st/mesa: don't propagate uniforms when restoring from cache
[mesa.git] / src / mesa / program / ir_to_mesa.cpp
1 /*
2 * Copyright (C) 2005-2007 Brian Paul All Rights Reserved.
3 * Copyright (C) 2008 VMware, Inc. All Rights Reserved.
4 * Copyright © 2010 Intel Corporation
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
22 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
23 * DEALINGS IN THE SOFTWARE.
24 */
25
26 /**
27 * \file ir_to_mesa.cpp
28 *
29 * Translate GLSL IR to Mesa's gl_program representation.
30 */
31
32 #include <stdio.h>
33 #include "main/compiler.h"
34 #include "main/macros.h"
35 #include "main/mtypes.h"
36 #include "main/shaderapi.h"
37 #include "main/shaderobj.h"
38 #include "main/uniforms.h"
39 #include "compiler/glsl/ast.h"
40 #include "compiler/glsl/ir.h"
41 #include "compiler/glsl/ir_expression_flattening.h"
42 #include "compiler/glsl/ir_visitor.h"
43 #include "compiler/glsl/ir_optimization.h"
44 #include "compiler/glsl/ir_uniform.h"
45 #include "compiler/glsl/glsl_parser_extras.h"
46 #include "compiler/glsl_types.h"
47 #include "compiler/glsl/linker.h"
48 #include "compiler/glsl/program.h"
49 #include "compiler/glsl/shader_cache.h"
50 #include "program/prog_instruction.h"
51 #include "program/prog_optimize.h"
52 #include "program/prog_print.h"
53 #include "program/program.h"
54 #include "program/prog_parameter.h"
55 #include "util/string_to_uint_map.h"
56
57
58 static int swizzle_for_size(int size);
59
60 namespace {
61
62 class src_reg;
63 class dst_reg;
64
65 /**
66 * This struct is a corresponding struct to Mesa prog_src_register, with
67 * wider fields.
68 */
69 class src_reg {
70 public:
71 src_reg(gl_register_file file, int index, const glsl_type *type)
72 {
73 this->file = file;
74 this->index = index;
75 if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
76 this->swizzle = swizzle_for_size(type->vector_elements);
77 else
78 this->swizzle = SWIZZLE_XYZW;
79 this->negate = 0;
80 this->reladdr = NULL;
81 }
82
83 src_reg()
84 {
85 this->file = PROGRAM_UNDEFINED;
86 this->index = 0;
87 this->swizzle = 0;
88 this->negate = 0;
89 this->reladdr = NULL;
90 }
91
92 explicit src_reg(dst_reg reg);
93
94 gl_register_file file; /**< PROGRAM_* from Mesa */
95 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
96 GLuint swizzle; /**< SWIZZLE_XYZWONEZERO swizzles from Mesa. */
97 int negate; /**< NEGATE_XYZW mask from mesa */
98 /** Register index should be offset by the integer in this reg. */
99 src_reg *reladdr;
100 };
101
102 class dst_reg {
103 public:
104 dst_reg(gl_register_file file, int writemask)
105 {
106 this->file = file;
107 this->index = 0;
108 this->writemask = writemask;
109 this->reladdr = NULL;
110 }
111
112 dst_reg()
113 {
114 this->file = PROGRAM_UNDEFINED;
115 this->index = 0;
116 this->writemask = 0;
117 this->reladdr = NULL;
118 }
119
120 explicit dst_reg(src_reg reg);
121
122 gl_register_file file; /**< PROGRAM_* from Mesa */
123 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
124 int writemask; /**< Bitfield of WRITEMASK_[XYZW] */
125 /** Register index should be offset by the integer in this reg. */
126 src_reg *reladdr;
127 };
128
129 } /* anonymous namespace */
130
131 src_reg::src_reg(dst_reg reg)
132 {
133 this->file = reg.file;
134 this->index = reg.index;
135 this->swizzle = SWIZZLE_XYZW;
136 this->negate = 0;
137 this->reladdr = reg.reladdr;
138 }
139
140 dst_reg::dst_reg(src_reg reg)
141 {
142 this->file = reg.file;
143 this->index = reg.index;
144 this->writemask = WRITEMASK_XYZW;
145 this->reladdr = reg.reladdr;
146 }
147
148 namespace {
149
150 class ir_to_mesa_instruction : public exec_node {
151 public:
152 DECLARE_RALLOC_CXX_OPERATORS(ir_to_mesa_instruction)
153
154 enum prog_opcode op;
155 dst_reg dst;
156 src_reg src[3];
157 /** Pointer to the ir source this tree came from for debugging */
158 ir_instruction *ir;
159 bool saturate;
160 int sampler; /**< sampler index */
161 int tex_target; /**< One of TEXTURE_*_INDEX */
162 GLboolean tex_shadow;
163 };
164
165 class variable_storage : public exec_node {
166 public:
167 variable_storage(ir_variable *var, gl_register_file file, int index)
168 : file(file), index(index), var(var)
169 {
170 /* empty */
171 }
172
173 gl_register_file file;
174 int index;
175 ir_variable *var; /* variable that maps to this, if any */
176 };
177
178 class function_entry : public exec_node {
179 public:
180 ir_function_signature *sig;
181
182 /**
183 * identifier of this function signature used by the program.
184 *
185 * At the point that Mesa instructions for function calls are
186 * generated, we don't know the address of the first instruction of
187 * the function body. So we make the BranchTarget that is called a
188 * small integer and rewrite them during set_branchtargets().
189 */
190 int sig_id;
191
192 /**
193 * Pointer to first instruction of the function body.
194 *
195 * Set during function body emits after main() is processed.
196 */
197 ir_to_mesa_instruction *bgn_inst;
198
199 /**
200 * Index of the first instruction of the function body in actual
201 * Mesa IR.
202 *
203 * Set after convertion from ir_to_mesa_instruction to prog_instruction.
204 */
205 int inst;
206
207 /** Storage for the return value. */
208 src_reg return_reg;
209 };
210
211 class ir_to_mesa_visitor : public ir_visitor {
212 public:
213 ir_to_mesa_visitor();
214 ~ir_to_mesa_visitor();
215
216 function_entry *current_function;
217
218 struct gl_context *ctx;
219 struct gl_program *prog;
220 struct gl_shader_program *shader_program;
221 struct gl_shader_compiler_options *options;
222
223 int next_temp;
224
225 variable_storage *find_variable_storage(const ir_variable *var);
226
227 src_reg get_temp(const glsl_type *type);
228 void reladdr_to_temp(ir_instruction *ir, src_reg *reg, int *num_reladdr);
229
230 src_reg src_reg_for_float(float val);
231
232 /**
233 * \name Visit methods
234 *
235 * As typical for the visitor pattern, there must be one \c visit method for
236 * each concrete subclass of \c ir_instruction. Virtual base classes within
237 * the hierarchy should not have \c visit methods.
238 */
239 /*@{*/
240 virtual void visit(ir_variable *);
241 virtual void visit(ir_loop *);
242 virtual void visit(ir_loop_jump *);
243 virtual void visit(ir_function_signature *);
244 virtual void visit(ir_function *);
245 virtual void visit(ir_expression *);
246 virtual void visit(ir_swizzle *);
247 virtual void visit(ir_dereference_variable *);
248 virtual void visit(ir_dereference_array *);
249 virtual void visit(ir_dereference_record *);
250 virtual void visit(ir_assignment *);
251 virtual void visit(ir_constant *);
252 virtual void visit(ir_call *);
253 virtual void visit(ir_return *);
254 virtual void visit(ir_discard *);
255 virtual void visit(ir_texture *);
256 virtual void visit(ir_if *);
257 virtual void visit(ir_emit_vertex *);
258 virtual void visit(ir_end_primitive *);
259 virtual void visit(ir_barrier *);
260 /*@}*/
261
262 src_reg result;
263
264 /** List of variable_storage */
265 exec_list variables;
266
267 /** List of function_entry */
268 exec_list function_signatures;
269 int next_signature_id;
270
271 /** List of ir_to_mesa_instruction */
272 exec_list instructions;
273
274 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op);
275
276 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
277 dst_reg dst, src_reg src0);
278
279 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
280 dst_reg dst, src_reg src0, src_reg src1);
281
282 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
283 dst_reg dst,
284 src_reg src0, src_reg src1, src_reg src2);
285
286 /**
287 * Emit the correct dot-product instruction for the type of arguments
288 */
289 ir_to_mesa_instruction * emit_dp(ir_instruction *ir,
290 dst_reg dst,
291 src_reg src0,
292 src_reg src1,
293 unsigned elements);
294
295 void emit_scalar(ir_instruction *ir, enum prog_opcode op,
296 dst_reg dst, src_reg src0);
297
298 void emit_scalar(ir_instruction *ir, enum prog_opcode op,
299 dst_reg dst, src_reg src0, src_reg src1);
300
301 bool try_emit_mad(ir_expression *ir,
302 int mul_operand);
303 bool try_emit_mad_for_and_not(ir_expression *ir,
304 int mul_operand);
305
306 void emit_swz(ir_expression *ir);
307
308 void emit_equality_comparison(ir_expression *ir, enum prog_opcode op,
309 dst_reg dst,
310 const src_reg &src0, const src_reg &src1);
311
312 inline void emit_sne(ir_expression *ir, dst_reg dst,
313 const src_reg &src0, const src_reg &src1)
314 {
315 emit_equality_comparison(ir, OPCODE_SLT, dst, src0, src1);
316 }
317
318 inline void emit_seq(ir_expression *ir, dst_reg dst,
319 const src_reg &src0, const src_reg &src1)
320 {
321 emit_equality_comparison(ir, OPCODE_SGE, dst, src0, src1);
322 }
323
324 bool process_move_condition(ir_rvalue *ir);
325
326 void copy_propagate(void);
327
328 void *mem_ctx;
329 };
330
331 } /* anonymous namespace */
332
333 static src_reg undef_src = src_reg(PROGRAM_UNDEFINED, 0, NULL);
334
335 static dst_reg undef_dst = dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP);
336
337 static dst_reg address_reg = dst_reg(PROGRAM_ADDRESS, WRITEMASK_X);
338
339 static int
340 swizzle_for_size(int size)
341 {
342 static const int size_swizzles[4] = {
343 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
344 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
345 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
346 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
347 };
348
349 assert((size >= 1) && (size <= 4));
350 return size_swizzles[size - 1];
351 }
352
353 ir_to_mesa_instruction *
354 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
355 dst_reg dst,
356 src_reg src0, src_reg src1, src_reg src2)
357 {
358 ir_to_mesa_instruction *inst = new(mem_ctx) ir_to_mesa_instruction();
359 int num_reladdr = 0;
360
361 /* If we have to do relative addressing, we want to load the ARL
362 * reg directly for one of the regs, and preload the other reladdr
363 * sources into temps.
364 */
365 num_reladdr += dst.reladdr != NULL;
366 num_reladdr += src0.reladdr != NULL;
367 num_reladdr += src1.reladdr != NULL;
368 num_reladdr += src2.reladdr != NULL;
369
370 reladdr_to_temp(ir, &src2, &num_reladdr);
371 reladdr_to_temp(ir, &src1, &num_reladdr);
372 reladdr_to_temp(ir, &src0, &num_reladdr);
373
374 if (dst.reladdr) {
375 emit(ir, OPCODE_ARL, address_reg, *dst.reladdr);
376 num_reladdr--;
377 }
378 assert(num_reladdr == 0);
379
380 inst->op = op;
381 inst->dst = dst;
382 inst->src[0] = src0;
383 inst->src[1] = src1;
384 inst->src[2] = src2;
385 inst->ir = ir;
386
387 this->instructions.push_tail(inst);
388
389 return inst;
390 }
391
392
393 ir_to_mesa_instruction *
394 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
395 dst_reg dst, src_reg src0, src_reg src1)
396 {
397 return emit(ir, op, dst, src0, src1, undef_src);
398 }
399
400 ir_to_mesa_instruction *
401 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
402 dst_reg dst, src_reg src0)
403 {
404 assert(dst.writemask != 0);
405 return emit(ir, op, dst, src0, undef_src, undef_src);
406 }
407
408 ir_to_mesa_instruction *
409 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op)
410 {
411 return emit(ir, op, undef_dst, undef_src, undef_src, undef_src);
412 }
413
414 ir_to_mesa_instruction *
415 ir_to_mesa_visitor::emit_dp(ir_instruction *ir,
416 dst_reg dst, src_reg src0, src_reg src1,
417 unsigned elements)
418 {
419 static const enum prog_opcode dot_opcodes[] = {
420 OPCODE_DP2, OPCODE_DP3, OPCODE_DP4
421 };
422
423 return emit(ir, dot_opcodes[elements - 2], dst, src0, src1);
424 }
425
426 /**
427 * Emits Mesa scalar opcodes to produce unique answers across channels.
428 *
429 * Some Mesa opcodes are scalar-only, like ARB_fp/vp. The src X
430 * channel determines the result across all channels. So to do a vec4
431 * of this operation, we want to emit a scalar per source channel used
432 * to produce dest channels.
433 */
434 void
435 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
436 dst_reg dst,
437 src_reg orig_src0, src_reg orig_src1)
438 {
439 int i, j;
440 int done_mask = ~dst.writemask;
441
442 /* Mesa RCP is a scalar operation splatting results to all channels,
443 * like ARB_fp/vp. So emit as many RCPs as necessary to cover our
444 * dst channels.
