mesa/program: Constify find_variable_storage
[mesa.git] / src / mesa / program / ir_to_mesa.cpp
1 /*
2 * Copyright (C) 2005-2007 Brian Paul All Rights Reserved.
3 * Copyright (C) 2008 VMware, Inc. All Rights Reserved.
4 * Copyright © 2010 Intel Corporation
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
22 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
23 * DEALINGS IN THE SOFTWARE.
24 */
25
26 /**
27 * \file ir_to_mesa.cpp
28 *
29 * Translate GLSL IR to Mesa's gl_program representation.
30 */
31
32 #include <stdio.h>
33 #include "main/compiler.h"
34 #include "ir.h"
35 #include "ir_visitor.h"
36 #include "ir_expression_flattening.h"
37 #include "ir_uniform.h"
38 #include "glsl_types.h"
39 #include "glsl_parser_extras.h"
40 #include "../glsl/program.h"
41 #include "ir_optimization.h"
42 #include "ast.h"
43 #include "linker.h"
44
45 #include "main/mtypes.h"
46 #include "main/shaderobj.h"
47 #include "main/uniforms.h"
48 #include "program/hash_table.h"
49
50 extern "C" {
51 #include "main/shaderapi.h"
52 #include "program/prog_instruction.h"
53 #include "program/prog_optimize.h"
54 #include "program/prog_print.h"
55 #include "program/program.h"
56 #include "program/prog_parameter.h"
57 #include "program/sampler.h"
58 }
59
60 static int swizzle_for_size(int size);
61
62 namespace {
63
64 class src_reg;
65 class dst_reg;
66
67 /**
68 * This struct is a corresponding struct to Mesa prog_src_register, with
69 * wider fields.
70 */
71 class src_reg {
72 public:
73 src_reg(gl_register_file file, int index, const glsl_type *type)
74 {
75 this->file = file;
76 this->index = index;
77 if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
78 this->swizzle = swizzle_for_size(type->vector_elements);
79 else
80 this->swizzle = SWIZZLE_XYZW;
81 this->negate = 0;
82 this->reladdr = NULL;
83 }
84
85 src_reg()
86 {
87 this->file = PROGRAM_UNDEFINED;
88 this->index = 0;
89 this->swizzle = 0;
90 this->negate = 0;
91 this->reladdr = NULL;
92 }
93
94 explicit src_reg(dst_reg reg);
95
96 gl_register_file file; /**< PROGRAM_* from Mesa */
97 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
98 GLuint swizzle; /**< SWIZZLE_XYZWONEZERO swizzles from Mesa. */
99 int negate; /**< NEGATE_XYZW mask from mesa */
100 /** Register index should be offset by the integer in this reg. */
101 src_reg *reladdr;
102 };
103
104 class dst_reg {
105 public:
106 dst_reg(gl_register_file file, int writemask)
107 {
108 this->file = file;
109 this->index = 0;
110 this->writemask = writemask;
111 this->cond_mask = COND_TR;
112 this->reladdr = NULL;
113 }
114
115 dst_reg()
116 {
117 this->file = PROGRAM_UNDEFINED;
118 this->index = 0;
119 this->writemask = 0;
120 this->cond_mask = COND_TR;
121 this->reladdr = NULL;
122 }
123
124 explicit dst_reg(src_reg reg);
125
126 gl_register_file file; /**< PROGRAM_* from Mesa */
127 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
128 int writemask; /**< Bitfield of WRITEMASK_[XYZW] */
129 GLuint cond_mask:4;
130 /** Register index should be offset by the integer in this reg. */
131 src_reg *reladdr;
132 };
133
134 } /* anonymous namespace */
135
136 src_reg::src_reg(dst_reg reg)
137 {
138 this->file = reg.file;
139 this->index = reg.index;
140 this->swizzle = SWIZZLE_XYZW;
141 this->negate = 0;
142 this->reladdr = reg.reladdr;
143 }
144
145 dst_reg::dst_reg(src_reg reg)
146 {
147 this->file = reg.file;
148 this->index = reg.index;
149 this->writemask = WRITEMASK_XYZW;
150 this->cond_mask = COND_TR;
151 this->reladdr = reg.reladdr;
152 }
153
154 namespace {
155
156 class ir_to_mesa_instruction : public exec_node {
157 public:
158 DECLARE_RALLOC_CXX_OPERATORS(ir_to_mesa_instruction)
159
160 enum prog_opcode op;
161 dst_reg dst;
162 src_reg src[3];
163 /** Pointer to the ir source this tree came from for debugging */
164 ir_instruction *ir;
165 GLboolean cond_update;
166 bool saturate;
167 int sampler; /**< sampler index */
168 int tex_target; /**< One of TEXTURE_*_INDEX */
169 GLboolean tex_shadow;
170 };
171
172 class variable_storage : public exec_node {
173 public:
174 variable_storage(ir_variable *var, gl_register_file file, int index)
175 : file(file), index(index), var(var)
176 {
177 /* empty */
178 }
179
180 gl_register_file file;
181 int index;
182 ir_variable *var; /* variable that maps to this, if any */
183 };
184
185 class function_entry : public exec_node {
186 public:
187 ir_function_signature *sig;
188
189 /**
190 * identifier of this function signature used by the program.
191 *
192 * At the point that Mesa instructions for function calls are
193 * generated, we don't know the address of the first instruction of
194 * the function body. So we make the BranchTarget that is called a
195 * small integer and rewrite them during set_branchtargets().
196 */
197 int sig_id;
198
199 /**
200 * Pointer to first instruction of the function body.
201 *
202 * Set during function body emits after main() is processed.
203 */
204 ir_to_mesa_instruction *bgn_inst;
205
206 /**
207 * Index of the first instruction of the function body in actual
208 * Mesa IR.
209 *
210 * Set after convertion from ir_to_mesa_instruction to prog_instruction.
211 */
212 int inst;
213
214 /** Storage for the return value. */
215 src_reg return_reg;
216 };
217
218 class ir_to_mesa_visitor : public ir_visitor {
219 public:
220 ir_to_mesa_visitor();
221 ~ir_to_mesa_visitor();
222
223 function_entry *current_function;
224
225 struct gl_context *ctx;
226 struct gl_program *prog;
227 struct gl_shader_program *shader_program;
228 struct gl_shader_compiler_options *options;
229
230 int next_temp;
231
232 variable_storage *find_variable_storage(const ir_variable *var);
233
234 src_reg get_temp(const glsl_type *type);
235 void reladdr_to_temp(ir_instruction *ir, src_reg *reg, int *num_reladdr);
236
237 src_reg src_reg_for_float(float val);
238
239 /**
240 * \name Visit methods
241 *
242 * As typical for the visitor pattern, there must be one \c visit method for
243 * each concrete subclass of \c ir_instruction. Virtual base classes within
244 * the hierarchy should not have \c visit methods.
245 */
246 /*@{*/
247 virtual void visit(ir_variable *);
248 virtual void visit(ir_loop *);
249 virtual void visit(ir_loop_jump *);
250 virtual void visit(ir_function_signature *);
251 virtual void visit(ir_function *);
252 virtual void visit(ir_expression *);
253 virtual void visit(ir_swizzle *);
254 virtual void visit(ir_dereference_variable *);
255 virtual void visit(ir_dereference_array *);
256 virtual void visit(ir_dereference_record *);
257 virtual void visit(ir_assignment *);
258 virtual void visit(ir_constant *);
259 virtual void visit(ir_call *);
260 virtual void visit(ir_return *);
261 virtual void visit(ir_discard *);
262 virtual void visit(ir_texture *);
263 virtual void visit(ir_if *);
264 virtual void visit(ir_emit_vertex *);
265 virtual void visit(ir_end_primitive *);
266 /*@}*/
267
268 src_reg result;
269
270 /** List of variable_storage */
271 exec_list variables;
272
273 /** List of function_entry */
274 exec_list function_signatures;
275 int next_signature_id;
276
277 /** List of ir_to_mesa_instruction */
278 exec_list instructions;
279
280 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op);
281
282 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
283 dst_reg dst, src_reg src0);
284
285 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
286 dst_reg dst, src_reg src0, src_reg src1);
287
288 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
289 dst_reg dst,
290 src_reg src0, src_reg src1, src_reg src2);
291
292 /**
293 * Emit the correct dot-product instruction for the type of arguments
294 */
295 ir_to_mesa_instruction * emit_dp(ir_instruction *ir,
296 dst_reg dst,
297 src_reg src0,
298 src_reg src1,
299 unsigned elements);
300
301 void emit_scalar(ir_instruction *ir, enum prog_opcode op,
302 dst_reg dst, src_reg src0);
303
304 void emit_scalar(ir_instruction *ir, enum prog_opcode op,
305 dst_reg dst, src_reg src0, src_reg src1);
306
307 void emit_scs(ir_instruction *ir, enum prog_opcode op,
308 dst_reg dst, const src_reg &src);
309
310 bool try_emit_mad(ir_expression *ir,
311 int mul_operand);
312 bool try_emit_mad_for_and_not(ir_expression *ir,
313 int mul_operand);
314 bool try_emit_sat(ir_expression *ir);
315
316 void emit_swz(ir_expression *ir);
317
318 bool process_move_condition(ir_rvalue *ir);
319
320 void copy_propagate(void);
321
322 void *mem_ctx;
323 };
324
325 } /* anonymous namespace */
326
327 static src_reg undef_src = src_reg(PROGRAM_UNDEFINED, 0, NULL);
328
329 static dst_reg undef_dst = dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP);
330
331 static dst_reg address_reg = dst_reg(PROGRAM_ADDRESS, WRITEMASK_X);
332
333 static int
334 swizzle_for_size(int size)
335 {
336 static const int size_swizzles[4] = {
337 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
338 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
339 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
340 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
341 };
342
343 assert((size >= 1) && (size <= 4));
344 return size_swizzles[size - 1];
345 }
346
347 ir_to_mesa_instruction *
348 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
349 dst_reg dst,
350 src_reg src0, src_reg src1, src_reg src2)
351 {
352 ir_to_mesa_instruction *inst = new(mem_ctx) ir_to_mesa_instruction();
353 int num_reladdr = 0;
354
355 /* If we have to do relative addressing, we want to load the ARL
356 * reg directly for one of the regs, and preload the other reladdr
357 * sources into temps.
