bitcast_d2u64:
1390 case ir_unop_bitcast_d2i64:
1391 case ir_unop_i642i:
1392 case ir_unop_u642i:
1393 case ir_unop_i642u:
1394 case ir_unop_u642u:
1395 case ir_unop_i642b:
1396 case ir_unop_i642f:
1397 case ir_unop_u642f:
1398 case ir_unop_i642d:
1399 case ir_unop_u642d:
1400 case ir_unop_i2i64:
1401 case ir_unop_u2i64:
1402 case ir_unop_b2i64:
1403 case ir_unop_f2i64:
1404 case ir_unop_d2i64:
1405 case ir_unop_i2u64:
1406 case ir_unop_u2u64:
1407 case ir_unop_f2u64:
1408 case ir_unop_d2u64:
1409 case ir_unop_u642i64:
1410 case ir_unop_i642u64:
1411 case ir_unop_pack_int_2x32:
1412 case ir_unop_unpack_int_2x32:
1413 case ir_unop_pack_uint_2x32:
1414 case ir_unop_unpack_uint_2x32:
1415 case ir_unop_pack_sampler_2x32:
1416 case ir_unop_unpack_sampler_2x32:
1417 case ir_unop_pack_image_2x32:
1418 case ir_unop_unpack_image_2x32:
1419 assert(!"not supported");
1420 break;
1421
1422 case ir_unop_ssbo_unsized_array_length:
1423 case ir_quadop_vector:
1424 /* This operation should have already been handled.
1425 */
1426 assert(!"Should not get here.");
1427 break;
1428 }
1429
1430 this->result = result_src;
1431 }
1432
1433
1434 void
1435 ir_to_mesa_visitor::visit(ir_swizzle *ir)
1436 {
1437 src_reg src;
1438 int i;
1439 int swizzle[4];
1440
1441 /* Note that this is only swizzles in expressions, not those on the left
1442 * hand side of an assignment, which do write masking. See ir_assignment
1443 * for that.
1444 */
1445
1446 ir->val->accept(this);
1447 src = this->result;
1448 assert(src.file != PROGRAM_UNDEFINED);
1449 assert(ir->type->vector_elements > 0);
1450
1451 for (i = 0; i < 4; i++) {
1452 if (i < ir->type->vector_elements) {
1453 switch (i) {
1454 case 0:
1455 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x);
1456 break;
1457 case 1:
1458 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y);
1459 break;
1460 case 2:
1461 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z);
1462 break;
1463 case 3:
1464 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w);
1465 break;
1466 }
1467 } else {
1468 /* If the type is smaller than a vec4, replicate the last
1469 * channel out.
1470 */
1471 swizzle[i] = swizzle[ir->type->vector_elements - 1];
1472 }
1473 }
1474
1475 src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
1476
1477 this->result = src;
1478 }
1479
1480 void
1481 ir_to_mesa_visitor::visit(ir_dereference_variable *ir)
1482 {
1483 variable_storage *entry = find_variable_storage(ir->var);
1484 ir_variable *var = ir->var;
1485
1486 if (!entry) {
1487 switch (var->data.mode) {
1488 case ir_var_uniform:
1489 entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM,
1490 var->data.param_index);
1491 this->variables.push_tail(entry);
1492 break;
1493 case ir_var_shader_in:
1494 /* The linker assigns locations for varyings and attributes,
1495 * including deprecated builtins (like gl_Color),
1496 * user-assigned generic attributes (glBindVertexLocation),
1497 * and user-defined varyings.
1498 */
1499 assert(var->data.location != -1);
1500 entry = new(mem_ctx) variable_storage(var,
1501 PROGRAM_INPUT,
1502 var->data.location);
1503 break;
1504 case ir_var_shader_out:
1505 assert(var->data.location != -1);
1506 entry = new(mem_ctx) variable_storage(var,
1507 PROGRAM_OUTPUT,
1508 var->data.location);
1509 break;
1510 case ir_var_system_value:
1511 entry = new(mem_ctx) variable_storage(var,
1512 PROGRAM_SYSTEM_VALUE,
1513 var->data.location);
1514 break;
1515 case ir_var_auto:
1516 case ir_var_temporary:
1517 entry = new(mem_ctx) variable_storage(var, PROGRAM_TEMPORARY,
1518 this->next_temp);
1519 this->variables.push_tail(entry);
1520
1521 next_temp += type_size(var->type);
1522 break;
1523 }
1524
1525 if (!entry) {
1526 printf("Failed to make storage for %s\n", var->name);
1527 exit(1);
1528 }
1529 }
1530
1531 this->result = src_reg(entry->file, entry->index, var->type);
1532 }
1533
1534 void
1535 ir_to_mesa_visitor::visit(ir_dereference_array *ir)
1536 {
1537 ir_constant *index;
1538 src_reg src;
1539 int element_size = type_size(ir->type);
1540
1541 index = ir->array_index->constant_expression_value(ralloc_parent(ir));
1542
1543 ir->array->accept(this);
1544 src = this->result;
1545
1546 if (index) {
1547 src.index += index->value.i[0] * element_size;
1548 } else {
1549 /* Variable index array dereference. It eats the "vec4" of the
1550 * base of the array and an index that offsets the Mesa register
1551 * index.
1552 */
1553 ir->array_index->accept(this);
1554
1555 src_reg index_reg;
1556
1557 if (element_size == 1) {
1558 index_reg = this->result;
1559 } else {
1560 index_reg = get_temp(glsl_type::float_type);
1561
1562 emit(ir, OPCODE_MUL, dst_reg(index_reg),
1563 this->result, src_reg_for_float(element_size));
1564 }
1565
1566 /* If there was already a relative address register involved, add the
1567 * new and the old together to get the new offset.
1568 */
1569 if (src.reladdr != NULL) {
1570 src_reg accum_reg = get_temp(glsl_type::float_type);
1571
1572 emit(ir, OPCODE_ADD, dst_reg(accum_reg),
1573 index_reg, *src.reladdr);
1574
1575 index_reg = accum_reg;
1576 }
1577
1578 src.reladdr = ralloc(mem_ctx, src_reg);
1579 memcpy(src.reladdr, &index_reg, sizeof(index_reg));
1580 }
1581
1582 /* If the type is smaller than a vec4, replicate the last channel out. */
1583 if (ir->type->is_scalar() || ir->type->is_vector())
1584 src.swizzle = swizzle_for_size(ir->type->vector_elements);
1585 else
1586 src.swizzle = SWIZZLE_NOOP;
1587
1588 this->result = src;
1589 }
1590
1591 void
1592 ir_to_mesa_visitor::visit(ir_dereference_record *ir)
1593 {
1594 unsigned int i;
1595 const glsl_type *struct_type = ir->record->type;
1596 int offset = 0;
1597
1598 ir->record->accept(this);
1599
1600 assert(ir->field_idx >= 0);
1601 for (i = 0; i < struct_type->length; i++) {
1602 if (i == (unsigned) ir->field_idx)
1603 break;
1604 offset += type_size(struct_type->fields.structure[i].type);
1605 }
1606
1607 /* If the type is smaller than a vec4, replicate the last channel out. */
1608 if (ir->type->is_scalar() || ir->type->is_vector())
1609 this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
1610 else
1611 this->result.swizzle = SWIZZLE_NOOP;
1612
1613 this->result.index += offset;
1614 }
1615
1616 /**
1617 * We want to be careful in assignment setup to hit the actual storage
1618 * instead of potentially using a temporary like we might with the
1619 * ir_dereference handler.
1620 */
1621 static dst_reg
1622 get_assignment_lhs(ir_dereference *ir, ir_to_mesa_visitor *v)
1623 {
1624 /* The LHS must be a dereference. If the LHS is a variable indexed array
1625 * access of a vector, it must be separated into a series conditional moves
1626 * before reaching this point (see ir_vec_index_to_cond_assign).
1627 */
1628 assert(ir->as_dereference());
1629 ir_dereference_array *deref_array = ir->as_dereference_array();
1630 if (deref_array) {
1631 assert(!deref_array->array->type->is_vector());
1632 }
1633
1634 /* Use the rvalue deref handler for the most part. We'll ignore
1635 * swizzles in it and write swizzles using writemask, though.