445 */
446 for (i = 0; i < 4; i++) {
447 GLuint this_mask = (1 << i);
448 ir_to_mesa_instruction *inst;
449 src_reg src0 = orig_src0;
450 src_reg src1 = orig_src1;
451
452 if (done_mask & this_mask)
453 continue;
454
455 GLuint src0_swiz = GET_SWZ(src0.swizzle, i);
456 GLuint src1_swiz = GET_SWZ(src1.swizzle, i);
457 for (j = i + 1; j < 4; j++) {
458 /* If there is another enabled component in the destination that is
459 * derived from the same inputs, generate its value on this pass as
460 * well.
461 */
462 if (!(done_mask & (1 << j)) &&
463 GET_SWZ(src0.swizzle, j) == src0_swiz &&
464 GET_SWZ(src1.swizzle, j) == src1_swiz) {
465 this_mask |= (1 << j);
466 }
467 }
468 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
469 src0_swiz, src0_swiz);
470 src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz,
471 src1_swiz, src1_swiz);
472
473 inst = emit(ir, op, dst, src0, src1);
474 inst->dst.writemask = this_mask;
475 done_mask |= this_mask;
476 }
477 }
478
479 void
480 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
481 dst_reg dst, src_reg src0)
482 {
483 src_reg undef = undef_src;
484
485 undef.swizzle = SWIZZLE_XXXX;
486
487 emit_scalar(ir, op, dst, src0, undef);
488 }
489
490 src_reg
491 ir_to_mesa_visitor::src_reg_for_float(float val)
492 {
493 src_reg src(PROGRAM_CONSTANT, -1, NULL);
494
495 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
496 (const gl_constant_value *)&val, 1, &src.swizzle);
497
498 return src;
499 }
500
501 static int
502 type_size(const struct glsl_type *type)
503 {
504 unsigned int i;
505 int size;
506
507 switch (type->base_type) {
508 case GLSL_TYPE_UINT:
509 case GLSL_TYPE_INT:
510 case GLSL_TYPE_FLOAT:
511 case GLSL_TYPE_BOOL:
512 if (type->is_matrix()) {
513 return type->matrix_columns;
514 } else {
515 /* Regardless of size of vector, it gets a vec4. This is bad
516 * packing for things like floats, but otherwise arrays become a
517 * mess. Hopefully a later pass over the code can pack scalars
518 * down if appropriate.
519 */
520 return 1;
521 }
522 break;
523 case GLSL_TYPE_DOUBLE:
524 if (type->is_matrix()) {
525 if (type->vector_elements > 2)
526 return type->matrix_columns * 2;
527 else
528 return type->matrix_columns;
529 } else {
530 if (type->vector_elements > 2)
531 return 2;
532 else
533 return 1;
534 }
535 break;
536 case GLSL_TYPE_UINT64:
537 case GLSL_TYPE_INT64:
538 if (type->vector_elements > 2)
539 return 2;
540 else
541 return 1;
542 case GLSL_TYPE_ARRAY:
543 assert(type->length > 0);
544 return type_size(type->fields.array) * type->length;
545 case GLSL_TYPE_STRUCT:
546 size = 0;
547 for (i = 0; i < type->length; i++) {
548 size += type_size(type->fields.structure[i].type);
549 }
550 return size;
551 case GLSL_TYPE_SAMPLER:
552 case GLSL_TYPE_IMAGE:
553 case GLSL_TYPE_SUBROUTINE:
554 /* Samplers take up one slot in UNIFORMS[], but they're baked in
555 * at link time.
556 */
557 return 1;
558 case GLSL_TYPE_ATOMIC_UINT:
559 case GLSL_TYPE_VOID:
560 case GLSL_TYPE_ERROR:
561 case GLSL_TYPE_INTERFACE:
562 case GLSL_TYPE_FUNCTION:
563 assert(!"Invalid type in type_size");
564 break;
565 }
566
567 return 0;
568 }
569
570 /**
571 * In the initial pass of codegen, we assign temporary numbers to
572 * intermediate results. (not SSA -- variable assignments will reuse
573 * storage). Actual register allocation for the Mesa VM occurs in a
574 * pass over the Mesa IR later.
575 */
576 src_reg
577 ir_to_mesa_visitor::get_temp(const glsl_type *type)
578 {
579 src_reg src;
580
581 src.file = PROGRAM_TEMPORARY;
582 src.index = next_temp;
583 src.reladdr = NULL;
584 next_temp += type_size(type);
585
586 if (type->is_array() || type->is_record()) {
587 src.swizzle = SWIZZLE_NOOP;
588 } else {
589 src.swizzle = swizzle_for_size(type->vector_elements);
590 }
591 src.negate = 0;
592
593 return src;
594 }
595
596 variable_storage *
597 ir_to_mesa_visitor::find_variable_storage(const ir_variable *var)
598 {
599 foreach_in_list(variable_storage, entry, &this->variables) {
600 if (entry->var == var)
601 return entry;
602 }
603
604 return NULL;
605 }
606
607 void
608 ir_to_mesa_visitor::visit(ir_variable *ir)
609 {
610 if (strcmp(ir->name, "gl_FragCoord") == 0) {
611 this->prog->OriginUpperLeft = ir->data.origin_upper_left;
612 this->prog->PixelCenterInteger = ir->data.pixel_center_integer;
613 }
614
615 if (ir->data.mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) {
616 unsigned int i;
617 const ir_state_slot *const slots = ir->get_state_slots();
618 assert(slots != NULL);
619
620 /* Check if this statevar's setup in the STATE file exactly
621 * matches how we'll want to reference it as a
622 * struct/array/whatever. If not, then we need to move it into
623 * temporary storage and hope that it'll get copy-propagated
624 * out.
625 */
626 for (i = 0; i < ir->get_num_state_slots(); i++) {
627 if (slots[i].swizzle != SWIZZLE_XYZW) {
628 break;
629 }
630 }
631
632 variable_storage *storage;
633 dst_reg dst;
634 if (i == ir->get_num_state_slots()) {
635 /* We'll set the index later. */
636 storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1);
637 this->variables.push_tail(storage);
638
639 dst = undef_dst;
640 } else {
641 /* The variable_storage constructor allocates slots based on the size
642 * of the type. However, this had better match the number of state
643 * elements that we're going to copy into the new temporary.
644 */
645 assert((int) ir->get_num_state_slots() == type_size(ir->type));
646
647 storage = new(mem_ctx) variable_storage(ir, PROGRAM_TEMPORARY,
648 this->next_temp);
649 this->variables.push_tail(storage);
650 this->next_temp += type_size(ir->type);
651
652 dst = dst_reg(src_reg(PROGRAM_TEMPORARY, storage->index, NULL));
653 }
654
655
656 for (unsigned int i = 0; i < ir->get_num_state_slots(); i++) {
657 int index = _mesa_add_state_reference(this->prog->Parameters,
658 (gl_state_index *)slots[i].tokens);
659
660 if (storage->file == PROGRAM_STATE_VAR) {
661 if (storage->index == -1) {
662 storage->index = index;
663 } else {
664 assert(index == storage->index + (int)i);
665 }
666 } else {
667 src_reg src(PROGRAM_STATE_VAR, index, NULL);
668 src.swizzle = slots[i].swizzle;
669 emit(ir, OPCODE_MOV, dst, src);
670 /* even a float takes up a whole vec4 reg in a struct/array. */
671 dst.index++;
672 }
673 }
674
675 if (storage->file == PROGRAM_TEMPORARY &&
676 dst.index != storage->index + (int) ir->get_num_state_slots()) {
677 linker_error(this->shader_program,
678 "failed to load builtin uniform `%s' "
679 "(%d/%d regs loaded)\n",
680 ir->name, dst.index - storage->index,
681 type_size(ir->type));
682 }
683 }
684 }
685
686 void
687 ir_to_mesa_visitor::visit(ir_loop *ir)
688 {
689 emit(NULL, OPCODE_BGNLOOP);
690
691 visit_exec_list(&ir->body_instructions, this);
692
693 emit(NULL, OPCODE_ENDLOOP);
694 }
695
696 void
697 ir_to_mesa_visitor::visit(ir_loop_jump *ir)
698 {
699 switch (ir->mode) {
700 case ir_loop_jump::jump_break:
701 emit(NULL, OPCODE_BRK);
702 break;
703 case ir_loop_jump::jump_continue:
704 emit(NULL, OPCODE_CONT);
705 break;
706 }
707 }
708
709
710 void
711 ir_to_mesa_visitor::visit(ir_function_signature *ir)
712 {
713 assert(0);
714 (void)ir;
715 }
716
717 void
718 ir_to_mesa_visitor::visit(ir_function *ir)
719 {
720 /* Ignore function bodies other than main() -- we shouldn't see calls to
721 * them since they should all be inlined before we get to ir_to_mesa.
722 */
723 if (strcmp(ir->name, "main") == 0) {
724 const ir_function_signature *sig;
725 exec_list empty;
726
727 sig = ir->matching_signature(NULL, &empty, false);
728
729 assert(sig);
730
731 foreach_in_list(ir_instruction, ir, &sig->body) {
732 ir->accept(this);
733 }
734 }
735 }
736
737 bool
738 ir_to_mesa_visitor::try_emit_mad(ir_expression *ir, int mul_operand)
739 {
740 int nonmul_operand = 1 - mul_operand;
741 src_reg a, b, c;
742
743 ir_expression *expr = ir->operands[mul_operand]->as_expression();
744 if (!expr || expr->operation != ir_binop_mul)
745 return false;
746
747 expr->operands[0]->accept(this);
748 a = this->result;
749 expr->operands[1]->accept(this);
750 b = this->result;
751 ir->operands[nonmul_operand]->accept(this);
752 c = this->result;
753
754 this->result = get_temp(ir->type);
755 emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, c);
756
757 return true;
758 }
759
760 /**
761 * Emit OPCODE_MAD(a, -b, a) instead of AND(a, NOT(b))
762 *
763 * The logic values are 1.0 for true and 0.0 for false. Logical-and is
764 * implemented using multiplication, and logical-or is implemented using
765 * addition. Logical-not can be implemented as (true - x), or (1.0 - x).
766 * As result, the logical expression (a & !b) can be rewritten as:
767 *
768 * - a * !b
769 * - a * (1 - b)
770 * - (a * 1) - (a * b)
771 * - a + -(a * b)
772 * - a + (a * -b)
773 *
774 * This final expression can be implemented as a single MAD(a, -b, a)
775 * instruction.
776 */
777 bool
778 ir_to_mesa_visitor::try_emit_mad_for_and_not(ir_expression *ir, int try_operand)
779 {
780 const int other_operand = 1 - try_operand;
781 src_reg a, b;
782
783 ir_expression *expr = ir->operands[try_operand]->as_expression();
784 if (!expr || expr->operation != ir_unop_logic_not)
785 return false;
786
787 ir->operands[other_operand]->accept(this);
788 a = this->result;
789 expr->operands[0]->accept(this);
790 b = this->result;
791
792 b.negate = ~b.negate;
793
794 this->result = get_temp(ir->type);
795 emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, a);
796
797 return true;
798 }
799
800 void
801 ir_to_mesa_visitor::reladdr_to_temp(ir_instruction *ir,
802 src_reg *reg, int *num_reladdr)
803 {
804 if (!reg->reladdr)
805 return;
806
807 emit(ir, OPCODE_ARL, address_reg, *reg->reladdr);
808
809 if (*num_reladdr != 1) {
810 src_reg temp = get_temp(glsl_type::vec4_type);
811
812 emit(ir, OPCODE_MOV, dst_reg(temp), *reg);
813 *reg = temp;
814 }
815
816 (*num_reladdr)--;
817 }
818
819 void
820 ir_to_mesa_visitor::emit_swz(ir_expression *ir)
821 {
822 /* Assume that the vector operator is in a form compatible with OPCODE_SWZ.
823 * This means that each of the operands is either an immediate value of -1,
824 * 0, or 1, or is a component from one source register (possibly with
825 * negation).
826 */
827 uint8_t components[4] = { 0 };
828 bool negate[4] = { false };
829 ir_variable *var = NULL;
830
831 for (unsigned i = 0; i < ir->type->vector_elements; i++) {
832 ir_rvalue *op = ir->operands[i];
833
834 assert(op->type->is_scalar());
835
836 while (op != NULL) {
837 switch (op->ir_type) {
838 case ir_type_constant: {
839
840 assert(op->type->is_scalar());
841
842 const ir_constant *const c = op->as_constant();
843 if (c->is_one()) {
844 components[i] = SWIZZLE_ONE;
845 } else if (c->is_zero()) {
846 components[i] = SWIZZLE_ZERO;
847 } else if (c->is_negative_one()) {
848 components[i] = SWIZZLE_ONE;
849 negate[i] = true;
850 } else {
851 assert(!"SWZ constant must be 0.0 or 1.0.");
852 }
853
854 op = NULL;
855 break;
856 }
857
858 case ir_type_dereference_variable: {
859 ir_dereference_variable *const deref =
860 (ir_dereference_variable *) op;
861
862 assert((var == NULL) || (deref->var == var));
863 components[i] = SWIZZLE_X;
864 var = deref->var;
865 op = NULL;
866 break;
867 }
868
869 case ir_type_expression: {
870 ir_expression *const expr = (ir_expression *) op;
871
872 assert(expr->operation == ir_unop_neg);
873 negate[i] = true;
874
875 op = expr->operands[0];
876 break;
877 }
878
879 case ir_type_swizzle: {
880 ir_swizzle *const swiz = (ir_swizzle *) op;
881
882 components[i] = swiz->mask.x;
883 op = swiz->val;
884 break;
885 }
886
887 default:
888 assert(!"Should not get here.");
889 return;
890 }
891 }
892 }
893
894 assert(var != NULL);
895
896 ir_dereference_variable *const deref =
897 new(mem_ctx) ir_dereference_variable(var);
898
899 this->result.file = PROGRAM_UNDEFINED;
900 deref->accept(this);
901 if (this->result.file == PROGRAM_UNDEFINED) {
902 printf("Failed to get tree for expression operand:\n");
903 deref->print();
904 printf("\n");
905 exit(1);
906 }
907
908 src_reg src;
909
910 src = this->result;
911 src.swizzle = MAKE_SWIZZLE4(components[0],
912 components[1],
913 components[2],
914 components[3]);
915 src.negate = ((unsigned(negate[0]) << 0)
916 | (unsigned(negate[1]) << 1)
917 | (unsigned(negate[2]) << 2)
918 | (unsigned(negate[3]) << 3));
919
920 /* Storage for our result. Ideally for an assignment we'd be using the
921 * actual storage for the result here, instead.