358 */
359 num_reladdr += dst.reladdr != NULL;
360 num_reladdr += src0.reladdr != NULL;
361 num_reladdr += src1.reladdr != NULL;
362 num_reladdr += src2.reladdr != NULL;
363
364 reladdr_to_temp(ir, &src2, &num_reladdr);
365 reladdr_to_temp(ir, &src1, &num_reladdr);
366 reladdr_to_temp(ir, &src0, &num_reladdr);
367
368 if (dst.reladdr) {
369 emit(ir, OPCODE_ARL, address_reg, *dst.reladdr);
370 num_reladdr--;
371 }
372 assert(num_reladdr == 0);
373
374 inst->op = op;
375 inst->dst = dst;
376 inst->src[0] = src0;
377 inst->src[1] = src1;
378 inst->src[2] = src2;
379 inst->ir = ir;
380
381 this->instructions.push_tail(inst);
382
383 return inst;
384 }
385
386
387 ir_to_mesa_instruction *
388 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
389 dst_reg dst, src_reg src0, src_reg src1)
390 {
391 return emit(ir, op, dst, src0, src1, undef_src);
392 }
393
394 ir_to_mesa_instruction *
395 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
396 dst_reg dst, src_reg src0)
397 {
398 assert(dst.writemask != 0);
399 return emit(ir, op, dst, src0, undef_src, undef_src);
400 }
401
402 ir_to_mesa_instruction *
403 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op)
404 {
405 return emit(ir, op, undef_dst, undef_src, undef_src, undef_src);
406 }
407
408 ir_to_mesa_instruction *
409 ir_to_mesa_visitor::emit_dp(ir_instruction *ir,
410 dst_reg dst, src_reg src0, src_reg src1,
411 unsigned elements)
412 {
413 static const gl_inst_opcode dot_opcodes[] = {
414 OPCODE_DP2, OPCODE_DP3, OPCODE_DP4
415 };
416
417 return emit(ir, dot_opcodes[elements - 2], dst, src0, src1);
418 }
419
420 /**
421 * Emits Mesa scalar opcodes to produce unique answers across channels.
422 *
423 * Some Mesa opcodes are scalar-only, like ARB_fp/vp. The src X
424 * channel determines the result across all channels. So to do a vec4
425 * of this operation, we want to emit a scalar per source channel used
426 * to produce dest channels.
427 */
428 void
429 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
430 dst_reg dst,
431 src_reg orig_src0, src_reg orig_src1)
432 {
433 int i, j;
434 int done_mask = ~dst.writemask;
435
436 /* Mesa RCP is a scalar operation splatting results to all channels,
437 * like ARB_fp/vp. So emit as many RCPs as necessary to cover our
438 * dst channels.
439 */
440 for (i = 0; i < 4; i++) {
441 GLuint this_mask = (1 << i);
442 ir_to_mesa_instruction *inst;
443 src_reg src0 = orig_src0;
444 src_reg src1 = orig_src1;
445
446 if (done_mask & this_mask)
447 continue;
448
449 GLuint src0_swiz = GET_SWZ(src0.swizzle, i);
450 GLuint src1_swiz = GET_SWZ(src1.swizzle, i);
451 for (j = i + 1; j < 4; j++) {
452 /* If there is another enabled component in the destination that is
453 * derived from the same inputs, generate its value on this pass as
454 * well.
455 */
456 if (!(done_mask & (1 << j)) &&
457 GET_SWZ(src0.swizzle, j) == src0_swiz &&
458 GET_SWZ(src1.swizzle, j) == src1_swiz) {
459 this_mask |= (1 << j);
460 }
461 }
462 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
463 src0_swiz, src0_swiz);
464 src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz,
465 src1_swiz, src1_swiz);
466
467 inst = emit(ir, op, dst, src0, src1);
468 inst->dst.writemask = this_mask;
469 done_mask |= this_mask;
470 }
471 }
472
473 void
474 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
475 dst_reg dst, src_reg src0)
476 {
477 src_reg undef = undef_src;
478
479 undef.swizzle = SWIZZLE_XXXX;
480
481 emit_scalar(ir, op, dst, src0, undef);
482 }
483
484 /**
485 * Emit an OPCODE_SCS instruction
486 *
487 * The \c SCS opcode functions a bit differently than the other Mesa (or
488 * ARB_fragment_program) opcodes. Instead of splatting its result across all
489 * four components of the destination, it writes one value to the \c x
490 * component and another value to the \c y component.
491 *
492 * \param ir IR instruction being processed
493 * \param op Either \c OPCODE_SIN or \c OPCODE_COS depending on which
494 * value is desired.
495 * \param dst Destination register
496 * \param src Source register
497 */
498 void
499 ir_to_mesa_visitor::emit_scs(ir_instruction *ir, enum prog_opcode op,
500 dst_reg dst,
501 const src_reg &src)
502 {
503 /* Vertex programs cannot use the SCS opcode.
504 */
505 if (this->prog->Target == GL_VERTEX_PROGRAM_ARB) {
506 emit_scalar(ir, op, dst, src);
507 return;
508 }
509
510 const unsigned component = (op == OPCODE_SIN) ? 0 : 1;
511 const unsigned scs_mask = (1U << component);
512 int done_mask = ~dst.writemask;
513 src_reg tmp;
514
515 assert(op == OPCODE_SIN || op == OPCODE_COS);
516
517 /* If there are compnents in the destination that differ from the component
518 * that will be written by the SCS instrution, we'll need a temporary.
519 */
520 if (scs_mask != unsigned(dst.writemask)) {
521 tmp = get_temp(glsl_type::vec4_type);
522 }
523
524 for (unsigned i = 0; i < 4; i++) {
525 unsigned this_mask = (1U << i);
526 src_reg src0 = src;
527
528 if ((done_mask & this_mask) != 0)
529 continue;
530
531 /* The source swizzle specified which component of the source generates
532 * sine / cosine for the current component in the destination. The SCS
533 * instruction requires that this value be swizzle to the X component.
534 * Replace the current swizzle with a swizzle that puts the source in
535 * the X component.
536 */
537 unsigned src0_swiz = GET_SWZ(src.swizzle, i);
538
539 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
540 src0_swiz, src0_swiz);
541 for (unsigned j = i + 1; j < 4; j++) {
542 /* If there is another enabled component in the destination that is
543 * derived from the same inputs, generate its value on this pass as
544 * well.
545 */
546 if (!(done_mask & (1 << j)) &&
547 GET_SWZ(src0.swizzle, j) == src0_swiz) {
548 this_mask |= (1 << j);
549 }
550 }
551
552 if (this_mask != scs_mask) {
553 ir_to_mesa_instruction *inst;
554 dst_reg tmp_dst = dst_reg(tmp);
555
556 /* Emit the SCS instruction.
557 */
558 inst = emit(ir, OPCODE_SCS, tmp_dst, src0);
559 inst->dst.writemask = scs_mask;
560
561 /* Move the result of the SCS instruction to the desired location in
562 * the destination.
563 */
564 tmp.swizzle = MAKE_SWIZZLE4(component, component,
565 component, component);
566 inst = emit(ir, OPCODE_SCS, dst, tmp);
567 inst->dst.writemask = this_mask;
568 } else {
569 /* Emit the SCS instruction to write directly to the destination.
570 */
571 ir_to_mesa_instruction *inst = emit(ir, OPCODE_SCS, dst, src0);
572 inst->dst.writemask = scs_mask;
573 }
574
575 done_mask |= this_mask;
576 }
577 }
578
579 src_reg
580 ir_to_mesa_visitor::src_reg_for_float(float val)
581 {
582 src_reg src(PROGRAM_CONSTANT, -1, NULL);
583
584 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
585 (const gl_constant_value *)&val, 1, &src.swizzle);
586
587 return src;
588 }
589
590 static int
591 type_size(const struct glsl_type *type)
592 {
593 unsigned int i;
594 int size;
595
596 switch (type->base_type) {
597 case GLSL_TYPE_UINT:
598 case GLSL_TYPE_INT:
599 case GLSL_TYPE_FLOAT:
600 case GLSL_TYPE_BOOL:
601 if (type->is_matrix()) {
602 return type->matrix_columns;
603 } else {
604 /* Regardless of size of vector, it gets a vec4. This is bad
605 * packing for things like floats, but otherwise arrays become a
606 * mess. Hopefully a later pass over the code can pack scalars
607 * down if appropriate.
608 */
609 return 1;
610 }
611 case GLSL_TYPE_ARRAY:
612 assert(type->length > 0);
613 return type_size(type->fields.array) * type->length;
614 case GLSL_TYPE_STRUCT:
615 size = 0;
616 for (i = 0; i < type->length; i++) {
617 size += type_size(type->fields.structure[i].type);
618 }
619 return size;
620 case GLSL_TYPE_SAMPLER:
621 case GLSL_TYPE_IMAGE:
622 /* Samplers take up one slot in UNIFORMS[], but they're baked in
623 * at link time.
624 */
625 return 1;
626 case GLSL_TYPE_ATOMIC_UINT:
627 case GLSL_TYPE_VOID:
628 case GLSL_TYPE_ERROR:
629 case GLSL_TYPE_INTERFACE:
630 assert(!"Invalid type in type_size");
631 break;
632 }
633
634 return 0;
635 }
636
637 /**
638 * In the initial pass of codegen, we assign temporary numbers to
639 * intermediate results. (not SSA -- variable assignments will reuse
640 * storage). Actual register allocation for the Mesa VM occurs in a
641 * pass over the Mesa IR later.