1636 */
1637 ir->accept(v);
1638 return dst_reg(v->result);
1639 }
1640
1641 /* Calculate the sampler index and also calculate the base uniform location
1642 * for struct members.
1643 */
1644 static void
1645 calc_sampler_offsets(struct gl_shader_program *prog, ir_dereference *deref,
1646 unsigned *offset, unsigned *array_elements,
1647 unsigned *location)
1648 {
1649 if (deref->ir_type == ir_type_dereference_variable)
1650 return;
1651
1652 switch (deref->ir_type) {
1653 case ir_type_dereference_array: {
1654 ir_dereference_array *deref_arr = deref->as_dereference_array();
1655
1656 void *mem_ctx = ralloc_parent(deref_arr);
1657 ir_constant *array_index =
1658 deref_arr->array_index->constant_expression_value(mem_ctx);
1659
1660 if (!array_index) {
1661 /* GLSL 1.10 and 1.20 allowed variable sampler array indices,
1662 * while GLSL 1.30 requires that the array indices be
1663 * constant integer expressions. We don't expect any driver
1664 * to actually work with a really variable array index, so
1665 * all that would work would be an unrolled loop counter that ends
1666 * up being constant above.
1667 */
1668 ralloc_strcat(&prog->data->InfoLog,
1669 "warning: Variable sampler array index unsupported.\n"
1670 "This feature of the language was removed in GLSL 1.20 "
1671 "and is unlikely to be supported for 1.10 in Mesa.\n");
1672 } else {
1673 *offset += array_index->value.u[0] * *array_elements;
1674 }
1675
1676 *array_elements *= deref_arr->array->type->length;
1677
1678 calc_sampler_offsets(prog, deref_arr->array->as_dereference(),
1679 offset, array_elements, location);
1680 break;
1681 }
1682
1683 case ir_type_dereference_record: {
1684 ir_dereference_record *deref_record = deref->as_dereference_record();
1685 unsigned field_index = deref_record->field_idx;
1686 *location +=
1687 deref_record->record->type->record_location_offset(field_index);
1688 calc_sampler_offsets(prog, deref_record->record->as_dereference(),
1689 offset, array_elements, location);
1690 break;
1691 }
1692
1693 default:
1694 unreachable("Invalid deref type");
1695 break;
1696 }
1697 }
1698
1699 static int
1700 get_sampler_uniform_value(class ir_dereference *sampler,
1701 struct gl_shader_program *shader_program,
1702 const struct gl_program *prog)
1703 {
1704 GLuint shader = _mesa_program_enum_to_shader_stage(prog->Target);
1705 ir_variable *var = sampler->variable_referenced();
1706 unsigned location = var->data.location;
1707 unsigned array_elements = 1;
1708 unsigned offset = 0;
1709
1710 calc_sampler_offsets(shader_program, sampler, &offset, &array_elements,
1711 &location);
1712
1713 assert(shader_program->data->UniformStorage[location].opaque[shader].active);
1714 return shader_program->data->UniformStorage[location].opaque[shader].index +
1715 offset;
1716 }
1717
1718 /**
1719 * Process the condition of a conditional assignment
1720 *
1721 * Examines the condition of a conditional assignment to generate the optimal
1722 * first operand of a \c CMP instruction. If the condition is a relational
1723 * operator with 0 (e.g., \c ir_binop_less), the value being compared will be
1724 * used as the source for the \c CMP instruction. Otherwise the comparison
1725 * is processed to a boolean result, and the boolean result is used as the
1726 * operand to the CMP instruction.
1727 */
1728 bool
1729 ir_to_mesa_visitor::process_move_condition(ir_rvalue *ir)
1730 {
1731 ir_rvalue *src_ir = ir;
1732 bool negate = true;
1733 bool switch_order = false;
1734
1735 ir_expression *const expr = ir->as_expression();
1736 if ((expr != NULL) && (expr->num_operands == 2)) {
1737 bool zero_on_left = false;
1738
1739 if (expr->operands[0]->is_zero()) {
1740 src_ir = expr->operands[1];
1741 zero_on_left = true;
1742 } else if (expr->operands[1]->is_zero()) {
1743 src_ir = expr->operands[0];
1744 zero_on_left = false;
1745 }
1746
1747 /* a is - 0 + - 0 +
1748 * (a < 0) T F F ( a < 0) T F F
1749 * (0 < a) F F T (-a < 0) F F T
1750 * (a >= 0) F T T ( a < 0) T F F (swap order of other operands)
1751 * (0 >= a) T T F (-a < 0) F F T (swap order of other operands)
1752 *
1753 * Note that exchanging the order of 0 and 'a' in the comparison simply
1754 * means that the value of 'a' should be negated.
1755 */
1756 if (src_ir != ir) {
1757 switch (expr->operation) {
1758 case ir_binop_less:
1759 switch_order = false;
1760 negate = zero_on_left;
1761 break;
1762
1763 case ir_binop_gequal:
1764 switch_order = true;
1765 negate = zero_on_left;
1766 break;
1767
1768 default:
1769 /* This isn't the right kind of comparison afterall, so make sure
1770 * the whole condition is visited.
1771 */
1772 src_ir = ir;
1773 break;
1774 }
1775 }
1776 }
1777
1778 src_ir->accept(this);
1779
1780 /* We use the OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the
1781 * condition we produced is 0.0 or 1.0. By flipping the sign, we can
1782 * choose which value OPCODE_CMP produces without an extra instruction
1783 * computing the condition.
1784 */
1785 if (negate)
1786 this->result.negate = ~this->result.negate;
1787
1788 return switch_order;
1789 }
1790
1791 void
1792 ir_to_mesa_visitor::visit(ir_assignment *ir)
1793 {
1794 dst_reg l;
1795 src_reg r;
1796 int i;
1797
1798 ir->rhs->accept(this);
1799 r = this->result;
1800
1801 l = get_assignment_lhs(ir->lhs, this);
1802
1803 /* FINISHME: This should really set to the correct maximal writemask for each
1804 * FINISHME: component written (in the loops below). This case can only
1805 * FINISHME: occur for matrices, arrays, and structures.
1806 */
1807 if (ir->write_mask == 0) {
1808 assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
1809 l.writemask = WRITEMASK_XYZW;
1810 } else if (ir->lhs->type->is_scalar()) {
1811 /* FINISHME: This hack makes writing to gl_FragDepth, which lives in the
1812 * FINISHME: W component of fragment shader output zero, work correctly.
1813 */
1814 l.writemask = WRITEMASK_XYZW;
1815 } else {
1816 int swizzles[4];
1817 int first_enabled_chan = 0;
1818 int rhs_chan = 0;
1819
1820 assert(ir->lhs->type->is_vector());
1821 l.writemask = ir->write_mask;
1822
1823 for (int i = 0; i < 4; i++) {
1824 if (l.writemask & (1 << i)) {
1825 first_enabled_chan = GET_SWZ(r.swizzle, i);
1826 break;
1827 }
1828 }
1829
1830 /* Swizzle a small RHS vector into the channels being written.
1831 *
1832 * glsl ir treats write_mask as dictating how many channels are
1833 * present on the RHS while Mesa IR treats write_mask as just
1834 * showing which channels of the vec4 RHS get written.
1835 */
1836 for (int i = 0; i < 4; i++) {
1837 if (l.writemask & (1 << i))
1838 swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++);
1839 else
1840 swizzles[i] = first_enabled_chan;
1841 }
1842 r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1],
1843 swizzles[2], swizzles[3]);
1844 }
1845
1846 assert(l.file != PROGRAM_UNDEFINED);
1847 assert(r.file != PROGRAM_UNDEFINED);
1848
1849 if (ir->condition) {
1850 const bool switch_order = this->process_move_condition(ir->condition);
1851 src_reg condition = this->result;
1852
1853 for (i = 0; i < type_size(ir->lhs->type); i++) {
1854 if (switch_order) {
1855 emit(ir, OPCODE_CMP, l, condition, src_reg(l), r);
1856 } else {
1857 emit(ir, OPCODE_CMP, l, condition, r, src_reg(l));
1858 }
1859
1860 l.index++;
1861 r.index++;
1862 }
1863 } else {
1864 for (i = 0; i < type_size(ir->lhs->type); i++) {
1865 emit(ir, OPCODE_MOV, l, r);
1866 l.index++;
1867 r.index++;
1868 }
1869 }
1870 }
1871
1872
1873 void
1874 ir_to_mesa_visitor::visit(ir_constant *ir)
1875 {
1876 src_reg src;
1877 GLfloat stack_vals[4] = { 0 };
1878 GLfloat *values = stack_vals;
1879 unsigned int i;
1880
1881 /* Unfortunately, 4 floats is all we can get into
1882 * _mesa_add_unnamed_constant. So, make a temp to store an
1883 * aggregate constant and move each constant value into it. If we
1884 * get lucky, copy propagation will eliminate the extra moves.