922 */
923 const src_reg result_src = get_temp(ir->type);
924 dst_reg result_dst = dst_reg(result_src);
925
926 /* Limit writes to the channels that will be used by result_src later.
927 * This does limit this temp's use as a temporary for multi-instruction
928 * sequences.
929 */
930 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
931
932 emit(ir, OPCODE_SWZ, result_dst, src);
933 this->result = result_src;
934 }
935
936 void
937 ir_to_mesa_visitor::emit_equality_comparison(ir_expression *ir,
938 enum prog_opcode op,
939 dst_reg dst,
940 const src_reg &src0,
941 const src_reg &src1)
942 {
943 src_reg difference;
944 src_reg abs_difference = get_temp(glsl_type::vec4_type);
945 const src_reg zero = src_reg_for_float(0.0);
946
947 /* x == y is equivalent to -abs(x-y) >= 0. Since all of the code that
948 * consumes the generated IR is pretty dumb, take special care when one
949 * of the operands is zero.
950 *
951 * Similarly, x != y is equivalent to -abs(x-y) < 0.
952 */
953 if (src0.file == zero.file &&
954 src0.index == zero.index &&
955 src0.swizzle == zero.swizzle) {
956 difference = src1;
957 } else if (src1.file == zero.file &&
958 src1.index == zero.index &&
959 src1.swizzle == zero.swizzle) {
960 difference = src0;
961 } else {
962 difference = get_temp(glsl_type::vec4_type);
963
964 src_reg tmp_src = src0;
965 tmp_src.negate = ~tmp_src.negate;
966
967 emit(ir, OPCODE_ADD, dst_reg(difference), tmp_src, src1);
968 }
969
970 emit(ir, OPCODE_ABS, dst_reg(abs_difference), difference);
971
972 abs_difference.negate = ~abs_difference.negate;
973 emit(ir, op, dst, abs_difference, zero);
974 }
975
976 void
977 ir_to_mesa_visitor::visit(ir_expression *ir)
978 {
979 unsigned int operand;
980 src_reg op[ARRAY_SIZE(ir->operands)];
981 src_reg result_src;
982 dst_reg result_dst;
983
984 /* Quick peephole: Emit OPCODE_MAD(a, b, c) instead of ADD(MUL(a, b), c)
985 */
986 if (ir->operation == ir_binop_add) {
987 if (try_emit_mad(ir, 1))
988 return;
989 if (try_emit_mad(ir, 0))
990 return;
991 }
992
993 /* Quick peephole: Emit OPCODE_MAD(-a, -b, a) instead of AND(a, NOT(b))
994 */
995 if (ir->operation == ir_binop_logic_and) {
996 if (try_emit_mad_for_and_not(ir, 1))
997 return;
998 if (try_emit_mad_for_and_not(ir, 0))
999 return;
1000 }
1001
1002 if (ir->operation == ir_quadop_vector) {
1003 this->emit_swz(ir);
1004 return;
1005 }
1006
1007 for (operand = 0; operand < ir->get_num_operands(); operand++) {
1008 this->result.file = PROGRAM_UNDEFINED;
1009 ir->operands[operand]->accept(this);
1010 if (this->result.file == PROGRAM_UNDEFINED) {
1011 printf("Failed to get tree for expression operand:\n");
1012 ir->operands[operand]->print();
1013 printf("\n");
1014 exit(1);
1015 }
1016 op[operand] = this->result;
1017
1018 /* Matrix expression operands should have been broken down to vector
1019 * operations already.
1020 */
1021 assert(!ir->operands[operand]->type->is_matrix());
1022 }
1023
1024 int vector_elements = ir->operands[0]->type->vector_elements;
1025 if (ir->operands[1]) {
1026 vector_elements = MAX2(vector_elements,
1027 ir->operands[1]->type->vector_elements);
1028 }
1029
1030 this->result.file = PROGRAM_UNDEFINED;
1031
1032 /* Storage for our result. Ideally for an assignment we'd be using
1033 * the actual storage for the result here, instead.
1034 */
1035 result_src = get_temp(ir->type);
1036 /* convenience for the emit functions below. */
1037 result_dst = dst_reg(result_src);
1038 /* Limit writes to the channels that will be used by result_src later.
1039 * This does limit this temp's use as a temporary for multi-instruction
1040 * sequences.
1041 */
1042 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1043
1044 switch (ir->operation) {
1045 case ir_unop_logic_not:
1046 /* Previously 'SEQ dst, src, 0.0' was used for this. However, many
1047 * older GPUs implement SEQ using multiple instructions (i915 uses two
1048 * SGE instructions and a MUL instruction). Since our logic values are
1049 * 0.0 and 1.0, 1-x also implements !x.
1050 */
1051 op[0].negate = ~op[0].negate;
1052 emit(ir, OPCODE_ADD, result_dst, op[0], src_reg_for_float(1.0));
1053 break;
1054 case ir_unop_neg:
1055 op[0].negate = ~op[0].negate;
1056 result_src = op[0];
1057 break;
1058 case ir_unop_abs:
1059 emit(ir, OPCODE_ABS, result_dst, op[0]);
1060 break;
1061 case ir_unop_sign:
1062 emit(ir, OPCODE_SSG, result_dst, op[0]);
1063 break;
1064 case ir_unop_rcp:
1065 emit_scalar(ir, OPCODE_RCP, result_dst, op[0]);
1066 break;
1067
1068 case ir_unop_exp2:
1069 emit_scalar(ir, OPCODE_EX2, result_dst, op[0]);
1070 break;
1071 case ir_unop_exp:
1072 case ir_unop_log:
1073 assert(!"not reached: should be handled by ir_explog_to_explog2");
1074 break;
1075 case ir_unop_log2:
1076 emit_scalar(ir, OPCODE_LG2, result_dst, op[0]);
1077 break;
1078 case ir_unop_sin:
1079 emit_scalar(ir, OPCODE_SIN, result_dst, op[0]);
1080 break;
1081 case ir_unop_cos:
1082 emit_scalar(ir, OPCODE_COS, result_dst, op[0]);
1083 break;
1084
1085 case ir_unop_dFdx:
1086 emit(ir, OPCODE_DDX, result_dst, op[0]);
1087 break;
1088 case ir_unop_dFdy:
1089 emit(ir, OPCODE_DDY, result_dst, op[0]);
1090 break;
1091
1092 case ir_unop_saturate: {
1093 ir_to_mesa_instruction *inst = emit(ir, OPCODE_MOV,
1094 result_dst, op[0]);
1095 inst->saturate = true;
1096 break;
1097 }
1098 case ir_unop_noise: {
1099 const enum prog_opcode opcode =
1100 prog_opcode(OPCODE_NOISE1
1101 + (ir->operands[0]->type->vector_elements) - 1);
1102 assert((opcode >= OPCODE_NOISE1) && (opcode <= OPCODE_NOISE4));
1103
1104 emit(ir, opcode, result_dst, op[0]);
1105 break;
1106 }
1107
1108 case ir_binop_add:
1109 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1110 break;
1111 case ir_binop_sub:
1112 emit(ir, OPCODE_SUB, result_dst, op[0], op[1]);
1113 break;
1114
1115 case ir_binop_mul:
1116 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1117 break;
1118 case ir_binop_div:
1119 assert(!"not reached: should be handled by ir_div_to_mul_rcp");
1120 break;
1121 case ir_binop_mod:
1122 /* Floating point should be lowered by MOD_TO_FLOOR in the compiler. */
1123 assert(ir->type->is_integer());
1124 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1125 break;
1126
1127 case ir_binop_less:
1128 emit(ir, OPCODE_SLT, result_dst, op[0], op[1]);
1129 break;
1130 case ir_binop_greater:
1131 /* Negating the operands (as opposed to switching the order of the
1132 * operands) produces the correct result when both are +/-Inf.
1133 */
1134 op[0].negate = ~op[0].negate;
1135 op[1].negate = ~op[1].negate;
1136 emit(ir, OPCODE_SLT, result_dst, op[0], op[1]);
1137 break;
1138 case ir_binop_lequal:
1139 /* Negating the operands (as opposed to switching the order of the
1140 * operands) produces the correct result when both are +/-Inf.
1141 */
1142 op[0].negate = ~op[0].negate;
1143 op[1].negate = ~op[1].negate;
1144 emit(ir, OPCODE_SGE, result_dst, op[0], op[1]);
1145 break;
1146 case ir_binop_gequal:
1147 emit(ir, OPCODE_SGE, result_dst, op[0], op[1]);
1148 break;
1149 case ir_binop_equal:
1150 emit_seq(ir, result_dst, op[0], op[1]);
1151 break;
1152 case ir_binop_nequal:
1153 emit_sne(ir, result_dst, op[0], op[1]);
1154 break;
1155 case ir_binop_all_equal:
1156 /* "==" operator producing a scalar boolean. */
1157 if (ir->operands[0]->type->is_vector() ||
1158 ir->operands[1]->type->is_vector()) {
1159 src_reg temp = get_temp(glsl_type::vec4_type);
1160 emit_sne(ir, dst_reg(temp), op[0], op[1]);
1161
1162 /* After the dot-product, the value will be an integer on the
1163 * range [0,4]. Zero becomes 1.0, and positive values become zero.
1164 */
1165 emit_dp(ir, result_dst, temp, temp, vector_elements);
1166
1167 /* Negating the result of the dot-product gives values on the range
1168 * [-4, 0]. Zero becomes 1.0, and negative values become zero. This
1169 * achieved using SGE.
1170 */
1171 src_reg sge_src = result_src;
1172 sge_src.negate = ~sge_src.negate;
1173 emit(ir, OPCODE_SGE, result_dst, sge_src, src_reg_for_float(0.0));
1174 } else {
1175 emit_seq(ir, result_dst, op[0], op[1]);
1176 }
1177 break;
1178 case ir_binop_any_nequal:
1179 /* "!=" operator producing a scalar boolean. */
1180 if (ir->operands[0]->type->is_vector() ||
1181 ir->operands[1]->type->is_vector()) {
1182 src_reg temp = get_temp(glsl_type::vec4_type);
1183 if (ir->operands[0]->type->is_boolean() &&
1184 ir->operands[1]->as_constant() &&
1185 ir->operands[1]->as_constant()->is_zero()) {
1186 temp = op[0];
1187 } else {
1188 emit_sne(ir, dst_reg(temp), op[0], op[1]);
1189 }
1190
1191 /* After the dot-product, the value will be an integer on the
1192 * range [0,4]. Zero stays zero, and positive values become 1.0.
1193 */
1194 ir_to_mesa_instruction *const dp =
1195 emit_dp(ir, result_dst, temp, temp, vector_elements);
1196 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1197 /* The clamping to [0,1] can be done for free in the fragment
1198 * shader with a saturate.
1199 */
1200 dp->saturate = true;
1201 } else {
1202 /* Negating the result of the dot-product gives values on the range
1203 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1204 * achieved using SLT.
1205 */
1206 src_reg slt_src = result_src;
1207 slt_src.negate = ~slt_src.negate;
1208 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1209 }
1210 } else {
1211 emit_sne(ir, result_dst, op[0], op[1]);
1212 }
1213 break;
1214
1215 case ir_binop_logic_xor:
1216 emit_sne(ir, result_dst, op[0], op[1]);
1217 break;
1218
1219 case ir_binop_logic_or: {
1220 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1221 /* After the addition, the value will be an integer on the
1222 * range [0,2]. Zero stays zero, and positive values become 1.0.
1223 */
1224 ir_to_mesa_instruction *add =
1225 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1226 add->saturate = true;
1227 } else {
1228 /* The Boolean arguments are stored as float 0.0 and 1.0. If either
1229 * value is 1.0, the result of the logcal-or should be 1.0. If both
1230 * values are 0.0, the result should be 0.0. This is exactly what
1231 * MAX does.