642 */
643 src_reg
644 ir_to_mesa_visitor::get_temp(const glsl_type *type)
645 {
646 src_reg src;
647
648 src.file = PROGRAM_TEMPORARY;
649 src.index = next_temp;
650 src.reladdr = NULL;
651 next_temp += type_size(type);
652
653 if (type->is_array() || type->is_record()) {
654 src.swizzle = SWIZZLE_NOOP;
655 } else {
656 src.swizzle = swizzle_for_size(type->vector_elements);
657 }
658 src.negate = 0;
659
660 return src;
661 }
662
663 variable_storage *
664 ir_to_mesa_visitor::find_variable_storage(const ir_variable *var)
665 {
666 variable_storage *entry;
667
668 foreach_list(node, &this->variables) {
669 entry = (variable_storage *) node;
670
671 if (entry->var == var)
672 return entry;
673 }
674
675 return NULL;
676 }
677
678 void
679 ir_to_mesa_visitor::visit(ir_variable *ir)
680 {
681 if (strcmp(ir->name, "gl_FragCoord") == 0) {
682 struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog;
683
684 fp->OriginUpperLeft = ir->data.origin_upper_left;
685 fp->PixelCenterInteger = ir->data.pixel_center_integer;
686 }
687
688 if (ir->data.mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) {
689 unsigned int i;
690 const ir_state_slot *const slots = ir->state_slots;
691 assert(ir->state_slots != NULL);
692
693 /* Check if this statevar's setup in the STATE file exactly
694 * matches how we'll want to reference it as a
695 * struct/array/whatever. If not, then we need to move it into
696 * temporary storage and hope that it'll get copy-propagated
697 * out.
698 */
699 for (i = 0; i < ir->num_state_slots; i++) {
700 if (slots[i].swizzle != SWIZZLE_XYZW) {
701 break;
702 }
703 }
704
705 variable_storage *storage;
706 dst_reg dst;
707 if (i == ir->num_state_slots) {
708 /* We'll set the index later. */
709 storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1);
710 this->variables.push_tail(storage);
711
712 dst = undef_dst;
713 } else {
714 /* The variable_storage constructor allocates slots based on the size
715 * of the type. However, this had better match the number of state
716 * elements that we're going to copy into the new temporary.
717 */
718 assert((int) ir->num_state_slots == type_size(ir->type));
719
720 storage = new(mem_ctx) variable_storage(ir, PROGRAM_TEMPORARY,
721 this->next_temp);
722 this->variables.push_tail(storage);
723 this->next_temp += type_size(ir->type);
724
725 dst = dst_reg(src_reg(PROGRAM_TEMPORARY, storage->index, NULL));
726 }
727
728
729 for (unsigned int i = 0; i < ir->num_state_slots; i++) {
730 int index = _mesa_add_state_reference(this->prog->Parameters,
731 (gl_state_index *)slots[i].tokens);
732
733 if (storage->file == PROGRAM_STATE_VAR) {
734 if (storage->index == -1) {
735 storage->index = index;
736 } else {
737 assert(index == storage->index + (int)i);
738 }
739 } else {
740 src_reg src(PROGRAM_STATE_VAR, index, NULL);
741 src.swizzle = slots[i].swizzle;
742 emit(ir, OPCODE_MOV, dst, src);
743 /* even a float takes up a whole vec4 reg in a struct/array. */
744 dst.index++;
745 }
746 }
747
748 if (storage->file == PROGRAM_TEMPORARY &&
749 dst.index != storage->index + (int) ir->num_state_slots) {
750 linker_error(this->shader_program,
751 "failed to load builtin uniform `%s' "
752 "(%d/%d regs loaded)\n",
753 ir->name, dst.index - storage->index,
754 type_size(ir->type));
755 }
756 }
757 }
758
759 void
760 ir_to_mesa_visitor::visit(ir_loop *ir)
761 {
762 emit(NULL, OPCODE_BGNLOOP);
763
764 visit_exec_list(&ir->body_instructions, this);
765
766 emit(NULL, OPCODE_ENDLOOP);
767 }
768
769 void
770 ir_to_mesa_visitor::visit(ir_loop_jump *ir)
771 {
772 switch (ir->mode) {
773 case ir_loop_jump::jump_break:
774 emit(NULL, OPCODE_BRK);
775 break;
776 case ir_loop_jump::jump_continue:
777 emit(NULL, OPCODE_CONT);
778 break;
779 }
780 }
781
782
783 void
784 ir_to_mesa_visitor::visit(ir_function_signature *ir)
785 {
786 assert(0);
787 (void)ir;
788 }
789
790 void
791 ir_to_mesa_visitor::visit(ir_function *ir)
792 {
793 /* Ignore function bodies other than main() -- we shouldn't see calls to
794 * them since they should all be inlined before we get to ir_to_mesa.
795 */
796 if (strcmp(ir->name, "main") == 0) {
797 const ir_function_signature *sig;
798 exec_list empty;
799
800 sig = ir->matching_signature(NULL, &empty);
801
802 assert(sig);
803
804 foreach_list(node, &sig->body) {
805 ir_instruction *ir = (ir_instruction *) node;
806
807 ir->accept(this);
808 }
809 }
810 }
811
812 bool
813 ir_to_mesa_visitor::try_emit_mad(ir_expression *ir, int mul_operand)
814 {
815 int nonmul_operand = 1 - mul_operand;
816 src_reg a, b, c;
817
818 ir_expression *expr = ir->operands[mul_operand]->as_expression();
819 if (!expr || expr->operation != ir_binop_mul)
820 return false;
821
822 expr->operands[0]->accept(this);
823 a = this->result;
824 expr->operands[1]->accept(this);
825 b = this->result;
826 ir->operands[nonmul_operand]->accept(this);
827 c = this->result;
828
829 this->result = get_temp(ir->type);
830 emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, c);
831
832 return true;
833 }
834
835 /**
836 * Emit OPCODE_MAD(a, -b, a) instead of AND(a, NOT(b))
837 *
838 * The logic values are 1.0 for true and 0.0 for false. Logical-and is
839 * implemented using multiplication, and logical-or is implemented using
840 * addition. Logical-not can be implemented as (true - x), or (1.0 - x).
841 * As result, the logical expression (a & !b) can be rewritten as:
842 *
843 * - a * !b
844 * - a * (1 - b)
845 * - (a * 1) - (a * b)
846 * - a + -(a * b)
847 * - a + (a * -b)
848 *
849 * This final expression can be implemented as a single MAD(a, -b, a)
850 * instruction.
851 */
852 bool
853 ir_to_mesa_visitor::try_emit_mad_for_and_not(ir_expression *ir, int try_operand)
854 {
855 const int other_operand = 1 - try_operand;
856 src_reg a, b;
857
858 ir_expression *expr = ir->operands[try_operand]->as_expression();
859 if (!expr || expr->operation != ir_unop_logic_not)
860 return false;
861
862 ir->operands[other_operand]->accept(this);
863 a = this->result;
864 expr->operands[0]->accept(this);
865 b = this->result;
866
867 b.negate = ~b.negate;
868
869 this->result = get_temp(ir->type);
870 emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, a);
871
872 return true;
873 }
874
875 bool
876 ir_to_mesa_visitor::try_emit_sat(ir_expression *ir)
877 {
878 /* Saturates were only introduced to vertex programs in
879 * NV_vertex_program3, so don't give them to drivers in the VP.
880 */
881 if (this->prog->Target == GL_VERTEX_PROGRAM_ARB)
882 return false;
883
884 ir_rvalue *sat_src = ir->as_rvalue_to_saturate();
885 if (!sat_src)
886 return false;
887
888 sat_src->accept(this);
889 src_reg src = this->result;
890
891 /* If we generated an expression instruction into a temporary in
892 * processing the saturate's operand, apply the saturate to that
893 * instruction. Otherwise, generate a MOV to do the saturate.
894 *
895 * Note that we have to be careful to only do this optimization if
896 * the instruction in question was what generated src->result. For
897 * example, ir_dereference_array might generate a MUL instruction
898 * to create the reladdr, and return us a src reg using that
899 * reladdr. That MUL result is not the value we're trying to
900 * saturate.
901 */
902 ir_expression *sat_src_expr = sat_src->as_expression();
903 ir_to_mesa_instruction *new_inst;
904 new_inst = (ir_to_mesa_instruction *)this->instructions.get_tail();
905 if (sat_src_expr && (sat_src_expr->operation == ir_binop_mul ||
906 sat_src_expr->operation == ir_binop_add ||
907 sat_src_expr->operation == ir_binop_dot)) {
908 new_inst->saturate = true;
909 } else {
910 this->result = get_temp(ir->type);
911 ir_to_mesa_instruction *inst;
912 inst = emit(ir, OPCODE_MOV, dst_reg(this->result), src);
913 inst->saturate = true;
914 }
915
916 return true;
917 }
918
919 void
920 ir_to_mesa_visitor::reladdr_to_temp(ir_instruction *ir,
921 src_reg *reg, int *num_reladdr)
922 {
923 if (!reg->reladdr)
924 return;
925
926 emit(ir, OPCODE_ARL, address_reg, *reg->reladdr);
927
928 if (*num_reladdr != 1) {
929 src_reg temp = get_temp(glsl_type::vec4_type);
930
931 emit(ir, OPCODE_MOV, dst_reg(temp), *reg);
932 *reg = temp;
933 }
934
935 (*num_reladdr)--;
936 }
937
938 void
939 ir_to_mesa_visitor::emit_swz(ir_expression *ir)
940 {
941 /* Assume that the vector operator is in a form compatible with OPCODE_SWZ.