1885 */
1886
1887 if (ir->type->is_record()) {
1888 src_reg temp_base = get_temp(ir->type);
1889 dst_reg temp = dst_reg(temp_base);
1890
1891 for (i = 0; i < ir->type->length; i++) {
1892 ir_constant *const field_value = ir->get_record_field(i);
1893 int size = type_size(field_value->type);
1894
1895 assert(size > 0);
1896
1897 field_value->accept(this);
1898 src = this->result;
1899
1900 for (unsigned j = 0; j < (unsigned int)size; j++) {
1901 emit(ir, OPCODE_MOV, temp, src);
1902
1903 src.index++;
1904 temp.index++;
1905 }
1906 }
1907 this->result = temp_base;
1908 return;
1909 }
1910
1911 if (ir->type->is_array()) {
1912 src_reg temp_base = get_temp(ir->type);
1913 dst_reg temp = dst_reg(temp_base);
1914 int size = type_size(ir->type->fields.array);
1915
1916 assert(size > 0);
1917
1918 for (i = 0; i < ir->type->length; i++) {
1919 ir->const_elements[i]->accept(this);
1920 src = this->result;
1921 for (int j = 0; j < size; j++) {
1922 emit(ir, OPCODE_MOV, temp, src);
1923
1924 src.index++;
1925 temp.index++;
1926 }
1927 }
1928 this->result = temp_base;
1929 return;
1930 }
1931
1932 if (ir->type->is_matrix()) {
1933 src_reg mat = get_temp(ir->type);
1934 dst_reg mat_column = dst_reg(mat);
1935
1936 for (i = 0; i < ir->type->matrix_columns; i++) {
1937 assert(ir->type->is_float());
1938 values = &ir->value.f[i * ir->type->vector_elements];
1939
1940 src = src_reg(PROGRAM_CONSTANT, -1, NULL);
1941 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1942 (gl_constant_value *) values,
1943 ir->type->vector_elements,
1944 &src.swizzle);
1945 emit(ir, OPCODE_MOV, mat_column, src);
1946
1947 mat_column.index++;
1948 }
1949
1950 this->result = mat;
1951 return;
1952 }
1953
1954 src.file = PROGRAM_CONSTANT;
1955 switch (ir->type->base_type) {
1956 case GLSL_TYPE_FLOAT:
1957 values = &ir->value.f[0];
1958 break;
1959 case GLSL_TYPE_UINT:
1960 for (i = 0; i < ir->type->vector_elements; i++) {
1961 values[i] = ir->value.u[i];
1962 }
1963 break;
1964 case GLSL_TYPE_INT:
1965 for (i = 0; i < ir->type->vector_elements; i++) {
1966 values[i] = ir->value.i[i];
1967 }
1968 break;
1969 case GLSL_TYPE_BOOL:
1970 for (i = 0; i < ir->type->vector_elements; i++) {
1971 values[i] = ir->value.b[i];
1972 }
1973 break;
1974 default:
1975 assert(!"Non-float/uint/int/bool constant");
1976 }
1977
1978 this->result = src_reg(PROGRAM_CONSTANT, -1, ir->type);
1979 this->result.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1980 (gl_constant_value *) values,
1981 ir->type->vector_elements,
1982 &this->result.swizzle);
1983 }
1984
1985 void
1986 ir_to_mesa_visitor::visit(ir_call *)
1987 {
1988 assert(!"ir_to_mesa: All function calls should have been inlined by now.");
1989 }
1990
1991 void
1992 ir_to_mesa_visitor::visit(ir_texture *ir)
1993 {
1994 src_reg result_src, coord, lod_info, projector, dx, dy;
1995 dst_reg result_dst, coord_dst;
1996 ir_to_mesa_instruction *inst = NULL;
1997 prog_opcode opcode = OPCODE_NOP;
1998
1999 if (ir->op == ir_txs)
2000 this->result = src_reg_for_float(0.0);
2001 else
2002 ir->coordinate->accept(this);
2003
2004 /* Put our coords in a temp. We'll need to modify them for shadow,
2005 * projection, or LOD, so the only case we'd use it as-is is if
2006 * we're doing plain old texturing. Mesa IR optimization should
2007 * handle cleaning up our mess in that case.
2008 */
2009 coord = get_temp(glsl_type::vec4_type);
2010 coord_dst = dst_reg(coord);
2011 emit(ir, OPCODE_MOV, coord_dst, this->result);
2012
2013 if (ir->projector) {
2014 ir->projector->accept(this);
2015 projector = this->result;
2016 }
2017
2018 /* Storage for our result. Ideally for an assignment we'd be using
2019 * the actual storage for the result here, instead.
2020 */
2021 result_src = get_temp(glsl_type::vec4_type);
2022 result_dst = dst_reg(result_src);
2023
2024 switch (ir->op) {
2025 case ir_tex:
2026 case ir_txs:
2027 opcode = OPCODE_TEX;
2028 break;
2029 case ir_txb:
2030 opcode = OPCODE_TXB;
2031 ir->lod_info.bias->accept(this);
2032 lod_info = this->result;
2033 break;
2034 case ir_txf:
2035 /* Pretend to be TXL so the sampler, coordinate, lod are available */
2036 case ir_txl:
2037 opcode = OPCODE_TXL;
2038 ir->lod_info.lod->accept(this);
2039 lod_info = this->result;
2040 break;
2041 case ir_txd:
2042 opcode = OPCODE_TXD;
2043 ir->lod_info.grad.dPdx->accept(this);
2044 dx = this->result;
2045 ir->lod_info.grad.dPdy->accept(this);
2046 dy = this->result;
2047 break;
2048 case ir_txf_ms:
2049 assert(!"Unexpected ir_txf_ms opcode");
2050 break;
2051 case ir_lod:
2052 assert(!"Unexpected ir_lod opcode");
2053 break;
2054 case ir_tg4:
2055 assert(!"Unexpected ir_tg4 opcode");
2056 break;
2057 case ir_query_levels:
2058 assert(!"Unexpected ir_query_levels opcode");
2059 break;
2060 case ir_samples_identical:
2061 unreachable("Unexpected ir_samples_identical opcode");
2062 case ir_texture_samples:
2063 unreachable("Unexpected ir_texture_samples opcode");
2064 }
2065
2066 const glsl_type *sampler_type = ir->sampler->type;
2067
2068 if (ir->projector) {
2069 if (opcode == OPCODE_TEX) {
2070 /* Slot the projector in as the last component of the coord. */
2071 coord_dst.writemask = WRITEMASK_W;
2072 emit(ir, OPCODE_MOV, coord_dst, projector);
2073 coord_dst.writemask = WRITEMASK_XYZW;
2074 opcode = OPCODE_TXP;
2075 } else {
2076 src_reg coord_w = coord;
2077 coord_w.swizzle = SWIZZLE_WWWW;
2078
2079 /* For the other TEX opcodes there's no projective version
2080 * since the last slot is taken up by lod info. Do the
2081 * projective divide now.
2082 */
2083 coord_dst.writemask = WRITEMASK_W;
2084 emit(ir, OPCODE_RCP, coord_dst, projector);
2085
2086 /* In the case where we have to project the coordinates "by hand,"
2087 * the shadow comparator value must also be projected.
2088 */
2089 src_reg tmp_src = coord;
2090 if (ir->shadow_comparator) {
2091 /* Slot the shadow value in as the second to last component of the
2092 * coord.
