dd154db8b039ec43255b887513f04e30b006cc8b
[mesa.git] / src / mesa / program / ir_to_mesa.cpp
1 /*
2 * Copyright (C) 2005-2007 Brian Paul All Rights Reserved.
3 * Copyright (C) 2008 VMware, Inc. All Rights Reserved.
4 * Copyright © 2010 Intel Corporation
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
22 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
23 * DEALINGS IN THE SOFTWARE.
24 */
25
26 /**
27 * \file ir_to_mesa.cpp
28 *
29 * Translate GLSL IR to Mesa's gl_program representation.
30 */
31
32 #include <stdio.h>
33 #include "main/compiler.h"
34 #include "ir.h"
35 #include "ir_visitor.h"
36 #include "ir_print_visitor.h"
37 #include "ir_expression_flattening.h"
38 #include "glsl_types.h"
39 #include "glsl_parser_extras.h"
40 #include "../glsl/program.h"
41 #include "ir_optimization.h"
42 #include "ast.h"
43
44 extern "C" {
45 #include "main/mtypes.h"
46 #include "main/shaderapi.h"
47 #include "main/shaderobj.h"
48 #include "main/uniforms.h"
49 #include "program/hash_table.h"
50 #include "program/prog_instruction.h"
51 #include "program/prog_optimize.h"
52 #include "program/prog_print.h"
53 #include "program/program.h"
54 #include "program/prog_uniform.h"
55 #include "program/prog_parameter.h"
56 #include "program/sampler.h"
57 }
58
59 class src_reg;
60 class dst_reg;
61
62 static int swizzle_for_size(int size);
63
64 /**
65 * This struct is a corresponding struct to Mesa prog_src_register, with
66 * wider fields.
67 */
68 class src_reg {
69 public:
70 src_reg(gl_register_file file, int index, const glsl_type *type)
71 {
72 this->file = file;
73 this->index = index;
74 if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
75 this->swizzle = swizzle_for_size(type->vector_elements);
76 else
77 this->swizzle = SWIZZLE_XYZW;
78 this->negate = 0;
79 this->reladdr = NULL;
80 }
81
82 src_reg()
83 {
84 this->file = PROGRAM_UNDEFINED;
85 this->index = 0;
86 this->swizzle = 0;
87 this->negate = 0;
88 this->reladdr = NULL;
89 }
90
91 explicit src_reg(dst_reg reg);
92
93 gl_register_file file; /**< PROGRAM_* from Mesa */
94 int index; /**< temporary index, VERT_ATTRIB_*, FRAG_ATTRIB_*, etc. */
95 GLuint swizzle; /**< SWIZZLE_XYZWONEZERO swizzles from Mesa. */
96 int negate; /**< NEGATE_XYZW mask from mesa */
97 /** Register index should be offset by the integer in this reg. */
98 src_reg *reladdr;
99 };
100
101 class dst_reg {
102 public:
103 dst_reg(gl_register_file file, int writemask)
104 {
105 this->file = file;
106 this->index = 0;
107 this->writemask = writemask;
108 this->cond_mask = COND_TR;
109 this->reladdr = NULL;
110 }
111
112 dst_reg()
113 {
114 this->file = PROGRAM_UNDEFINED;
115 this->index = 0;
116 this->writemask = 0;
117 this->cond_mask = COND_TR;
118 this->reladdr = NULL;
119 }
120
121 explicit dst_reg(src_reg reg);
122
123 gl_register_file file; /**< PROGRAM_* from Mesa */
124 int index; /**< temporary index, VERT_ATTRIB_*, FRAG_ATTRIB_*, etc. */
125 int writemask; /**< Bitfield of WRITEMASK_[XYZW] */
126 GLuint cond_mask:4;
127 /** Register index should be offset by the integer in this reg. */
128 src_reg *reladdr;
129 };
130
131 src_reg::src_reg(dst_reg reg)
132 {
133 this->file = reg.file;
134 this->index = reg.index;
135 this->swizzle = SWIZZLE_XYZW;
136 this->negate = 0;
137 this->reladdr = reg.reladdr;
138 }
139
140 dst_reg::dst_reg(src_reg reg)
141 {
142 this->file = reg.file;
143 this->index = reg.index;
144 this->writemask = WRITEMASK_XYZW;
145 this->cond_mask = COND_TR;
146 this->reladdr = reg.reladdr;
147 }
148
149 class ir_to_mesa_instruction : public exec_node {
150 public:
151 /* Callers of this ralloc-based new need not call delete. It's
152 * easier to just ralloc_free 'ctx' (or any of its ancestors). */
153 static void* operator new(size_t size, void *ctx)
154 {
155 void *node;
156
157 node = rzalloc_size(ctx, size);
158 assert(node != NULL);
159
160 return node;
161 }
162
163 enum prog_opcode op;
164 dst_reg dst;
165 src_reg src[3];
166 /** Pointer to the ir source this tree came from for debugging */
167 ir_instruction *ir;
168 GLboolean cond_update;
169 bool saturate;
170 int sampler; /**< sampler index */
171 int tex_target; /**< One of TEXTURE_*_INDEX */
172 GLboolean tex_shadow;
173
174 class function_entry *function; /* Set on OPCODE_CAL or OPCODE_BGNSUB */
175 };
176
177 class variable_storage : public exec_node {
178 public:
179 variable_storage(ir_variable *var, gl_register_file file, int index)
180 : file(file), index(index), var(var)
181 {
182 /* empty */
183 }
184
185 gl_register_file file;
186 int index;
187 ir_variable *var; /* variable that maps to this, if any */
188 };
189
190 class function_entry : public exec_node {
191 public:
192 ir_function_signature *sig;
193
194 /**
195 * identifier of this function signature used by the program.
196 *
197 * At the point that Mesa instructions for function calls are
198 * generated, we don't know the address of the first instruction of
199 * the function body. So we make the BranchTarget that is called a
200 * small integer and rewrite them during set_branchtargets().
201 */
202 int sig_id;
203
204 /**
205 * Pointer to first instruction of the function body.
206 *
207 * Set during function body emits after main() is processed.
208 */
209 ir_to_mesa_instruction *bgn_inst;
210
211 /**
212 * Index of the first instruction of the function body in actual
213 * Mesa IR.
214 *
215 * Set after convertion from ir_to_mesa_instruction to prog_instruction.
216 */
217 int inst;
218
219 /** Storage for the return value. */
220 src_reg return_reg;
221 };
222
223 class ir_to_mesa_visitor : public ir_visitor {
224 public:
225 ir_to_mesa_visitor();
226 ~ir_to_mesa_visitor();
227
228 function_entry *current_function;
229
230 struct gl_context *ctx;
231 struct gl_program *prog;
232 struct gl_shader_program *shader_program;
233 struct gl_shader_compiler_options *options;
234
235 int next_temp;
236
237 variable_storage *find_variable_storage(ir_variable *var);
238
239 function_entry *get_function_signature(ir_function_signature *sig);
240
241 src_reg get_temp(const glsl_type *type);
242 void reladdr_to_temp(ir_instruction *ir, src_reg *reg, int *num_reladdr);
243
244 src_reg src_reg_for_float(float val);
245
246 /**
247 * \name Visit methods
248 *
249 * As typical for the visitor pattern, there must be one \c visit method for
250 * each concrete subclass of \c ir_instruction. Virtual base classes within
251 * the hierarchy should not have \c visit methods.
252 */
253 /*@{*/
254 virtual void visit(ir_variable *);
255 virtual void visit(ir_loop *);
256 virtual void visit(ir_loop_jump *);
257 virtual void visit(ir_function_signature *);
258 virtual void visit(ir_function *);
259 virtual void visit(ir_expression *);
260 virtual void visit(ir_swizzle *);
261 virtual void visit(ir_dereference_variable *);
262 virtual void visit(ir_dereference_array *);
263 virtual void visit(ir_dereference_record *);
264 virtual void visit(ir_assignment *);
265 virtual void visit(ir_constant *);
266 virtual void visit(ir_call *);
267 virtual void visit(ir_return *);
268 virtual void visit(ir_discard *);
269 virtual void visit(ir_texture *);
270 virtual void visit(ir_if *);
271 /*@}*/
272
273 src_reg result;
274
275 /** List of variable_storage */
276 exec_list variables;
277
278 /** List of function_entry */
279 exec_list function_signatures;
280 int next_signature_id;
281
282 /** List of ir_to_mesa_instruction */
283 exec_list instructions;
284
285 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op);
286
287 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
288 dst_reg dst, src_reg src0);
289
290 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
291 dst_reg dst, src_reg src0, src_reg src1);
292
293 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
294 dst_reg dst,
295 src_reg src0, src_reg src1, src_reg src2);
296
297 /**
298 * Emit the correct dot-product instruction for the type of arguments
299 */
300 ir_to_mesa_instruction * emit_dp(ir_instruction *ir,
301 dst_reg dst,
302 src_reg src0,
303 src_reg src1,
304 unsigned elements);
305
306 void emit_scalar(ir_instruction *ir, enum prog_opcode op,
307 dst_reg dst, src_reg src0);
308
309 void emit_scalar(ir_instruction *ir, enum prog_opcode op,
310 dst_reg dst, src_reg src0, src_reg src1);
311
312 void emit_scs(ir_instruction *ir, enum prog_opcode op,
313 dst_reg dst, const src_reg &src);
314
315 bool try_emit_mad(ir_expression *ir,
316 int mul_operand);
317 bool try_emit_mad_for_and_not(ir_expression *ir,
318 int mul_operand);
319 bool try_emit_sat(ir_expression *ir);
320
321 void emit_swz(ir_expression *ir);
322
323 bool process_move_condition(ir_rvalue *ir);
324
325 void copy_propagate(void);
326
327 void *mem_ctx;
328 };
329
330 src_reg undef_src = src_reg(PROGRAM_UNDEFINED, 0, NULL);
331
332 dst_reg undef_dst = dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP);
333
334 dst_reg address_reg = dst_reg(PROGRAM_ADDRESS, WRITEMASK_X);
335
336 static int
337 swizzle_for_size(int size)
338 {
339 int size_swizzles[4] = {
340 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
341 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
342 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
343 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
344 };
345
346 assert((size >= 1) && (size <= 4));
347 return size_swizzles[size - 1];
348 }
349
350 ir_to_mesa_instruction *
351 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
352 dst_reg dst,
353 src_reg src0, src_reg src1, src_reg src2)
354 {
355 ir_to_mesa_instruction *inst = new(mem_ctx) ir_to_mesa_instruction();
356 int num_reladdr = 0;
357
358 /* If we have to do relative addressing, we want to load the ARL
359 * reg directly for one of the regs, and preload the other reladdr
360 * sources into temps.
361 */
362 num_reladdr += dst.reladdr != NULL;
363 num_reladdr += src0.reladdr != NULL;
364 num_reladdr += src1.reladdr != NULL;
365 num_reladdr += src2.reladdr != NULL;
366
367 reladdr_to_temp(ir, &src2, &num_reladdr);
368 reladdr_to_temp(ir, &src1, &num_reladdr);
369 reladdr_to_temp(ir, &src0, &num_reladdr);
370
371 if (dst.reladdr) {
372 emit(ir, OPCODE_ARL, address_reg, *dst.reladdr);
373 num_reladdr--;
374 }
375 assert(num_reladdr == 0);
376
377 inst->op = op;
378 inst->dst = dst;
379 inst->src[0] = src0;
380 inst->src[1] = src1;
381 inst->src[2] = src2;
382 inst->ir = ir;
383
384 inst->function = NULL;
385
386 this->instructions.push_tail(inst);
387
388 return inst;
389 }
390
391
392 ir_to_mesa_instruction *
393 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
394 dst_reg dst, src_reg src0, src_reg src1)
395 {
396 return emit(ir, op, dst, src0, src1, undef_src);
397 }
398
399 ir_to_mesa_instruction *
400 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
401 dst_reg dst, src_reg src0)
402 {
403 assert(dst.writemask != 0);
404 return emit(ir, op, dst, src0, undef_src, undef_src);
405 }
406
407 ir_to_mesa_instruction *
408 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op)
409 {
410 return emit(ir, op, undef_dst, undef_src, undef_src, undef_src);
411 }
412
413 ir_to_mesa_instruction *
414 ir_to_mesa_visitor::emit_dp(ir_instruction *ir,
415 dst_reg dst, src_reg src0, src_reg src1,
416 unsigned elements)
417 {
418 static const gl_inst_opcode dot_opcodes[] = {
419 OPCODE_DP2, OPCODE_DP3, OPCODE_DP4
420 };
421
422 return emit(ir, dot_opcodes[elements - 2], dst, src0, src1);
423 }
424
425 /**
426 * Emits Mesa scalar opcodes to produce unique answers across channels.
427 *
428 * Some Mesa opcodes are scalar-only, like ARB_fp/vp. The src X
429 * channel determines the result across all channels. So to do a vec4
430 * of this operation, we want to emit a scalar per source channel used
431 * to produce dest channels.
432 */
433 void
434 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
435 dst_reg dst,
436 src_reg orig_src0, src_reg orig_src1)
437 {
438 int i, j;
439 int done_mask = ~dst.writemask;
440
441 /* Mesa RCP is a scalar operation splatting results to all channels,
442 * like ARB_fp/vp. So emit as many RCPs as necessary to cover our
443 * dst channels.
444 */
445 for (i = 0; i < 4; i++) {
446 GLuint this_mask = (1 << i);
447 ir_to_mesa_instruction *inst;
448 src_reg src0 = orig_src0;
449 src_reg src1 = orig_src1;
450
451 if (done_mask & this_mask)
452 continue;
453
454 GLuint src0_swiz = GET_SWZ(src0.swizzle, i);
455 GLuint src1_swiz = GET_SWZ(src1.swizzle, i);
456 for (j = i + 1; j < 4; j++) {
457 /* If there is another enabled component in the destination that is
458 * derived from the same inputs, generate its value on this pass as
459 * well.
460 */
461 if (!(done_mask & (1 << j)) &&
462 GET_SWZ(src0.swizzle, j) == src0_swiz &&
463 GET_SWZ(src1.swizzle, j) == src1_swiz) {
464 this_mask |= (1 << j);
465 }
466 }
467 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
468 src0_swiz, src0_swiz);
469 src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz,
470 src1_swiz, src1_swiz);
471
472 inst = emit(ir, op, dst, src0, src1);
473 inst->dst.writemask = this_mask;
474 done_mask |= this_mask;
475 }
476 }
477
478 void
479 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
480 dst_reg dst, src_reg src0)
481 {
482 src_reg undef = undef_src;
483
484 undef.swizzle = SWIZZLE_XXXX;
485
486 emit_scalar(ir, op, dst, src0, undef);
487 }
488
489 /**
490 * Emit an OPCODE_SCS instruction
491 *
492 * The \c SCS opcode functions a bit differently than the other Mesa (or
493 * ARB_fragment_program) opcodes. Instead of splatting its result across all
494 * four components of the destination, it writes one value to the \c x
495 * component and another value to the \c y component.