942 * This means that each of the operands is either an immediate value of -1,
943 * 0, or 1, or is a component from one source register (possibly with
944 * negation).
945 */
946 uint8_t components[4] = { 0 };
947 bool negate[4] = { false };
948 ir_variable *var = NULL;
949
950 for (unsigned i = 0; i < ir->type->vector_elements; i++) {
951 ir_rvalue *op = ir->operands[i];
952
953 assert(op->type->is_scalar());
954
955 while (op != NULL) {
956 switch (op->ir_type) {
957 case ir_type_constant: {
958
959 assert(op->type->is_scalar());
960
961 const ir_constant *const c = op->as_constant();
962 if (c->is_one()) {
963 components[i] = SWIZZLE_ONE;
964 } else if (c->is_zero()) {
965 components[i] = SWIZZLE_ZERO;
966 } else if (c->is_negative_one()) {
967 components[i] = SWIZZLE_ONE;
968 negate[i] = true;
969 } else {
970 assert(!"SWZ constant must be 0.0 or 1.0.");
971 }
972
973 op = NULL;
974 break;
975 }
976
977 case ir_type_dereference_variable: {
978 ir_dereference_variable *const deref =
979 (ir_dereference_variable *) op;
980
981 assert((var == NULL) || (deref->var == var));
982 components[i] = SWIZZLE_X;
983 var = deref->var;
984 op = NULL;
985 break;
986 }
987
988 case ir_type_expression: {
989 ir_expression *const expr = (ir_expression *) op;
990
991 assert(expr->operation == ir_unop_neg);
992 negate[i] = true;
993
994 op = expr->operands[0];
995 break;
996 }
997
998 case ir_type_swizzle: {
999 ir_swizzle *const swiz = (ir_swizzle *) op;
1000
1001 components[i] = swiz->mask.x;
1002 op = swiz->val;
1003 break;
1004 }
1005
1006 default:
1007 assert(!"Should not get here.");
1008 return;
1009 }
1010 }
1011 }
1012
1013 assert(var != NULL);
1014
1015 ir_dereference_variable *const deref =
1016 new(mem_ctx) ir_dereference_variable(var);
1017
1018 this->result.file = PROGRAM_UNDEFINED;
1019 deref->accept(this);
1020 if (this->result.file == PROGRAM_UNDEFINED) {
1021 printf("Failed to get tree for expression operand:\n");
1022 deref->print();
1023 printf("\n");
1024 exit(1);
1025 }
1026
1027 src_reg src;
1028
1029 src = this->result;
1030 src.swizzle = MAKE_SWIZZLE4(components[0],
1031 components[1],
1032 components[2],
1033 components[3]);
1034 src.negate = ((unsigned(negate[0]) << 0)
1035 | (unsigned(negate[1]) << 1)
1036 | (unsigned(negate[2]) << 2)
1037 | (unsigned(negate[3]) << 3));
1038
1039 /* Storage for our result. Ideally for an assignment we'd be using the
1040 * actual storage for the result here, instead.
1041 */
1042 const src_reg result_src = get_temp(ir->type);
1043 dst_reg result_dst = dst_reg(result_src);
1044
1045 /* Limit writes to the channels that will be used by result_src later.
1046 * This does limit this temp's use as a temporary for multi-instruction
1047 * sequences.
1048 */
1049 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1050
1051 emit(ir, OPCODE_SWZ, result_dst, src);
1052 this->result = result_src;
1053 }
1054
1055 void
1056 ir_to_mesa_visitor::visit(ir_expression *ir)
1057 {
1058 unsigned int operand;
1059 src_reg op[Elements(ir->operands)];
1060 src_reg result_src;
1061 dst_reg result_dst;
1062
1063 /* Quick peephole: Emit OPCODE_MAD(a, b, c) instead of ADD(MUL(a, b), c)
1064 */
1065 if (ir->operation == ir_binop_add) {
1066 if (try_emit_mad(ir, 1))
1067 return;
1068 if (try_emit_mad(ir, 0))
1069 return;
1070 }
1071
1072 /* Quick peephole: Emit OPCODE_MAD(-a, -b, a) instead of AND(a, NOT(b))
1073 */
1074 if (ir->operation == ir_binop_logic_and) {
1075 if (try_emit_mad_for_and_not(ir, 1))
1076 return;
1077 if (try_emit_mad_for_and_not(ir, 0))
1078 return;
1079 }
1080
1081 if (try_emit_sat(ir))
1082 return;
1083
1084 if (ir->operation == ir_quadop_vector) {
1085 this->emit_swz(ir);
1086 return;
1087 }
1088
1089 for (operand = 0; operand < ir->get_num_operands(); operand++) {
1090 this->result.file = PROGRAM_UNDEFINED;
1091 ir->operands[operand]->accept(this);
1092 if (this->result.file == PROGRAM_UNDEFINED) {
1093 printf("Failed to get tree for expression operand:\n");
1094 ir->operands[operand]->print();
1095 printf("\n");
1096 exit(1);
1097 }
1098 op[operand] = this->result;
1099
1100 /* Matrix expression operands should have been broken down to vector
1101 * operations already.
1102 */
1103 assert(!ir->operands[operand]->type->is_matrix());
1104 }
1105
1106 int vector_elements = ir->operands[0]->type->vector_elements;
1107 if (ir->operands[1]) {
1108 vector_elements = MAX2(vector_elements,
1109 ir->operands[1]->type->vector_elements);
1110 }
1111
1112 this->result.file = PROGRAM_UNDEFINED;
1113
1114 /* Storage for our result. Ideally for an assignment we'd be using
1115 * the actual storage for the result here, instead.
1116 */
1117 result_src = get_temp(ir->type);
1118 /* convenience for the emit functions below. */
1119 result_dst = dst_reg(result_src);
1120 /* Limit writes to the channels that will be used by result_src later.
1121 * This does limit this temp's use as a temporary for multi-instruction
1122 * sequences.
1123 */
1124 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1125
1126 switch (ir->operation) {
1127 case ir_unop_logic_not:
1128 /* Previously 'SEQ dst, src, 0.0' was used for this. However, many
1129 * older GPUs implement SEQ using multiple instructions (i915 uses two
1130 * SGE instructions and a MUL instruction). Since our logic values are
1131 * 0.0 and 1.0, 1-x also implements !x.
1132 */
1133 op[0].negate = ~op[0].negate;
1134 emit(ir, OPCODE_ADD, result_dst, op[0], src_reg_for_float(1.0));
1135 break;
1136 case ir_unop_neg:
1137 op[0].negate = ~op[0].negate;
1138 result_src = op[0];
1139 break;
1140 case ir_unop_abs:
1141 emit(ir, OPCODE_ABS, result_dst, op[0]);
1142 break;
1143 case ir_unop_sign:
1144 emit(ir, OPCODE_SSG, result_dst, op[0]);
1145 break;
1146 case ir_unop_rcp:
1147 emit_scalar(ir, OPCODE_RCP, result_dst, op[0]);
1148 break;
1149
1150 case ir_unop_exp2:
1151 emit_scalar(ir, OPCODE_EX2, result_dst, op[0]);
1152 break;
1153 case ir_unop_exp:
1154 case ir_unop_log:
1155 assert(!"not reached: should be handled by ir_explog_to_explog2");
1156 break;
1157 case ir_unop_log2:
1158 emit_scalar(ir, OPCODE_LG2, result_dst, op[0]);
1159 break;
1160 case ir_unop_sin:
1161 emit_scalar(ir, OPCODE_SIN, result_dst, op[0]);
1162 break;
1163 case ir_unop_cos:
1164 emit_scalar(ir, OPCODE_COS, result_dst, op[0]);
1165 break;
1166 case ir_unop_sin_reduced:
1167 emit_scs(ir, OPCODE_SIN, result_dst, op[0]);
1168 break;
1169 case ir_unop_cos_reduced:
1170 emit_scs(ir, OPCODE_COS, result_dst, op[0]);
1171 break;
1172
1173 case ir_unop_dFdx:
1174 emit(ir, OPCODE_DDX, result_dst, op[0]);
1175 break;
1176 case ir_unop_dFdy:
1177 emit(ir, OPCODE_DDY, result_dst, op[0]);
1178 break;
1179
1180 case ir_unop_noise: {
1181 const enum prog_opcode opcode =
1182 prog_opcode(OPCODE_NOISE1
1183 + (ir->operands[0]->type->vector_elements) - 1);
1184 assert((opcode >= OPCODE_NOISE1) && (opcode <= OPCODE_NOISE4));
1185
1186 emit(ir, opcode, result_dst, op[0]);
1187 break;
1188 }
1189
1190 case ir_binop_add:
1191 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1192 break;
1193 case ir_binop_sub:
1194 emit(ir, OPCODE_SUB, result_dst, op[0], op[1]);
1195 break;
1196
1197 case ir_binop_mul:
1198 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1199 break;
1200 case ir_binop_div:
1201 assert(!"not reached: should be handled by ir_div_to_mul_rcp");
1202 break;
1203 case ir_binop_mod:
1204 /* Floating point should be lowered by MOD_TO_FRACT in the compiler. */
1205 assert(ir->type->is_integer());
1206 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1207 break;
1208
1209 case ir_binop_less:
1210 emit(ir, OPCODE_SLT, result_dst, op[0], op[1]);
1211 break;
1212 case ir_binop_greater:
1213 emit(ir, OPCODE_SGT, result_dst, op[0], op[1]);
1214 break;
1215 case ir_binop_lequal:
1216 emit(ir, OPCODE_SLE, result_dst, op[0], op[1]);
1217 break;
1218 case ir_binop_gequal:
1219 emit(ir, OPCODE_SGE, result_dst, op[0], op[1]);
1220 break;
1221 case ir_binop_equal:
1222 emit(ir, OPCODE_SEQ, result_dst, op[0], op[1]);
1223 break;
1224 case ir_binop_nequal:
1225 emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
1226 break;
1227 case ir_binop_all_equal:
1228 /* "==" operator producing a scalar boolean. */
1229 if (ir->operands[0]->type->is_vector() ||
1230 ir->operands[1]->type->is_vector()) {
1231 src_reg temp = get_temp(glsl_type::vec4_type);
1232 emit(ir, OPCODE_SNE, dst_reg(temp), op[0], op[1]);
1233
1234 /* After the dot-product, the value will be an integer on the
1235 * range [0,4]. Zero becomes 1.0, and positive values become zero.