2093 */
2094 ir->shadow_comparator->accept(this);
2095
2096 tmp_src = get_temp(glsl_type::vec4_type);
2097 dst_reg tmp_dst = dst_reg(tmp_src);
2098
2099 /* Projective division not allowed for array samplers. */
2100 assert(!sampler_type->sampler_array);
2101
2102 tmp_dst.writemask = WRITEMASK_Z;
2103 emit(ir, OPCODE_MOV, tmp_dst, this->result);
2104
2105 tmp_dst.writemask = WRITEMASK_XY;
2106 emit(ir, OPCODE_MOV, tmp_dst, coord);
2107 }
2108
2109 coord_dst.writemask = WRITEMASK_XYZ;
2110 emit(ir, OPCODE_MUL, coord_dst, tmp_src, coord_w);
2111
2112 coord_dst.writemask = WRITEMASK_XYZW;
2113 coord.swizzle = SWIZZLE_XYZW;
2114 }
2115 }
2116
2117 /* If projection is done and the opcode is not OPCODE_TXP, then the shadow
2118 * comparator was put in the correct place (and projected) by the code,
2119 * above, that handles by-hand projection.
2120 */
2121 if (ir->shadow_comparator && (!ir->projector || opcode == OPCODE_TXP)) {
2122 /* Slot the shadow value in as the second to last component of the
2123 * coord.
2124 */
2125 ir->shadow_comparator->accept(this);
2126
2127 /* XXX This will need to be updated for cubemap array samplers. */
2128 if (sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_2D &&
2129 sampler_type->sampler_array) {
2130 coord_dst.writemask = WRITEMASK_W;
2131 } else {
2132 coord_dst.writemask = WRITEMASK_Z;
2133 }
2134
2135 emit(ir, OPCODE_MOV, coord_dst, this->result);
2136 coord_dst.writemask = WRITEMASK_XYZW;
2137 }
2138
2139 if (opcode == OPCODE_TXL || opcode == OPCODE_TXB) {
2140 /* Mesa IR stores lod or lod bias in the last channel of the coords. */
2141 coord_dst.writemask = WRITEMASK_W;
2142 emit(ir, OPCODE_MOV, coord_dst, lod_info);
2143 coord_dst.writemask = WRITEMASK_XYZW;
2144 }
2145
2146 if (opcode == OPCODE_TXD)
2147 inst = emit(ir, opcode, result_dst, coord, dx, dy);
2148 else
2149 inst = emit(ir, opcode, result_dst, coord);
2150
2151 if (ir->shadow_comparator)
2152 inst->tex_shadow = GL_TRUE;
2153
2154 inst->sampler = get_sampler_uniform_value(ir->sampler, shader_program,
2155 prog);
2156
2157 switch (sampler_type->sampler_dimensionality) {
2158 case GLSL_SAMPLER_DIM_1D:
2159 inst->tex_target = (sampler_type->sampler_array)
2160 ? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX;
2161 break;
2162 case GLSL_SAMPLER_DIM_2D:
2163 inst->tex_target = (sampler_type->sampler_array)
2164 ? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX;
2165 break;
2166 case GLSL_SAMPLER_DIM_3D:
2167 inst->tex_target = TEXTURE_3D_INDEX;
2168 break;
2169 case GLSL_SAMPLER_DIM_CUBE:
2170 inst->tex_target = TEXTURE_CUBE_INDEX;
2171 break;
2172 case GLSL_SAMPLER_DIM_RECT:
2173 inst->tex_target = TEXTURE_RECT_INDEX;
2174 break;
2175 case GLSL_SAMPLER_DIM_BUF:
2176 assert(!"FINISHME: Implement ARB_texture_buffer_object");
2177 break;
2178 case GLSL_SAMPLER_DIM_EXTERNAL:
2179 inst->tex_target = TEXTURE_EXTERNAL_INDEX;
2180 break;
2181 default:
2182 assert(!"Should not get here.");
2183 }
2184
2185 this->result = result_src;
2186 }
2187
2188 void
2189 ir_to_mesa_visitor::visit(ir_return *ir)
2190 {
2191 /* Non-void functions should have been inlined. We may still emit RETs
2192 * from main() unless the EmitNoMainReturn option is set.
2193 */
2194 assert(!ir->get_value());
2195 emit(ir, OPCODE_RET);
2196 }
2197
2198 void
2199 ir_to_mesa_visitor::visit(ir_discard *ir)
2200 {
2201 if (!ir->condition)
2202 ir->condition = new(mem_ctx) ir_constant(true);
2203
2204 ir->condition->accept(this);
2205 this->result.negate = ~this->result.negate;
2206 emit(ir, OPCODE_KIL, undef_dst, this->result);
2207 }
2208
2209 void
2210 ir_to_mesa_visitor::visit(ir_if *ir)
2211 {
2212 ir_to_mesa_instruction *if_inst;
2213
2214 ir->condition->accept(this);
2215 assert(this->result.file != PROGRAM_UNDEFINED);
2216
2217 if_inst = emit(ir->condition, OPCODE_IF, undef_dst, this->result);
2218
2219 this->instructions.push_tail(if_inst);
2220
2221 visit_exec_list(&ir->then_instructions, this);
2222
2223 if (!ir->else_instructions.is_empty()) {
2224 emit(ir->condition, OPCODE_ELSE);
2225 visit_exec_list(&ir->else_instructions, this);
2226 }
2227
2228 emit(ir->condition, OPCODE_ENDIF);
2229 }
2230
2231 void
2232 ir_to_mesa_visitor::visit(ir_emit_vertex *)
2233 {
2234 assert(!"Geometry shaders not supported.");
2235 }
2236
2237 void
2238 ir_to_mesa_visitor::visit(ir_end_primitive *)
2239 {
2240 assert(!"Geometry shaders not supported.");
2241 }
2242
2243 void
2244 ir_to_mesa_visitor::visit(ir_barrier *)
2245 {
2246 unreachable("GLSL barrier() not supported.");
2247 }
2248
2249 ir_to_mesa_visitor::ir_to_mesa_visitor()
2250 {
2251 result.file = PROGRAM_UNDEFINED;
2252 next_temp = 1;
2253 next_signature_id = 1;
2254 current_function = NULL;
2255 mem_ctx = ralloc_context(NULL);
2256 }
2257
2258 ir_to_mesa_visitor::~ir_to_mesa_visitor()
2259 {
2260 ralloc_free(mem_ctx);
2261 }
2262
2263 static struct prog_src_register
2264 mesa_src_reg_from_ir_src_reg(src_reg reg)
2265 {
2266 struct prog_src_register mesa_reg;
2267
2268 mesa_reg.File = reg.file;
2269 assert(reg.index < (1 << INST_INDEX_BITS));
2270 mesa_reg.Index = reg.index;
2271 mesa_reg.Swizzle = reg.swizzle;
2272 mesa_reg.RelAddr = reg.reladdr != NULL;
2273 mesa_reg.Negate = reg.negate;
2274
2275 return mesa_reg;
2276 }
2277
2278 static void
2279 set_branchtargets(ir_to_mesa_visitor *v,
2280 struct prog_instruction *mesa_instructions,
2281 int num_instructions)
2282 {
2283 int if_count = 0, loop_count = 0;
2284 int *if_stack, *loop_stack;
2285 int if_stack_pos = 0, loop_stack_pos = 0;
2286 int i, j;
2287
2288 for (i = 0; i < num_instructions; i++) {
2289 switch (mesa_instructions[i].Opcode) {
2290 case OPCODE_IF:
2291 if_count++;
2292 break;
2293 case OPCODE_BGNLOOP:
2294 loop_count++;
2295 break;
2296 case OPCODE_BRK:
2297 case OPCODE_CONT:
2298 mesa_instructions[i].BranchTarget = -1;
2299 break;
2300 default:
2301 break;
2302 }
2303 }
2304
2305 if_stack = rzalloc_array(v->mem_ctx, int, if_count);
2306 loop_stack = rzalloc_array(v->mem_ctx, int, loop_count);
2307
2308 for (i = 0; i < num_instructions; i++) {
2309 switch (mesa_instructions[i].Opcode) {
2310 case OPCODE_IF:
2311 if_stack[if_stack_pos] = i;
2312 if_stack_pos++;
2313 break;
2314 case OPCODE_ELSE:
2315 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2316 if_stack[if_stack_pos - 1] = i;
2317 break;
2318 case OPCODE_ENDIF:
2319 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2320 if_stack_pos--;
2321 break;
2322 case OPCODE_BGNLOOP:
2323 loop_stack[loop_stack_pos] = i;
2324 loop_stack_pos++;
2325 break;
2326 case OPCODE_ENDLOOP:
2327 loop_stack_pos--;
2328 /* Rewrite any breaks/conts at this nesting level (haven't
2329 * already had a BranchTarget assigned) to point to the end
2330 * of the loop.