496 *
497 * \param ir IR instruction being processed
498 * \param op Either \c OPCODE_SIN or \c OPCODE_COS depending on which
499 * value is desired.
500 * \param dst Destination register
501 * \param src Source register
502 */
503 void
504 ir_to_mesa_visitor::emit_scs(ir_instruction *ir, enum prog_opcode op,
505 dst_reg dst,
506 const src_reg &src)
507 {
508 /* Vertex programs cannot use the SCS opcode.
509 */
510 if (this->prog->Target == GL_VERTEX_PROGRAM_ARB) {
511 emit_scalar(ir, op, dst, src);
512 return;
513 }
514
515 const unsigned component = (op == OPCODE_SIN) ? 0 : 1;
516 const unsigned scs_mask = (1U << component);
517 int done_mask = ~dst.writemask;
518 src_reg tmp;
519
520 assert(op == OPCODE_SIN || op == OPCODE_COS);
521
522 /* If there are compnents in the destination that differ from the component
523 * that will be written by the SCS instrution, we'll need a temporary.
524 */
525 if (scs_mask != unsigned(dst.writemask)) {
526 tmp = get_temp(glsl_type::vec4_type);
527 }
528
529 for (unsigned i = 0; i < 4; i++) {
530 unsigned this_mask = (1U << i);
531 src_reg src0 = src;
532
533 if ((done_mask & this_mask) != 0)
534 continue;
535
536 /* The source swizzle specified which component of the source generates
537 * sine / cosine for the current component in the destination. The SCS
538 * instruction requires that this value be swizzle to the X component.
539 * Replace the current swizzle with a swizzle that puts the source in
540 * the X component.
541 */
542 unsigned src0_swiz = GET_SWZ(src.swizzle, i);
543
544 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
545 src0_swiz, src0_swiz);
546 for (unsigned j = i + 1; j < 4; j++) {
547 /* If there is another enabled component in the destination that is
548 * derived from the same inputs, generate its value on this pass as
549 * well.
550 */
551 if (!(done_mask & (1 << j)) &&
552 GET_SWZ(src0.swizzle, j) == src0_swiz) {
553 this_mask |= (1 << j);
554 }
555 }
556
557 if (this_mask != scs_mask) {
558 ir_to_mesa_instruction *inst;
559 dst_reg tmp_dst = dst_reg(tmp);
560
561 /* Emit the SCS instruction.
562 */
563 inst = emit(ir, OPCODE_SCS, tmp_dst, src0);
564 inst->dst.writemask = scs_mask;
565
566 /* Move the result of the SCS instruction to the desired location in
567 * the destination.
568 */
569 tmp.swizzle = MAKE_SWIZZLE4(component, component,
570 component, component);
571 inst = emit(ir, OPCODE_SCS, dst, tmp);
572 inst->dst.writemask = this_mask;
573 } else {
574 /* Emit the SCS instruction to write directly to the destination.
575 */
576 ir_to_mesa_instruction *inst = emit(ir, OPCODE_SCS, dst, src0);
577 inst->dst.writemask = scs_mask;
578 }
579
580 done_mask |= this_mask;
581 }
582 }
583
584 src_reg
585 ir_to_mesa_visitor::src_reg_for_float(float val)
586 {
587 src_reg src(PROGRAM_CONSTANT, -1, NULL);
588
589 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
590 (const gl_constant_value *)&val, 1, &src.swizzle);
591
592 return src;
593 }
594
595 static int
596 type_size(const struct glsl_type *type)
597 {
598 unsigned int i;
599 int size;
600
601 switch (type->base_type) {
602 case GLSL_TYPE_UINT:
603 case GLSL_TYPE_INT:
604 case GLSL_TYPE_FLOAT:
605 case GLSL_TYPE_BOOL:
606 if (type->is_matrix()) {
607 return type->matrix_columns;
608 } else {
609 /* Regardless of size of vector, it gets a vec4. This is bad
610 * packing for things like floats, but otherwise arrays become a
611 * mess. Hopefully a later pass over the code can pack scalars
612 * down if appropriate.
613 */
614 return 1;
615 }
616 case GLSL_TYPE_ARRAY:
617 assert(type->length > 0);
618 return type_size(type->fields.array) * type->length;
619 case GLSL_TYPE_STRUCT:
620 size = 0;
621 for (i = 0; i < type->length; i++) {
622 size += type_size(type->fields.structure[i].type);
623 }
624 return size;
625 case GLSL_TYPE_SAMPLER:
626 /* Samplers take up one slot in UNIFORMS[], but they're baked in
627 * at link time.
628 */
629 return 1;
630 default:
631 assert(0);
632 return 0;
633 }
634 }
635
636 /**
637 * In the initial pass of codegen, we assign temporary numbers to
638 * intermediate results. (not SSA -- variable assignments will reuse
639 * storage). Actual register allocation for the Mesa VM occurs in a
640 * pass over the Mesa IR later.
641 */
642 src_reg
643 ir_to_mesa_visitor::get_temp(const glsl_type *type)
644 {
645 src_reg src;
646
647 src.file = PROGRAM_TEMPORARY;
648 src.index = next_temp;
649 src.reladdr = NULL;
650 next_temp += type_size(type);
651
652 if (type->is_array() || type->is_record()) {
653 src.swizzle = SWIZZLE_NOOP;
654 } else {
655 src.swizzle = swizzle_for_size(type->vector_elements);
656 }
657 src.negate = 0;
658
659 return src;
660 }
661
662 variable_storage *
663 ir_to_mesa_visitor::find_variable_storage(ir_variable *var)
664 {
665
666 variable_storage *entry;
667
668 foreach_iter(exec_list_iterator, iter, this->variables) {
669 entry = (variable_storage *)iter.get();
670
671 if (entry->var == var)
672 return entry;
673 }
674
675 return NULL;
676 }
677
678 void
679 ir_to_mesa_visitor::visit(ir_variable *ir)
680 {
681 if (strcmp(ir->name, "gl_FragCoord") == 0) {
682 struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog;
683
684 fp->OriginUpperLeft = ir->origin_upper_left;
685 fp->PixelCenterInteger = ir->pixel_center_integer;
686
687 } else if (strcmp(ir->name, "gl_FragDepth") == 0) {
688 struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog;
689 switch (ir->depth_layout) {
690 case ir_depth_layout_none:
691 fp->FragDepthLayout = FRAG_DEPTH_LAYOUT_NONE;
692 break;
693 case ir_depth_layout_any:
694 fp->FragDepthLayout = FRAG_DEPTH_LAYOUT_ANY;
695 break;
696 case ir_depth_layout_greater:
697 fp->FragDepthLayout = FRAG_DEPTH_LAYOUT_GREATER;
698 break;
699 case ir_depth_layout_less:
700 fp->FragDepthLayout = FRAG_DEPTH_LAYOUT_LESS;
701 break;
702 case ir_depth_layout_unchanged:
703 fp->FragDepthLayout = FRAG_DEPTH_LAYOUT_UNCHANGED;
704 break;
705 default:
706 assert(0);
707 break;
708 }
709 }
710
711 if (ir->mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) {
712 unsigned int i;
713 const ir_state_slot *const slots = ir->state_slots;
714 assert(ir->state_slots != NULL);
715
716 /* Check if this statevar's setup in the STATE file exactly
717 * matches how we'll want to reference it as a
718 * struct/array/whatever. If not, then we need to move it into
719 * temporary storage and hope that it'll get copy-propagated
720 * out.
721 */
722 for (i = 0; i < ir->num_state_slots; i++) {
723 if (slots[i].swizzle != SWIZZLE_XYZW) {
724 break;
725 }
726 }
727
728 variable_storage *storage;
729 dst_reg dst;
730 if (i == ir->num_state_slots) {
731 /* We'll set the index later. */
732 storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1);
733 this->variables.push_tail(storage);
734
735 dst = undef_dst;
736 } else {
737 /* The variable_storage constructor allocates slots based on the size
738 * of the type. However, this had better match the number of state
739 * elements that we're going to copy into the new temporary.
740 */
741 assert((int) ir->num_state_slots == type_size(ir->type));
742
743 storage = new(mem_ctx) variable_storage(ir, PROGRAM_TEMPORARY,
744 this->next_temp);
745 this->variables.push_tail(storage);
746 this->next_temp += type_size(ir->type);
747
748 dst = dst_reg(src_reg(PROGRAM_TEMPORARY, storage->index, NULL));
749 }
750
751
752 for (unsigned int i = 0; i < ir->num_state_slots; i++) {
753 int index = _mesa_add_state_reference(this->prog->Parameters,
754 (gl_state_index *)slots[i].tokens);
755
756 if (storage->file == PROGRAM_STATE_VAR) {
757 if (storage->index == -1) {
758 storage->index = index;
759 } else {
760 assert(index == storage->index + (int)i);
761 }
762 } else {
763 src_reg src(PROGRAM_STATE_VAR, index, NULL);
764 src.swizzle = slots[i].swizzle;
765 emit(ir, OPCODE_MOV, dst, src);
766 /* even a float takes up a whole vec4 reg in a struct/array. */
767 dst.index++;
768 }
769 }
770
771 if (storage->file == PROGRAM_TEMPORARY &&
772 dst.index != storage->index + (int) ir->num_state_slots) {
773 linker_error(this->shader_program,
774 "failed to load builtin uniform `%s' "
775 "(%d/%d regs loaded)\n",
776 ir->name, dst.index - storage->index,
777 type_size(ir->type));
778 }
779 }
780 }
781
782 void
783 ir_to_mesa_visitor::visit(ir_loop *ir)
784 {
785 ir_dereference_variable *counter = NULL;
786
787 if (ir->counter != NULL)
788 counter = new(mem_ctx) ir_dereference_variable(ir->counter);
789
790 if (ir->from != NULL) {
791 assert(ir->counter != NULL);
792
793 ir_assignment *a =
794 new(mem_ctx) ir_assignment(counter, ir->from, NULL);
795
796 a->accept(this);
797 }
798
799 emit(NULL, OPCODE_BGNLOOP);
800
801 if (ir->to) {
802 ir_expression *e =
803 new(mem_ctx) ir_expression(ir->cmp, glsl_type::bool_type,
804 counter, ir->to);
805 ir_if *if_stmt = new(mem_ctx) ir_if(e);
806
807 ir_loop_jump *brk =
808 new(mem_ctx) ir_loop_jump(ir_loop_jump::jump_break);
809
810 if_stmt->then_instructions.push_tail(brk);
811
812 if_stmt->accept(this);
813 }
814
815 visit_exec_list(&ir->body_instructions, this);
816
817 if (ir->increment) {
818 ir_expression *e =
819 new(mem_ctx) ir_expression(ir_binop_add, counter->type,
820 counter, ir->increment);
821
822 ir_assignment *a =
823 new(mem_ctx) ir_assignment(counter, e, NULL);
824
825 a->accept(this);
826 }
827
828 emit(NULL, OPCODE_ENDLOOP);
829 }
830
831 void
832 ir_to_mesa_visitor::visit(ir_loop_jump *ir)
833 {
834 switch (ir->mode) {
835 case ir_loop_jump::jump_break:
836 emit(NULL, OPCODE_BRK);
837 break;
838 case ir_loop_jump::jump_continue:
839 emit(NULL, OPCODE_CONT);
840 break;
841 }
842 }
843
844
845 void
846 ir_to_mesa_visitor::visit(ir_function_signature *ir)
847 {
848 assert(0);
849 (void)ir;
850 }
851
852 void
853 ir_to_mesa_visitor::visit(ir_function *ir)
854 {
855 /* Ignore function bodies other than main() -- we shouldn't see calls to
856 * them since they should all be inlined before we get to ir_to_mesa.
857 */
858 if (strcmp(ir->name, "main") == 0) {
859 const ir_function_signature *sig;
860 exec_list empty;
861
862 sig = ir->matching_signature(&empty);
863
864 assert(sig);
865
866 foreach_iter(exec_list_iterator, iter, sig->body) {
867 ir_instruction *ir = (ir_instruction *)iter.get();
868
869 ir->accept(this);
870 }
871 }
872 }
873
874 bool
875 ir_to_mesa_visitor::try_emit_mad(ir_expression *ir, int mul_operand)
876 {
877 int nonmul_operand = 1 - mul_operand;
878 src_reg a, b, c;
879
880 ir_expression *expr = ir->operands[mul_operand]->as_expression();
881 if (!expr || expr->operation != ir_binop_mul)
882 return false;
883
884 expr->operands[0]->accept(this);
885 a = this->result;
886 expr->operands[1]->accept(this);
887 b = this->result;
888 ir->operands[nonmul_operand]->accept(this);
889 c = this->result;
890
891 this->result = get_temp(ir->type);
892 emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, c);
893
894 return true;
895 }
896
897 /**
898 * Emit OPCODE_MAD(a, -b, a) instead of AND(a, NOT(b))
899 *
900 * The logic values are 1.0 for true and 0.0 for false. Logical-and is
901 * implemented using multiplication, and logical-or is implemented using
902 * addition. Logical-not can be implemented as (true - x), or (1.0 - x).
903 * As result, the logical expression (a & !b) can be rewritten as:
904 *
905 * - a * !b
906 * - a * (1 - b)
907 * - (a * 1) - (a * b)
908 * - a + -(a * b)
909 * - a + (a * -b)
910 *
911 * This final expression can be implemented as a single MAD(a, -b, a)
912 * instruction.
913 */
914 bool
915 ir_to_mesa_visitor::try_emit_mad_for_and_not(ir_expression *ir, int try_operand)
916 {
917 const int other_operand = 1 - try_operand;
918 src_reg a, b;
919
920 ir_expression *expr = ir->operands[try_operand]->as_expression();
921 if (!expr || expr->operation != ir_unop_logic_not)
922 return false;
923
924 ir->operands[other_operand]->accept(this);
925 a = this->result;
926 expr->operands[0]->accept(this);
927 b = this->result;
928
929 b.negate = ~b.negate;
930
931 this->result = get_temp(ir->type);
932 emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, a);
933
934 return true;
935 }
936
937 bool
938 ir_to_mesa_visitor::try_emit_sat(ir_expression *ir)
939 {
940 /* Saturates were only introduced to vertex programs in
941 * NV_vertex_program3, so don't give them to drivers in the VP.
942 */
943 if (this->prog->Target == GL_VERTEX_PROGRAM_ARB)
944 return false;
945
946 ir_rvalue *sat_src = ir->as_rvalue_to_saturate();
947 if (!sat_src)
948 return false;
949
950 sat_src->accept(this);
951 src_reg src = this->result;
952
953 /* If we generated an expression instruction into a temporary in
954 * processing the saturate's operand, apply the saturate to that
955 * instruction. Otherwise, generate a MOV to do the saturate.