1236 */
1237 emit_dp(ir, result_dst, temp, temp, vector_elements);
1238
1239 /* Negating the result of the dot-product gives values on the range
1240 * [-4, 0]. Zero becomes 1.0, and negative values become zero. This
1241 * achieved using SGE.
1242 */
1243 src_reg sge_src = result_src;
1244 sge_src.negate = ~sge_src.negate;
1245 emit(ir, OPCODE_SGE, result_dst, sge_src, src_reg_for_float(0.0));
1246 } else {
1247 emit(ir, OPCODE_SEQ, result_dst, op[0], op[1]);
1248 }
1249 break;
1250 case ir_binop_any_nequal:
1251 /* "!=" operator producing a scalar boolean. */
1252 if (ir->operands[0]->type->is_vector() ||
1253 ir->operands[1]->type->is_vector()) {
1254 src_reg temp = get_temp(glsl_type::vec4_type);
1255 emit(ir, OPCODE_SNE, dst_reg(temp), op[0], op[1]);
1256
1257 /* After the dot-product, the value will be an integer on the
1258 * range [0,4]. Zero stays zero, and positive values become 1.0.
1259 */
1260 ir_to_mesa_instruction *const dp =
1261 emit_dp(ir, result_dst, temp, temp, vector_elements);
1262 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1263 /* The clamping to [0,1] can be done for free in the fragment
1264 * shader with a saturate.
1265 */
1266 dp->saturate = true;
1267 } else {
1268 /* Negating the result of the dot-product gives values on the range
1269 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1270 * achieved using SLT.
1271 */
1272 src_reg slt_src = result_src;
1273 slt_src.negate = ~slt_src.negate;
1274 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1275 }
1276 } else {
1277 emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
1278 }
1279 break;
1280
1281 case ir_unop_any: {
1282 assert(ir->operands[0]->type->is_vector());
1283
1284 /* After the dot-product, the value will be an integer on the
1285 * range [0,4]. Zero stays zero, and positive values become 1.0.
1286 */
1287 ir_to_mesa_instruction *const dp =
1288 emit_dp(ir, result_dst, op[0], op[0],
1289 ir->operands[0]->type->vector_elements);
1290 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1291 /* The clamping to [0,1] can be done for free in the fragment
1292 * shader with a saturate.
1293 */
1294 dp->saturate = true;
1295 } else {
1296 /* Negating the result of the dot-product gives values on the range
1297 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1298 * is achieved using SLT.
1299 */
1300 src_reg slt_src = result_src;
1301 slt_src.negate = ~slt_src.negate;
1302 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1303 }
1304 break;
1305 }
1306
1307 case ir_binop_logic_xor:
1308 emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
1309 break;
1310
1311 case ir_binop_logic_or: {
1312 /* After the addition, the value will be an integer on the
1313 * range [0,2]. Zero stays zero, and positive values become 1.0.
1314 */
1315 ir_to_mesa_instruction *add =
1316 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1317 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1318 /* The clamping to [0,1] can be done for free in the fragment
1319 * shader with a saturate.
1320 */
1321 add->saturate = true;
1322 } else {
1323 /* Negating the result of the addition gives values on the range
1324 * [-2, 0]. Zero stays zero, and negative values become 1.0. This
1325 * is achieved using SLT.
1326 */
1327 src_reg slt_src = result_src;
1328 slt_src.negate = ~slt_src.negate;
1329 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1330 }
1331 break;
1332 }
1333
1334 case ir_binop_logic_and:
1335 /* the bool args are stored as float 0.0 or 1.0, so "mul" gives us "and". */
1336 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1337 break;
1338
1339 case ir_binop_dot:
1340 assert(ir->operands[0]->type->is_vector());
1341 assert(ir->operands[0]->type == ir->operands[1]->type);
1342 emit_dp(ir, result_dst, op[0], op[1],
1343 ir->operands[0]->type->vector_elements);
1344 break;
1345
1346 case ir_unop_sqrt:
1347 /* sqrt(x) = x * rsq(x). */
1348 emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1349 emit(ir, OPCODE_MUL, result_dst, result_src, op[0]);
1350 /* For incoming channels <= 0, set the result to 0. */
1351 op[0].negate = ~op[0].negate;
1352 emit(ir, OPCODE_CMP, result_dst,
1353 op[0], result_src, src_reg_for_float(0.0));
1354 break;
1355 case ir_unop_rsq:
1356 emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1357 break;
1358 case ir_unop_i2f:
1359 case ir_unop_u2f:
1360 case ir_unop_b2f:
1361 case ir_unop_b2i:
1362 case ir_unop_i2u:
1363 case ir_unop_u2i:
1364 /* Mesa IR lacks types, ints are stored as truncated floats. */
1365 result_src = op[0];
1366 break;
1367 case ir_unop_f2i:
1368 case ir_unop_f2u:
1369 emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1370 break;
1371 case ir_unop_f2b:
1372 case ir_unop_i2b:
1373 emit(ir, OPCODE_SNE, result_dst,
1374 op[0], src_reg_for_float(0.0));
1375 break;
1376 case ir_unop_bitcast_f2i: // Ignore these 4, they can't happen here anyway
1377 case ir_unop_bitcast_f2u:
1378 case ir_unop_bitcast_i2f:
1379 case ir_unop_bitcast_u2f:
1380 break;
1381 case ir_unop_trunc:
1382 emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1383 break;
1384 case ir_unop_ceil:
1385 op[0].negate = ~op[0].negate;
1386 emit(ir, OPCODE_FLR, result_dst, op[0]);
1387 result_src.negate = ~result_src.negate;
1388 break;
1389 case ir_unop_floor:
1390 emit(ir, OPCODE_FLR, result_dst, op[0]);
1391 break;
1392 case ir_unop_fract:
1393 emit(ir, OPCODE_FRC, result_dst, op[0]);
1394 break;
1395 case ir_unop_pack_snorm_2x16:
1396 case ir_unop_pack_snorm_4x8:
1397 case ir_unop_pack_unorm_2x16:
1398 case ir_unop_pack_unorm_4x8:
1399 case ir_unop_pack_half_2x16:
1400 case ir_unop_unpack_snorm_2x16:
1401 case ir_unop_unpack_snorm_4x8:
1402 case ir_unop_unpack_unorm_2x16:
1403 case ir_unop_unpack_unorm_4x8:
1404 case ir_unop_unpack_half_2x16:
1405 case ir_unop_unpack_half_2x16_split_x:
1406 case ir_unop_unpack_half_2x16_split_y:
1407 case ir_binop_pack_half_2x16_split:
1408 case ir_unop_bitfield_reverse:
1409 case ir_unop_bit_count:
1410 case ir_unop_find_msb:
1411 case ir_unop_find_lsb:
1412 assert(!"not supported");
1413 break;
1414 case ir_binop_min:
1415 emit(ir, OPCODE_MIN, result_dst, op[0], op[1]);
1416 break;
1417 case ir_binop_max:
1418 emit(ir, OPCODE_MAX, result_dst, op[0], op[1]);
1419 break;
1420 case ir_binop_pow:
1421 emit_scalar(ir, OPCODE_POW, result_dst, op[0], op[1]);
1422 break;
1423
1424 /* GLSL 1.30 integer ops are unsupported in Mesa IR, but since
1425 * hardware backends have no way to avoid Mesa IR generation
1426 * even if they don't use it, we need to emit "something" and
1427 * continue.
1428 */
1429 case ir_binop_lshift:
1430 case ir_binop_rshift:
1431 case ir_binop_bit_and:
1432 case ir_binop_bit_xor:
1433 case ir_binop_bit_or:
1434 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1435 break;
1436
1437 case ir_unop_bit_not:
1438 case ir_unop_round_even:
1439 emit(ir, OPCODE_MOV, result_dst, op[0]);
1440 break;
1441
1442 case ir_binop_ubo_load:
1443 assert(!"not supported");
1444 break;
1445
1446 case ir_triop_lrp:
1447 /* ir_triop_lrp operands are (x, y, a) while
1448 * OPCODE_LRP operands are (a, y, x) to match ARB_fragment_program.
1449 */
1450 emit(ir, OPCODE_LRP, result_dst, op[2], op[1], op[0]);
1451 break;
1452
1453 case ir_binop_vector_extract:
1454 case ir_binop_bfm:
1455 case ir_triop_fma:
1456 case ir_triop_bfi:
1457 case ir_triop_bitfield_extract:
1458 case ir_triop_vector_insert:
1459 case ir_quadop_bitfield_insert:
1460 case ir_binop_ldexp:
1461 case ir_triop_csel:
1462 case ir_binop_carry:
1463 case ir_binop_borrow:
1464 case ir_binop_imul_high:
1465 assert(!"not supported");
1466 break;
1467
1468 case ir_quadop_vector:
1469 /* This operation should have already been handled.
1470 */
1471 assert(!"Should not get here.");
1472 break;
1473 }
1474
1475 this->result = result_src;
1476 }
1477
1478
1479 void
1480 ir_to_mesa_visitor::visit(ir_swizzle *ir)
1481 {
1482 src_reg src;
1483 int i;
1484 int swizzle[4];
1485
1486 /* Note that this is only swizzles in expressions, not those on the left
1487 * hand side of an assignment, which do write masking. See ir_assignment
1488 * for that.