2331 */
2332 for (j = loop_stack[loop_stack_pos]; j < i; j++) {
2333 if (mesa_instructions[j].Opcode == OPCODE_BRK ||
2334 mesa_instructions[j].Opcode == OPCODE_CONT) {
2335 if (mesa_instructions[j].BranchTarget == -1) {
2336 mesa_instructions[j].BranchTarget = i;
2337 }
2338 }
2339 }
2340 /* The loop ends point at each other. */
2341 mesa_instructions[i].BranchTarget = loop_stack[loop_stack_pos];
2342 mesa_instructions[loop_stack[loop_stack_pos]].BranchTarget = i;
2343 break;
2344 case OPCODE_CAL:
2345 foreach_in_list(function_entry, entry, &v->function_signatures) {
2346 if (entry->sig_id == mesa_instructions[i].BranchTarget) {
2347 mesa_instructions[i].BranchTarget = entry->inst;
2348 break;
2349 }
2350 }
2351 break;
2352 default:
2353 break;
2354 }
2355 }
2356 }
2357
2358 static void
2359 print_program(struct prog_instruction *mesa_instructions,
2360 ir_instruction **mesa_instruction_annotation,
2361 int num_instructions)
2362 {
2363 ir_instruction *last_ir = NULL;
2364 int i;
2365 int indent = 0;
2366
2367 for (i = 0; i < num_instructions; i++) {
2368 struct prog_instruction *mesa_inst = mesa_instructions + i;
2369 ir_instruction *ir = mesa_instruction_annotation[i];
2370
2371 fprintf(stdout, "%3d: ", i);
2372
2373 if (last_ir != ir && ir) {
2374 int j;
2375
2376 for (j = 0; j < indent; j++) {
2377 fprintf(stdout, " ");
2378 }
2379 ir->print();
2380 printf("\n");
2381 last_ir = ir;
2382
2383 fprintf(stdout, " "); /* line number spacing. */
2384 }
2385
2386 indent = _mesa_fprint_instruction_opt(stdout, mesa_inst, indent,
2387 PROG_PRINT_DEBUG, NULL);
2388 }
2389 }
2390
2391 namespace {
2392
2393 class add_uniform_to_shader : public program_resource_visitor {
2394 public:
2395 add_uniform_to_shader(struct gl_context *ctx,
2396 struct gl_shader_program *shader_program,
2397 struct gl_program_parameter_list *params)
2398 : ctx(ctx), params(params), idx(-1)
2399 {
2400 /* empty */
2401 }
2402
2403 void process(ir_variable *var)
2404 {
2405 this->idx = -1;
2406 this->var = var;
2407 this->program_resource_visitor::process(var,
2408 ctx->Const.UseSTD430AsDefaultPacking);
2409 var->data.param_index = this->idx;
2410 }
2411
2412 private:
2413 virtual void visit_field(const glsl_type *type, const char *name,
2414 bool row_major, const glsl_type *record_type,
2415 const enum glsl_interface_packing packing,
2416 bool last_field);
2417
2418 struct gl_context *ctx;
2419 struct gl_program_parameter_list *params;
2420 int idx;
2421 ir_variable *var;
2422 };
2423
2424 } /* anonymous namespace */
2425
2426 void
2427 add_uniform_to_shader::visit_field(const glsl_type *type, const char *name,
2428 bool /* row_major */,
2429 const glsl_type * /* record_type */,
2430 const enum glsl_interface_packing,
2431 bool /* last_field */)
2432 {
2433 /* opaque types don't use storage in the param list unless they are
2434 * bindless samplers or images.
2435 */
2436 if (type->contains_opaque() && !var->data.bindless)
2437 return;
2438
2439 /* Add the uniform to the param list */
2440 assert(_mesa_lookup_parameter_index(params, name) < 0);
2441 int index = _mesa_lookup_parameter_index(params, name);
2442
2443 unsigned num_params = type->arrays_of_arrays_size();
2444 num_params = MAX2(num_params, 1);
2445 num_params *= type->without_array()->matrix_columns;
2446
2447 bool is_dual_slot = type->without_array()->is_dual_slot();
2448 if (is_dual_slot)
2449 num_params *= 2;
2450
2451 _mesa_reserve_parameter_storage(params, num_params);
2452 index = params->NumParameters;
2453
2454 if (ctx->Const.PackedDriverUniformStorage) {
2455 for (unsigned i = 0; i < num_params; i++) {
2456 unsigned dmul = type->without_array()->is_64bit() ? 2 : 1;
2457 unsigned comps = type->without_array()->vector_elements * dmul;
2458 if (is_dual_slot) {
2459 if (i & 0x1)
2460 comps -= 4;
2461 else
2462 comps = 4;
2463 }
2464
2465 _mesa_add_parameter(params, PROGRAM_UNIFORM, name, comps,
2466 type->gl_type, NULL, NULL, false);
2467 }
2468 } else {
2469 for (unsigned i = 0; i < num_params; i++) {
2470 _mesa_add_parameter(params, PROGRAM_UNIFORM, name, 4,
2471 type->gl_type, NULL, NULL, true);
2472 }
2473 }
2474
2475 /* The first part of the uniform that's processed determines the base
2476 * location of the whole uniform (for structures).
2477 */
2478 if (this->idx < 0)
2479 this->idx = index;
2480 }
2481
2482 /**
2483 * Generate the program parameters list for the user uniforms in a shader
2484 *
2485 * \param shader_program Linked shader program. This is only used to
2486 * emit possible link errors to the info log.
2487 * \param sh Shader whose uniforms are to be processed.
2488 * \param params Parameter list to be filled in.
2489 */
2490 void
2491 _mesa_generate_parameters_list_for_uniforms(struct gl_context *ctx,
2492 struct gl_shader_program
2493 *shader_program,
2494 struct gl_linked_shader *sh,
2495 struct gl_program_parameter_list
2496 *params)
2497 {
2498 add_uniform_to_shader add(ctx, shader_program, params);
2499
2500 foreach_in_list(ir_instruction, node, sh->ir) {
2501 ir_variable *var = node->as_variable();
2502
2503 if ((var == NULL) || (var->data.mode != ir_var_uniform)
2504 || var->is_in_buffer_block() || (strncmp(var->name, "gl_", 3) == 0))
2505 continue;
2506
2507 add.process(var);
2508 }
2509 }
2510
2511 void
2512 _mesa_associate_uniform_storage(struct gl_context *ctx,
2513 struct gl_shader_program *shader_program,
2514 struct gl_program *prog,
2515 bool propagate_to_storage)
2516 {
2517 struct gl_program_parameter_list *params = prog->Parameters;
2518 gl_shader_stage shader_type = prog->info.stage;
2519
2520 /* After adding each uniform to the parameter list, connect the storage for
2521 * the parameter with the tracking structure used by the API for the
2522 * uniform.