1232 */
1233 emit(ir, OPCODE_MAX, result_dst, op[0], op[1]);
1234 }
1235 break;
1236 }
1237
1238 case ir_binop_logic_and:
1239 /* the bool args are stored as float 0.0 or 1.0, so "mul" gives us "and". */
1240 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1241 break;
1242
1243 case ir_binop_dot:
1244 assert(ir->operands[0]->type->is_vector());
1245 assert(ir->operands[0]->type == ir->operands[1]->type);
1246 emit_dp(ir, result_dst, op[0], op[1],
1247 ir->operands[0]->type->vector_elements);
1248 break;
1249
1250 case ir_unop_sqrt:
1251 /* sqrt(x) = x * rsq(x). */
1252 emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1253 emit(ir, OPCODE_MUL, result_dst, result_src, op[0]);
1254 /* For incoming channels <= 0, set the result to 0. */
1255 op[0].negate = ~op[0].negate;
1256 emit(ir, OPCODE_CMP, result_dst,
1257 op[0], result_src, src_reg_for_float(0.0));
1258 break;
1259 case ir_unop_rsq:
1260 emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1261 break;
1262 case ir_unop_i2f:
1263 case ir_unop_u2f:
1264 case ir_unop_b2f:
1265 case ir_unop_b2i:
1266 case ir_unop_i2u:
1267 case ir_unop_u2i:
1268 /* Mesa IR lacks types, ints are stored as truncated floats. */
1269 result_src = op[0];
1270 break;
1271 case ir_unop_f2i:
1272 case ir_unop_f2u:
1273 emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1274 break;
1275 case ir_unop_f2b:
1276 case ir_unop_i2b:
1277 emit_sne(ir, result_dst, op[0], src_reg_for_float(0.0));
1278 break;
1279 case ir_unop_bitcast_f2i: // Ignore these 4, they can't happen here anyway
1280 case ir_unop_bitcast_f2u:
1281 case ir_unop_bitcast_i2f:
1282 case ir_unop_bitcast_u2f:
1283 break;
1284 case ir_unop_trunc:
1285 emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1286 break;
1287 case ir_unop_ceil:
1288 op[0].negate = ~op[0].negate;
1289 emit(ir, OPCODE_FLR, result_dst, op[0]);
1290 result_src.negate = ~result_src.negate;
1291 break;
1292 case ir_unop_floor:
1293 emit(ir, OPCODE_FLR, result_dst, op[0]);
1294 break;
1295 case ir_unop_fract:
1296 emit(ir, OPCODE_FRC, result_dst, op[0]);
1297 break;
1298 case ir_unop_pack_snorm_2x16:
1299 case ir_unop_pack_snorm_4x8:
1300 case ir_unop_pack_unorm_2x16:
1301 case ir_unop_pack_unorm_4x8:
1302 case ir_unop_pack_half_2x16:
1303 case ir_unop_pack_double_2x32:
1304 case ir_unop_unpack_snorm_2x16:
1305 case ir_unop_unpack_snorm_4x8:
1306 case ir_unop_unpack_unorm_2x16:
1307 case ir_unop_unpack_unorm_4x8:
1308 case ir_unop_unpack_half_2x16:
1309 case ir_unop_unpack_double_2x32:
1310 case ir_unop_bitfield_reverse:
1311 case ir_unop_bit_count:
1312 case ir_unop_find_msb:
1313 case ir_unop_find_lsb:
1314 case ir_unop_d2f:
1315 case ir_unop_f2d:
1316 case ir_unop_d2i:
1317 case ir_unop_i2d:
1318 case ir_unop_d2u:
1319 case ir_unop_u2d:
1320 case ir_unop_d2b:
1321 case ir_unop_frexp_sig:
1322 case ir_unop_frexp_exp:
1323 assert(!"not supported");
1324 break;
1325 case ir_binop_min:
1326 emit(ir, OPCODE_MIN, result_dst, op[0], op[1]);
1327 break;
1328 case ir_binop_max:
1329 emit(ir, OPCODE_MAX, result_dst, op[0], op[1]);
1330 break;
1331 case ir_binop_pow:
1332 emit_scalar(ir, OPCODE_POW, result_dst, op[0], op[1]);
1333 break;
1334
1335 /* GLSL 1.30 integer ops are unsupported in Mesa IR, but since
1336 * hardware backends have no way to avoid Mesa IR generation
1337 * even if they don't use it, we need to emit "something" and
1338 * continue.
1339 */
1340 case ir_binop_lshift:
1341 case ir_binop_rshift:
1342 case ir_binop_bit_and:
1343 case ir_binop_bit_xor:
1344 case ir_binop_bit_or:
1345 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1346 break;
1347
1348 case ir_unop_bit_not:
1349 case ir_unop_round_even:
1350 emit(ir, OPCODE_MOV, result_dst, op[0]);
1351 break;
1352
1353 case ir_binop_ubo_load:
1354 assert(!"not supported");
1355 break;
1356
1357 case ir_triop_lrp:
1358 /* ir_triop_lrp operands are (x, y, a) while
1359 * OPCODE_LRP operands are (a, y, x) to match ARB_fragment_program.
1360 */
1361 emit(ir, OPCODE_LRP, result_dst, op[2], op[1], op[0]);
1362 break;
1363
1364 case ir_triop_csel:
1365 /* We assume that boolean true and false are 1.0 and 0.0. OPCODE_CMP
1366 * selects src1 if src0 is < 0, src2 otherwise.
1367 */
1368 op[0].negate = ~op[0].negate;
1369 emit(ir, OPCODE_CMP, result_dst, op[0], op[1], op[2]);
1370 break;
1371
1372 case ir_binop_vector_extract:
1373 case ir_triop_fma:
1374 case ir_triop_bitfield_extract:
1375 case ir_triop_vector_insert:
1376 case ir_quadop_bitfield_insert:
1377 case ir_binop_ldexp:
1378 case ir_binop_carry:
1379 case ir_binop_borrow:
1380 case ir_binop_imul_high:
1381 case ir_unop_interpolate_at_centroid:
1382 case ir_binop_interpolate_at_offset:
1383 case ir_binop_interpolate_at_sample:
1384 case ir_unop_dFdx_coarse:
1385 case ir_unop_dFdx_fine:
1386 case ir_unop_dFdy_coarse:
1387 case ir_unop_dFdy_fine:
1388 case ir_unop_subroutine_to_int:
1389 case ir_unop_get_buffer_size:
1390 case ir_unop_vote_any:
1391 case ir_unop_vote_all:
1392 case ir_unop_vote_eq:
1393 case ir_unop_bitcast_u642d:
1394 case ir_unop_bitcast_i642d:
1395 case ir_unop_bitcast_d2u64:
1396 case ir_unop_bitcast_d2i64:
1397 case ir_unop_i642i:
1398 case ir_unop_u642i:
1399 case ir_unop_i642u:
1400 case ir_unop_u642u:
1401 case ir_unop_i642b:
1402 case ir_unop_i642f:
1403 case ir_unop_u642f:
1404 case ir_unop_i642d:
1405 case ir_unop_u642d:
1406 case ir_unop_i2i64:
1407 case ir_unop_u2i64:
1408 case ir_unop_b2i64:
1409 case ir_unop_f2i64:
1410 case ir_unop_d2i64:
1411 case ir_unop_i2u64:
1412 case ir_unop_u2u64:
1413 case ir_unop_f2u64:
1414 case ir_unop_d2u64:
1415 case ir_unop_u642i64:
1416 case ir_unop_i642u64:
1417 case ir_unop_pack_int_2x32:
1418 case ir_unop_unpack_int_2x32:
1419 case ir_unop_pack_uint_2x32:
1420 case ir_unop_unpack_uint_2x32:
1421 assert(!"not supported");
1422 break;
1423
1424 case ir_unop_ssbo_unsized_array_length:
1425 case ir_quadop_vector:
1426 /* This operation should have already been handled.
1427 */
1428 assert(!"Should not get here.");
1429 break;
1430 }
1431
1432 this->result = result_src;
1433 }
1434
1435
1436 void
1437 ir_to_mesa_visitor::visit(ir_swizzle *ir)
1438 {
1439 src_reg src;
1440 int i;
1441 int swizzle[4];
1442
1443 /* Note that this is only swizzles in expressions, not those on the left
1444 * hand side of an assignment, which do write masking. See ir_assignment
1445 * for that.
1446 */
1447
1448 ir->val->accept(this);
1449 src = this->result;
1450 assert(src.file != PROGRAM_UNDEFINED);
1451 assert(ir->type->vector_elements > 0);
1452
1453 for (i = 0; i < 4; i++) {
1454 if (i < ir->type->vector_elements) {
1455 switch (i) {
1456 case 0:
1457 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x);
1458 break;
1459 case 1:
1460 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y);
1461 break;
1462 case 2:
1463 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z);
1464 break;
1465 case 3:
1466 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w);
1467 break;
1468 }
1469 } else {
1470 /* If the type is smaller than a vec4, replicate the last
1471 * channel out.
1472 */
1473 swizzle[i] = swizzle[ir->type->vector_elements - 1];
1474 }
1475 }
1476
1477 src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
1478
1479 this->result = src;
1480 }
1481
1482 void
1483 ir_to_mesa_visitor::visit(ir_dereference_variable *ir)
1484 {
1485 variable_storage *entry = find_variable_storage(ir->var);
1486 ir_variable *var = ir->var;
1487
1488 if (!entry) {
1489 switch (var->data.mode) {
1490 case ir_var_uniform:
1491 entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM,
1492 var->data.param_index);
1493 this->variables.push_tail(entry);
1494 break;
1495 case ir_var_shader_in:
1496 /* The linker assigns locations for varyings and attributes,
1497 * including deprecated builtins (like gl_Color),
1498 * user-assigned generic attributes (glBindVertexLocation),
1499 * and user-defined varyings.
1500 */
1501 assert(var->data.location != -1);
1502 entry = new(mem_ctx) variable_storage(var,
1503 PROGRAM_INPUT,
1504 var->data.location);
1505 break;
1506 case ir_var_shader_out:
1507 assert(var->data.location != -1);
1508 entry = new(mem_ctx) variable_storage(var,
1509 PROGRAM_OUTPUT,
1510 var->data.location);
1511 break;
1512 case ir_var_system_value:
1513 entry = new(mem_ctx) variable_storage(var,
1514 PROGRAM_SYSTEM_VALUE,
1515 var->data.location);
1516 break;
1517 case ir_var_auto:
1518 case ir_var_temporary:
1519 entry = new(mem_ctx) variable_storage(var, PROGRAM_TEMPORARY,
1520 this->next_temp);
1521 this->variables.push_tail(entry);
1522
1523 next_temp += type_size(var->type);
1524 break;
1525 }
1526
1527 if (!entry) {
1528 printf("Failed to make storage for %s\n", var->name);
1529 exit(1);
1530 }
1531 }
1532
1533 this->result = src_reg(entry->file, entry->index, var->type);
1534 }
1535
1536 void
1537 ir_to_mesa_visitor::visit(ir_dereference_array *ir)
1538 {
1539 ir_constant *index;
1540 src_reg src;
1541 int element_size = type_size(ir->type);
1542
1543 index = ir->array_index->constant_expression_value();
1544
1545 ir->array->accept(this);
1546 src = this->result;
1547
1548 if (index) {
1549 src.index += index->value.i[0] * element_size;
1550 } else {
1551 /* Variable index array dereference. It eats the "vec4" of the
1552 * base of the array and an index that offsets the Mesa register
1553 * index.
1554 */
1555 ir->array_index->accept(this);
1556
1557 src_reg index_reg;
1558
1559 if (element_size == 1) {
1560 index_reg = this->result;
1561 } else {
1562 index_reg = get_temp(glsl_type::float_type);
1563
1564 emit(ir, OPCODE_MUL, dst_reg(index_reg),
1565 this->result, src_reg_for_float(element_size));
1566 }
1567
1568 /* If there was already a relative address register involved, add the
1569 * new and the old together to get the new offset.
1570 */
1571 if (src.reladdr != NULL) {
1572 src_reg accum_reg = get_temp(glsl_type::float_type);
1573
1574 emit(ir, OPCODE_ADD, dst_reg(accum_reg),
1575 index_reg, *src.reladdr);
1576
1577 index_reg = accum_reg;
1578 }
1579
1580 src.reladdr = ralloc(mem_ctx, src_reg);
1581 memcpy(src.reladdr, &index_reg, sizeof(index_reg));
1582 }
1583
1584 /* If the type is smaller than a vec4, replicate the last channel out. */
1585 if (ir->type->is_scalar() || ir->type->is_vector())
1586 src.swizzle = swizzle_for_size(ir->type->vector_elements);
1587 else
1588 src.swizzle = SWIZZLE_NOOP;
1589
1590 this->result = src;
1591 }
1592
1593 void
1594 ir_to_mesa_visitor::visit(ir_dereference_record *ir)
1595 {
1596 unsigned int i;
1597 const glsl_type *struct_type = ir->record->type;
1598 int offset = 0;
1599
1600 ir->record->accept(this);
1601
1602 for (i = 0; i < struct_type->length; i++) {
1603 if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
1604 break;
1605 offset += type_size(struct_type->fields.structure[i].type);
1606 }
1607
1608 /* If the type is smaller than a vec4, replicate the last channel out. */
1609 if (ir->type->is_scalar() || ir->type->is_vector())
1610 this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
1611 else
1612 this->result.swizzle = SWIZZLE_NOOP;
1613
1614 this->result.index += offset;
1615 }
1616
1617 /**
1618 * We want to be careful in assignment setup to hit the actual storage
1619 * instead of potentially using a temporary like we might with the
1620 * ir_dereference handler.
1621 */
1622 static dst_reg
1623 get_assignment_lhs(ir_dereference *ir, ir_to_mesa_visitor *v)
1624 {
1625 /* The LHS must be a dereference. If the LHS is a variable indexed array
1626 * access of a vector, it must be separated into a series conditional moves
1627 * before reaching this point (see ir_vec_index_to_cond_assign).
1628 */
1629 assert(ir->as_dereference());
1630 ir_dereference_array *deref_array = ir->as_dereference_array();
1631 if (deref_array) {
1632 assert(!deref_array->array->type->is_vector());
1633 }
1634
1635 /* Use the rvalue deref handler for the most part. We'll ignore
1636 * swizzles in it and write swizzles using writemask, though.