1489 */
1490
1491 ir->val->accept(this);
1492 src = this->result;
1493 assert(src.file != PROGRAM_UNDEFINED);
1494
1495 for (i = 0; i < 4; i++) {
1496 if (i < ir->type->vector_elements) {
1497 switch (i) {
1498 case 0:
1499 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x);
1500 break;
1501 case 1:
1502 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y);
1503 break;
1504 case 2:
1505 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z);
1506 break;
1507 case 3:
1508 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w);
1509 break;
1510 }
1511 } else {
1512 /* If the type is smaller than a vec4, replicate the last
1513 * channel out.
1514 */
1515 swizzle[i] = swizzle[ir->type->vector_elements - 1];
1516 }
1517 }
1518
1519 src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
1520
1521 this->result = src;
1522 }
1523
1524 void
1525 ir_to_mesa_visitor::visit(ir_dereference_variable *ir)
1526 {
1527 variable_storage *entry = find_variable_storage(ir->var);
1528 ir_variable *var = ir->var;
1529
1530 if (!entry) {
1531 switch (var->data.mode) {
1532 case ir_var_uniform:
1533 entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM,
1534 var->data.location);
1535 this->variables.push_tail(entry);
1536 break;
1537 case ir_var_shader_in:
1538 /* The linker assigns locations for varyings and attributes,
1539 * including deprecated builtins (like gl_Color),
1540 * user-assigned generic attributes (glBindVertexLocation),
1541 * and user-defined varyings.
1542 */
1543 assert(var->data.location != -1);
1544 entry = new(mem_ctx) variable_storage(var,
1545 PROGRAM_INPUT,
1546 var->data.location);
1547 break;
1548 case ir_var_shader_out:
1549 assert(var->data.location != -1);
1550 entry = new(mem_ctx) variable_storage(var,
1551 PROGRAM_OUTPUT,
1552 var->data.location);
1553 break;
1554 case ir_var_system_value:
1555 entry = new(mem_ctx) variable_storage(var,
1556 PROGRAM_SYSTEM_VALUE,
1557 var->data.location);
1558 break;
1559 case ir_var_auto:
1560 case ir_var_temporary:
1561 entry = new(mem_ctx) variable_storage(var, PROGRAM_TEMPORARY,
1562 this->next_temp);
1563 this->variables.push_tail(entry);
1564
1565 next_temp += type_size(var->type);
1566 break;
1567 }
1568
1569 if (!entry) {
1570 printf("Failed to make storage for %s\n", var->name);
1571 exit(1);
1572 }
1573 }
1574
1575 this->result = src_reg(entry->file, entry->index, var->type);
1576 }
1577
1578 void
1579 ir_to_mesa_visitor::visit(ir_dereference_array *ir)
1580 {
1581 ir_constant *index;
1582 src_reg src;
1583 int element_size = type_size(ir->type);
1584
1585 index = ir->array_index->constant_expression_value();
1586
1587 ir->array->accept(this);
1588 src = this->result;
1589
1590 if (index) {
1591 src.index += index->value.i[0] * element_size;
1592 } else {
1593 /* Variable index array dereference. It eats the "vec4" of the
1594 * base of the array and an index that offsets the Mesa register
1595 * index.
1596 */
1597 ir->array_index->accept(this);
1598
1599 src_reg index_reg;
1600
1601 if (element_size == 1) {
1602 index_reg = this->result;
1603 } else {
1604 index_reg = get_temp(glsl_type::float_type);
1605
1606 emit(ir, OPCODE_MUL, dst_reg(index_reg),
1607 this->result, src_reg_for_float(element_size));
1608 }
1609
1610 /* If there was already a relative address register involved, add the
1611 * new and the old together to get the new offset.
1612 */
1613 if (src.reladdr != NULL) {
1614 src_reg accum_reg = get_temp(glsl_type::float_type);
1615
1616 emit(ir, OPCODE_ADD, dst_reg(accum_reg),
1617 index_reg, *src.reladdr);
1618
1619 index_reg = accum_reg;
1620 }
1621
1622 src.reladdr = ralloc(mem_ctx, src_reg);
1623 memcpy(src.reladdr, &index_reg, sizeof(index_reg));
1624 }
1625
1626 /* If the type is smaller than a vec4, replicate the last channel out. */
1627 if (ir->type->is_scalar() || ir->type->is_vector())
1628 src.swizzle = swizzle_for_size(ir->type->vector_elements);
1629 else
1630 src.swizzle = SWIZZLE_NOOP;
1631
1632 this->result = src;
1633 }
1634
1635 void
1636 ir_to_mesa_visitor::visit(ir_dereference_record *ir)
1637 {
1638 unsigned int i;
1639 const glsl_type *struct_type = ir->record->type;
1640 int offset = 0;
1641
1642 ir->record->accept(this);
1643
1644 for (i = 0; i < struct_type->length; i++) {
1645 if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
1646 break;
1647 offset += type_size(struct_type->fields.structure[i].type);
1648 }
1649
1650 /* If the type is smaller than a vec4, replicate the last channel out. */
1651 if (ir->type->is_scalar() || ir->type->is_vector())
1652 this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
1653 else
1654 this->result.swizzle = SWIZZLE_NOOP;
1655
1656 this->result.index += offset;
1657 }
1658
1659 /**
1660 * We want to be careful in assignment setup to hit the actual storage
1661 * instead of potentially using a temporary like we might with the
1662 * ir_dereference handler.
1663 */
1664 static dst_reg
1665 get_assignment_lhs(ir_dereference *ir, ir_to_mesa_visitor *v)
1666 {
1667 /* The LHS must be a dereference. If the LHS is a variable indexed array
1668 * access of a vector, it must be separated into a series conditional moves
1669 * before reaching this point (see ir_vec_index_to_cond_assign).
1670 */
1671 assert(ir->as_dereference());
1672 ir_dereference_array *deref_array = ir->as_dereference_array();
1673 if (deref_array) {
1674 assert(!deref_array->array->type->is_vector());
1675 }
1676
1677 /* Use the rvalue deref handler for the most part. We'll ignore
1678 * swizzles in it and write swizzles using writemask, though.
1679 */
1680 ir->accept(v);
1681 return dst_reg(v->result);
1682 }
1683
1684 /**
1685 * Process the condition of a conditional assignment
1686 *
1687 * Examines the condition of a conditional assignment to generate the optimal
1688 * first operand of a \c CMP instruction. If the condition is a relational
1689 * operator with 0 (e.g., \c ir_binop_less), the value being compared will be
1690 * used as the source for the \c CMP instruction. Otherwise the comparison
1691 * is processed to a boolean result, and the boolean result is used as the
1692 * operand to the CMP instruction.
1693 */
1694 bool
1695 ir_to_mesa_visitor::process_move_condition(ir_rvalue *ir)
1696 {
1697 ir_rvalue *src_ir = ir;
1698 bool negate = true;
1699 bool switch_order = false;
1700
1701 ir_expression *const expr = ir->as_expression();
1702 if ((expr != NULL) && (expr->get_num_operands() == 2)) {
1703 bool zero_on_left = false;
1704
1705 if (expr->operands[0]->is_zero()) {
1706 src_ir = expr->operands[1];
1707 zero_on_left = true;
1708 } else if (expr->operands[1]->is_zero()) {
1709 src_ir = expr->operands[0];
1710 zero_on_left = false;
1711 }
1712
1713 /* a is - 0 + - 0 +
1714 * (a < 0) T F F ( a < 0) T F F
1715 * (0 < a) F F T (-a < 0) F F T
1716 * (a <= 0) T T F (-a < 0) F F T (swap order of other operands)
1717 * (0 <= a) F T T ( a < 0) T F F (swap order of other operands)
1718 * (a > 0) F F T (-a < 0) F F T
1719 * (0 > a) T F F ( a < 0) T F F
1720 * (a >= 0) F T T ( a < 0) T F F (swap order of other operands)
1721 * (0 >= a) T T F (-a < 0) F F T (swap order of other operands)
1722 *
1723 * Note that exchanging the order of 0 and 'a' in the comparison simply
1724 * means that the value of 'a' should be negated.
1725 */
1726 if (src_ir != ir) {
1727 switch (expr->operation) {
1728 case ir_binop_less:
1729 switch_order = false;
1730 negate = zero_on_left;
1731 break;
1732
1733 case ir_binop_greater:
1734 switch_order = false;
1735 negate = !zero_on_left;
1736 break;
1737
1738 case ir_binop_lequal:
1739 switch_order = true;
1740 negate = !zero_on_left;
1741 break;
1742
1743 case ir_binop_gequal:
1744 switch_order = true;
1745 negate = zero_on_left;
1746 break;
1747
1748 default:
1749 /* This isn't the right kind of comparison afterall, so make sure
1750 * the whole condition is visited.
1751 */
1752 src_ir = ir;
1753 break;
1754 }
1755 }
1756 }
1757
1758 src_ir->accept(this);
1759
1760 /* We use the OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the
1761 * condition we produced is 0.0 or 1.0. By flipping the sign, we can
1762 * choose which value OPCODE_CMP produces without an extra instruction
1763 * computing the condition.
1764 */
1765 if (negate)
1766 this->result.negate = ~this->result.negate;
1767
1768 return switch_order;
1769 }
1770
1771 void
1772 ir_to_mesa_visitor::visit(ir_assignment *ir)
1773 {
1774 dst_reg l;
1775 src_reg r;
1776 int i;
1777
1778 ir->rhs->accept(this);
1779 r = this->result;
1780
1781 l = get_assignment_lhs(ir->lhs, this);
1782
1783 /* FINISHME: This should really set to the correct maximal writemask for each
1784 * FINISHME: component written (in the loops below). This case can only
1785 * FINISHME: occur for matrices, arrays, and structures.