2523 */
2524 unsigned last_location = unsigned(~0);
2525 for (unsigned i = 0; i < params->NumParameters; i++) {
2526 if (params->Parameters[i].Type != PROGRAM_UNIFORM)
2527 continue;
2528
2529 unsigned location;
2530 const bool found =
2531 shader_program->UniformHash->get(location, params->Parameters[i].Name);
2532 assert(found);
2533
2534 if (!found)
2535 continue;
2536
2537 struct gl_uniform_storage *storage =
2538 &shader_program->data->UniformStorage[location];
2539
2540 /* Do not associate any uniform storage to built-in uniforms */
2541 if (storage->builtin)
2542 continue;
2543
2544 if (location != last_location) {
2545 enum gl_uniform_driver_format format = uniform_native;
2546 unsigned columns = 0;
2547
2548 int dmul;
2549 if (ctx->Const.PackedDriverUniformStorage && !prog->is_arb_asm) {
2550 dmul = storage->type->vector_elements * sizeof(float);
2551 } else {
2552 dmul = 4 * sizeof(float);
2553 }
2554
2555 switch (storage->type->base_type) {
2556 case GLSL_TYPE_UINT64:
2557 if (storage->type->vector_elements > 2)
2558 dmul *= 2;
2559 /* fallthrough */
2560 case GLSL_TYPE_UINT:
2561 case GLSL_TYPE_UINT16:
2562 case GLSL_TYPE_UINT8:
2563 assert(ctx->Const.NativeIntegers);
2564 format = uniform_native;
2565 columns = 1;
2566 break;
2567 case GLSL_TYPE_INT64:
2568 if (storage->type->vector_elements > 2)
2569 dmul *= 2;
2570 /* fallthrough */
2571 case GLSL_TYPE_INT:
2572 case GLSL_TYPE_INT16:
2573 case GLSL_TYPE_INT8:
2574 format =
2575 (ctx->Const.NativeIntegers) ? uniform_native : uniform_int_float;
2576 columns = 1;
2577 break;
2578 case GLSL_TYPE_DOUBLE:
2579 if (storage->type->vector_elements > 2)
2580 dmul *= 2;
2581 /* fallthrough */
2582 case GLSL_TYPE_FLOAT:
2583 case GLSL_TYPE_FLOAT16:
2584 format = uniform_native;
2585 columns = storage->type->matrix_columns;
2586 break;
2587 case GLSL_TYPE_BOOL:
2588 format = uniform_native;
2589 columns = 1;
2590 break;
2591 case GLSL_TYPE_SAMPLER:
2592 case GLSL_TYPE_IMAGE:
2593 case GLSL_TYPE_SUBROUTINE:
2594 format = uniform_native;
2595 columns = 1;
2596 break;
2597 case GLSL_TYPE_ATOMIC_UINT:
2598 case GLSL_TYPE_ARRAY:
2599 case GLSL_TYPE_VOID:
2600 case GLSL_TYPE_STRUCT:
2601 case GLSL_TYPE_ERROR:
2602 case GLSL_TYPE_INTERFACE:
2603 case GLSL_TYPE_FUNCTION:
2604 assert(!"Should not get here.");
2605 break;
2606 }
2607
2608 unsigned pvo = params->ParameterValueOffset[i];
2609 _mesa_uniform_attach_driver_storage(storage, dmul * columns, dmul,
2610 format,
2611 &params->ParameterValues[pvo]);
2612
2613 /* When a bindless sampler/image is bound to a texture/image unit, we
2614 * have to overwrite the constant value by the resident handle
2615 * directly in the constant buffer before the next draw. One solution
2616 * is to keep track a pointer to the base of the data.
2617 */
2618 if (storage->is_bindless && (prog->sh.NumBindlessSamplers ||
2619 prog->sh.NumBindlessImages)) {
2620 unsigned array_elements = MAX2(1, storage->array_elements);
2621
2622 for (unsigned j = 0; j < array_elements; ++j) {
2623 unsigned unit = storage->opaque[shader_type].index + j;
2624
2625 if (storage->type->without_array()->is_sampler()) {
2626 assert(unit >= 0 && unit < prog->sh.NumBindlessSamplers);
2627 prog->sh.BindlessSamplers[unit].data =
2628 &params->ParameterValues[pvo] + 4 * j;
2629 } else if (storage->type->without_array()->is_image()) {
2630 assert(unit >= 0 && unit < prog->sh.NumBindlessImages);
2631 prog->sh.BindlessImages[unit].data =
2632 &params->ParameterValues[pvo] + 4 * j;
2633 }
2634 }
2635 }
2636
2637 /* After attaching the driver's storage to the uniform, propagate any
2638 * data from the linker's backing store. This will cause values from
2639 * initializers in the source code to be copied over.
2640 */
2641 if (propagate_to_storage) {
2642 unsigned array_elements = MAX2(1, storage->array_elements);
2643 if (ctx->Const.PackedDriverUniformStorage && !prog->is_arb_asm &&
2644 (storage->is_bindless || !storage->type->contains_opaque())) {
2645 const int dmul = storage->type->is_64bit() ? 2 : 1;
2646 const unsigned components =
2647 storage->type->vector_elements *
2648 storage->type->matrix_columns;
2649
2650 for (unsigned s = 0; s < storage->num_driver_storage; s++) {
2651 gl_constant_value *uni_storage = (gl_constant_value *)
2652 storage->driver_storage[s].data;
2653 memcpy(uni_storage, storage->storage,
2654 sizeof(storage->storage[0]) * components *
2655 array_elements * dmul);
2656 }
2657 } else {
2658 _mesa_propagate_uniforms_to_driver_storage(storage, 0,
2659 array_elements);
2660 }
2661 }
2662
2663 last_location = location;
2664 }
2665 }
2666 }
2667
2668 /*
2669 * On a basic block basis, tracks available PROGRAM_TEMPORARY register
2670 * channels for copy propagation and updates following instructions to
2671 * use the original versions.
2672 *
2673 * The ir_to_mesa_visitor lazily produces code assuming that this pass
2674 * will occur. As an example, a TXP production before this pass:
2675 *
2676 * 0: MOV TEMP[1], INPUT[4].xyyy;
2677 * 1: MOV TEMP[1].w, INPUT[4].wwww;
2678 * 2: TXP TEMP[2], TEMP[1], texture[0], 2D;
2679 *
2680 * and after:
2681 *
2682 * 0: MOV TEMP[1], INPUT[4].xyyy;
2683 * 1: MOV TEMP[1].w, INPUT[4].wwww;
2684 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
2685 *
2686 * which allows for dead code elimination on TEMP[1]'s writes.
2687 */
2688 void
2689 ir_to_mesa_visitor::copy_propagate(void)
2690 {
2691 ir_to_mesa_instruction **acp = rzalloc_array(mem_ctx,
2692 ir_to_mesa_instruction *,
2693 this->next_temp * 4);
2694 int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
2695 int level = 0;
2696
2697 foreach_in_list(ir_to_mesa_instruction, inst, &this->instructions) {
2698 assert(inst->dst.file != PROGRAM_TEMPORARY
2699 || inst->dst.index < this->next_temp);
2700
2701 /* First, do any copy propagation possible into the src regs. */
2702 for (int r = 0; r < 3; r++) {
2703 ir_to_mesa_instruction *first = NULL;
2704 bool good = true;
2705 int acp_base = inst->src[r].index * 4;
2706
2707 if (inst->src[r].file != PROGRAM_TEMPORARY ||
2708 inst->src[r].reladdr)
2709 continue;
2710
2711 /* See if we can find entries in the ACP consisting of MOVs
2712 * from the same src register for all the swizzled channels
2713 * of this src register reference.
2714 */
2715 for (int i = 0; i < 4; i++) {
2716 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2717 ir_to_mesa_instruction *copy_chan = acp[acp_base + src_chan];
2718
2719 if (!copy_chan) {
2720 good = false;
2721 break;
2722 }
2723
2724 assert(acp_level[acp_base + src_chan] <= level);
2725
2726 if (!first) {
2727 first = copy_chan;
2728 } else {
2729 if (first->src[0].file != copy_chan->src[0].file ||
2730 first->src[0].index != copy_chan->src[0].index) {
2731 good = false;
2732 break;
2733 }
2734 }
2735 }
2736
2737 if (good) {
2738 /* We've now validated that we can copy-propagate to
2739 * replace this src register reference. Do it.
2740 */
2741 inst->src[r].file = first->src[0].file;
2742 inst->src[r].index = first->src[0].index;
2743
2744 int swizzle = 0;
2745 for (int i = 0; i < 4; i++) {
2746 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2747 ir_to_mesa_instruction *copy_inst = acp[acp_base + src_chan];
2748 swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) <<
2749 (3 * i));
2750 }
2751 inst->src[r].swizzle = swizzle;
2752 }
2753 }
2754
2755 switch (inst->op) {
2756 case OPCODE_BGNLOOP:
2757 case OPCODE_ENDLOOP:
2758 /* End of a basic block, clear the ACP entirely. */
2759 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2760 break;
2761
2762 case OPCODE_IF:
2763 ++level;
2764 break;
2765
2766 case OPCODE_ENDIF:
2767 case OPCODE_ELSE:
2768 /* Clear all channels written inside the block from the ACP, but
2769 * leaving those that were not touched.