1637 */
1638 ir->accept(v);
1639 return dst_reg(v->result);
1640 }
1641
1642 /* Calculate the sampler index and also calculate the base uniform location
1643 * for struct members.
1644 */
1645 static void
1646 calc_sampler_offsets(struct gl_shader_program *prog, ir_dereference *deref,
1647 unsigned *offset, unsigned *array_elements,
1648 unsigned *location)
1649 {
1650 if (deref->ir_type == ir_type_dereference_variable)
1651 return;
1652
1653 switch (deref->ir_type) {
1654 case ir_type_dereference_array: {
1655 ir_dereference_array *deref_arr = deref->as_dereference_array();
1656 ir_constant *array_index =
1657 deref_arr->array_index->constant_expression_value();
1658
1659 if (!array_index) {
1660 /* GLSL 1.10 and 1.20 allowed variable sampler array indices,
1661 * while GLSL 1.30 requires that the array indices be
1662 * constant integer expressions. We don't expect any driver
1663 * to actually work with a really variable array index, so
1664 * all that would work would be an unrolled loop counter that ends
1665 * up being constant above.
1666 */
1667 ralloc_strcat(&prog->data->InfoLog,
1668 "warning: Variable sampler array index unsupported.\n"
1669 "This feature of the language was removed in GLSL 1.20 "
1670 "and is unlikely to be supported for 1.10 in Mesa.\n");
1671 } else {
1672 *offset += array_index->value.u[0] * *array_elements;
1673 }
1674
1675 *array_elements *= deref_arr->array->type->length;
1676
1677 calc_sampler_offsets(prog, deref_arr->array->as_dereference(),
1678 offset, array_elements, location);
1679 break;
1680 }
1681
1682 case ir_type_dereference_record: {
1683 ir_dereference_record *deref_record = deref->as_dereference_record();
1684 unsigned field_index =
1685 deref_record->record->type->field_index(deref_record->field);
1686 *location +=
1687 deref_record->record->type->record_location_offset(field_index);
1688 calc_sampler_offsets(prog, deref_record->record->as_dereference(),
1689 offset, array_elements, location);
1690 break;
1691 }
1692
1693 default:
1694 unreachable("Invalid deref type");
1695 break;
1696 }
1697 }
1698
1699 static int
1700 get_sampler_uniform_value(class ir_dereference *sampler,
1701 struct gl_shader_program *shader_program,
1702 const struct gl_program *prog)
1703 {
1704 GLuint shader = _mesa_program_enum_to_shader_stage(prog->Target);
1705 ir_variable *var = sampler->variable_referenced();
1706 unsigned location = var->data.location;
1707 unsigned array_elements = 1;
1708 unsigned offset = 0;
1709
1710 calc_sampler_offsets(shader_program, sampler, &offset, &array_elements,
1711 &location);
1712
1713 assert(shader_program->data->UniformStorage[location].opaque[shader].active);
1714 return shader_program->data->UniformStorage[location].opaque[shader].index +
1715 offset;
1716 }
1717
1718 /**
1719 * Process the condition of a conditional assignment
1720 *
1721 * Examines the condition of a conditional assignment to generate the optimal
1722 * first operand of a \c CMP instruction. If the condition is a relational
1723 * operator with 0 (e.g., \c ir_binop_less), the value being compared will be
1724 * used as the source for the \c CMP instruction. Otherwise the comparison
1725 * is processed to a boolean result, and the boolean result is used as the
1726 * operand to the CMP instruction.
1727 */
1728 bool
1729 ir_to_mesa_visitor::process_move_condition(ir_rvalue *ir)
1730 {
1731 ir_rvalue *src_ir = ir;
1732 bool negate = true;
1733 bool switch_order = false;
1734
1735 ir_expression *const expr = ir->as_expression();
1736 if ((expr != NULL) && (expr->get_num_operands() == 2)) {
1737 bool zero_on_left = false;
1738
1739 if (expr->operands[0]->is_zero()) {
1740 src_ir = expr->operands[1];
1741 zero_on_left = true;
1742 } else if (expr->operands[1]->is_zero()) {
1743 src_ir = expr->operands[0];
1744 zero_on_left = false;
1745 }
1746
1747 /* a is - 0 + - 0 +
1748 * (a < 0) T F F ( a < 0) T F F
1749 * (0 < a) F F T (-a < 0) F F T
1750 * (a <= 0) T T F (-a < 0) F F T (swap order of other operands)
1751 * (0 <= a) F T T ( a < 0) T F F (swap order of other operands)
1752 * (a > 0) F F T (-a < 0) F F T
1753 * (0 > a) T F F ( a < 0) T F F
1754 * (a >= 0) F T T ( a < 0) T F F (swap order of other operands)
1755 * (0 >= a) T T F (-a < 0) F F T (swap order of other operands)
1756 *
1757 * Note that exchanging the order of 0 and 'a' in the comparison simply
1758 * means that the value of 'a' should be negated.
1759 */
1760 if (src_ir != ir) {
1761 switch (expr->operation) {
1762 case ir_binop_less:
1763 switch_order = false;
1764 negate = zero_on_left;
1765 break;
1766
1767 case ir_binop_greater:
1768 switch_order = false;
1769 negate = !zero_on_left;
1770 break;
1771
1772 case ir_binop_lequal:
1773 switch_order = true;
1774 negate = !zero_on_left;
1775 break;
1776
1777 case ir_binop_gequal:
1778 switch_order = true;
1779 negate = zero_on_left;
1780 break;
1781
1782 default:
1783 /* This isn't the right kind of comparison afterall, so make sure
1784 * the whole condition is visited.
1785 */
1786 src_ir = ir;
1787 break;
1788 }
1789 }
1790 }
1791
1792 src_ir->accept(this);
1793
1794 /* We use the OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the
1795 * condition we produced is 0.0 or 1.0. By flipping the sign, we can
1796 * choose which value OPCODE_CMP produces without an extra instruction
1797 * computing the condition.
1798 */
1799 if (negate)
1800 this->result.negate = ~this->result.negate;
1801
1802 return switch_order;
1803 }
1804
1805 void
1806 ir_to_mesa_visitor::visit(ir_assignment *ir)
1807 {
1808 dst_reg l;
1809 src_reg r;
1810 int i;
1811
1812 ir->rhs->accept(this);
1813 r = this->result;
1814
1815 l = get_assignment_lhs(ir->lhs, this);
1816
1817 /* FINISHME: This should really set to the correct maximal writemask for each
1818 * FINISHME: component written (in the loops below). This case can only
1819 * FINISHME: occur for matrices, arrays, and structures.
1820 */
1821 if (ir->write_mask == 0) {
1822 assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
1823 l.writemask = WRITEMASK_XYZW;
1824 } else if (ir->lhs->type->is_scalar()) {
1825 /* FINISHME: This hack makes writing to gl_FragDepth, which lives in the
1826 * FINISHME: W component of fragment shader output zero, work correctly.
1827 */
1828 l.writemask = WRITEMASK_XYZW;
1829 } else {
1830 int swizzles[4];
1831 int first_enabled_chan = 0;
1832 int rhs_chan = 0;
1833
1834 assert(ir->lhs->type->is_vector());
1835 l.writemask = ir->write_mask;
1836
1837 for (int i = 0; i < 4; i++) {
1838 if (l.writemask & (1 << i)) {
1839 first_enabled_chan = GET_SWZ(r.swizzle, i);
1840 break;
1841 }
1842 }
1843
1844 /* Swizzle a small RHS vector into the channels being written.
1845 *
1846 * glsl ir treats write_mask as dictating how many channels are
1847 * present on the RHS while Mesa IR treats write_mask as just
1848 * showing which channels of the vec4 RHS get written.
1849 */
1850 for (int i = 0; i < 4; i++) {
1851 if (l.writemask & (1 << i))
1852 swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++);
1853 else
1854 swizzles[i] = first_enabled_chan;
1855 }
1856 r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1],
1857 swizzles[2], swizzles[3]);
1858 }
1859
1860 assert(l.file != PROGRAM_UNDEFINED);
1861 assert(r.file != PROGRAM_UNDEFINED);
1862
1863 if (ir->condition) {
1864 const bool switch_order = this->process_move_condition(ir->condition);
1865 src_reg condition = this->result;
1866
1867 for (i = 0; i < type_size(ir->lhs->type); i++) {
1868 if (switch_order) {
1869 emit(ir, OPCODE_CMP, l, condition, src_reg(l), r);
1870 } else {
1871 emit(ir, OPCODE_CMP, l, condition, r, src_reg(l));
1872 }
1873
1874 l.index++;
1875 r.index++;
1876 }
1877 } else {
1878 for (i = 0; i < type_size(ir->lhs->type); i++) {
1879 emit(ir, OPCODE_MOV, l, r);
1880 l.index++;
1881 r.index++;
1882 }
1883 }
1884 }
1885
1886
1887 void
1888 ir_to_mesa_visitor::visit(ir_constant *ir)
1889 {
1890 src_reg src;
1891 GLfloat stack_vals[4] = { 0 };
1892 GLfloat *values = stack_vals;
1893 unsigned int i;
1894
1895 /* Unfortunately, 4 floats is all we can get into
1896 * _mesa_add_unnamed_constant. So, make a temp to store an
1897 * aggregate constant and move each constant value into it. If we
1898 * get lucky, copy propagation will eliminate the extra moves.
1899 */
1900
1901 if (ir->type->base_type == GLSL_TYPE_STRUCT) {
1902 src_reg temp_base = get_temp(ir->type);
1903 dst_reg temp = dst_reg(temp_base);
1904
1905 foreach_in_list(ir_constant, field_value, &ir->components) {
1906 int size = type_size(field_value->type);
1907
1908 assert(size > 0);
1909
1910 field_value->accept(this);
1911 src = this->result;
1912
1913 for (i = 0; i < (unsigned int)size; i++) {
1914 emit(ir, OPCODE_MOV, temp, src);
1915
1916 src.index++;
1917 temp.index++;
1918 }
1919 }
1920 this->result = temp_base;
1921 return;
1922 }
1923
1924 if (ir->type->is_array()) {
1925 src_reg temp_base = get_temp(ir->type);
1926 dst_reg temp = dst_reg(temp_base);
1927 int size = type_size(ir->type->fields.array);
1928
1929 assert(size > 0);
1930
1931 for (i = 0; i < ir->type->length; i++) {
1932 ir->array_elements[i]->accept(this);
1933 src = this->result;
1934 for (int j = 0; j < size; j++) {
1935 emit(ir, OPCODE_MOV, temp, src);
1936
1937 src.index++;
1938 temp.index++;
1939 }
1940 }
1941 this->result = temp_base;
1942 return;
1943 }
1944
1945 if (ir->type->is_matrix()) {
1946 src_reg mat = get_temp(ir->type);
1947 dst_reg mat_column = dst_reg(mat);
1948
1949 for (i = 0; i < ir->type->matrix_columns; i++) {
1950 assert(ir->type->base_type == GLSL_TYPE_FLOAT);
1951 values = &ir->value.f[i * ir->type->vector_elements];
1952
1953 src = src_reg(PROGRAM_CONSTANT, -1, NULL);
1954 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1955 (gl_constant_value *) values,
1956 ir->type->vector_elements,
1957 &src.swizzle);
1958 emit(ir, OPCODE_MOV, mat_column, src);
1959
1960 mat_column.index++;
1961 }
1962
1963 this->result = mat;
1964 return;
1965 }
1966
1967 src.file = PROGRAM_CONSTANT;
1968 switch (ir->type->base_type) {
1969 case GLSL_TYPE_FLOAT:
1970 values = &ir->value.f[0];
1971 break;
1972 case GLSL_TYPE_UINT:
1973 for (i = 0; i < ir->type->vector_elements; i++) {
1974 values[i] = ir->value.u[i];
1975 }
1976 break;
1977 case GLSL_TYPE_INT:
1978 for (i = 0; i < ir->type->vector_elements; i++) {
1979 values[i] = ir->value.i[i];
1980 }
1981 break;
1982 case GLSL_TYPE_BOOL:
1983 for (i = 0; i < ir->type->vector_elements; i++) {
1984 values[i] = ir->value.b[i];
1985 }
1986 break;
1987 default:
1988 assert(!"Non-float/uint/int/bool constant");
1989 }
1990
1991 this->result = src_reg(PROGRAM_CONSTANT, -1, ir->type);
1992 this->result.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1993 (gl_constant_value *) values,
1994 ir->type->vector_elements,
1995 &this->result.swizzle);
1996 }
1997
1998 void
1999 ir_to_mesa_visitor::visit(ir_call *)
2000 {
2001 assert(!"ir_to_mesa: All function calls should have been inlined by now.");
2002 }
2003
2004 void
2005 ir_to_mesa_visitor::visit(ir_texture *ir)
2006 {
2007 src_reg result_src, coord, lod_info, projector, dx, dy;
2008 dst_reg result_dst, coord_dst;
2009 ir_to_mesa_instruction *inst = NULL;
2010 prog_opcode opcode = OPCODE_NOP;
2011
2012 if (ir->op == ir_txs)
2013 this->result = src_reg_for_float(0.0);
2014 else
2015 ir->coordinate->accept(this);
2016
2017 /* Put our coords in a temp. We'll need to modify them for shadow,
2018 * projection, or LOD, so the only case we'd use it as-is is if
2019 * we're doing plain old texturing. Mesa IR optimization should
2020 * handle cleaning up our mess in that case.