1786 */
1787 if (ir->write_mask == 0) {
1788 assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
1789 l.writemask = WRITEMASK_XYZW;
1790 } else if (ir->lhs->type->is_scalar()) {
1791 /* FINISHME: This hack makes writing to gl_FragDepth, which lives in the
1792 * FINISHME: W component of fragment shader output zero, work correctly.
1793 */
1794 l.writemask = WRITEMASK_XYZW;
1795 } else {
1796 int swizzles[4];
1797 int first_enabled_chan = 0;
1798 int rhs_chan = 0;
1799
1800 assert(ir->lhs->type->is_vector());
1801 l.writemask = ir->write_mask;
1802
1803 for (int i = 0; i < 4; i++) {
1804 if (l.writemask & (1 << i)) {
1805 first_enabled_chan = GET_SWZ(r.swizzle, i);
1806 break;
1807 }
1808 }
1809
1810 /* Swizzle a small RHS vector into the channels being written.
1811 *
1812 * glsl ir treats write_mask as dictating how many channels are
1813 * present on the RHS while Mesa IR treats write_mask as just
1814 * showing which channels of the vec4 RHS get written.
1815 */
1816 for (int i = 0; i < 4; i++) {
1817 if (l.writemask & (1 << i))
1818 swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++);
1819 else
1820 swizzles[i] = first_enabled_chan;
1821 }
1822 r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1],
1823 swizzles[2], swizzles[3]);
1824 }
1825
1826 assert(l.file != PROGRAM_UNDEFINED);
1827 assert(r.file != PROGRAM_UNDEFINED);
1828
1829 if (ir->condition) {
1830 const bool switch_order = this->process_move_condition(ir->condition);
1831 src_reg condition = this->result;
1832
1833 for (i = 0; i < type_size(ir->lhs->type); i++) {
1834 if (switch_order) {
1835 emit(ir, OPCODE_CMP, l, condition, src_reg(l), r);
1836 } else {
1837 emit(ir, OPCODE_CMP, l, condition, r, src_reg(l));
1838 }
1839
1840 l.index++;
1841 r.index++;
1842 }
1843 } else {
1844 for (i = 0; i < type_size(ir->lhs->type); i++) {
1845 emit(ir, OPCODE_MOV, l, r);
1846 l.index++;
1847 r.index++;
1848 }
1849 }
1850 }
1851
1852
1853 void
1854 ir_to_mesa_visitor::visit(ir_constant *ir)
1855 {
1856 src_reg src;
1857 GLfloat stack_vals[4] = { 0 };
1858 GLfloat *values = stack_vals;
1859 unsigned int i;
1860
1861 /* Unfortunately, 4 floats is all we can get into
1862 * _mesa_add_unnamed_constant. So, make a temp to store an
1863 * aggregate constant and move each constant value into it. If we
1864 * get lucky, copy propagation will eliminate the extra moves.
1865 */
1866
1867 if (ir->type->base_type == GLSL_TYPE_STRUCT) {
1868 src_reg temp_base = get_temp(ir->type);
1869 dst_reg temp = dst_reg(temp_base);
1870
1871 foreach_list(node, &ir->components) {
1872 ir_constant *field_value = (ir_constant *) node;
1873 int size = type_size(field_value->type);
1874
1875 assert(size > 0);
1876
1877 field_value->accept(this);
1878 src = this->result;
1879
1880 for (i = 0; i < (unsigned int)size; i++) {
1881 emit(ir, OPCODE_MOV, temp, src);
1882
1883 src.index++;
1884 temp.index++;
1885 }
1886 }
1887 this->result = temp_base;
1888 return;
1889 }
1890
1891 if (ir->type->is_array()) {
1892 src_reg temp_base = get_temp(ir->type);
1893 dst_reg temp = dst_reg(temp_base);
1894 int size = type_size(ir->type->fields.array);
1895
1896 assert(size > 0);
1897
1898 for (i = 0; i < ir->type->length; i++) {
1899 ir->array_elements[i]->accept(this);
1900 src = this->result;
1901 for (int j = 0; j < size; j++) {
1902 emit(ir, OPCODE_MOV, temp, src);
1903
1904 src.index++;
1905 temp.index++;
1906 }
1907 }
1908 this->result = temp_base;
1909 return;
1910 }
1911
1912 if (ir->type->is_matrix()) {
1913 src_reg mat = get_temp(ir->type);
1914 dst_reg mat_column = dst_reg(mat);
1915
1916 for (i = 0; i < ir->type->matrix_columns; i++) {
1917 assert(ir->type->base_type == GLSL_TYPE_FLOAT);
1918 values = &ir->value.f[i * ir->type->vector_elements];
1919
1920 src = src_reg(PROGRAM_CONSTANT, -1, NULL);
1921 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1922 (gl_constant_value *) values,
1923 ir->type->vector_elements,
1924 &src.swizzle);
1925 emit(ir, OPCODE_MOV, mat_column, src);
1926
1927 mat_column.index++;
1928 }
1929
1930 this->result = mat;
1931 return;
1932 }
1933
1934 src.file = PROGRAM_CONSTANT;
1935 switch (ir->type->base_type) {
1936 case GLSL_TYPE_FLOAT:
1937 values = &ir->value.f[0];
1938 break;
1939 case GLSL_TYPE_UINT:
1940 for (i = 0; i < ir->type->vector_elements; i++) {
1941 values[i] = ir->value.u[i];
1942 }
1943 break;
1944 case GLSL_TYPE_INT:
1945 for (i = 0; i < ir->type->vector_elements; i++) {
1946 values[i] = ir->value.i[i];
1947 }
1948 break;
1949 case GLSL_TYPE_BOOL:
1950 for (i = 0; i < ir->type->vector_elements; i++) {
1951 values[i] = ir->value.b[i];
1952 }
1953 break;
1954 default:
1955 assert(!"Non-float/uint/int/bool constant");
1956 }
1957
1958 this->result = src_reg(PROGRAM_CONSTANT, -1, ir->type);
1959 this->result.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1960 (gl_constant_value *) values,
1961 ir->type->vector_elements,
1962 &this->result.swizzle);
1963 }
1964
1965 void
1966 ir_to_mesa_visitor::visit(ir_call *ir)
1967 {
1968 assert(!"ir_to_mesa: All function calls should have been inlined by now.");
1969 }
1970
1971 void
1972 ir_to_mesa_visitor::visit(ir_texture *ir)
1973 {
1974 src_reg result_src, coord, lod_info, projector, dx, dy;
1975 dst_reg result_dst, coord_dst;
1976 ir_to_mesa_instruction *inst = NULL;
1977 prog_opcode opcode = OPCODE_NOP;
1978
1979 if (ir->op == ir_txs)
1980 this->result = src_reg_for_float(0.0);
1981 else
1982 ir->coordinate->accept(this);
1983
1984 /* Put our coords in a temp. We'll need to modify them for shadow,
1985 * projection, or LOD, so the only case we'd use it as is is if
1986 * we're doing plain old texturing. Mesa IR optimization should
1987 * handle cleaning up our mess in that case.
1988 */
1989 coord = get_temp(glsl_type::vec4_type);
1990 coord_dst = dst_reg(coord);
1991 emit(ir, OPCODE_MOV, coord_dst, this->result);
1992
1993 if (ir->projector) {
1994 ir->projector->accept(this);
1995 projector = this->result;
1996 }
1997
1998 /* Storage for our result. Ideally for an assignment we'd be using
1999 * the actual storage for the result here, instead.
2000 */
2001 result_src = get_temp(glsl_type::vec4_type);
2002 result_dst = dst_reg(result_src);
2003
2004 switch (ir->op) {
2005 case ir_tex:
2006 case ir_txs:
2007 opcode = OPCODE_TEX;
2008 break;
2009 case ir_txb:
2010 opcode = OPCODE_TXB;
2011 ir->lod_info.bias->accept(this);
2012 lod_info = this->result;
2013 break;
2014 case ir_txf:
2015 /* Pretend to be TXL so the sampler, coordinate, lod are available */
2016 case ir_txl:
2017 opcode = OPCODE_TXL;
2018 ir->lod_info.lod->accept(this);
2019 lod_info = this->result;
2020 break;
2021 case ir_txd:
2022 opcode = OPCODE_TXD;
2023 ir->lod_info.grad.dPdx->accept(this);
2024 dx = this->result;
2025 ir->lod_info.grad.dPdy->accept(this);
2026 dy = this->result;
2027 break;
2028 case ir_txf_ms:
2029 assert(!"Unexpected ir_txf_ms opcode");
2030 break;
2031 case ir_lod:
2032 assert(!"Unexpected ir_lod opcode");
2033 break;
2034 case ir_tg4:
2035 assert(!"Unexpected ir_tg4 opcode");
2036 break;
2037 case ir_query_levels:
2038 assert(!"Unexpected ir_query_levels opcode");
2039 break;
2040 }
2041
2042 const glsl_type *sampler_type = ir->sampler->type;
2043
2044 if (ir->projector) {
2045 if (opcode == OPCODE_TEX) {
2046 /* Slot the projector in as the last component of the coord. */
2047 coord_dst.writemask = WRITEMASK_W;
2048 emit(ir, OPCODE_MOV, coord_dst, projector);
2049 coord_dst.writemask = WRITEMASK_XYZW;
2050 opcode = OPCODE_TXP;
2051 } else {
2052 src_reg coord_w = coord;
2053 coord_w.swizzle = SWIZZLE_WWWW;
2054
2055 /* For the other TEX opcodes there's no projective version
2056 * since the last slot is taken up by lod info. Do the
2057 * projective divide now.