2770 */
2771 for (int r = 0; r < this->next_temp; r++) {
2772 for (int c = 0; c < 4; c++) {
2773 if (!acp[4 * r + c])
2774 continue;
2775
2776 if (acp_level[4 * r + c] >= level)
2777 acp[4 * r + c] = NULL;
2778 }
2779 }
2780 if (inst->op == OPCODE_ENDIF)
2781 --level;
2782 break;
2783
2784 default:
2785 /* Continuing the block, clear any written channels from
2786 * the ACP.
2787 */
2788 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.reladdr) {
2789 /* Any temporary might be written, so no copy propagation
2790 * across this instruction.
2791 */
2792 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2793 } else if (inst->dst.file == PROGRAM_OUTPUT &&
2794 inst->dst.reladdr) {
2795 /* Any output might be written, so no copy propagation
2796 * from outputs across this instruction.
2797 */
2798 for (int r = 0; r < this->next_temp; r++) {
2799 for (int c = 0; c < 4; c++) {
2800 if (!acp[4 * r + c])
2801 continue;
2802
2803 if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT)
2804 acp[4 * r + c] = NULL;
2805 }
2806 }
2807 } else if (inst->dst.file == PROGRAM_TEMPORARY ||
2808 inst->dst.file == PROGRAM_OUTPUT) {
2809 /* Clear where it's used as dst. */
2810 if (inst->dst.file == PROGRAM_TEMPORARY) {
2811 for (int c = 0; c < 4; c++) {
2812 if (inst->dst.writemask & (1 << c)) {
2813 acp[4 * inst->dst.index + c] = NULL;
2814 }
2815 }
2816 }
2817
2818 /* Clear where it's used as src. */
2819 for (int r = 0; r < this->next_temp; r++) {
2820 for (int c = 0; c < 4; c++) {
2821 if (!acp[4 * r + c])
2822 continue;
2823
2824 int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c);
2825
2826 if (acp[4 * r + c]->src[0].file == inst->dst.file &&
2827 acp[4 * r + c]->src[0].index == inst->dst.index &&
2828 inst->dst.writemask & (1 << src_chan))
2829 {
2830 acp[4 * r + c] = NULL;
2831 }
2832 }
2833 }
2834 }
2835 break;
2836 }
2837
2838 /* If this is a copy, add it to the ACP. */
2839 if (inst->op == OPCODE_MOV &&
2840 inst->dst.file == PROGRAM_TEMPORARY &&
2841 !(inst->dst.file == inst->src[0].file &&
2842 inst->dst.index == inst->src[0].index) &&
2843 !inst->dst.reladdr &&
2844 !inst->saturate &&
2845 !inst->src[0].reladdr &&
2846 !inst->src[0].negate) {
2847 for (int i = 0; i < 4; i++) {
2848 if (inst->dst.writemask & (1 << i)) {
2849 acp[4 * inst->dst.index + i] = inst;
2850 acp_level[4 * inst->dst.index + i] = level;
2851 }
2852 }
2853 }
2854 }
2855
2856 ralloc_free(acp_level);
2857 ralloc_free(acp);
2858 }
2859
2860
2861 /**
2862 * Convert a shader's GLSL IR into a Mesa gl_program.
2863 */
2864 static struct gl_program *
2865 get_mesa_program(struct gl_context *ctx,
2866 struct gl_shader_program *shader_program,
2867 struct gl_linked_shader *shader)
2868 {
2869 ir_to_mesa_visitor v;
2870 struct prog_instruction *mesa_instructions, *mesa_inst;
2871 ir_instruction **mesa_instruction_annotation;
2872 int i;
2873 struct gl_program *prog;
2874 GLenum target = _mesa_shader_stage_to_program(shader->Stage);
2875 const char *target_string = _mesa_shader_stage_to_string(shader->Stage);
2876 struct gl_shader_compiler_options *options =
2877 &ctx->Const.ShaderCompilerOptions[shader->Stage];
2878
2879 validate_ir_tree(shader->ir);
2880
2881 prog = shader->Program;
2882 prog->Parameters = _mesa_new_parameter_list();
2883 v.ctx = ctx;
2884 v.prog = prog;
2885 v.shader_program = shader_program;
2886 v.options = options;
2887
2888 _mesa_generate_parameters_list_for_uniforms(ctx, shader_program, shader,
2889 prog->Parameters);
2890
2891 /* Emit Mesa IR for main(). */
2892 visit_exec_list(shader->ir, &v);
2893 v.emit(NULL, OPCODE_END);
2894
2895 prog->arb.NumTemporaries = v.next_temp;
2896
2897 unsigned num_instructions = v.instructions.length();
2898
2899 mesa_instructions = rzalloc_array(prog, struct prog_instruction,
2900 num_instructions);
2901 mesa_instruction_annotation = ralloc_array(v.mem_ctx, ir_instruction *,
2902 num_instructions);
2903
2904 v.copy_propagate();
2905
2906 /* Convert ir_mesa_instructions into prog_instructions.
2907 */
2908 mesa_inst = mesa_instructions;
2909 i = 0;
2910 foreach_in_list(const ir_to_mesa_instruction, inst, &v.instructions) {
2911 mesa_inst->Opcode = inst->op;
2912 if (inst->saturate)
2913 mesa_inst->Saturate = GL_TRUE;
2914 mesa_inst->DstReg.File = inst->dst.file;
2915 mesa_inst->DstReg.Index = inst->dst.index;
2916 mesa_inst->DstReg.WriteMask = inst->dst.writemask;
2917 mesa_inst->DstReg.RelAddr = inst->dst.reladdr != NULL;
2918 mesa_inst->SrcReg[0] = mesa_src_reg_from_ir_src_reg(inst->src[0]);
2919 mesa_inst->SrcReg[1] = mesa_src_reg_from_ir_src_reg(inst->src[1]);
2920 mesa_inst->SrcReg[2] = mesa_src_reg_from_ir_src_reg(inst->src[2]);
2921 mesa_inst->TexSrcUnit = inst->sampler;
2922 mesa_inst->TexSrcTarget = inst->tex_target;
2923 mesa_inst->TexShadow = inst->tex_shadow;
2924 mesa_instruction_annotation[i] = inst->ir;
2925
2926 /* Set IndirectRegisterFiles. */
2927 if (mesa_inst->DstReg.RelAddr)
2928 prog->arb.IndirectRegisterFiles |= 1 << mesa_inst->DstReg.File;
2929
2930 /* Update program's bitmask of indirectly accessed register files */
2931 for (unsigned src = 0; src < 3; src++)
2932 if (mesa_inst->SrcReg[src].RelAddr)
2933 prog->arb.IndirectRegisterFiles |= 1 << mesa_inst->SrcReg[src].File;
2934
2935 switch (mesa_inst->Opcode) {
2936 case OPCODE_IF:
2937 if (options->MaxIfDepth == 0) {
2938 linker_warning(shader_program,
2939 "Couldn't flatten if-statement. "
2940 "This will likely result in software "
2941 "rasterization.\n");
2942 }
2943 break;
2944 case OPCODE_BGNLOOP:
2945 if (options->EmitNoLoops) {
2946 linker_warning(shader_program,
2947 "Couldn't unroll loop. "
2948 "This will likely result in software "
2949 "rasterization.\n");
2950 }
2951 break;
2952 case OPCODE_CONT:
2953 if (options->EmitNoCont) {
2954 linker_warning(shader_program,
2955 "Couldn't lower continue-statement. "
2956 "This will likely result in software "
2957 "rasterization.\n");
2958 }
2959 break;
2960 case OPCODE_ARL:
2961 prog->arb.NumAddressRegs = 1;
2962 break;
2963 default:
2964 break;
2965 }
2966
2967 mesa_inst++;
2968 i++;
2969
2970 if (!shader_program->data->LinkStatus)
2971 break;
2972 }
2973
2974 if (!shader_program->data->LinkStatus) {
2975 goto fail_exit;
2976 }
2977
2978 set_branchtargets(&v, mesa_instructions, num_instructions);
2979
2980 if (ctx->_Shader->Flags & GLSL_DUMP) {
2981 fprintf(stderr, "\n");
2982 fprintf(stderr, "GLSL IR for linked %s program %d:\n", target_string,
2983 shader_program->Name);
2984 _mesa_print_ir(stderr, shader->ir, NULL);
2985 fprintf(stderr, "\n");
2986 fprintf(stderr, "\n");
2987 fprintf(stderr, "Mesa IR for linked %s program %d:\n", target_string,
2988 shader_program->Name);
2989 print_program(mesa_instructions, mesa_instruction_annotation,
2990 num_instructions);
2991 fflush(stderr);
2992 }
2993
2994 prog->arb.Instructions = mesa_instructions;
2995 prog->arb.NumInstructions = num_instructions;
2996
2997 /* Setting this to NULL prevents a possible double free in the fail_exit
2998 * path (far below).