956 *
957 * Note that we have to be careful to only do this optimization if
958 * the instruction in question was what generated src->result. For
959 * example, ir_dereference_array might generate a MUL instruction
960 * to create the reladdr, and return us a src reg using that
961 * reladdr. That MUL result is not the value we're trying to
962 * saturate.
963 */
964 ir_expression *sat_src_expr = sat_src->as_expression();
965 ir_to_mesa_instruction *new_inst;
966 new_inst = (ir_to_mesa_instruction *)this->instructions.get_tail();
967 if (sat_src_expr && (sat_src_expr->operation == ir_binop_mul ||
968 sat_src_expr->operation == ir_binop_add ||
969 sat_src_expr->operation == ir_binop_dot)) {
970 new_inst->saturate = true;
971 } else {
972 this->result = get_temp(ir->type);
973 ir_to_mesa_instruction *inst;
974 inst = emit(ir, OPCODE_MOV, dst_reg(this->result), src);
975 inst->saturate = true;
976 }
977
978 return true;
979 }
980
981 void
982 ir_to_mesa_visitor::reladdr_to_temp(ir_instruction *ir,
983 src_reg *reg, int *num_reladdr)
984 {
985 if (!reg->reladdr)
986 return;
987
988 emit(ir, OPCODE_ARL, address_reg, *reg->reladdr);
989
990 if (*num_reladdr != 1) {
991 src_reg temp = get_temp(glsl_type::vec4_type);
992
993 emit(ir, OPCODE_MOV, dst_reg(temp), *reg);
994 *reg = temp;
995 }
996
997 (*num_reladdr)--;
998 }
999
1000 void
1001 ir_to_mesa_visitor::emit_swz(ir_expression *ir)
1002 {
1003 /* Assume that the vector operator is in a form compatible with OPCODE_SWZ.
1004 * This means that each of the operands is either an immediate value of -1,
1005 * 0, or 1, or is a component from one source register (possibly with
1006 * negation).
1007 */
1008 uint8_t components[4] = { 0 };
1009 bool negate[4] = { false };
1010 ir_variable *var = NULL;
1011
1012 for (unsigned i = 0; i < ir->type->vector_elements; i++) {
1013 ir_rvalue *op = ir->operands[i];
1014
1015 assert(op->type->is_scalar());
1016
1017 while (op != NULL) {
1018 switch (op->ir_type) {
1019 case ir_type_constant: {
1020
1021 assert(op->type->is_scalar());
1022
1023 const ir_constant *const c = op->as_constant();
1024 if (c->is_one()) {
1025 components[i] = SWIZZLE_ONE;
1026 } else if (c->is_zero()) {
1027 components[i] = SWIZZLE_ZERO;
1028 } else if (c->is_negative_one()) {
1029 components[i] = SWIZZLE_ONE;
1030 negate[i] = true;
1031 } else {
1032 assert(!"SWZ constant must be 0.0 or 1.0.");
1033 }
1034
1035 op = NULL;
1036 break;
1037 }
1038
1039 case ir_type_dereference_variable: {
1040 ir_dereference_variable *const deref =
1041 (ir_dereference_variable *) op;
1042
1043 assert((var == NULL) || (deref->var == var));
1044 components[i] = SWIZZLE_X;
1045 var = deref->var;
1046 op = NULL;
1047 break;
1048 }
1049
1050 case ir_type_expression: {
1051 ir_expression *const expr = (ir_expression *) op;
1052
1053 assert(expr->operation == ir_unop_neg);
1054 negate[i] = true;
1055
1056 op = expr->operands[0];
1057 break;
1058 }
1059
1060 case ir_type_swizzle: {
1061 ir_swizzle *const swiz = (ir_swizzle *) op;
1062
1063 components[i] = swiz->mask.x;
1064 op = swiz->val;
1065 break;
1066 }
1067
1068 default:
1069 assert(!"Should not get here.");
1070 return;
1071 }
1072 }
1073 }
1074
1075 assert(var != NULL);
1076
1077 ir_dereference_variable *const deref =
1078 new(mem_ctx) ir_dereference_variable(var);
1079
1080 this->result.file = PROGRAM_UNDEFINED;
1081 deref->accept(this);
1082 if (this->result.file == PROGRAM_UNDEFINED) {
1083 ir_print_visitor v;
1084 printf("Failed to get tree for expression operand:\n");
1085 deref->accept(&v);
1086 exit(1);
1087 }
1088
1089 src_reg src;
1090
1091 src = this->result;
1092 src.swizzle = MAKE_SWIZZLE4(components[0],
1093 components[1],
1094 components[2],
1095 components[3]);
1096 src.negate = ((unsigned(negate[0]) << 0)
1097 | (unsigned(negate[1]) << 1)
1098 | (unsigned(negate[2]) << 2)
1099 | (unsigned(negate[3]) << 3));
1100
1101 /* Storage for our result. Ideally for an assignment we'd be using the
1102 * actual storage for the result here, instead.
1103 */
1104 const src_reg result_src = get_temp(ir->type);
1105 dst_reg result_dst = dst_reg(result_src);
1106
1107 /* Limit writes to the channels that will be used by result_src later.
1108 * This does limit this temp's use as a temporary for multi-instruction
1109 * sequences.
1110 */
1111 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1112
1113 emit(ir, OPCODE_SWZ, result_dst, src);
1114 this->result = result_src;
1115 }
1116
1117 void
1118 ir_to_mesa_visitor::visit(ir_expression *ir)
1119 {
1120 unsigned int operand;
1121 src_reg op[Elements(ir->operands)];
1122 src_reg result_src;
1123 dst_reg result_dst;
1124
1125 /* Quick peephole: Emit OPCODE_MAD(a, b, c) instead of ADD(MUL(a, b), c)
1126 */
1127 if (ir->operation == ir_binop_add) {
1128 if (try_emit_mad(ir, 1))
1129 return;
1130 if (try_emit_mad(ir, 0))
1131 return;
1132 }
1133
1134 /* Quick peephole: Emit OPCODE_MAD(-a, -b, a) instead of AND(a, NOT(b))
1135 */
1136 if (ir->operation == ir_binop_logic_and) {
1137 if (try_emit_mad_for_and_not(ir, 1))
1138 return;
1139 if (try_emit_mad_for_and_not(ir, 0))
1140 return;
1141 }
1142
1143 if (try_emit_sat(ir))
1144 return;
1145
1146 if (ir->operation == ir_quadop_vector) {
1147 this->emit_swz(ir);
1148 return;
1149 }
1150
1151 for (operand = 0; operand < ir->get_num_operands(); operand++) {
1152 this->result.file = PROGRAM_UNDEFINED;
1153 ir->operands[operand]->accept(this);
1154 if (this->result.file == PROGRAM_UNDEFINED) {
1155 ir_print_visitor v;
1156 printf("Failed to get tree for expression operand:\n");
1157 ir->operands[operand]->accept(&v);
1158 exit(1);
1159 }
1160 op[operand] = this->result;
1161
1162 /* Matrix expression operands should have been broken down to vector
1163 * operations already.
1164 */
1165 assert(!ir->operands[operand]->type->is_matrix());
1166 }
1167
1168 int vector_elements = ir->operands[0]->type->vector_elements;
1169 if (ir->operands[1]) {
1170 vector_elements = MAX2(vector_elements,
1171 ir->operands[1]->type->vector_elements);
1172 }
1173
1174 this->result.file = PROGRAM_UNDEFINED;
1175
1176 /* Storage for our result. Ideally for an assignment we'd be using
1177 * the actual storage for the result here, instead.
1178 */
1179 result_src = get_temp(ir->type);
1180 /* convenience for the emit functions below. */
1181 result_dst = dst_reg(result_src);
1182 /* Limit writes to the channels that will be used by result_src later.
1183 * This does limit this temp's use as a temporary for multi-instruction
1184 * sequences.
1185 */
1186 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1187
1188 switch (ir->operation) {
1189 case ir_unop_logic_not:
1190 /* Previously 'SEQ dst, src, 0.0' was used for this. However, many
1191 * older GPUs implement SEQ using multiple instructions (i915 uses two
1192 * SGE instructions and a MUL instruction). Since our logic values are
1193 * 0.0 and 1.0, 1-x also implements !x.
1194 */
1195 op[0].negate = ~op[0].negate;
1196 emit(ir, OPCODE_ADD, result_dst, op[0], src_reg_for_float(1.0));
1197 break;
1198 case ir_unop_neg:
1199 op[0].negate = ~op[0].negate;
1200 result_src = op[0];
1201 break;
1202 case ir_unop_abs:
1203 emit(ir, OPCODE_ABS, result_dst, op[0]);
1204 break;
1205 case ir_unop_sign:
1206 emit(ir, OPCODE_SSG, result_dst, op[0]);
1207 break;
1208 case ir_unop_rcp:
1209 emit_scalar(ir, OPCODE_RCP, result_dst, op[0]);
1210 break;
1211
1212 case ir_unop_exp2:
1213 emit_scalar(ir, OPCODE_EX2, result_dst, op[0]);
1214 break;
1215 case ir_unop_exp:
1216 case ir_unop_log:
1217 assert(!"not reached: should be handled by ir_explog_to_explog2");
1218 break;
1219 case ir_unop_log2:
1220 emit_scalar(ir, OPCODE_LG2, result_dst, op[0]);
1221 break;
1222 case ir_unop_sin:
1223 emit_scalar(ir, OPCODE_SIN, result_dst, op[0]);
1224 break;
1225 case ir_unop_cos:
1226 emit_scalar(ir, OPCODE_COS, result_dst, op[0]);
1227 break;
1228 case ir_unop_sin_reduced:
1229 emit_scs(ir, OPCODE_SIN, result_dst, op[0]);
1230 break;
1231 case ir_unop_cos_reduced:
1232 emit_scs(ir, OPCODE_COS, result_dst, op[0]);
1233 break;
1234
1235 case ir_unop_dFdx:
1236 emit(ir, OPCODE_DDX, result_dst, op[0]);
1237 break;
1238 case ir_unop_dFdy:
1239 emit(ir, OPCODE_DDY, result_dst, op[0]);
1240 break;
1241
1242 case ir_unop_noise: {
1243 const enum prog_opcode opcode =
1244 prog_opcode(OPCODE_NOISE1
1245 + (ir->operands[0]->type->vector_elements) - 1);
1246 assert((opcode >= OPCODE_NOISE1) && (opcode <= OPCODE_NOISE4));
1247
1248 emit(ir, opcode, result_dst, op[0]);
1249 break;
1250 }
1251
1252 case ir_binop_add:
1253 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1254 break;
1255 case ir_binop_sub:
1256 emit(ir, OPCODE_SUB, result_dst, op[0], op[1]);
1257 break;
1258
1259 case ir_binop_mul:
1260 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1261 break;
1262 case ir_binop_div:
1263 assert(!"not reached: should be handled by ir_div_to_mul_rcp");
1264 case ir_binop_mod:
1265 assert(!"ir_binop_mod should have been converted to b * fract(a/b)");
1266 break;
1267
1268 case ir_binop_less:
1269 emit(ir, OPCODE_SLT, result_dst, op[0], op[1]);
1270 break;
1271 case ir_binop_greater:
1272 emit(ir, OPCODE_SGT, result_dst, op[0], op[1]);
1273 break;
1274 case ir_binop_lequal:
1275 emit(ir, OPCODE_SLE, result_dst, op[0], op[1]);
1276 break;
1277 case ir_binop_gequal:
1278 emit(ir, OPCODE_SGE, result_dst, op[0], op[1]);
1279 break;
1280 case ir_binop_equal:
1281 emit(ir, OPCODE_SEQ, result_dst, op[0], op[1]);
1282 break;
1283 case ir_binop_nequal:
1284 emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
1285 break;
1286 case ir_binop_all_equal:
1287 /* "==" operator producing a scalar boolean. */
1288 if (ir->operands[0]->type->is_vector() ||
1289 ir->operands[1]->type->is_vector()) {
1290 src_reg temp = get_temp(glsl_type::vec4_type);
1291 emit(ir, OPCODE_SNE, dst_reg(temp), op[0], op[1]);
1292
1293 /* After the dot-product, the value will be an integer on the
1294 * range [0,4]. Zero becomes 1.0, and positive values become zero.
1295 */
1296 emit_dp(ir, result_dst, temp, temp, vector_elements);
1297
1298 /* Negating the result of the dot-product gives values on the range
1299 * [-4, 0]. Zero becomes 1.0, and negative values become zero. This
1300 * achieved using SGE.
1301 */
1302 src_reg sge_src = result_src;
1303 sge_src.negate = ~sge_src.negate;
1304 emit(ir, OPCODE_SGE, result_dst, sge_src, src_reg_for_float(0.0));
1305 } else {
1306 emit(ir, OPCODE_SEQ, result_dst, op[0], op[1]);
1307 }
1308 break;
1309 case ir_binop_any_nequal:
1310 /* "!=" operator producing a scalar boolean. */
1311 if (ir->operands[0]->type->is_vector() ||
1312 ir->operands[1]->type->is_vector()) {
1313 src_reg temp = get_temp(glsl_type::vec4_type);
1314 emit(ir, OPCODE_SNE, dst_reg(temp), op[0], op[1]);
1315
1316 /* After the dot-product, the value will be an integer on the
1317 * range [0,4]. Zero stays zero, and positive values become 1.0.
1318 */
1319 ir_to_mesa_instruction *const dp =
1320 emit_dp(ir, result_dst, temp, temp, vector_elements);
1321 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1322 /* The clamping to [0,1] can be done for free in the fragment
1323 * shader with a saturate.
1324 */
1325 dp->saturate = true;
1326 } else {
1327 /* Negating the result of the dot-product gives values on the range
1328 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1329 * achieved using SLT.
1330 */
1331 src_reg slt_src = result_src;
1332 slt_src.negate = ~slt_src.negate;
1333 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1334 }
1335 } else {
1336 emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
1337 }
1338 break;
1339
1340 case ir_unop_any: {
1341 assert(ir->operands[0]->type->is_vector());
1342
1343 /* After the dot-product, the value will be an integer on the
1344 * range [0,4]. Zero stays zero, and positive values become 1.0.
1345 */
1346 ir_to_mesa_instruction *const dp =
1347 emit_dp(ir, result_dst, op[0], op[0],
1348 ir->operands[0]->type->vector_elements);
1349 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1350 /* The clamping to [0,1] can be done for free in the fragment
1351 * shader with a saturate.
1352 */
1353 dp->saturate = true;
1354 } else {
1355 /* Negating the result of the dot-product gives values on the range
1356 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1357 * is achieved using SLT.