2021 */
2022 coord = get_temp(glsl_type::vec4_type);
2023 coord_dst = dst_reg(coord);
2024 emit(ir, OPCODE_MOV, coord_dst, this->result);
2025
2026 if (ir->projector) {
2027 ir->projector->accept(this);
2028 projector = this->result;
2029 }
2030
2031 /* Storage for our result. Ideally for an assignment we'd be using
2032 * the actual storage for the result here, instead.
2033 */
2034 result_src = get_temp(glsl_type::vec4_type);
2035 result_dst = dst_reg(result_src);
2036
2037 switch (ir->op) {
2038 case ir_tex:
2039 case ir_txs:
2040 opcode = OPCODE_TEX;
2041 break;
2042 case ir_txb:
2043 opcode = OPCODE_TXB;
2044 ir->lod_info.bias->accept(this);
2045 lod_info = this->result;
2046 break;
2047 case ir_txf:
2048 /* Pretend to be TXL so the sampler, coordinate, lod are available */
2049 case ir_txl:
2050 opcode = OPCODE_TXL;
2051 ir->lod_info.lod->accept(this);
2052 lod_info = this->result;
2053 break;
2054 case ir_txd:
2055 opcode = OPCODE_TXD;
2056 ir->lod_info.grad.dPdx->accept(this);
2057 dx = this->result;
2058 ir->lod_info.grad.dPdy->accept(this);
2059 dy = this->result;
2060 break;
2061 case ir_txf_ms:
2062 assert(!"Unexpected ir_txf_ms opcode");
2063 break;
2064 case ir_lod:
2065 assert(!"Unexpected ir_lod opcode");
2066 break;
2067 case ir_tg4:
2068 assert(!"Unexpected ir_tg4 opcode");
2069 break;
2070 case ir_query_levels:
2071 assert(!"Unexpected ir_query_levels opcode");
2072 break;
2073 case ir_samples_identical:
2074 unreachable("Unexpected ir_samples_identical opcode");
2075 case ir_texture_samples:
2076 unreachable("Unexpected ir_texture_samples opcode");
2077 }
2078
2079 const glsl_type *sampler_type = ir->sampler->type;
2080
2081 if (ir->projector) {
2082 if (opcode == OPCODE_TEX) {
2083 /* Slot the projector in as the last component of the coord. */
2084 coord_dst.writemask = WRITEMASK_W;
2085 emit(ir, OPCODE_MOV, coord_dst, projector);
2086 coord_dst.writemask = WRITEMASK_XYZW;
2087 opcode = OPCODE_TXP;
2088 } else {
2089 src_reg coord_w = coord;
2090 coord_w.swizzle = SWIZZLE_WWWW;
2091
2092 /* For the other TEX opcodes there's no projective version
2093 * since the last slot is taken up by lod info. Do the
2094 * projective divide now.
2095 */
2096 coord_dst.writemask = WRITEMASK_W;
2097 emit(ir, OPCODE_RCP, coord_dst, projector);
2098
2099 /* In the case where we have to project the coordinates "by hand,"
2100 * the shadow comparator value must also be projected.
2101 */
2102 src_reg tmp_src = coord;
2103 if (ir->shadow_comparator) {
2104 /* Slot the shadow value in as the second to last component of the
2105 * coord.
2106 */
2107 ir->shadow_comparator->accept(this);
2108
2109 tmp_src = get_temp(glsl_type::vec4_type);
2110 dst_reg tmp_dst = dst_reg(tmp_src);
2111
2112 /* Projective division not allowed for array samplers. */
2113 assert(!sampler_type->sampler_array);
2114
2115 tmp_dst.writemask = WRITEMASK_Z;
2116 emit(ir, OPCODE_MOV, tmp_dst, this->result);
2117
2118 tmp_dst.writemask = WRITEMASK_XY;
2119 emit(ir, OPCODE_MOV, tmp_dst, coord);
2120 }
2121
2122 coord_dst.writemask = WRITEMASK_XYZ;
2123 emit(ir, OPCODE_MUL, coord_dst, tmp_src, coord_w);
2124
2125 coord_dst.writemask = WRITEMASK_XYZW;
2126 coord.swizzle = SWIZZLE_XYZW;
2127 }
2128 }
2129
2130 /* If projection is done and the opcode is not OPCODE_TXP, then the shadow
2131 * comparator was put in the correct place (and projected) by the code,
2132 * above, that handles by-hand projection.
2133 */
2134 if (ir->shadow_comparator && (!ir->projector || opcode == OPCODE_TXP)) {
2135 /* Slot the shadow value in as the second to last component of the
2136 * coord.
2137 */
2138 ir->shadow_comparator->accept(this);
2139
2140 /* XXX This will need to be updated for cubemap array samplers. */
2141 if (sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_2D &&
2142 sampler_type->sampler_array) {
2143 coord_dst.writemask = WRITEMASK_W;
2144 } else {
2145 coord_dst.writemask = WRITEMASK_Z;
2146 }
2147
2148 emit(ir, OPCODE_MOV, coord_dst, this->result);
2149 coord_dst.writemask = WRITEMASK_XYZW;
2150 }
2151
2152 if (opcode == OPCODE_TXL || opcode == OPCODE_TXB) {
2153 /* Mesa IR stores lod or lod bias in the last channel of the coords. */
2154 coord_dst.writemask = WRITEMASK_W;
2155 emit(ir, OPCODE_MOV, coord_dst, lod_info);
2156 coord_dst.writemask = WRITEMASK_XYZW;
2157 }
2158
2159 if (opcode == OPCODE_TXD)
2160 inst = emit(ir, opcode, result_dst, coord, dx, dy);
2161 else
2162 inst = emit(ir, opcode, result_dst, coord);
2163
2164 if (ir->shadow_comparator)
2165 inst->tex_shadow = GL_TRUE;
2166
2167 inst->sampler = get_sampler_uniform_value(ir->sampler, shader_program,
2168 prog);
2169
2170 switch (sampler_type->sampler_dimensionality) {
2171 case GLSL_SAMPLER_DIM_1D:
2172 inst->tex_target = (sampler_type->sampler_array)
2173 ? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX;
2174 break;
2175 case GLSL_SAMPLER_DIM_2D:
2176 inst->tex_target = (sampler_type->sampler_array)
2177 ? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX;
2178 break;
2179 case GLSL_SAMPLER_DIM_3D:
2180 inst->tex_target = TEXTURE_3D_INDEX;
2181 break;
2182 case GLSL_SAMPLER_DIM_CUBE:
2183 inst->tex_target = TEXTURE_CUBE_INDEX;
2184 break;
2185 case GLSL_SAMPLER_DIM_RECT:
2186 inst->tex_target = TEXTURE_RECT_INDEX;
2187 break;
2188 case GLSL_SAMPLER_DIM_BUF:
2189 assert(!"FINISHME: Implement ARB_texture_buffer_object");
2190 break;
2191 case GLSL_SAMPLER_DIM_EXTERNAL:
2192 inst->tex_target = TEXTURE_EXTERNAL_INDEX;
2193 break;
2194 default:
2195 assert(!"Should not get here.");
2196 }
2197
2198 this->result = result_src;
2199 }
2200
2201 void
2202 ir_to_mesa_visitor::visit(ir_return *ir)
2203 {
2204 /* Non-void functions should have been inlined. We may still emit RETs
2205 * from main() unless the EmitNoMainReturn option is set.
2206 */
2207 assert(!ir->get_value());
2208 emit(ir, OPCODE_RET);
2209 }
2210
2211 void
2212 ir_to_mesa_visitor::visit(ir_discard *ir)
2213 {
2214 if (!ir->condition)
2215 ir->condition = new(mem_ctx) ir_constant(true);
2216
2217 ir->condition->accept(this);
2218 this->result.negate = ~this->result.negate;
2219 emit(ir, OPCODE_KIL, undef_dst, this->result);
2220 }
2221
2222 void
2223 ir_to_mesa_visitor::visit(ir_if *ir)
2224 {
2225 ir_to_mesa_instruction *if_inst;
2226
2227 ir->condition->accept(this);
2228 assert(this->result.file != PROGRAM_UNDEFINED);
2229
2230 if_inst = emit(ir->condition, OPCODE_IF, undef_dst, this->result);
2231
2232 this->instructions.push_tail(if_inst);
2233
2234 visit_exec_list(&ir->then_instructions, this);
2235
2236 if (!ir->else_instructions.is_empty()) {
2237 emit(ir->condition, OPCODE_ELSE);
2238 visit_exec_list(&ir->else_instructions, this);
2239 }
2240
2241 emit(ir->condition, OPCODE_ENDIF);
2242 }
2243
2244 void
2245 ir_to_mesa_visitor::visit(ir_emit_vertex *)
2246 {
2247 assert(!"Geometry shaders not supported.");
2248 }
2249
2250 void
2251 ir_to_mesa_visitor::visit(ir_end_primitive *)
2252 {
2253 assert(!"Geometry shaders not supported.");
2254 }
2255
2256 void
2257 ir_to_mesa_visitor::visit(ir_barrier *)
2258 {
2259 unreachable("GLSL barrier() not supported.");
2260 }
2261
2262 ir_to_mesa_visitor::ir_to_mesa_visitor()
2263 {
2264 result.file = PROGRAM_UNDEFINED;
2265 next_temp = 1;
2266 next_signature_id = 1;
2267 current_function = NULL;
2268 mem_ctx = ralloc_context(NULL);
2269 }
2270
2271 ir_to_mesa_visitor::~ir_to_mesa_visitor()
2272 {
2273 ralloc_free(mem_ctx);
2274 }
2275
2276 static struct prog_src_register
2277 mesa_src_reg_from_ir_src_reg(src_reg reg)
2278 {
2279 struct prog_src_register mesa_reg;
2280
2281 mesa_reg.File = reg.file;
2282 assert(reg.index < (1 << INST_INDEX_BITS));
2283 mesa_reg.Index = reg.index;
2284 mesa_reg.Swizzle = reg.swizzle;
2285 mesa_reg.RelAddr = reg.reladdr != NULL;
2286 mesa_reg.Negate = reg.negate;
2287
2288 return mesa_reg;
2289 }
2290
2291 static void
2292 set_branchtargets(ir_to_mesa_visitor *v,
2293 struct prog_instruction *mesa_instructions,
2294 int num_instructions)
2295 {
2296 int if_count = 0, loop_count = 0;
2297 int *if_stack, *loop_stack;
2298 int if_stack_pos = 0, loop_stack_pos = 0;
2299 int i, j;
2300
2301 for (i = 0; i < num_instructions; i++) {
2302 switch (mesa_instructions[i].Opcode) {
2303 case OPCODE_IF:
2304 if_count++;
2305 break;
2306 case OPCODE_BGNLOOP:
2307 loop_count++;
2308 break;
2309 case OPCODE_BRK:
2310 case OPCODE_CONT:
2311 mesa_instructions[i].BranchTarget = -1;
2312 break;
2313 default:
2314 break;
2315 }
2316 }
2317
2318 if_stack = rzalloc_array(v->mem_ctx, int, if_count);
2319 loop_stack = rzalloc_array(v->mem_ctx, int, loop_count);
2320
2321 for (i = 0; i < num_instructions; i++) {
2322 switch (mesa_instructions[i].Opcode) {
2323 case OPCODE_IF:
2324 if_stack[if_stack_pos] = i;
2325 if_stack_pos++;
2326 break;
2327 case OPCODE_ELSE:
2328 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2329 if_stack[if_stack_pos - 1] = i;
2330 break;
2331 case OPCODE_ENDIF:
2332 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2333 if_stack_pos--;
2334 break;
2335 case OPCODE_BGNLOOP:
2336 loop_stack[loop_stack_pos] = i;
2337 loop_stack_pos++;
2338 break;
2339 case OPCODE_ENDLOOP:
2340 loop_stack_pos--;
2341 /* Rewrite any breaks/conts at this nesting level (haven't
2342 * already had a BranchTarget assigned) to point to the end
2343 * of the loop.