2999 */
3000 mesa_instructions = NULL;
3001
3002 do_set_program_inouts(shader->ir, prog, shader->Stage);
3003
3004 prog->ShadowSamplers = shader->shadow_samplers;
3005 prog->ExternalSamplersUsed = gl_external_samplers(prog);
3006 _mesa_update_shader_textures_used(shader_program, prog);
3007
3008 /* Set the gl_FragDepth layout. */
3009 if (target == GL_FRAGMENT_PROGRAM_ARB) {
3010 prog->info.fs.depth_layout = shader_program->FragDepthLayout;
3011 }
3012
3013 _mesa_optimize_program(prog, prog);
3014
3015 /* This has to be done last. Any operation that can cause
3016 * prog->ParameterValues to get reallocated (e.g., anything that adds a
3017 * program constant) has to happen before creating this linkage.
3018 */
3019 _mesa_associate_uniform_storage(ctx, shader_program, prog, true);
3020 if (!shader_program->data->LinkStatus) {
3021 goto fail_exit;
3022 }
3023
3024 return prog;
3025
3026 fail_exit:
3027 ralloc_free(mesa_instructions);
3028 _mesa_reference_program(ctx, &shader->Program, NULL);
3029 return NULL;
3030 }
3031
3032 extern "C" {
3033
3034 /**
3035 * Link a shader.
3036 * Called via ctx->Driver.LinkShader()
3037 * This actually involves converting GLSL IR into Mesa gl_programs with
3038 * code lowering and other optimizations.
3039 */
3040 GLboolean
3041 _mesa_ir_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
3042 {
3043 assert(prog->data->LinkStatus);
3044
3045 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3046 if (prog->_LinkedShaders[i] == NULL)
3047 continue;
3048
3049 bool progress;
3050 exec_list *ir = prog->_LinkedShaders[i]->ir;
3051 const struct gl_shader_compiler_options *options =
3052 &ctx->Const.ShaderCompilerOptions[prog->_LinkedShaders[i]->Stage];
3053
3054 do {
3055 progress = false;
3056
3057 /* Lowering */
3058 do_mat_op_to_vec(ir);
3059 lower_instructions(ir, (MOD_TO_FLOOR | DIV_TO_MUL_RCP | EXP_TO_EXP2
3060 | LOG_TO_LOG2 | INT_DIV_TO_MUL_RCP
3061 | ((options->EmitNoPow) ? POW_TO_EXP2 : 0)));
3062
3063 progress = do_common_optimization(ir, true, true,
3064 options, ctx->Const.NativeIntegers)
3065 || progress;
3066
3067 progress = lower_quadop_vector(ir, true) || progress;
3068
3069 if (options->MaxIfDepth == 0)
3070 progress = lower_discard(ir) || progress;
3071
3072 progress = lower_if_to_cond_assign((gl_shader_stage)i, ir,
3073 options->MaxIfDepth) || progress;
3074
3075 progress = lower_noise(ir) || progress;
3076
3077 /* If there are forms of indirect addressing that the driver
3078 * cannot handle, perform the lowering pass.
3079 */
3080 if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput
3081 || options->EmitNoIndirectTemp || options->EmitNoIndirectUniform)
3082 progress =
3083 lower_variable_index_to_cond_assign(prog->_LinkedShaders[i]->Stage, ir,
3084 options->EmitNoIndirectInput,
3085 options->EmitNoIndirectOutput,
3086 options->EmitNoIndirectTemp,
3087 options->EmitNoIndirectUniform)
3088 || progress;
3089
3090 progress = do_vec_index_to_cond_assign(ir) || progress;
3091 progress = lower_vector_insert(ir, true) || progress;
3092 } while (progress);
3093
3094 validate_ir_tree(ir);
3095 }
3096
3097 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3098 struct gl_program *linked_prog;
3099
3100 if (prog->_LinkedShaders[i] == NULL)
3101 continue;
3102
3103 linked_prog = get_mesa_program(ctx, prog, prog->_LinkedShaders[i]);
3104
3105 if (linked_prog) {
3106 _mesa_copy_linked_program_data(prog, prog->_LinkedShaders[i]);
3107
3108 if (!ctx->Driver.ProgramStringNotify(ctx,
3109 _mesa_shader_stage_to_program(i),
3110 linked_prog)) {
3111 _mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program,
3112 NULL);
3113 return GL_FALSE;
3114 }
3115 }
3116 }
3117
3118 build_program_resource_list(ctx, prog);
3119 return prog->data->LinkStatus;
3120 }
3121
3122 /**
3123 * Link a GLSL shader program. Called via glLinkProgram().
3124 */
3125 void
3126 _mesa_glsl_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
3127 {
3128 unsigned int i;
3129 bool spirv = false;
3130
3131 _mesa_clear_shader_program_data(ctx, prog);
3132
3133 prog->data = _mesa_create_shader_program_data();
3134
3135 prog->data->LinkStatus = LINKING_SUCCESS;
3136
3137 for (i = 0; i < prog->NumShaders; i++) {
3138 if (!prog->Shaders[i]->CompileStatus) {
3139 linker_error(prog, "linking with uncompiled/unspecialized shader");
3140 }
3141
3142 if (!i) {
3143 spirv = (prog->Shaders[i]->spirv_data != NULL);
3144 } else if (spirv && !prog->Shaders[i]->spirv_data) {
3145 /* The GL_ARB_gl_spirv spec adds a new bullet point to the list of
3146 * reasons LinkProgram can fail:
3147 *
3148 * "All the shader objects attached to <program> do not have the
3149 * same value for the SPIR_V_BINARY_ARB state."
3150 */
3151 linker_error(prog,
3152 "not all attached shaders have the same "
3153 "SPIR_V_BINARY_ARB state");
3154 }
3155 }
3156 prog->data->spirv = spirv;
3157
3158 if (prog->data->LinkStatus) {
3159 if (!spirv)
3160 link_shaders(ctx, prog);
3161 else
3162 _mesa_spirv_link_shaders(ctx, prog);
3163 }
3164
3165 /* If LinkStatus is LINKING_SUCCESS, then reset sampler validated to true.
3166 * Validation happens via the LinkShader call below. If LinkStatus is
3167 * LINKING_SKIPPED, then SamplersValidated will have been restored from the
3168 * shader cache.
3169 */
3170 if (prog->data->LinkStatus == LINKING_SUCCESS) {
3171 prog->SamplersValidated = GL_TRUE;
3172 }
3173
3174 if (prog->data->LinkStatus && !ctx->Driver.LinkShader(ctx, prog)) {
3175 prog->data->LinkStatus = LINKING_FAILURE;
3176 }
3177
3178 /* Return early if we are loading the shader from on-disk cache */
3179 if (prog->data->LinkStatus == LINKING_SKIPPED)
3180 return;
3181
3182 if (ctx->_Shader->Flags & GLSL_DUMP) {
3183 if (!prog->data->LinkStatus) {
3184 fprintf(stderr, "GLSL shader program %d failed to link\n", prog->Name);
3185 }
3186
3187 if (prog->data->InfoLog && prog->data->InfoLog[0] != 0) {
3188 fprintf(stderr, "GLSL shader program %d info log:\n", prog->Name);
3189 fprintf(stderr, "%s\n", prog->data->InfoLog);
3190 }
3191 }
3192
3193 #ifdef ENABLE_SHADER_CACHE
3194 if (prog->data->LinkStatus)
3195 shader_cache_write_program_metadata(ctx, prog);
3196 #endif
3197 }
3198
3199 } /* extern "C" */