1358 */
1359 src_reg slt_src = result_src;
1360 slt_src.negate = ~slt_src.negate;
1361 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1362 }
1363 break;
1364 }
1365
1366 case ir_binop_logic_xor:
1367 emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
1368 break;
1369
1370 case ir_binop_logic_or: {
1371 /* After the addition, the value will be an integer on the
1372 * range [0,2]. Zero stays zero, and positive values become 1.0.
1373 */
1374 ir_to_mesa_instruction *add =
1375 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1376 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1377 /* The clamping to [0,1] can be done for free in the fragment
1378 * shader with a saturate.
1379 */
1380 add->saturate = true;
1381 } else {
1382 /* Negating the result of the addition gives values on the range
1383 * [-2, 0]. Zero stays zero, and negative values become 1.0. This
1384 * is achieved using SLT.
1385 */
1386 src_reg slt_src = result_src;
1387 slt_src.negate = ~slt_src.negate;
1388 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1389 }
1390 break;
1391 }
1392
1393 case ir_binop_logic_and:
1394 /* the bool args are stored as float 0.0 or 1.0, so "mul" gives us "and". */
1395 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1396 break;
1397
1398 case ir_binop_dot:
1399 assert(ir->operands[0]->type->is_vector());
1400 assert(ir->operands[0]->type == ir->operands[1]->type);
1401 emit_dp(ir, result_dst, op[0], op[1],
1402 ir->operands[0]->type->vector_elements);
1403 break;
1404
1405 case ir_unop_sqrt:
1406 /* sqrt(x) = x * rsq(x). */
1407 emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1408 emit(ir, OPCODE_MUL, result_dst, result_src, op[0]);
1409 /* For incoming channels <= 0, set the result to 0. */
1410 op[0].negate = ~op[0].negate;
1411 emit(ir, OPCODE_CMP, result_dst,
1412 op[0], result_src, src_reg_for_float(0.0));
1413 break;
1414 case ir_unop_rsq:
1415 emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1416 break;
1417 case ir_unop_i2f:
1418 case ir_unop_u2f:
1419 case ir_unop_b2f:
1420 case ir_unop_b2i:
1421 case ir_unop_i2u:
1422 case ir_unop_u2i:
1423 /* Mesa IR lacks types, ints are stored as truncated floats. */
1424 result_src = op[0];
1425 break;
1426 case ir_unop_f2i:
1427 emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1428 break;
1429 case ir_unop_f2b:
1430 case ir_unop_i2b:
1431 emit(ir, OPCODE_SNE, result_dst,
1432 op[0], src_reg_for_float(0.0));
1433 break;
1434 case ir_unop_trunc:
1435 emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1436 break;
1437 case ir_unop_ceil:
1438 op[0].negate = ~op[0].negate;
1439 emit(ir, OPCODE_FLR, result_dst, op[0]);
1440 result_src.negate = ~result_src.negate;
1441 break;
1442 case ir_unop_floor:
1443 emit(ir, OPCODE_FLR, result_dst, op[0]);
1444 break;
1445 case ir_unop_fract:
1446 emit(ir, OPCODE_FRC, result_dst, op[0]);
1447 break;
1448
1449 case ir_binop_min:
1450 emit(ir, OPCODE_MIN, result_dst, op[0], op[1]);
1451 break;
1452 case ir_binop_max:
1453 emit(ir, OPCODE_MAX, result_dst, op[0], op[1]);
1454 break;
1455 case ir_binop_pow:
1456 emit_scalar(ir, OPCODE_POW, result_dst, op[0], op[1]);
1457 break;
1458
1459 case ir_unop_bit_not:
1460 case ir_binop_lshift:
1461 case ir_binop_rshift:
1462 case ir_binop_bit_and:
1463 case ir_binop_bit_xor:
1464 case ir_binop_bit_or:
1465 case ir_unop_round_even:
1466 assert(!"GLSL 1.30 features unsupported");
1467 break;
1468
1469 case ir_quadop_vector:
1470 /* This operation should have already been handled.
1471 */
1472 assert(!"Should not get here.");
1473 break;
1474 }
1475
1476 this->result = result_src;
1477 }
1478
1479
1480 void
1481 ir_to_mesa_visitor::visit(ir_swizzle *ir)
1482 {
1483 src_reg src;
1484 int i;
1485 int swizzle[4];
1486
1487 /* Note that this is only swizzles in expressions, not those on the left
1488 * hand side of an assignment, which do write masking. See ir_assignment
1489 * for that.
1490 */
1491
1492 ir->val->accept(this);
1493 src = this->result;
1494 assert(src.file != PROGRAM_UNDEFINED);
1495
1496 for (i = 0; i < 4; i++) {
1497 if (i < ir->type->vector_elements) {
1498 switch (i) {
1499 case 0:
1500 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x);
1501 break;
1502 case 1:
1503 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y);
1504 break;
1505 case 2:
1506 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z);
1507 break;
1508 case 3:
1509 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w);
1510 break;
1511 }
1512 } else {
1513 /* If the type is smaller than a vec4, replicate the last
1514 * channel out.
1515 */
1516 swizzle[i] = swizzle[ir->type->vector_elements - 1];
1517 }
1518 }
1519
1520 src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
1521
1522 this->result = src;
1523 }
1524
1525 void
1526 ir_to_mesa_visitor::visit(ir_dereference_variable *ir)
1527 {
1528 variable_storage *entry = find_variable_storage(ir->var);
1529 ir_variable *var = ir->var;
1530
1531 if (!entry) {
1532 switch (var->mode) {
1533 case ir_var_uniform:
1534 entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM,
1535 var->location);
1536 this->variables.push_tail(entry);
1537 break;
1538 case ir_var_in:
1539 case ir_var_inout:
1540 /* The linker assigns locations for varyings and attributes,
1541 * including deprecated builtins (like gl_Color),
1542 * user-assigned generic attributes (glBindVertexLocation),
1543 * and user-defined varyings.
1544 *
1545 * FINISHME: We would hit this path for function arguments. Fix!
1546 */
1547 assert(var->location != -1);
1548 entry = new(mem_ctx) variable_storage(var,
1549 PROGRAM_INPUT,
1550 var->location);
1551 if (this->prog->Target == GL_VERTEX_PROGRAM_ARB &&
1552 var->location >= VERT_ATTRIB_GENERIC0) {
1553 _mesa_add_attribute(this->prog->Attributes,
1554 var->name,
1555 _mesa_sizeof_glsl_type(var->type->gl_type),
1556 var->type->gl_type,
1557 var->location - VERT_ATTRIB_GENERIC0);
1558 }
1559 break;
1560 case ir_var_out:
1561 assert(var->location != -1);
1562 entry = new(mem_ctx) variable_storage(var,
1563 PROGRAM_OUTPUT,
1564 var->location);
1565 break;
1566 case ir_var_system_value:
1567 entry = new(mem_ctx) variable_storage(var,
1568 PROGRAM_SYSTEM_VALUE,
1569 var->location);
1570 break;
1571 case ir_var_auto:
1572 case ir_var_temporary:
1573 entry = new(mem_ctx) variable_storage(var, PROGRAM_TEMPORARY,
1574 this->next_temp);
1575 this->variables.push_tail(entry);
1576
1577 next_temp += type_size(var->type);
1578 break;
1579 }
1580
1581 if (!entry) {
1582 printf("Failed to make storage for %s\n", var->name);
1583 exit(1);
1584 }
1585 }
1586
1587 this->result = src_reg(entry->file, entry->index, var->type);
1588 }
1589
1590 void
1591 ir_to_mesa_visitor::visit(ir_dereference_array *ir)
1592 {
1593 ir_constant *index;
1594 src_reg src;
1595 int element_size = type_size(ir->type);
1596
1597 index = ir->array_index->constant_expression_value();
1598
1599 ir->array->accept(this);
1600 src = this->result;
1601
1602 if (index) {
1603 src.index += index->value.i[0] * element_size;
1604 } else {
1605 /* Variable index array dereference. It eats the "vec4" of the
1606 * base of the array and an index that offsets the Mesa register
1607 * index.
1608 */
1609 ir->array_index->accept(this);
1610
1611 src_reg index_reg;
1612
1613 if (element_size == 1) {
1614 index_reg = this->result;
1615 } else {
1616 index_reg = get_temp(glsl_type::float_type);
1617
1618 emit(ir, OPCODE_MUL, dst_reg(index_reg),
1619 this->result, src_reg_for_float(element_size));
1620 }
1621
1622 /* If there was already a relative address register involved, add the
1623 * new and the old together to get the new offset.
1624 */
1625 if (src.reladdr != NULL) {
1626 src_reg accum_reg = get_temp(glsl_type::float_type);
1627
1628 emit(ir, OPCODE_ADD, dst_reg(accum_reg),
1629 index_reg, *src.reladdr);
1630
1631 index_reg = accum_reg;
1632 }
1633
1634 src.reladdr = ralloc(mem_ctx, src_reg);
1635 memcpy(src.reladdr, &index_reg, sizeof(index_reg));
1636 }
1637
1638 /* If the type is smaller than a vec4, replicate the last channel out. */
1639 if (ir->type->is_scalar() || ir->type->is_vector())
1640 src.swizzle = swizzle_for_size(ir->type->vector_elements);
1641 else
1642 src.swizzle = SWIZZLE_NOOP;
1643
1644 this->result = src;
1645 }
1646
1647 void
1648 ir_to_mesa_visitor::visit(ir_dereference_record *ir)
1649 {
1650 unsigned int i;
1651 const glsl_type *struct_type = ir->record->type;
1652 int offset = 0;
1653
1654 ir->record->accept(this);
1655
1656 for (i = 0; i < struct_type->length; i++) {
1657 if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
1658 break;
1659 offset += type_size(struct_type->fields.structure[i].type);
1660 }
1661
1662 /* If the type is smaller than a vec4, replicate the last channel out. */
1663 if (ir->type->is_scalar() || ir->type->is_vector())
1664 this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
1665 else
1666 this->result.swizzle = SWIZZLE_NOOP;
1667
1668 this->result.index += offset;
1669 }
1670
1671 /**
1672 * We want to be careful in assignment setup to hit the actual storage
1673 * instead of potentially using a temporary like we might with the
1674 * ir_dereference handler.
1675 */
1676 static dst_reg
1677 get_assignment_lhs(ir_dereference *ir, ir_to_mesa_visitor *v)
1678 {
1679 /* The LHS must be a dereference. If the LHS is a variable indexed array
1680 * access of a vector, it must be separated into a series conditional moves
1681 * before reaching this point (see ir_vec_index_to_cond_assign).
1682 */
1683 assert(ir->as_dereference());
1684 ir_dereference_array *deref_array = ir->as_dereference_array();
1685 if (deref_array) {
1686 assert(!deref_array->array->type->is_vector());
1687 }
1688
1689 /* Use the rvalue deref handler for the most part. We'll ignore
1690 * swizzles in it and write swizzles using writemask, though.
1691 */
1692 ir->accept(v);
1693 return dst_reg(v->result);
1694 }
1695
1696 /**
1697 * Process the condition of a conditional assignment
1698 *
1699 * Examines the condition of a conditional assignment to generate the optimal
1700 * first operand of a \c CMP instruction. If the condition is a relational
1701 * operator with 0 (e.g., \c ir_binop_less), the value being compared will be
1702 * used as the source for the \c CMP instruction. Otherwise the comparison
1703 * is processed to a boolean result, and the boolean result is used as the
1704 * operand to the CMP instruction.
1705 */
1706 bool
1707 ir_to_mesa_visitor::process_move_condition(ir_rvalue *ir)
1708 {
1709 ir_rvalue *src_ir = ir;
1710 bool negate = true;
1711 bool switch_order = false;
1712
1713 ir_expression *const expr = ir->as_expression();
1714 if ((expr != NULL) && (expr->get_num_operands() == 2)) {
1715 bool zero_on_left = false;
1716
1717 if (expr->operands[0]->is_zero()) {
1718 src_ir = expr->operands[1];
1719 zero_on_left = true;
1720 } else if (expr->operands[1]->is_zero()) {
1721 src_ir = expr->operands[0];
1722 zero_on_left = false;
1723 }
1724
1725 /* a is - 0 + - 0 +
1726 * (a < 0) T F F ( a < 0) T F F
1727 * (0 < a) F F T (-a < 0) F F T
1728 * (a <= 0) T T F (-a < 0) F F T (swap order of other operands)
1729 * (0 <= a) F T T ( a < 0) T F F (swap order of other operands)
1730 * (a > 0) F F T (-a < 0) F F T
1731 * (0 > a) T F F ( a < 0) T F F
1732 * (a >= 0) F T T ( a < 0) T F F (swap order of other operands)
1733 * (0 >= a) T T F (-a < 0) F F T (swap order of other operands)
1734 *
1735 * Note that exchanging the order of 0 and 'a' in the comparison simply
1736 * means that the value of 'a' should be negated.
1737 */
1738 if (src_ir != ir) {
1739 switch (expr->operation) {
1740 case ir_binop_less:
1741 switch_order = false;
1742 negate = zero_on_left;
1743 break;
1744
1745 case ir_binop_greater:
1746 switch_order = false;
1747 negate = !zero_on_left;
1748 break;
1749
1750 case ir_binop_lequal:
1751 switch_order = true;
1752 negate = !zero_on_left;
1753 break;
1754
1755 case ir_binop_gequal:
1756 switch_order = true;
1757 negate = zero_on_left;
1758 break;
1759
1760 default:
1761 /* This isn't the right kind of comparison afterall, so make sure
1762 * the whole condition is visited.
1763 */
1764 src_ir = ir;
1765 break;
1766 }
1767 }
1768 }
1769
1770 src_ir->accept(this);
1771
1772 /* We use the OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the
1773 * condition we produced is 0.0 or 1.0. By flipping the sign, we can
1774 * choose which value OPCODE_CMP produces without an extra instruction
1775 * computing the condition.
1776 */
1777 if (negate)
1778 this->result.negate = ~this->result.negate;
1779
1780 return switch_order;
1781 }
1782
1783 void
1784 ir_to_mesa_visitor::visit(ir_assignment *ir)
1785 {
1786 dst_reg l;
1787 src_reg r;
1788 int i;
1789
1790 ir->rhs->accept(this);
1791 r = this->result;
1792
1793 l = get_assignment_lhs(ir->lhs, this);
1794
1795 /* FINISHME: This should really set to the correct maximal writemask for each
1796 * FINISHME: component written (in the loops below). This case can only
1797 * FINISHME: occur for matrices, arrays, and structures.
1798 */
1799 if (ir->write_mask == 0) {
1800 assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
1801 l.writemask = WRITEMASK_XYZW;
1802 } else if (ir->lhs->type->is_scalar()) {
1803 /* FINISHME: This hack makes writing to gl_FragDepth, which lives in the
1804 * FINISHME: W component of fragment shader output zero, work correctly.