2344 */
2345 for (j = loop_stack[loop_stack_pos]; j < i; j++) {
2346 if (mesa_instructions[j].Opcode == OPCODE_BRK ||
2347 mesa_instructions[j].Opcode == OPCODE_CONT) {
2348 if (mesa_instructions[j].BranchTarget == -1) {
2349 mesa_instructions[j].BranchTarget = i;
2350 }
2351 }
2352 }
2353 /* The loop ends point at each other. */
2354 mesa_instructions[i].BranchTarget = loop_stack[loop_stack_pos];
2355 mesa_instructions[loop_stack[loop_stack_pos]].BranchTarget = i;
2356 break;
2357 case OPCODE_CAL:
2358 foreach_in_list(function_entry, entry, &v->function_signatures) {
2359 if (entry->sig_id == mesa_instructions[i].BranchTarget) {
2360 mesa_instructions[i].BranchTarget = entry->inst;
2361 break;
2362 }
2363 }
2364 break;
2365 default:
2366 break;
2367 }
2368 }
2369 }
2370
2371 static void
2372 print_program(struct prog_instruction *mesa_instructions,
2373 ir_instruction **mesa_instruction_annotation,
2374 int num_instructions)
2375 {
2376 ir_instruction *last_ir = NULL;
2377 int i;
2378 int indent = 0;
2379
2380 for (i = 0; i < num_instructions; i++) {
2381 struct prog_instruction *mesa_inst = mesa_instructions + i;
2382 ir_instruction *ir = mesa_instruction_annotation[i];
2383
2384 fprintf(stdout, "%3d: ", i);
2385
2386 if (last_ir != ir && ir) {
2387 int j;
2388
2389 for (j = 0; j < indent; j++) {
2390 fprintf(stdout, " ");
2391 }
2392 ir->print();
2393 printf("\n");
2394 last_ir = ir;
2395
2396 fprintf(stdout, " "); /* line number spacing. */
2397 }
2398
2399 indent = _mesa_fprint_instruction_opt(stdout, mesa_inst, indent,
2400 PROG_PRINT_DEBUG, NULL);
2401 }
2402 }
2403
2404 namespace {
2405
2406 class add_uniform_to_shader : public program_resource_visitor {
2407 public:
2408 add_uniform_to_shader(struct gl_shader_program *shader_program,
2409 struct gl_program_parameter_list *params,
2410 gl_shader_stage shader_type)
2411 : shader_program(shader_program), params(params), idx(-1),
2412 shader_type(shader_type)
2413 {
2414 /* empty */
2415 }
2416
2417 void process(ir_variable *var)
2418 {
2419 this->idx = -1;
2420 this->program_resource_visitor::process(var);
2421 var->data.param_index = this->idx;
2422 }
2423
2424 private:
2425 virtual void visit_field(const glsl_type *type, const char *name,
2426 bool row_major, const glsl_type *record_type,
2427 const enum glsl_interface_packing packing,
2428 bool last_field);
2429
2430 struct gl_shader_program *shader_program;
2431 struct gl_program_parameter_list *params;
2432 int idx;
2433 gl_shader_stage shader_type;
2434 };
2435
2436 } /* anonymous namespace */
2437
2438 void
2439 add_uniform_to_shader::visit_field(const glsl_type *type, const char *name,
2440 bool /* row_major */,
2441 const glsl_type * /* record_type */,
2442 const enum glsl_interface_packing,
2443 bool /* last_field */)
2444 {
2445 unsigned int size;
2446
2447 /* atomics don't get real storage */
2448 if (type->contains_atomic())
2449 return;
2450
2451 if (type->is_vector() || type->is_scalar()) {
2452 size = type->vector_elements;
2453 if (type->is_64bit())
2454 size *= 2;
2455 } else {
2456 size = type_size(type) * 4;
2457 }
2458
2459 gl_register_file file;
2460 if (type->without_array()->is_sampler()) {
2461 file = PROGRAM_SAMPLER;
2462 } else {
2463 file = PROGRAM_UNIFORM;
2464 }
2465
2466 int index = _mesa_lookup_parameter_index(params, name);
2467 if (index < 0) {
2468 index = _mesa_add_parameter(params, file, name, size, type->gl_type,
2469 NULL, NULL);
2470
2471 /* Sampler uniform values are stored in prog->SamplerUnits,
2472 * and the entry in that array is selected by this index we
2473 * store in ParameterValues[].
2474 */
2475 if (file == PROGRAM_SAMPLER) {
2476 unsigned location;
2477 const bool found =
2478 this->shader_program->UniformHash->get(location,
2479 params->Parameters[index].Name);
2480 assert(found);
2481
2482 if (!found)
2483 return;
2484
2485 struct gl_uniform_storage *storage =
2486 &this->shader_program->data->UniformStorage[location];
2487
2488 assert(storage->type->is_sampler() &&
2489 storage->opaque[shader_type].active);
2490
2491 for (unsigned int j = 0; j < size / 4; j++)
2492 params->ParameterValues[index + j][0].f =
2493 storage->opaque[shader_type].index + j;
2494 }
2495 }
2496
2497 /* The first part of the uniform that's processed determines the base
2498 * location of the whole uniform (for structures).
2499 */
2500 if (this->idx < 0)
2501 this->idx = index;
2502 }
2503
2504 /**
2505 * Generate the program parameters list for the user uniforms in a shader
2506 *
2507 * \param shader_program Linked shader program. This is only used to
2508 * emit possible link errors to the info log.
2509 * \param sh Shader whose uniforms are to be processed.
2510 * \param params Parameter list to be filled in.
2511 */
2512 void
2513 _mesa_generate_parameters_list_for_uniforms(struct gl_shader_program
2514 *shader_program,
2515 struct gl_linked_shader *sh,
2516 struct gl_program_parameter_list
2517 *params)
2518 {
2519 add_uniform_to_shader add(shader_program, params, sh->Stage);
2520
2521 foreach_in_list(ir_instruction, node, sh->ir) {
2522 ir_variable *var = node->as_variable();
2523
2524 if ((var == NULL) || (var->data.mode != ir_var_uniform)
2525 || var->is_in_buffer_block() || (strncmp(var->name, "gl_", 3) == 0))
2526 continue;
2527
2528 add.process(var);
2529 }
2530 }
2531
2532 void
2533 _mesa_associate_uniform_storage(struct gl_context *ctx,
2534 struct gl_shader_program *shader_program,
2535 struct gl_program_parameter_list *params,
2536 bool propagate_to_storage)
2537 {
2538 /* After adding each uniform to the parameter list, connect the storage for
2539 * the parameter with the tracking structure used by the API for the
2540 * uniform.
2541 */
2542 unsigned last_location = unsigned(~0);
2543 for (unsigned i = 0; i < params->NumParameters; i++) {
2544 if (params->Parameters[i].Type != PROGRAM_UNIFORM)
2545 continue;
2546
2547 unsigned location;
2548 const bool found =
2549 shader_program->UniformHash->get(location, params->Parameters[i].Name);
2550 assert(found);
2551
2552 if (!found)
2553 continue;
2554
2555 struct gl_uniform_storage *storage =
2556 &shader_program->data->UniformStorage[location];
2557
2558 /* Do not associate any uniform storage to built-in uniforms */
2559 if (storage->builtin)
2560 continue;
2561
2562 if (location != last_location) {
2563 enum gl_uniform_driver_format format = uniform_native;
2564
2565 unsigned columns = 0;
2566 int dmul = 4 * sizeof(float);
2567 switch (storage->type->base_type) {
2568 case GLSL_TYPE_UINT64:
2569 if (storage->type->vector_elements > 2)
2570 dmul *= 2;
2571 /* fallthrough */
2572 case GLSL_TYPE_UINT:
2573 assert(ctx->Const.NativeIntegers);
2574 format = uniform_native;
2575 columns = 1;
2576 break;
2577 case GLSL_TYPE_INT64:
2578 if (storage->type->vector_elements > 2)
2579 dmul *= 2;
2580 /* fallthrough */
2581 case GLSL_TYPE_INT:
2582 format =
2583 (ctx->Const.NativeIntegers) ? uniform_native : uniform_int_float;
2584 columns = 1;
2585 break;
2586
2587 case GLSL_TYPE_DOUBLE:
2588 if (storage->type->vector_elements > 2)
2589 dmul *= 2;
2590 /* fallthrough */
2591 case GLSL_TYPE_FLOAT:
2592 format = uniform_native;
2593 columns = storage->type->matrix_columns;
2594 break;
2595 case GLSL_TYPE_BOOL:
2596 format = uniform_native;
2597 columns = 1;
2598 break;
2599 case GLSL_TYPE_SAMPLER:
2600 case GLSL_TYPE_IMAGE:
2601 case GLSL_TYPE_SUBROUTINE:
2602 format = uniform_native;
2603 columns = 1;
2604 break;
2605 case GLSL_TYPE_ATOMIC_UINT:
2606 case GLSL_TYPE_ARRAY:
2607 case GLSL_TYPE_VOID:
2608 case GLSL_TYPE_STRUCT:
2609 case GLSL_TYPE_ERROR:
2610 case GLSL_TYPE_INTERFACE:
2611 case GLSL_TYPE_FUNCTION:
2612 assert(!"Should not get here.");
2613 break;
2614 }
2615
2616 _mesa_uniform_attach_driver_storage(storage,
2617 dmul * columns,
2618 dmul,
2619 format,
2620 &params->ParameterValues[i]);
2621
2622 /* After attaching the driver's storage to the uniform, propagate any
2623 * data from the linker's backing store. This will cause values from
2624 * initializers in the source code to be copied over.
2625 */
2626 if (propagate_to_storage) {
2627 unsigned array_elements = MAX2(1, storage->array_elements);
2628 _mesa_propagate_uniforms_to_driver_storage(storage, 0,
2629 array_elements);
2630 }
2631
2632 last_location = location;
2633 }
2634 }
2635 }
2636
2637 /*
2638 * On a basic block basis, tracks available PROGRAM_TEMPORARY register
2639 * channels for copy propagation and updates following instructions to
2640 * use the original versions.
2641 *
2642 * The ir_to_mesa_visitor lazily produces code assuming that this pass
2643 * will occur. As an example, a TXP production before this pass:
2644 *
2645 * 0: MOV TEMP[1], INPUT[4].xyyy;
2646 * 1: MOV TEMP[1].w, INPUT[4].wwww;
2647 * 2: TXP TEMP[2], TEMP[1], texture[0], 2D;
2648 *
2649 * and after:
2650 *
2651 * 0: MOV TEMP[1], INPUT[4].xyyy;
2652 * 1: MOV TEMP[1].w, INPUT[4].wwww;
2653 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
2654 *
2655 * which allows for dead code elimination on TEMP[1]'s writes.
2656 */
2657 void
2658 ir_to_mesa_visitor::copy_propagate(void)
2659 {
2660 ir_to_mesa_instruction **acp = rzalloc_array(mem_ctx,
2661 ir_to_mesa_instruction *,
2662 this->next_temp * 4);
2663 int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
2664 int level = 0;
2665
2666 foreach_in_list(ir_to_mesa_instruction, inst, &this->instructions) {
2667 assert(inst->dst.file != PROGRAM_TEMPORARY
2668 || inst->dst.index < this->next_temp);
2669
2670 /* First, do any copy propagation possible into the src regs. */
2671 for (int r = 0; r < 3; r++) {
2672 ir_to_mesa_instruction *first = NULL;
2673 bool good = true;
2674 int acp_base = inst->src[r].index * 4;
2675
2676 if (inst->src[r].file != PROGRAM_TEMPORARY ||
2677 inst->src[r].reladdr)
2678 continue;
2679
2680 /* See if we can find entries in the ACP consisting of MOVs
2681 * from the same src register for all the swizzled channels
2682 * of this src register reference.
2683 */
2684 for (int i = 0; i < 4; i++) {
2685 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2686 ir_to_mesa_instruction *copy_chan = acp[acp_base + src_chan];
2687
2688 if (!copy_chan) {
2689 good = false;
2690 break;
2691 }
2692
2693 assert(acp_level[acp_base + src_chan] <= level);
2694
2695 if (!first) {
2696 first = copy_chan;
2697 } else {
2698 if (first->src[0].file != copy_chan->src[0].file ||
2699 first->src[0].index != copy_chan->src[0].index) {
2700 good = false;
2701 break;
2702 }
2703 }
2704 }
2705
2706 if (good) {
2707 /* We've now validated that we can copy-propagate to
2708 * replace this src register reference. Do it.
2709 */
2710 inst->src[r].file = first->src[0].file;
2711 inst->src[r].index = first->src[0].index;
2712
2713 int swizzle = 0;
2714 for (int i = 0; i < 4; i++) {
2715 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2716 ir_to_mesa_instruction *copy_inst = acp[acp_base + src_chan];
2717 swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) <<
2718 (3 * i));
2719 }
2720 inst->src[r].swizzle = swizzle;
2721 }
2722 }
2723
2724 switch (inst->op) {
2725 case OPCODE_BGNLOOP:
2726 case OPCODE_ENDLOOP:
2727 /* End of a basic block, clear the ACP entirely. */
2728 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2729 break;
2730
2731 case OPCODE_IF:
2732 ++level;
2733 break;
2734
2735 case OPCODE_ENDIF:
2736 case OPCODE_ELSE:
2737 /* Clear all channels written inside the block from the ACP, but
2738 * leaving those that were not touched.
2739 */
2740 for (int r = 0; r < this->next_temp; r++) {
2741 for (int c = 0; c < 4; c++) {
2742 if (!acp[4 * r + c])
2743 continue;
2744
2745 if (acp_level[4 * r + c] >= level)
2746 acp[4 * r + c] = NULL;
2747 }
2748 }
2749 if (inst->op == OPCODE_ENDIF)
2750 --level;
2751 break;
2752
2753 default:
2754 /* Continuing the block, clear any written channels from
2755 * the ACP.
2756 */
2757 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.reladdr) {
2758 /* Any temporary might be written, so no copy propagation
2759 * across this instruction.
2760 */
2761 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2762 } else if (inst->dst.file == PROGRAM_OUTPUT &&
2763 inst->dst.reladdr) {
2764 /* Any output might be written, so no copy propagation
2765 * from outputs across this instruction.