1805 */
1806 l.writemask = WRITEMASK_XYZW;
1807 } else {
1808 int swizzles[4];
1809 int first_enabled_chan = 0;
1810 int rhs_chan = 0;
1811
1812 assert(ir->lhs->type->is_vector());
1813 l.writemask = ir->write_mask;
1814
1815 for (int i = 0; i < 4; i++) {
1816 if (l.writemask & (1 << i)) {
1817 first_enabled_chan = GET_SWZ(r.swizzle, i);
1818 break;
1819 }
1820 }
1821
1822 /* Swizzle a small RHS vector into the channels being written.
1823 *
1824 * glsl ir treats write_mask as dictating how many channels are
1825 * present on the RHS while Mesa IR treats write_mask as just
1826 * showing which channels of the vec4 RHS get written.
1827 */
1828 for (int i = 0; i < 4; i++) {
1829 if (l.writemask & (1 << i))
1830 swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++);
1831 else
1832 swizzles[i] = first_enabled_chan;
1833 }
1834 r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1],
1835 swizzles[2], swizzles[3]);
1836 }
1837
1838 assert(l.file != PROGRAM_UNDEFINED);
1839 assert(r.file != PROGRAM_UNDEFINED);
1840
1841 if (ir->condition) {
1842 const bool switch_order = this->process_move_condition(ir->condition);
1843 src_reg condition = this->result;
1844
1845 for (i = 0; i < type_size(ir->lhs->type); i++) {
1846 if (switch_order) {
1847 emit(ir, OPCODE_CMP, l, condition, src_reg(l), r);
1848 } else {
1849 emit(ir, OPCODE_CMP, l, condition, r, src_reg(l));
1850 }
1851
1852 l.index++;
1853 r.index++;
1854 }
1855 } else {
1856 for (i = 0; i < type_size(ir->lhs->type); i++) {
1857 emit(ir, OPCODE_MOV, l, r);
1858 l.index++;
1859 r.index++;
1860 }
1861 }
1862 }
1863
1864
1865 void
1866 ir_to_mesa_visitor::visit(ir_constant *ir)
1867 {
1868 src_reg src;
1869 GLfloat stack_vals[4] = { 0 };
1870 GLfloat *values = stack_vals;
1871 unsigned int i;
1872
1873 /* Unfortunately, 4 floats is all we can get into
1874 * _mesa_add_unnamed_constant. So, make a temp to store an
1875 * aggregate constant and move each constant value into it. If we
1876 * get lucky, copy propagation will eliminate the extra moves.
1877 */
1878
1879 if (ir->type->base_type == GLSL_TYPE_STRUCT) {
1880 src_reg temp_base = get_temp(ir->type);
1881 dst_reg temp = dst_reg(temp_base);
1882
1883 foreach_iter(exec_list_iterator, iter, ir->components) {
1884 ir_constant *field_value = (ir_constant *)iter.get();
1885 int size = type_size(field_value->type);
1886
1887 assert(size > 0);
1888
1889 field_value->accept(this);
1890 src = this->result;
1891
1892 for (i = 0; i < (unsigned int)size; i++) {
1893 emit(ir, OPCODE_MOV, temp, src);
1894
1895 src.index++;
1896 temp.index++;
1897 }
1898 }
1899 this->result = temp_base;
1900 return;
1901 }
1902
1903 if (ir->type->is_array()) {
1904 src_reg temp_base = get_temp(ir->type);
1905 dst_reg temp = dst_reg(temp_base);
1906 int size = type_size(ir->type->fields.array);
1907
1908 assert(size > 0);
1909
1910 for (i = 0; i < ir->type->length; i++) {
1911 ir->array_elements[i]->accept(this);
1912 src = this->result;
1913 for (int j = 0; j < size; j++) {
1914 emit(ir, OPCODE_MOV, temp, src);
1915
1916 src.index++;
1917 temp.index++;
1918 }
1919 }
1920 this->result = temp_base;
1921 return;
1922 }
1923
1924 if (ir->type->is_matrix()) {
1925 src_reg mat = get_temp(ir->type);
1926 dst_reg mat_column = dst_reg(mat);
1927
1928 for (i = 0; i < ir->type->matrix_columns; i++) {
1929 assert(ir->type->base_type == GLSL_TYPE_FLOAT);
1930 values = &ir->value.f[i * ir->type->vector_elements];
1931
1932 src = src_reg(PROGRAM_CONSTANT, -1, NULL);
1933 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1934 (gl_constant_value *) values,
1935 ir->type->vector_elements,
1936 &src.swizzle);
1937 emit(ir, OPCODE_MOV, mat_column, src);
1938
1939 mat_column.index++;
1940 }
1941
1942 this->result = mat;
1943 return;
1944 }
1945
1946 src.file = PROGRAM_CONSTANT;
1947 switch (ir->type->base_type) {
1948 case GLSL_TYPE_FLOAT:
1949 values = &ir->value.f[0];
1950 break;
1951 case GLSL_TYPE_UINT:
1952 for (i = 0; i < ir->type->vector_elements; i++) {
1953 values[i] = ir->value.u[i];
1954 }
1955 break;
1956 case GLSL_TYPE_INT:
1957 for (i = 0; i < ir->type->vector_elements; i++) {
1958 values[i] = ir->value.i[i];
1959 }
1960 break;
1961 case GLSL_TYPE_BOOL:
1962 for (i = 0; i < ir->type->vector_elements; i++) {
1963 values[i] = ir->value.b[i];
1964 }
1965 break;
1966 default:
1967 assert(!"Non-float/uint/int/bool constant");
1968 }
1969
1970 this->result = src_reg(PROGRAM_CONSTANT, -1, ir->type);
1971 this->result.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1972 (gl_constant_value *) values,
1973 ir->type->vector_elements,
1974 &this->result.swizzle);
1975 }
1976
1977 function_entry *
1978 ir_to_mesa_visitor::get_function_signature(ir_function_signature *sig)
1979 {
1980 function_entry *entry;
1981
1982 foreach_iter(exec_list_iterator, iter, this->function_signatures) {
1983 entry = (function_entry *)iter.get();
1984
1985 if (entry->sig == sig)
1986 return entry;
1987 }
1988
1989 entry = ralloc(mem_ctx, function_entry);
1990 entry->sig = sig;
1991 entry->sig_id = this->next_signature_id++;
1992 entry->bgn_inst = NULL;
1993
1994 /* Allocate storage for all the parameters. */
1995 foreach_iter(exec_list_iterator, iter, sig->parameters) {
1996 ir_variable *param = (ir_variable *)iter.get();
1997 variable_storage *storage;
1998
1999 storage = find_variable_storage(param);
2000 assert(!storage);
2001
2002 storage = new(mem_ctx) variable_storage(param, PROGRAM_TEMPORARY,
2003 this->next_temp);
2004 this->variables.push_tail(storage);
2005
2006 this->next_temp += type_size(param->type);
2007 }
2008
2009 if (!sig->return_type->is_void()) {
2010 entry->return_reg = get_temp(sig->return_type);
2011 } else {
2012 entry->return_reg = undef_src;
2013 }
2014
2015 this->function_signatures.push_tail(entry);
2016 return entry;
2017 }
2018
2019 void
2020 ir_to_mesa_visitor::visit(ir_call *ir)
2021 {
2022 ir_to_mesa_instruction *call_inst;
2023 ir_function_signature *sig = ir->get_callee();
2024 function_entry *entry = get_function_signature(sig);
2025 int i;
2026
2027 /* Process in parameters. */
2028 exec_list_iterator sig_iter = sig->parameters.iterator();
2029 foreach_iter(exec_list_iterator, iter, *ir) {
2030 ir_rvalue *param_rval = (ir_rvalue *)iter.get();
2031 ir_variable *param = (ir_variable *)sig_iter.get();
2032
2033 if (param->mode == ir_var_in ||
2034 param->mode == ir_var_inout) {
2035 variable_storage *storage = find_variable_storage(param);
2036 assert(storage);
2037
2038 param_rval->accept(this);
2039 src_reg r = this->result;
2040
2041 dst_reg l;
2042 l.file = storage->file;
2043 l.index = storage->index;
2044 l.reladdr = NULL;
2045 l.writemask = WRITEMASK_XYZW;
2046 l.cond_mask = COND_TR;
2047
2048 for (i = 0; i < type_size(param->type); i++) {
2049 emit(ir, OPCODE_MOV, l, r);
2050 l.index++;
2051 r.index++;
2052 }
2053 }
2054
2055 sig_iter.next();
2056 }
2057 assert(!sig_iter.has_next());
2058
2059 /* Emit call instruction */
2060 call_inst = emit(ir, OPCODE_CAL);
2061 call_inst->function = entry;
2062
2063 /* Process out parameters. */
2064 sig_iter = sig->parameters.iterator();
2065 foreach_iter(exec_list_iterator, iter, *ir) {
2066 ir_rvalue *param_rval = (ir_rvalue *)iter.get();
2067 ir_variable *param = (ir_variable *)sig_iter.get();
2068
2069 if (param->mode == ir_var_out ||
2070 param->mode == ir_var_inout) {
2071 variable_storage *storage = find_variable_storage(param);
2072 assert(storage);
2073
2074 src_reg r;
2075 r.file = storage->file;
2076 r.index = storage->index;
2077 r.reladdr = NULL;
2078 r.swizzle = SWIZZLE_NOOP;
2079 r.negate = 0;
2080
2081 param_rval->accept(this);
2082 dst_reg l = dst_reg(this->result);
2083
2084 for (i = 0; i < type_size(param->type); i++) {
2085 emit(ir, OPCODE_MOV, l, r);
2086 l.index++;
2087 r.index++;
2088 }
2089 }
2090
2091 sig_iter.next();
2092 }
2093 assert(!sig_iter.has_next());
2094
2095 /* Process return value. */
2096 this->result = entry->return_reg;
2097 }
2098
2099 void
2100 ir_to_mesa_visitor::visit(ir_texture *ir)
2101 {
2102 src_reg result_src, coord, lod_info, projector, dx, dy;
2103 dst_reg result_dst, coord_dst;
2104 ir_to_mesa_instruction *inst = NULL;
2105 prog_opcode opcode = OPCODE_NOP;
2106
2107 if (ir->op == ir_txs)
2108 this->result = src_reg_for_float(0.0);
2109 else
2110 ir->coordinate->accept(this);
2111
2112 /* Put our coords in a temp. We'll need to modify them for shadow,
2113 * projection, or LOD, so the only case we'd use it as is is if
2114 * we're doing plain old texturing. Mesa IR optimization should
2115 * handle cleaning up our mess in that case.
2116 */
2117 coord = get_temp(glsl_type::vec4_type);
2118 coord_dst = dst_reg(coord);
2119 emit(ir, OPCODE_MOV, coord_dst, this->result);
2120
2121 if (ir->projector) {
2122 ir->projector->accept(this);
2123 projector = this->result;
2124 }
2125
2126 /* Storage for our result. Ideally for an assignment we'd be using
2127 * the actual storage for the result here, instead.
2128 */
2129 result_src = get_temp(glsl_type::vec4_type);
2130 result_dst = dst_reg(result_src);
2131
2132 switch (ir->op) {
2133 case ir_tex:
2134 case ir_txs:
2135 opcode = OPCODE_TEX;
2136 break;
2137 case ir_txb:
2138 opcode = OPCODE_TXB;
2139 ir->lod_info.bias->accept(this);
2140 lod_info = this->result;
2141 break;
2142 case ir_txl:
2143 opcode = OPCODE_TXL;
2144 ir->lod_info.lod->accept(this);
2145 lod_info = this->result;
2146 break;
2147 case ir_txd:
2148 opcode = OPCODE_TXD;
2149 ir->lod_info.grad.dPdx->accept(this);
2150 dx = this->result;
2151 ir->lod_info.grad.dPdy->accept(this);
2152 dy = this->result;
2153 break;
2154 case ir_txf:
2155 assert(!"GLSL 1.30 features unsupported");
2156 break;
2157 }
2158
2159 if (ir->projector) {
2160 if (opcode == OPCODE_TEX) {
2161 /* Slot the projector in as the last component of the coord. */
2162 coord_dst.writemask = WRITEMASK_W;
2163 emit(ir, OPCODE_MOV, coord_dst, projector);
2164 coord_dst.writemask = WRITEMASK_XYZW;
2165 opcode = OPCODE_TXP;
2166 } else {
2167 src_reg coord_w = coord;
2168 coord_w.swizzle = SWIZZLE_WWWW;
2169
2170 /* For the other TEX opcodes there's no projective version
2171 * since the last slot is taken up by lod info. Do the
2172 * projective divide now.
2173 */
2174 coord_dst.writemask = WRITEMASK_W;
2175 emit(ir, OPCODE_RCP, coord_dst, projector);
2176
2177 /* In the case where we have to project the coordinates "by hand,"
2178 * the shadow comparitor value must also be projected.
2179 */
2180 src_reg tmp_src = coord;
2181 if (ir->shadow_comparitor) {
2182 /* Slot the shadow value in as the second to last component of the
2183 * coord.
2184 */
2185 ir->shadow_comparitor->accept(this);
2186
2187 tmp_src = get_temp(glsl_type::vec4_type);
2188 dst_reg tmp_dst = dst_reg(tmp_src);
2189
2190 tmp_dst.writemask = WRITEMASK_Z;
2191 emit(ir, OPCODE_MOV, tmp_dst, this->result);
2192
2193 tmp_dst.writemask = WRITEMASK_XY;
2194 emit(ir, OPCODE_MOV, tmp_dst, coord);
2195 }
2196
2197 coord_dst.writemask = WRITEMASK_XYZ;
2198 emit(ir, OPCODE_MUL, coord_dst, tmp_src, coord_w);
2199
2200 coord_dst.writemask = WRITEMASK_XYZW;
2201 coord.swizzle = SWIZZLE_XYZW;
2202 }
2203 }
2204
2205 /* If projection is done and the opcode is not OPCODE_TXP, then the shadow
2206 * comparitor was put in the correct place (and projected) by the code,
2207 * above, that handles by-hand projection.
2208 */
2209 if (ir->shadow_comparitor && (!ir->projector || opcode == OPCODE_TXP)) {
2210 /* Slot the shadow value in as the second to last component of the
2211 * coord.