2766 */
2767 for (int r = 0; r < this->next_temp; r++) {
2768 for (int c = 0; c < 4; c++) {
2769 if (!acp[4 * r + c])
2770 continue;
2771
2772 if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT)
2773 acp[4 * r + c] = NULL;
2774 }
2775 }
2776 } else if (inst->dst.file == PROGRAM_TEMPORARY ||
2777 inst->dst.file == PROGRAM_OUTPUT) {
2778 /* Clear where it's used as dst. */
2779 if (inst->dst.file == PROGRAM_TEMPORARY) {
2780 for (int c = 0; c < 4; c++) {
2781 if (inst->dst.writemask & (1 << c)) {
2782 acp[4 * inst->dst.index + c] = NULL;
2783 }
2784 }
2785 }
2786
2787 /* Clear where it's used as src. */
2788 for (int r = 0; r < this->next_temp; r++) {
2789 for (int c = 0; c < 4; c++) {
2790 if (!acp[4 * r + c])
2791 continue;
2792
2793 int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c);
2794
2795 if (acp[4 * r + c]->src[0].file == inst->dst.file &&
2796 acp[4 * r + c]->src[0].index == inst->dst.index &&
2797 inst->dst.writemask & (1 << src_chan))
2798 {
2799 acp[4 * r + c] = NULL;
2800 }
2801 }
2802 }
2803 }
2804 break;
2805 }
2806
2807 /* If this is a copy, add it to the ACP. */
2808 if (inst->op == OPCODE_MOV &&
2809 inst->dst.file == PROGRAM_TEMPORARY &&
2810 !(inst->dst.file == inst->src[0].file &&
2811 inst->dst.index == inst->src[0].index) &&
2812 !inst->dst.reladdr &&
2813 !inst->saturate &&
2814 !inst->src[0].reladdr &&
2815 !inst->src[0].negate) {
2816 for (int i = 0; i < 4; i++) {
2817 if (inst->dst.writemask & (1 << i)) {
2818 acp[4 * inst->dst.index + i] = inst;
2819 acp_level[4 * inst->dst.index + i] = level;
2820 }
2821 }
2822 }
2823 }
2824
2825 ralloc_free(acp_level);
2826 ralloc_free(acp);
2827 }
2828
2829
2830 /**
2831 * Convert a shader's GLSL IR into a Mesa gl_program.
2832 */
2833 static struct gl_program *
2834 get_mesa_program(struct gl_context *ctx,
2835 struct gl_shader_program *shader_program,
2836 struct gl_linked_shader *shader)
2837 {
2838 ir_to_mesa_visitor v;
2839 struct prog_instruction *mesa_instructions, *mesa_inst;
2840 ir_instruction **mesa_instruction_annotation;
2841 int i;
2842 struct gl_program *prog;
2843 GLenum target = _mesa_shader_stage_to_program(shader->Stage);
2844 const char *target_string = _mesa_shader_stage_to_string(shader->Stage);
2845 struct gl_shader_compiler_options *options =
2846 &ctx->Const.ShaderCompilerOptions[shader->Stage];
2847
2848 validate_ir_tree(shader->ir);
2849
2850 prog = shader->Program;
2851 prog->Parameters = _mesa_new_parameter_list();
2852 v.ctx = ctx;
2853 v.prog = prog;
2854 v.shader_program = shader_program;
2855 v.options = options;
2856
2857 _mesa_generate_parameters_list_for_uniforms(shader_program, shader,
2858 prog->Parameters);
2859
2860 /* Emit Mesa IR for main(). */
2861 visit_exec_list(shader->ir, &v);
2862 v.emit(NULL, OPCODE_END);
2863
2864 prog->arb.NumTemporaries = v.next_temp;
2865
2866 unsigned num_instructions = v.instructions.length();
2867
2868 mesa_instructions = rzalloc_array(prog, struct prog_instruction,
2869 num_instructions);
2870 mesa_instruction_annotation = ralloc_array(v.mem_ctx, ir_instruction *,
2871 num_instructions);
2872
2873 v.copy_propagate();
2874
2875 /* Convert ir_mesa_instructions into prog_instructions.
2876 */
2877 mesa_inst = mesa_instructions;
2878 i = 0;
2879 foreach_in_list(const ir_to_mesa_instruction, inst, &v.instructions) {
2880 mesa_inst->Opcode = inst->op;
2881 if (inst->saturate)
2882 mesa_inst->Saturate = GL_TRUE;
2883 mesa_inst->DstReg.File = inst->dst.file;
2884 mesa_inst->DstReg.Index = inst->dst.index;
2885 mesa_inst->DstReg.WriteMask = inst->dst.writemask;
2886 mesa_inst->DstReg.RelAddr = inst->dst.reladdr != NULL;
2887 mesa_inst->SrcReg[0] = mesa_src_reg_from_ir_src_reg(inst->src[0]);
2888 mesa_inst->SrcReg[1] = mesa_src_reg_from_ir_src_reg(inst->src[1]);
2889 mesa_inst->SrcReg[2] = mesa_src_reg_from_ir_src_reg(inst->src[2]);
2890 mesa_inst->TexSrcUnit = inst->sampler;
2891 mesa_inst->TexSrcTarget = inst->tex_target;
2892 mesa_inst->TexShadow = inst->tex_shadow;
2893 mesa_instruction_annotation[i] = inst->ir;
2894
2895 /* Set IndirectRegisterFiles. */
2896 if (mesa_inst->DstReg.RelAddr)
2897 prog->arb.IndirectRegisterFiles |= 1 << mesa_inst->DstReg.File;
2898
2899 /* Update program's bitmask of indirectly accessed register files */
2900 for (unsigned src = 0; src < 3; src++)
2901 if (mesa_inst->SrcReg[src].RelAddr)
2902 prog->arb.IndirectRegisterFiles |= 1 << mesa_inst->SrcReg[src].File;
2903
2904 switch (mesa_inst->Opcode) {
2905 case OPCODE_IF:
2906 if (options->MaxIfDepth == 0) {
2907 linker_warning(shader_program,
2908 "Couldn't flatten if-statement. "
2909 "This will likely result in software "
2910 "rasterization.\n");
2911 }
2912 break;
2913 case OPCODE_BGNLOOP:
2914 if (options->EmitNoLoops) {
2915 linker_warning(shader_program,
2916 "Couldn't unroll loop. "
2917 "This will likely result in software "
2918 "rasterization.\n");
2919 }
2920 break;
2921 case OPCODE_CONT:
2922 if (options->EmitNoCont) {
2923 linker_warning(shader_program,
2924 "Couldn't lower continue-statement. "
2925 "This will likely result in software "
2926 "rasterization.\n");
2927 }
2928 break;
2929 case OPCODE_ARL:
2930 prog->arb.NumAddressRegs = 1;
2931 break;
2932 default:
2933 break;
2934 }
2935
2936 mesa_inst++;
2937 i++;
2938
2939 if (!shader_program->data->LinkStatus)
2940 break;
2941 }
2942
2943 if (!shader_program->data->LinkStatus) {
2944 goto fail_exit;
2945 }
2946
2947 set_branchtargets(&v, mesa_instructions, num_instructions);
2948
2949 if (ctx->_Shader->Flags & GLSL_DUMP) {
2950 fprintf(stderr, "\n");
2951 fprintf(stderr, "GLSL IR for linked %s program %d:\n", target_string,
2952 shader_program->Name);
2953 _mesa_print_ir(stderr, shader->ir, NULL);
2954 fprintf(stderr, "\n");
2955 fprintf(stderr, "\n");
2956 fprintf(stderr, "Mesa IR for linked %s program %d:\n", target_string,
2957 shader_program->Name);
2958 print_program(mesa_instructions, mesa_instruction_annotation,
2959 num_instructions);
2960 fflush(stderr);
2961 }
2962
2963 prog->arb.Instructions = mesa_instructions;
2964 prog->arb.NumInstructions = num_instructions;
2965
2966 /* Setting this to NULL prevents a possible double free in the fail_exit
2967 * path (far below).
2968 */
2969 mesa_instructions = NULL;
2970
2971 do_set_program_inouts(shader->ir, prog, shader->Stage);
2972
2973 prog->ShadowSamplers = shader->shadow_samplers;
2974 prog->ExternalSamplersUsed = gl_external_samplers(prog);
2975 _mesa_update_shader_textures_used(shader_program, prog);
2976
2977 /* Set the gl_FragDepth layout. */
2978 if (target == GL_FRAGMENT_PROGRAM_ARB) {
2979 prog->info.fs.depth_layout = shader_program->FragDepthLayout;
2980 }
2981
2982 if ((ctx->_Shader->Flags & GLSL_NO_OPT) == 0) {
2983 _mesa_optimize_program(ctx, prog, prog);
2984 }
2985
2986 /* This has to be done last. Any operation that can cause
2987 * prog->ParameterValues to get reallocated (e.g., anything that adds a
2988 * program constant) has to happen before creating this linkage.
2989 */
2990 _mesa_associate_uniform_storage(ctx, shader_program, prog->Parameters,
2991 true);
2992 if (!shader_program->data->LinkStatus) {
2993 goto fail_exit;
2994 }
2995
2996 return prog;
2997
2998 fail_exit:
2999 ralloc_free(mesa_instructions);
3000 _mesa_reference_program(ctx, &shader->Program, NULL);
3001 return NULL;
3002 }
3003
3004 extern "C" {
3005
3006 /**
3007 * Link a shader.
3008 * Called via ctx->Driver.LinkShader()
3009 * This actually involves converting GLSL IR into Mesa gl_programs with
3010 * code lowering and other optimizations.
3011 */
3012 GLboolean
3013 _mesa_ir_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
3014 {
3015 assert(prog->data->LinkStatus);
3016
3017 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3018 if (prog->_LinkedShaders[i] == NULL)
3019 continue;
3020
3021 bool progress;
3022 exec_list *ir = prog->_LinkedShaders[i]->ir;
3023 const struct gl_shader_compiler_options *options =
3024 &ctx->Const.ShaderCompilerOptions[prog->_LinkedShaders[i]->Stage];
3025
3026 do {
3027 progress = false;
3028
3029 /* Lowering */
3030 do_mat_op_to_vec(ir);
3031 lower_instructions(ir, (MOD_TO_FLOOR | DIV_TO_MUL_RCP | EXP_TO_EXP2
3032 | LOG_TO_LOG2 | INT_DIV_TO_MUL_RCP
3033 | ((options->EmitNoPow) ? POW_TO_EXP2 : 0)));
3034
3035 progress = do_common_optimization(ir, true, true,
3036 options, ctx->Const.NativeIntegers)
3037 || progress;
3038
3039 progress = lower_quadop_vector(ir, true) || progress;
3040
3041 if (options->MaxIfDepth == 0)
3042 progress = lower_discard(ir) || progress;
3043
3044 progress = lower_if_to_cond_assign((gl_shader_stage)i, ir,
3045 options->MaxIfDepth) || progress;
3046
3047 progress = lower_noise(ir) || progress;
3048
3049 /* If there are forms of indirect addressing that the driver
3050 * cannot handle, perform the lowering pass.
3051 */
3052 if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput
3053 || options->EmitNoIndirectTemp || options->EmitNoIndirectUniform)
3054 progress =
3055 lower_variable_index_to_cond_assign(prog->_LinkedShaders[i]->Stage, ir,
3056 options->EmitNoIndirectInput,
3057 options->EmitNoIndirectOutput,
3058 options->EmitNoIndirectTemp,
3059 options->EmitNoIndirectUniform)
3060 || progress;
3061
3062 progress = do_vec_index_to_cond_assign(ir) || progress;
3063 progress = lower_vector_insert(ir, true) || progress;
3064 } while (progress);
3065
3066 validate_ir_tree(ir);
3067 }
3068
3069 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3070 struct gl_program *linked_prog;
3071
3072 if (prog->_LinkedShaders[i] == NULL)
3073 continue;
3074
3075 linked_prog = get_mesa_program(ctx, prog, prog->_LinkedShaders[i]);
3076
3077 if (linked_prog) {
3078 _mesa_copy_linked_program_data(prog, prog->_LinkedShaders[i]);
3079
3080 if (!ctx->Driver.ProgramStringNotify(ctx,
3081 _mesa_shader_stage_to_program(i),
3082 linked_prog)) {
3083 _mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program,
3084 NULL);
3085 return GL_FALSE;
3086 }
3087 }
3088 }
3089
3090 build_program_resource_list(ctx, prog);
3091 return prog->data->LinkStatus;
3092 }
3093
3094 /**
3095 * Link a GLSL shader program. Called via glLinkProgram().
3096 */
3097 void
3098 _mesa_glsl_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
3099 {
3100 unsigned int i;
3101
3102 _mesa_clear_shader_program_data(ctx, prog);
3103
3104 prog->data->LinkStatus = linking_success;
3105
3106 for (i = 0; i < prog->NumShaders; i++) {
3107 if (!prog->Shaders[i]->CompileStatus) {
3108 linker_error(prog, "linking with uncompiled shader");
3109 }
3110 }
3111
3112 if (prog->data->LinkStatus) {
3113 link_shaders(ctx, prog);
3114 }
3115
3116 if (prog->data->LinkStatus) {
3117 if (!ctx->Driver.LinkShader(ctx, prog)) {
3118 prog->data->LinkStatus = linking_failure;
3119 }
3120 }
3121
3122 /* Return early if we are loading the shader from on-disk cache */
3123 if (prog->data->LinkStatus == linking_skipped)
3124 return;
3125
3126 if (ctx->_Shader->Flags & GLSL_DUMP) {
3127 if (!prog->data->LinkStatus) {
3128 fprintf(stderr, "GLSL shader program %d failed to link\n", prog->Name);
3129 }
3130
3131 if (prog->data->InfoLog && prog->data->InfoLog[0] != 0) {
3132 fprintf(stderr, "GLSL shader program %d info log:\n", prog->Name);
3133 fprintf(stderr, "%s\n", prog->data->InfoLog);
3134 }
3135 }
3136
3137 #ifdef ENABLE_SHADER_CACHE
3138 if (prog->data->LinkStatus)
3139 shader_cache_write_program_metadata(ctx, prog);
3140 #endif
3141 }
3142
3143 } /* extern "C" */