2212 */
2213 ir->shadow_comparitor->accept(this);
2214 coord_dst.writemask = WRITEMASK_Z;
2215 emit(ir, OPCODE_MOV, coord_dst, this->result);
2216 coord_dst.writemask = WRITEMASK_XYZW;
2217 }
2218
2219 if (opcode == OPCODE_TXL || opcode == OPCODE_TXB) {
2220 /* Mesa IR stores lod or lod bias in the last channel of the coords. */
2221 coord_dst.writemask = WRITEMASK_W;
2222 emit(ir, OPCODE_MOV, coord_dst, lod_info);
2223 coord_dst.writemask = WRITEMASK_XYZW;
2224 }
2225
2226 if (opcode == OPCODE_TXD)
2227 inst = emit(ir, opcode, result_dst, coord, dx, dy);
2228 else
2229 inst = emit(ir, opcode, result_dst, coord);
2230
2231 if (ir->shadow_comparitor)
2232 inst->tex_shadow = GL_TRUE;
2233
2234 inst->sampler = _mesa_get_sampler_uniform_value(ir->sampler,
2235 this->shader_program,
2236 this->prog);
2237
2238 const glsl_type *sampler_type = ir->sampler->type;
2239
2240 switch (sampler_type->sampler_dimensionality) {
2241 case GLSL_SAMPLER_DIM_1D:
2242 inst->tex_target = (sampler_type->sampler_array)
2243 ? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX;
2244 break;
2245 case GLSL_SAMPLER_DIM_2D:
2246 inst->tex_target = (sampler_type->sampler_array)
2247 ? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX;
2248 break;
2249 case GLSL_SAMPLER_DIM_3D:
2250 inst->tex_target = TEXTURE_3D_INDEX;
2251 break;
2252 case GLSL_SAMPLER_DIM_CUBE:
2253 inst->tex_target = TEXTURE_CUBE_INDEX;
2254 break;
2255 case GLSL_SAMPLER_DIM_RECT:
2256 inst->tex_target = TEXTURE_RECT_INDEX;
2257 break;
2258 case GLSL_SAMPLER_DIM_BUF:
2259 assert(!"FINISHME: Implement ARB_texture_buffer_object");
2260 break;
2261 default:
2262 assert(!"Should not get here.");
2263 }
2264
2265 this->result = result_src;
2266 }
2267
2268 void
2269 ir_to_mesa_visitor::visit(ir_return *ir)
2270 {
2271 if (ir->get_value()) {
2272 dst_reg l;
2273 int i;
2274
2275 assert(current_function);
2276
2277 ir->get_value()->accept(this);
2278 src_reg r = this->result;
2279
2280 l = dst_reg(current_function->return_reg);
2281
2282 for (i = 0; i < type_size(current_function->sig->return_type); i++) {
2283 emit(ir, OPCODE_MOV, l, r);
2284 l.index++;
2285 r.index++;
2286 }
2287 }
2288
2289 emit(ir, OPCODE_RET);
2290 }
2291
2292 void
2293 ir_to_mesa_visitor::visit(ir_discard *ir)
2294 {
2295 struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog;
2296
2297 if (ir->condition) {
2298 ir->condition->accept(this);
2299 this->result.negate = ~this->result.negate;
2300 emit(ir, OPCODE_KIL, undef_dst, this->result);
2301 } else {
2302 emit(ir, OPCODE_KIL_NV);
2303 }
2304
2305 fp->UsesKill = GL_TRUE;
2306 }
2307
2308 void
2309 ir_to_mesa_visitor::visit(ir_if *ir)
2310 {
2311 ir_to_mesa_instruction *cond_inst, *if_inst;
2312 ir_to_mesa_instruction *prev_inst;
2313
2314 prev_inst = (ir_to_mesa_instruction *)this->instructions.get_tail();
2315
2316 ir->condition->accept(this);
2317 assert(this->result.file != PROGRAM_UNDEFINED);
2318
2319 if (this->options->EmitCondCodes) {
2320 cond_inst = (ir_to_mesa_instruction *)this->instructions.get_tail();
2321
2322 /* See if we actually generated any instruction for generating
2323 * the condition. If not, then cook up a move to a temp so we
2324 * have something to set cond_update on.
2325 */
2326 if (cond_inst == prev_inst) {
2327 src_reg temp = get_temp(glsl_type::bool_type);
2328 cond_inst = emit(ir->condition, OPCODE_MOV, dst_reg(temp), result);
2329 }
2330 cond_inst->cond_update = GL_TRUE;
2331
2332 if_inst = emit(ir->condition, OPCODE_IF);
2333 if_inst->dst.cond_mask = COND_NE;
2334 } else {
2335 if_inst = emit(ir->condition, OPCODE_IF, undef_dst, this->result);
2336 }
2337
2338 this->instructions.push_tail(if_inst);
2339
2340 visit_exec_list(&ir->then_instructions, this);
2341
2342 if (!ir->else_instructions.is_empty()) {
2343 emit(ir->condition, OPCODE_ELSE);
2344 visit_exec_list(&ir->else_instructions, this);
2345 }
2346
2347 if_inst = emit(ir->condition, OPCODE_ENDIF);
2348 }
2349
2350 ir_to_mesa_visitor::ir_to_mesa_visitor()
2351 {
2352 result.file = PROGRAM_UNDEFINED;
2353 next_temp = 1;
2354 next_signature_id = 1;
2355 current_function = NULL;
2356 mem_ctx = ralloc_context(NULL);
2357 }
2358
2359 ir_to_mesa_visitor::~ir_to_mesa_visitor()
2360 {
2361 ralloc_free(mem_ctx);
2362 }
2363
2364 static struct prog_src_register
2365 mesa_src_reg_from_ir_src_reg(src_reg reg)
2366 {
2367 struct prog_src_register mesa_reg;
2368
2369 mesa_reg.File = reg.file;
2370 assert(reg.index < (1 << INST_INDEX_BITS));
2371 mesa_reg.Index = reg.index;
2372 mesa_reg.Swizzle = reg.swizzle;
2373 mesa_reg.RelAddr = reg.reladdr != NULL;
2374 mesa_reg.Negate = reg.negate;
2375 mesa_reg.Abs = 0;
2376 mesa_reg.HasIndex2 = GL_FALSE;
2377 mesa_reg.RelAddr2 = 0;
2378 mesa_reg.Index2 = 0;
2379
2380 return mesa_reg;
2381 }
2382
2383 static void
2384 set_branchtargets(ir_to_mesa_visitor *v,
2385 struct prog_instruction *mesa_instructions,
2386 int num_instructions)
2387 {
2388 int if_count = 0, loop_count = 0;
2389 int *if_stack, *loop_stack;
2390 int if_stack_pos = 0, loop_stack_pos = 0;
2391 int i, j;
2392
2393 for (i = 0; i < num_instructions; i++) {
2394 switch (mesa_instructions[i].Opcode) {
2395 case OPCODE_IF:
2396 if_count++;
2397 break;
2398 case OPCODE_BGNLOOP:
2399 loop_count++;
2400 break;
2401 case OPCODE_BRK:
2402 case OPCODE_CONT:
2403 mesa_instructions[i].BranchTarget = -1;
2404 break;
2405 default:
2406 break;
2407 }
2408 }
2409
2410 if_stack = rzalloc_array(v->mem_ctx, int, if_count);
2411 loop_stack = rzalloc_array(v->mem_ctx, int, loop_count);
2412
2413 for (i = 0; i < num_instructions; i++) {
2414 switch (mesa_instructions[i].Opcode) {
2415 case OPCODE_IF:
2416 if_stack[if_stack_pos] = i;
2417 if_stack_pos++;
2418 break;
2419 case OPCODE_ELSE:
2420 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2421 if_stack[if_stack_pos - 1] = i;
2422 break;
2423 case OPCODE_ENDIF:
2424 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2425 if_stack_pos--;
2426 break;
2427 case OPCODE_BGNLOOP:
2428 loop_stack[loop_stack_pos] = i;
2429 loop_stack_pos++;
2430 break;
2431 case OPCODE_ENDLOOP:
2432 loop_stack_pos--;
2433 /* Rewrite any breaks/conts at this nesting level (haven't
2434 * already had a BranchTarget assigned) to point to the end
2435 * of the loop.
2436 */
2437 for (j = loop_stack[loop_stack_pos]; j < i; j++) {
2438 if (mesa_instructions[j].Opcode == OPCODE_BRK ||
2439 mesa_instructions[j].Opcode == OPCODE_CONT) {
2440 if (mesa_instructions[j].BranchTarget == -1) {
2441 mesa_instructions[j].BranchTarget = i;
2442 }
2443 }
2444 }
2445 /* The loop ends point at each other. */
2446 mesa_instructions[i].BranchTarget = loop_stack[loop_stack_pos];
2447 mesa_instructions[loop_stack[loop_stack_pos]].BranchTarget = i;
2448 break;
2449 case OPCODE_CAL:
2450 foreach_iter(exec_list_iterator, iter, v->function_signatures) {
2451 function_entry *entry = (function_entry *)iter.get();
2452
2453 if (entry->sig_id == mesa_instructions[i].BranchTarget) {
2454 mesa_instructions[i].BranchTarget = entry->inst;
2455 break;
2456 }
2457 }
2458 break;
2459 default:
2460 break;
2461 }
2462 }
2463 }
2464
2465 static void
2466 print_program(struct prog_instruction *mesa_instructions,
2467 ir_instruction **mesa_instruction_annotation,
2468 int num_instructions)
2469 {
2470 ir_instruction *last_ir = NULL;
2471 int i;
2472 int indent = 0;
2473
2474 for (i = 0; i < num_instructions; i++) {
2475 struct prog_instruction *mesa_inst = mesa_instructions + i;
2476 ir_instruction *ir = mesa_instruction_annotation[i];
2477
2478 fprintf(stdout, "%3d: ", i);
2479
2480 if (last_ir != ir && ir) {
2481 int j;
2482
2483 for (j = 0; j < indent; j++) {
2484 fprintf(stdout, " ");
2485 }
2486 ir->print();
2487 printf("\n");
2488 last_ir = ir;
2489
2490 fprintf(stdout, " "); /* line number spacing. */
2491 }
2492
2493 indent = _mesa_fprint_instruction_opt(stdout, mesa_inst, indent,
2494 PROG_PRINT_DEBUG, NULL);
2495 }
2496 }
2497
2498
2499 /**
2500 * Count resources used by the given gpu program (number of texture
2501 * samplers, etc).
2502 */
2503 static void
2504 count_resources(struct gl_program *prog)
2505 {
2506 unsigned int i;
2507
2508 prog->SamplersUsed = 0;
2509
2510 for (i = 0; i < prog->NumInstructions; i++) {
2511 struct prog_instruction *inst = &prog->Instructions[i];
2512
2513 if (_mesa_is_tex_instruction(inst->Opcode)) {
2514 prog->SamplerTargets[inst->TexSrcUnit] =
2515 (gl_texture_index)inst->TexSrcTarget;
2516 prog->SamplersUsed |= 1 << inst->TexSrcUnit;
2517 if (inst->TexShadow) {
2518 prog->ShadowSamplers |= 1 << inst->TexSrcUnit;
2519 }
2520 }
2521 }
2522
2523 _mesa_update_shader_textures_used(prog);
2524 }
2525
2526
2527 /**
2528 * Check if the given vertex/fragment/shader program is within the
2529 * resource limits of the context (number of texture units, etc).
2530 * If any of those checks fail, record a linker error.
2531 *
2532 * XXX more checks are needed...
2533 */
2534 static void
2535 check_resources(const struct gl_context *ctx,
2536 struct gl_shader_program *shader_program,
2537 struct gl_program *prog)
2538 {
2539 switch (prog->Target) {
2540 case GL_VERTEX_PROGRAM_ARB:
2541 if (_mesa_bitcount(prog->SamplersUsed) >
2542 ctx->Const.MaxVertexTextureImageUnits) {
2543 linker_error(shader_program,
2544 "Too many vertex shader texture samplers");
2545 }
2546 if (prog->Parameters->NumParameters > MAX_UNIFORMS) {
2547 linker_error(shader_program, "Too many vertex shader constants");
2548 }
2549 break;
2550 case MESA_GEOMETRY_PROGRAM:
2551 if (_mesa_bitcount(prog->SamplersUsed) >
2552 ctx->Const.MaxGeometryTextureImageUnits) {
2553 linker_error(shader_program,
2554 "Too many geometry shader texture samplers");
2555 }
2556 if (prog->Parameters->NumParameters >
2557 MAX_GEOMETRY_UNIFORM_COMPONENTS / 4) {
2558 linker_error(shader_program, "Too many geometry shader constants");
2559 }
2560 break;
2561 case GL_FRAGMENT_PROGRAM_ARB:
2562 if (_mesa_bitcount(prog->SamplersUsed) >
2563 ctx->Const.MaxTextureImageUnits) {
2564 linker_error(shader_program,
2565 "Too many fragment shader texture samplers");
2566 }
2567 if (prog->Parameters->NumParameters > MAX_UNIFORMS) {
2568 linker_error(shader_program, "Too many fragment shader constants");
2569 }
2570 break;
2571 default:
2572 _mesa_problem(ctx, "unexpected program type in check_resources()");
2573 }
2574 }
2575
2576
2577
2578 struct uniform_sort {
2579 struct gl_uniform *u;
2580 int pos;
2581 };
2582
2583 /* The shader_program->Uniforms list is almost sorted in increasing
2584 * uniform->{Frag,Vert}Pos locations, but not quite when there are
2585 * uniforms shared between targets. We need to add parameters in
2586 * increasing order for the targets.
2587 */
2588 static int
2589 sort_uniforms(const void *a, const void *b)
2590 {
2591 struct uniform_sort *u1 = (struct uniform_sort *)a;
2592 struct uniform_sort *u2 = (struct uniform_sort *)b;
2593
2594 return u1->pos - u2->pos;
2595 }
2596
2597 /* Add the uniforms to the parameters. The linker chose locations
2598 * in our parameters lists (which weren't created yet), which the
2599 * uniforms code will use to poke values into our parameters list
2600 * when uniforms are updated.
2601 */
2602 static void
2603 add_uniforms_to_parameters_list(struct gl_shader_program *shader_program,
2604 struct gl_shader *shader,
2605 struct gl_program *prog)
2606 {
2607 unsigned int i;
2608 unsigned int next_sampler = 0, num_uniforms = 0;
2609 struct uniform_sort *sorted_uniforms;
2610
2611 sorted_uniforms = ralloc_array(NULL, struct uniform_sort,
2612 shader_program->Uniforms->NumUniforms);
2613
2614 for (i = 0; i < shader_program->Uniforms->NumUniforms; i++) {
2615 struct gl_uniform *uniform = shader_program->Uniforms->Uniforms + i;
2616 int parameter_index = -1;
2617
2618 switch (shader->Type) {
2619 case GL_VERTEX_SHADER:
2620 parameter_index = uniform->VertPos;
2621 break;
2622 case GL_FRAGMENT_SHADER:
2623 parameter_index = uniform->FragPos;
2624 break;
2625 case GL_GEOMETRY_SHADER:
2626 parameter_index = uniform->GeomPos;
2627 break;
2628 }
2629
2630 /* Only add uniforms used in our target. */
2631 if (parameter_index != -1) {
2632 sorted_uniforms[num_uniforms].pos = parameter_index;
2633 sorted_uniforms[num_uniforms].u = uniform;
2634 num_uniforms++;
2635 }
2636 }
2637
2638 qsort(sorted_uniforms, num_uniforms, sizeof(struct uniform_sort),
2639 sort_uniforms);
2640
2641 for (i = 0; i < num_uniforms; i++) {
2642 struct gl_uniform *uniform = sorted_uniforms[i].u;
2643 int parameter_index = sorted_uniforms[i].pos;
2644 const glsl_type *type = uniform->Type;
2645 unsigned int size;
2646
2647 if (type->is_vector() ||
2648 type->is_scalar()) {
2649 size = type->vector_elements;
2650 } else {
2651 size = type_size(type) * 4;
2652 }
2653
2654 gl_register_file file;
2655 if (type->is_sampler() ||
2656 (type->is_array() && type->fields.array->is_sampler())) {
2657 file = PROGRAM_SAMPLER;
2658 } else {
2659 file = PROGRAM_UNIFORM;
2660 }
2661
2662 GLint index = _mesa_lookup_parameter_index(prog->Parameters, -1,
2663 uniform->Name);
2664
2665 if (index < 0) {
2666 index = _mesa_add_parameter(prog->Parameters, file,
2667 uniform->Name, size, type->gl_type,
2668 NULL, NULL, 0x0);
2669
2670 /* Sampler uniform values are stored in prog->SamplerUnits,
2671 * and the entry in that array is selected by this index we
2672 * store in ParameterValues[].
2673 */
2674 if (file == PROGRAM_SAMPLER) {
2675 for (unsigned int j = 0; j < size / 4; j++)
2676 prog->Parameters->ParameterValues[index + j][0].f = next_sampler++;
2677 }
2678
2679 /* The location chosen in the Parameters list here (returned
2680 * from _mesa_add_uniform) has to match what the linker chose.
2681 */
2682 if (index != parameter_index) {
2683 linker_error(shader_program,
2684 "Allocation of uniform `%s' to target failed "
2685 "(%d vs %d)\n",
2686 uniform->Name, index, parameter_index);
2687 }
2688 }
2689 }
2690
2691 ralloc_free(sorted_uniforms);
2692 }
2693
2694 static void
2695 set_uniform_initializer(struct gl_context *ctx, void *mem_ctx,
2696 struct gl_shader_program *shader_program,
2697 const char *name, const glsl_type *type,
2698 ir_constant *val)
2699 {
2700 if (type->is_record()) {
2701 ir_constant *field_constant;
2702
2703 field_constant = (ir_constant *)val->components.get_head();
2704
2705 for (unsigned int i = 0; i < type->length; i++) {
2706 const glsl_type *field_type = type->fields.structure[i].type;
2707 const char *field_name = ralloc_asprintf(mem_ctx, "%s.%s", name,
2708 type->fields.structure[i].name);
2709 set_uniform_initializer(ctx, mem_ctx, shader_program, field_name,
2710 field_type, field_constant);
2711 field_constant = (ir_constant *)field_constant->next;
2712 }
2713 return;
2714 }
2715
2716 int loc = _mesa_get_uniform_location(ctx, shader_program, name);
2717
2718 if (loc == -1) {
2719 linker_error(shader_program,
2720 "Couldn't find uniform for initializer %s\n", name);
2721 return;
2722 }
2723
2724 for (unsigned int i = 0; i < (type->is_array() ? type->length : 1); i++) {
2725 ir_constant *element;
2726 const glsl_type *element_type;
2727 if (type->is_array()) {
2728 element = val->array_elements[i];
2729 element_type = type->fields.array;
2730 } else {
2731 element = val;
2732 element_type = type;
2733 }
2734
2735 void *values;
2736
2737 if (element_type->base_type == GLSL_TYPE_BOOL) {
2738 int *conv = ralloc_array(mem_ctx, int, element_type->components());
2739 for (unsigned int j = 0; j < element_type->components(); j++) {
2740 conv[j] = element->value.b[j];
2741 }
2742 values = (void *)conv;
2743 element_type = glsl_type::get_instance(GLSL_TYPE_INT,
2744 element_type->vector_elements,
2745 1);
2746 } else {
2747 values = &element->value;
2748 }
2749
2750 if (element_type->is_matrix()) {
2751 _mesa_uniform_matrix(ctx, shader_program,
2752 element_type->matrix_columns,
2753 element_type->vector_elements,
2754 loc, 1, GL_FALSE, (GLfloat *)values);
2755 loc += element_type->matrix_columns;
2756 } else {
2757 _mesa_uniform(ctx, shader_program, loc, element_type->matrix_columns,
2758 values, element_type->gl_type);
2759 loc += type_size(element_type);
2760 }
2761 }
2762 }
2763
2764 static void
2765 set_uniform_initializers(struct gl_context *ctx,
2766 struct gl_shader_program *shader_program)
2767 {
2768 void *mem_ctx = NULL;
2769
2770 for (unsigned int i = 0; i < MESA_SHADER_TYPES; i++) {
2771 struct gl_shader *shader = shader_program->_LinkedShaders[i];
2772
2773 if (shader == NULL)
2774 continue;
2775
2776 foreach_iter(exec_list_iterator, iter, *shader->ir) {
2777 ir_instruction *ir = (ir_instruction *)iter.get();
2778 ir_variable *var = ir->as_variable();
2779
2780 if (!var || var->mode != ir_var_uniform || !var->constant_value)
2781 continue;
2782
2783 if (!mem_ctx)
2784 mem_ctx = ralloc_context(NULL);
2785
2786 set_uniform_initializer(ctx, mem_ctx, shader_program, var->name,
2787 var->type, var->constant_value);
2788 }
2789 }
2790
2791 ralloc_free(mem_ctx);
2792 }
2793
2794 /*
2795 * On a basic block basis, tracks available PROGRAM_TEMPORARY register
2796 * channels for copy propagation and updates following instructions to
2797 * use the original versions.
2798 *
2799 * The ir_to_mesa_visitor lazily produces code assuming that this pass
2800 * will occur. As an example, a TXP production before this pass:
2801 *
2802 * 0: MOV TEMP[1], INPUT[4].xyyy;
2803 * 1: MOV TEMP[1].w, INPUT[4].wwww;
2804 * 2: TXP TEMP[2], TEMP[1], texture[0], 2D;
2805 *
2806 * and after:
2807 *
2808 * 0: MOV TEMP[1], INPUT[4].xyyy;
2809 * 1: MOV TEMP[1].w, INPUT[4].wwww;
2810 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
2811 *
2812 * which allows for dead code elimination on TEMP[1]'s writes.
2813 */
2814 void
2815 ir_to_mesa_visitor::copy_propagate(void)
2816 {
2817 ir_to_mesa_instruction **acp = rzalloc_array(mem_ctx,
2818 ir_to_mesa_instruction *,
2819 this->next_temp * 4);
2820 int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
2821 int level = 0;
2822
2823 foreach_iter(exec_list_iterator, iter, this->instructions) {
2824 ir_to_mesa_instruction *inst = (ir_to_mesa_instruction *)iter.get();
2825
2826 assert(inst->dst.file != PROGRAM_TEMPORARY
2827 || inst->dst.index < this->next_temp);
2828
2829 /* First, do any copy propagation possible into the src regs. */
2830 for (int r = 0; r < 3; r++) {
2831 ir_to_mesa_instruction *first = NULL;
2832 bool good = true;
2833 int acp_base = inst->src[r].index * 4;
2834
2835 if (inst->src[r].file != PROGRAM_TEMPORARY ||
2836 inst->src[r].reladdr)
2837 continue;
2838
2839 /* See if we can find entries in the ACP consisting of MOVs
2840 * from the same src register for all the swizzled channels
2841 * of this src register reference.
2842 */
2843 for (int i = 0; i < 4; i++) {
2844 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2845 ir_to_mesa_instruction *copy_chan = acp[acp_base + src_chan];
2846
2847 if (!copy_chan) {
2848 good = false;
2849 break;
2850 }
2851
2852 assert(acp_level[acp_base + src_chan] <= level);
2853
2854 if (!first) {
2855 first = copy_chan;
2856 } else {
2857 if (first->src[0].file != copy_chan->src[0].file ||
2858 first->src[0].index != copy_chan->src[0].index) {
2859 good = false;
2860 break;
2861 }
2862 }
2863 }
2864
2865 if (good) {
2866 /* We've now validated that we can copy-propagate to
2867 * replace this src register reference. Do it.
2868 */
2869 inst->src[r].file = first->src[0].file;
2870 inst->src[r].index = first->src[0].index;
2871
2872 int swizzle = 0;
2873 for (int i = 0; i < 4; i++) {
2874 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2875 ir_to_mesa_instruction *copy_inst = acp[acp_base + src_chan];
2876 swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) <<
2877 (3 * i));
2878 }
2879 inst->src[r].swizzle = swizzle;
2880 }
2881 }
2882
2883 switch (inst->op) {
2884 case OPCODE_BGNLOOP:
2885 case OPCODE_ENDLOOP:
2886 /* End of a basic block, clear the ACP entirely. */
2887 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2888 break;
2889
2890 case OPCODE_IF:
2891 ++level;
2892 break;
2893
2894 case OPCODE_ENDIF:
2895 case OPCODE_ELSE:
2896 /* Clear all channels written inside the block from the ACP, but
2897 * leaving those that were not touched.
2898 */
2899 for (int r = 0; r < this->next_temp; r++) {
2900 for (int c = 0; c < 4; c++) {
2901 if (!acp[4 * r + c])
2902 continue;
2903
2904 if (acp_level[4 * r + c] >= level)
2905 acp[4 * r + c] = NULL;
2906 }
2907 }
2908 if (inst->op == OPCODE_ENDIF)
2909 --level;
2910 break;
2911
2912 default:
2913 /* Continuing the block, clear any written channels from
2914 * the ACP.
2915 */
2916 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.reladdr) {
2917 /* Any temporary might be written, so no copy propagation
2918 * across this instruction.
2919 */
2920 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2921 } else if (inst->dst.file == PROGRAM_OUTPUT &&
2922 inst->dst.reladdr) {
2923 /* Any output might be written, so no copy propagation
2924 * from outputs across this instruction.
2925 */
2926 for (int r = 0; r < this->next_temp; r++) {
2927 for (int c = 0; c < 4; c++) {
2928 if (!acp[4 * r + c])
2929 continue;
2930
2931 if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT)
2932 acp[4 * r + c] = NULL;
2933 }
2934 }
2935 } else if (inst->dst.file == PROGRAM_TEMPORARY ||
2936 inst->dst.file == PROGRAM_OUTPUT) {
2937 /* Clear where it's used as dst. */
2938 if (inst->dst.file == PROGRAM_TEMPORARY) {
2939 for (int c = 0; c < 4; c++) {
2940 if (inst->dst.writemask & (1 << c)) {
2941 acp[4 * inst->dst.index + c] = NULL;
2942 }
2943 }
2944 }
2945
2946 /* Clear where it's used as src. */
2947 for (int r = 0; r < this->next_temp; r++) {
2948 for (int c = 0; c < 4; c++) {
2949 if (!acp[4 * r + c])
2950 continue;
2951
2952 int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c);
2953
2954 if (acp[4 * r + c]->src[0].file == inst->dst.file &&
2955 acp[4 * r + c]->src[0].index == inst->dst.index &&
2956 inst->dst.writemask & (1 << src_chan))
2957 {
2958 acp[4 * r + c] = NULL;
2959 }
2960 }
2961 }
2962 }
2963 break;
2964 }
2965
2966 /* If this is a copy, add it to the ACP. */
2967 if (inst->op == OPCODE_MOV &&
2968 inst->dst.file == PROGRAM_TEMPORARY &&
2969 !inst->dst.reladdr &&
2970 !inst->saturate &&
2971 !inst->src[0].reladdr &&
2972 !inst->src[0].negate) {
2973 for (int i = 0; i < 4; i++) {
2974 if (inst->dst.writemask & (1 << i)) {
2975 acp[4 * inst->dst.index + i] = inst;
2976 acp_level[4 * inst->dst.index + i] = level;
2977 }
2978 }
2979 }
2980 }
2981
2982 ralloc_free(acp_level);
2983 ralloc_free(acp);
2984 }
2985
2986
2987 /**
2988 * Convert a shader's GLSL IR into a Mesa gl_program.
2989 */
2990 static struct gl_program *
2991 get_mesa_program(struct gl_context *ctx,
2992 struct gl_shader_program *shader_program,
2993 struct gl_shader *shader)
2994 {
2995 ir_to_mesa_visitor v;
2996 struct prog_instruction *mesa_instructions, *mesa_inst;
2997 ir_instruction **mesa_instruction_annotation;
2998 int i;
2999 struct gl_program *prog;
3000 GLenum target;
3001 const char *target_string;
3002 GLboolean progress;
3003 struct gl_shader_compiler_options *options =
3004 &ctx->ShaderCompilerOptions[_mesa_shader_type_to_index(shader->Type)];
3005
3006 switch (shader->Type) {
3007 case GL_VERTEX_SHADER:
3008 target = GL_VERTEX_PROGRAM_ARB;
3009 target_string = "vertex";
3010 break;
3011 case GL_FRAGMENT_SHADER:
3012 target = GL_FRAGMENT_PROGRAM_ARB;
3013 target_string = "fragment";
3014 break;
3015 case GL_GEOMETRY_SHADER:
3016 target = GL_GEOMETRY_PROGRAM_NV;
3017 target_string = "geometry";
3018 break;
3019 default:
3020 assert(!"should not be reached");
3021 return NULL;
3022 }
3023
3024 validate_ir_tree(shader->ir);
3025
3026 prog = ctx->Driver.NewProgram(ctx, target, shader_program->Name);
3027 if (!prog)
3028 return NULL;
3029 prog->Parameters = _mesa_new_parameter_list();
3030 prog->Varying = _mesa_new_parameter_list();
3031 prog->Attributes = _mesa_new_parameter_list();
3032 v.ctx = ctx;
3033 v.prog = prog;
3034 v.shader_program = shader_program;
3035 v.options = options;
3036
3037 add_uniforms_to_parameters_list(shader_program, shader, prog);
3038
3039 /* Emit Mesa IR for main(). */
3040 visit_exec_list(shader->ir, &v);
3041 v.emit(NULL, OPCODE_END);
3042
3043 /* Now emit bodies for any functions that were used. */
3044 do {
3045 progress = GL_FALSE;
3046
3047 foreach_iter(exec_list_iterator, iter, v.function_signatures) {
3048 function_entry *entry = (function_entry *)iter.get();
3049
3050 if (!entry->bgn_inst) {
3051 v.current_function = entry;
3052
3053 entry->bgn_inst = v.emit(NULL, OPCODE_BGNSUB);
3054 entry->bgn_inst->function = entry;
3055
3056 visit_exec_list(&entry->sig->body, &v);
3057
3058 ir_to_mesa_instruction *last;
3059 last = (ir_to_mesa_instruction *)v.instructions.get_tail();
3060 if (last->op != OPCODE_RET)
3061 v.emit(NULL, OPCODE_RET);
3062
3063 ir_to_mesa_instruction *end;
3064 end = v.emit(NULL, OPCODE_ENDSUB);
3065 end->function = entry;
3066
3067 progress = GL_TRUE;
3068 }
3069 }
3070 } while (progress);
3071
3072 prog->NumTemporaries = v.next_temp;
3073
3074 int num_instructions = 0;
3075 foreach_iter(exec_list_iterator, iter, v.instructions) {
3076 num_instructions++;
3077 }
3078
3079 mesa_instructions =
3080 (struct prog_instruction *)calloc(num_instructions,
3081 sizeof(*mesa_instructions));
3082 mesa_instruction_annotation = ralloc_array(v.mem_ctx, ir_instruction *,
3083 num_instructions);
3084
3085 v.copy_propagate();
3086
3087 /* Convert ir_mesa_instructions into prog_instructions.
3088 */
3089 mesa_inst = mesa_instructions;
3090 i = 0;
3091 foreach_iter(exec_list_iterator, iter, v.instructions) {
3092 const ir_to_mesa_instruction *inst = (ir_to_mesa_instruction *)iter.get();
3093
3094 mesa_inst->Opcode = inst->op;
3095 mesa_inst->CondUpdate = inst->cond_update;
3096 if (inst->saturate)
3097 mesa_inst->SaturateMode = SATURATE_ZERO_ONE;
3098 mesa_inst->DstReg.File = inst->dst.file;
3099 mesa_inst->DstReg.Index = inst->dst.index;
3100 mesa_inst->DstReg.CondMask = inst->dst.cond_mask;
3101 mesa_inst->DstReg.WriteMask = inst->dst.writemask;
3102 mesa_inst->DstReg.RelAddr = inst->dst.reladdr != NULL;
3103 mesa_inst->SrcReg[0] = mesa_src_reg_from_ir_src_reg(inst->src[0]);
3104 mesa_inst->SrcReg[1] = mesa_src_reg_from_ir_src_reg(inst->src[1]);
3105 mesa_inst->SrcReg[2] = mesa_src_reg_from_ir_src_reg(inst->src[2]);
3106 mesa_inst->TexSrcUnit = inst->sampler;
3107 mesa_inst->TexSrcTarget = inst->tex_target;
3108 mesa_inst->TexShadow = inst->tex_shadow;
3109 mesa_instruction_annotation[i] = inst->ir;
3110
3111 /* Set IndirectRegisterFiles. */
3112 if (mesa_inst->DstReg.RelAddr)
3113 prog->IndirectRegisterFiles |= 1 << mesa_inst->DstReg.File;
3114
3115 /* Update program's bitmask of indirectly accessed register files */
3116 for (unsigned src = 0; src < 3; src++)
3117 if (mesa_inst->SrcReg[src].RelAddr)
3118 prog->IndirectRegisterFiles |= 1 << mesa_inst->SrcReg[src].File;
3119
3120 switch (mesa_inst->Opcode) {
3121 case OPCODE_IF:
3122 if (options->EmitNoIfs) {
3123 linker_warning(shader_program,
3124 "Couldn't flatten if-statement. "
3125 "This will likely result in software "
3126 "rasterization.\n");
3127 }
3128 break;
3129 case OPCODE_BGNLOOP:
3130 if (options->EmitNoLoops) {
3131 linker_warning(shader_program,
3132 "Couldn't unroll loop. "
3133 "This will likely result in software "
3134 "rasterization.\n");
3135 }
3136 break;
3137 case OPCODE_CONT:
3138 if (options->EmitNoCont) {
3139 linker_warning(shader_program,
3140 "Couldn't lower continue-statement. "
3141 "This will likely result in software "
3142 "rasterization.\n");
3143 }
3144 break;
3145 case OPCODE_BGNSUB:
3146 inst->function->inst = i;
3147 mesa_inst->Comment = strdup(inst->function->sig->function_name());
3148 break;
3149 case OPCODE_ENDSUB:
3150 mesa_inst->Comment = strdup(inst->function->sig->function_name());
3151 break;
3152 case OPCODE_CAL:
3153 mesa_inst->BranchTarget = inst->function->sig_id; /* rewritten later */
3154 break;
3155 case OPCODE_ARL:
3156 prog->NumAddressRegs = 1;
3157 break;
3158 default:
3159 break;
3160 }
3161
3162 mesa_inst++;
3163 i++;
3164
3165 if (!shader_program->LinkStatus)
3166 break;
3167 }
3168
3169 if (!shader_program->LinkStatus) {
3170 free(mesa_instructions);
3171 _mesa_reference_program(ctx, &shader->Program, NULL);
3172 return NULL;
3173 }
3174
3175 set_branchtargets(&v, mesa_instructions, num_instructions);
3176
3177 if (ctx->Shader.Flags & GLSL_DUMP) {
3178 printf("\n");
3179 printf("GLSL IR for linked %s program %d:\n", target_string,
3180 shader_program->Name);
3181 _mesa_print_ir(shader->ir, NULL);
3182 printf("\n");
3183 printf("\n");
3184 printf("Mesa IR for linked %s program %d:\n", target_string,
3185 shader_program->Name);
3186 print_program(mesa_instructions, mesa_instruction_annotation,
3187 num_instructions);
3188 }
3189
3190 prog->Instructions = mesa_instructions;
3191 prog->NumInstructions = num_instructions;
3192
3193 do_set_program_inouts(shader->ir, prog);
3194 count_resources(prog);
3195
3196 check_resources(ctx, shader_program, prog);
3197
3198 _mesa_reference_program(ctx, &shader->Program, prog);
3199
3200 if ((ctx->Shader.Flags & GLSL_NO_OPT) == 0) {
3201 _mesa_optimize_program(ctx, prog);
3202 }
3203
3204 return prog;
3205 }
3206
3207 extern "C" {
3208
3209 /**
3210 * Link a shader.
3211 * Called via ctx->Driver.LinkShader()
3212 * This actually involves converting GLSL IR into Mesa gl_programs with
3213 * code lowering and other optimizations.
3214 */
3215 GLboolean
3216 _mesa_ir_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
3217 {
3218 assert(prog->LinkStatus);
3219
3220 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
3221 if (prog->_LinkedShaders[i] == NULL)
3222 continue;
3223
3224 bool progress;
3225 exec_list *ir = prog->_LinkedShaders[i]->ir;
3226 const struct gl_shader_compiler_options *options =
3227 &ctx->ShaderCompilerOptions[_mesa_shader_type_to_index(prog->_LinkedShaders[i]->Type)];
3228
3229 do {
3230 progress = false;
3231
3232 /* Lowering */
3233 do_mat_op_to_vec(ir);
3234 lower_instructions(ir, (MOD_TO_FRACT | DIV_TO_MUL_RCP | EXP_TO_EXP2
3235 | LOG_TO_LOG2 | INT_DIV_TO_MUL_RCP
3236 | ((options->EmitNoPow) ? POW_TO_EXP2 : 0)));
3237
3238 progress = do_lower_jumps(ir, true, true, options->EmitNoMainReturn, options->EmitNoCont, options->EmitNoLoops) || progress;
3239
3240 progress = do_common_optimization(ir, true, options->MaxUnrollIterations) || progress;
3241
3242 progress = lower_quadop_vector(ir, true) || progress;
3243
3244 if (options->EmitNoIfs) {
3245 progress = lower_discard(ir) || progress;
3246 progress = lower_if_to_cond_assign(ir) || progress;
3247 }
3248
3249 if (options->EmitNoNoise)
3250 progress = lower_noise(ir) || progress;
3251
3252 /* If there are forms of indirect addressing that the driver
3253 * cannot handle, perform the lowering pass.
3254 */
3255 if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput
3256 || options->EmitNoIndirectTemp || options->EmitNoIndirectUniform)
3257 progress =
3258 lower_variable_index_to_cond_assign(ir,
3259 options->EmitNoIndirectInput,
3260 options->EmitNoIndirectOutput,
3261 options->EmitNoIndirectTemp,
3262 options->EmitNoIndirectUniform)
3263 || progress;
3264
3265 progress = do_vec_index_to_cond_assign(ir) || progress;
3266 } while (progress);
3267
3268 validate_ir_tree(ir);
3269 }
3270
3271 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
3272 struct gl_program *linked_prog;
3273
3274 if (prog->_LinkedShaders[i] == NULL)
3275 continue;
3276
3277 linked_prog = get_mesa_program(ctx, prog, prog->_LinkedShaders[i]);
3278
3279 if (linked_prog) {
3280 bool ok = true;
3281
3282 switch (prog->_LinkedShaders[i]->Type) {
3283 case GL_VERTEX_SHADER:
3284 _mesa_reference_vertprog(ctx, &prog->VertexProgram,
3285 (struct gl_vertex_program *)linked_prog);
3286 ok = ctx->Driver.ProgramStringNotify(ctx, GL_VERTEX_PROGRAM_ARB,
3287 linked_prog);
3288 break;
3289 case GL_FRAGMENT_SHADER:
3290 _mesa_reference_fragprog(ctx, &prog->FragmentProgram,
3291 (struct gl_fragment_program *)linked_prog);
3292 ok = ctx->Driver.ProgramStringNotify(ctx, GL_FRAGMENT_PROGRAM_ARB,
3293 linked_prog);
3294 break;
3295 case GL_GEOMETRY_SHADER:
3296 _mesa_reference_geomprog(ctx, &prog->GeometryProgram,
3297 (struct gl_geometry_program *)linked_prog);
3298 ok = ctx->Driver.ProgramStringNotify(ctx, GL_GEOMETRY_PROGRAM_NV,
3299 linked_prog);
3300 break;
3301 }
3302 if (!ok) {
3303 return GL_FALSE;
3304 }
3305 }
3306
3307 _mesa_reference_program(ctx, &linked_prog, NULL);
3308 }
3309
3310 return GL_TRUE;
3311 }
3312
3313
3314 /**
3315 * Compile a GLSL shader. Called via glCompileShader().
3316 */
3317 void
3318 _mesa_glsl_compile_shader(struct gl_context *ctx, struct gl_shader *shader)
3319 {
3320 struct _mesa_glsl_parse_state *state =
3321 new(shader) _mesa_glsl_parse_state(ctx, shader->Type, shader);
3322
3323 const char *source = shader->Source;
3324 /* Check if the user called glCompileShader without first calling
3325 * glShaderSource. This should fail to compile, but not raise a GL_ERROR.
3326 */
3327 if (source == NULL) {
3328 shader->CompileStatus = GL_FALSE;
3329 return;
3330 }
3331
3332 state->error = preprocess(state, &source, &state->info_log,
3333 &ctx->Extensions, ctx->API);
3334
3335 if (ctx->Shader.Flags & GLSL_DUMP) {
3336 printf("GLSL source for %s shader %d:\n",
3337 _mesa_glsl_shader_target_name(state->target), shader->Name);
3338 printf("%s\n", shader->Source);
3339 }
3340
3341 if (!state->error) {
3342 _mesa_glsl_lexer_ctor(state, source);
3343 _mesa_glsl_parse(state);
3344 _mesa_glsl_lexer_dtor(state);
3345 }
3346
3347 ralloc_free(shader->ir);
3348 shader->ir = new(shader) exec_list;
3349 if (!state->error && !state->translation_unit.is_empty())
3350 _mesa_ast_to_hir(shader->ir, state);
3351
3352 if (!state->error && !shader->ir->is_empty()) {
3353 validate_ir_tree(shader->ir);
3354
3355 /* Do some optimization at compile time to reduce shader IR size
3356 * and reduce later work if the same shader is linked multiple times
3357 */
3358 while (do_common_optimization(shader->ir, false, 32))
3359 ;
3360
3361 validate_ir_tree(shader->ir);
3362 }
3363
3364 shader->symbols = state->symbols;
3365
3366 shader->CompileStatus = !state->error;
3367 shader->InfoLog = state->info_log;
3368 shader->Version = state->language_version;
3369 memcpy(shader->builtins_to_link, state->builtins_to_link,
3370 sizeof(shader->builtins_to_link[0]) * state->num_builtins_to_link);
3371 shader->num_builtins_to_link = state->num_builtins_to_link;
3372
3373 if (ctx->Shader.Flags & GLSL_LOG) {
3374 _mesa_write_shader_to_file(shader);
3375 }
3376
3377 if (ctx->Shader.Flags & GLSL_DUMP) {
3378 if (shader->CompileStatus) {
3379 printf("GLSL IR for shader %d:\n", shader->Name);
3380 _mesa_print_ir(shader->ir, NULL);
3381 printf("\n\n");
3382 } else {
3383 printf("GLSL shader %d failed to compile.\n", shader->Name);
3384 }
3385 if (shader->InfoLog && shader->InfoLog[0] != 0) {
3386 printf("GLSL shader %d info log:\n", shader->Name);
3387 printf("%s\n", shader->InfoLog);
3388 }
3389 }
3390
3391 /* Retain any live IR, but trash the rest. */
3392 reparent_ir(shader->ir, shader->ir);
3393
3394 ralloc_free(state);
3395 }
3396
3397
3398 /**
3399 * Link a GLSL shader program. Called via glLinkProgram().
3400 */
3401 void
3402 _mesa_glsl_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
3403 {
3404 unsigned int i;
3405
3406 _mesa_clear_shader_program_data(ctx, prog);
3407
3408 prog->LinkStatus = GL_TRUE;
3409
3410 for (i = 0; i < prog->NumShaders; i++) {
3411 if (!prog->Shaders[i]->CompileStatus) {
3412 linker_error(prog, "linking with uncompiled shader");
3413 prog->LinkStatus = GL_FALSE;
3414 }
3415 }
3416
3417 prog->Varying = _mesa_new_parameter_list();
3418 _mesa_reference_vertprog(ctx, &prog->VertexProgram, NULL);
3419 _mesa_reference_fragprog(ctx, &prog->FragmentProgram, NULL);
3420 _mesa_reference_geomprog(ctx, &prog->GeometryProgram, NULL);
3421
3422 if (prog->LinkStatus) {
3423 link_shaders(ctx, prog);
3424 }
3425
3426 if (prog->LinkStatus) {
3427 if (!ctx->Driver.LinkShader(ctx, prog)) {
3428 prog->LinkStatus = GL_FALSE;
3429 }
3430 }
3431
3432 set_uniform_initializers(ctx, prog);
3433
3434 if (ctx->Shader.Flags & GLSL_DUMP) {
3435 if (!prog->LinkStatus) {
3436 printf("GLSL shader program %d failed to link\n", prog->Name);
3437 }
3438
3439 if (prog->InfoLog && prog->InfoLog[0] != 0) {
3440 printf("GLSL shader program %d info log:\n", prog->Name);
3441 printf("%s\n", prog->InfoLog);
3442 }
3443 }
3444 }
3445
3446 } /* extern "C" */