2058 */
2059 coord_dst.writemask = WRITEMASK_W;
2060 emit(ir, OPCODE_RCP, coord_dst, projector);
2061
2062 /* In the case where we have to project the coordinates "by hand,"
2063 * the shadow comparitor value must also be projected.
2064 */
2065 src_reg tmp_src = coord;
2066 if (ir->shadow_comparitor) {
2067 /* Slot the shadow value in as the second to last component of the
2068 * coord.
2069 */
2070 ir->shadow_comparitor->accept(this);
2071
2072 tmp_src = get_temp(glsl_type::vec4_type);
2073 dst_reg tmp_dst = dst_reg(tmp_src);
2074
2075 /* Projective division not allowed for array samplers. */
2076 assert(!sampler_type->sampler_array);
2077
2078 tmp_dst.writemask = WRITEMASK_Z;
2079 emit(ir, OPCODE_MOV, tmp_dst, this->result);
2080
2081 tmp_dst.writemask = WRITEMASK_XY;
2082 emit(ir, OPCODE_MOV, tmp_dst, coord);
2083 }
2084
2085 coord_dst.writemask = WRITEMASK_XYZ;
2086 emit(ir, OPCODE_MUL, coord_dst, tmp_src, coord_w);
2087
2088 coord_dst.writemask = WRITEMASK_XYZW;
2089 coord.swizzle = SWIZZLE_XYZW;
2090 }
2091 }
2092
2093 /* If projection is done and the opcode is not OPCODE_TXP, then the shadow
2094 * comparitor was put in the correct place (and projected) by the code,
2095 * above, that handles by-hand projection.
2096 */
2097 if (ir->shadow_comparitor && (!ir->projector || opcode == OPCODE_TXP)) {
2098 /* Slot the shadow value in as the second to last component of the
2099 * coord.
2100 */
2101 ir->shadow_comparitor->accept(this);
2102
2103 /* XXX This will need to be updated for cubemap array samplers. */
2104 if (sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_2D &&
2105 sampler_type->sampler_array) {
2106 coord_dst.writemask = WRITEMASK_W;
2107 } else {
2108 coord_dst.writemask = WRITEMASK_Z;
2109 }
2110
2111 emit(ir, OPCODE_MOV, coord_dst, this->result);
2112 coord_dst.writemask = WRITEMASK_XYZW;
2113 }
2114
2115 if (opcode == OPCODE_TXL || opcode == OPCODE_TXB) {
2116 /* Mesa IR stores lod or lod bias in the last channel of the coords. */
2117 coord_dst.writemask = WRITEMASK_W;
2118 emit(ir, OPCODE_MOV, coord_dst, lod_info);
2119 coord_dst.writemask = WRITEMASK_XYZW;
2120 }
2121
2122 if (opcode == OPCODE_TXD)
2123 inst = emit(ir, opcode, result_dst, coord, dx, dy);
2124 else
2125 inst = emit(ir, opcode, result_dst, coord);
2126
2127 if (ir->shadow_comparitor)
2128 inst->tex_shadow = GL_TRUE;
2129
2130 inst->sampler = _mesa_get_sampler_uniform_value(ir->sampler,
2131 this->shader_program,
2132 this->prog);
2133
2134 switch (sampler_type->sampler_dimensionality) {
2135 case GLSL_SAMPLER_DIM_1D:
2136 inst->tex_target = (sampler_type->sampler_array)
2137 ? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX;
2138 break;
2139 case GLSL_SAMPLER_DIM_2D:
2140 inst->tex_target = (sampler_type->sampler_array)
2141 ? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX;
2142 break;
2143 case GLSL_SAMPLER_DIM_3D:
2144 inst->tex_target = TEXTURE_3D_INDEX;
2145 break;
2146 case GLSL_SAMPLER_DIM_CUBE:
2147 inst->tex_target = TEXTURE_CUBE_INDEX;
2148 break;
2149 case GLSL_SAMPLER_DIM_RECT:
2150 inst->tex_target = TEXTURE_RECT_INDEX;
2151 break;
2152 case GLSL_SAMPLER_DIM_BUF:
2153 assert(!"FINISHME: Implement ARB_texture_buffer_object");
2154 break;
2155 case GLSL_SAMPLER_DIM_EXTERNAL:
2156 inst->tex_target = TEXTURE_EXTERNAL_INDEX;
2157 break;
2158 default:
2159 assert(!"Should not get here.");
2160 }
2161
2162 this->result = result_src;
2163 }
2164
2165 void
2166 ir_to_mesa_visitor::visit(ir_return *ir)
2167 {
2168 /* Non-void functions should have been inlined. We may still emit RETs
2169 * from main() unless the EmitNoMainReturn option is set.
2170 */
2171 assert(!ir->get_value());
2172 emit(ir, OPCODE_RET);
2173 }
2174
2175 void
2176 ir_to_mesa_visitor::visit(ir_discard *ir)
2177 {
2178 if (ir->condition) {
2179 ir->condition->accept(this);
2180 this->result.negate = ~this->result.negate;
2181 emit(ir, OPCODE_KIL, undef_dst, this->result);
2182 } else {
2183 emit(ir, OPCODE_KIL_NV);
2184 }
2185 }
2186
2187 void
2188 ir_to_mesa_visitor::visit(ir_if *ir)
2189 {
2190 ir_to_mesa_instruction *cond_inst, *if_inst;
2191 ir_to_mesa_instruction *prev_inst;
2192
2193 prev_inst = (ir_to_mesa_instruction *)this->instructions.get_tail();
2194
2195 ir->condition->accept(this);
2196 assert(this->result.file != PROGRAM_UNDEFINED);
2197
2198 if (this->options->EmitCondCodes) {
2199 cond_inst = (ir_to_mesa_instruction *)this->instructions.get_tail();
2200
2201 /* See if we actually generated any instruction for generating
2202 * the condition. If not, then cook up a move to a temp so we
2203 * have something to set cond_update on.
2204 */
2205 if (cond_inst == prev_inst) {
2206 src_reg temp = get_temp(glsl_type::bool_type);
2207 cond_inst = emit(ir->condition, OPCODE_MOV, dst_reg(temp), result);
2208 }
2209 cond_inst->cond_update = GL_TRUE;
2210
2211 if_inst = emit(ir->condition, OPCODE_IF);
2212 if_inst->dst.cond_mask = COND_NE;
2213 } else {
2214 if_inst = emit(ir->condition, OPCODE_IF, undef_dst, this->result);
2215 }
2216
2217 this->instructions.push_tail(if_inst);
2218
2219 visit_exec_list(&ir->then_instructions, this);
2220
2221 if (!ir->else_instructions.is_empty()) {
2222 emit(ir->condition, OPCODE_ELSE);
2223 visit_exec_list(&ir->else_instructions, this);
2224 }
2225
2226 emit(ir->condition, OPCODE_ENDIF);
2227 }
2228
2229 void
2230 ir_to_mesa_visitor::visit(ir_emit_vertex *ir)
2231 {
2232 assert(!"Geometry shaders not supported.");
2233 }
2234
2235 void
2236 ir_to_mesa_visitor::visit(ir_end_primitive *ir)
2237 {
2238 assert(!"Geometry shaders not supported.");
2239 }
2240
2241 ir_to_mesa_visitor::ir_to_mesa_visitor()
2242 {
2243 result.file = PROGRAM_UNDEFINED;
2244 next_temp = 1;
2245 next_signature_id = 1;
2246 current_function = NULL;
2247 mem_ctx = ralloc_context(NULL);
2248 }
2249
2250 ir_to_mesa_visitor::~ir_to_mesa_visitor()
2251 {
2252 ralloc_free(mem_ctx);
2253 }
2254
2255 static struct prog_src_register
2256 mesa_src_reg_from_ir_src_reg(src_reg reg)
2257 {
2258 struct prog_src_register mesa_reg;
2259
2260 mesa_reg.File = reg.file;
2261 assert(reg.index < (1 << INST_INDEX_BITS));
2262 mesa_reg.Index = reg.index;
2263 mesa_reg.Swizzle = reg.swizzle;
2264 mesa_reg.RelAddr = reg.reladdr != NULL;
2265 mesa_reg.Negate = reg.negate;
2266 mesa_reg.Abs = 0;
2267 mesa_reg.HasIndex2 = GL_FALSE;
2268 mesa_reg.RelAddr2 = 0;
2269 mesa_reg.Index2 = 0;
2270
2271 return mesa_reg;
2272 }
2273
2274 static void
2275 set_branchtargets(ir_to_mesa_visitor *v,
2276 struct prog_instruction *mesa_instructions,
2277 int num_instructions)
2278 {
2279 int if_count = 0, loop_count = 0;
2280 int *if_stack, *loop_stack;
2281 int if_stack_pos = 0, loop_stack_pos = 0;
2282 int i, j;
2283
2284 for (i = 0; i < num_instructions; i++) {
2285 switch (mesa_instructions[i].Opcode) {
2286 case OPCODE_IF:
2287 if_count++;
2288 break;
2289 case OPCODE_BGNLOOP:
2290 loop_count++;
2291 break;
2292 case OPCODE_BRK:
2293 case OPCODE_CONT:
2294 mesa_instructions[i].BranchTarget = -1;
2295 break;
2296 default:
2297 break;
2298 }
2299 }
2300
2301 if_stack = rzalloc_array(v->mem_ctx, int, if_count);
2302 loop_stack = rzalloc_array(v->mem_ctx, int, loop_count);
2303
2304 for (i = 0; i < num_instructions; i++) {
2305 switch (mesa_instructions[i].Opcode) {
2306 case OPCODE_IF:
2307 if_stack[if_stack_pos] = i;
2308 if_stack_pos++;
2309 break;
2310 case OPCODE_ELSE:
2311 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2312 if_stack[if_stack_pos - 1] = i;
2313 break;
2314 case OPCODE_ENDIF:
2315 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2316 if_stack_pos--;
2317 break;
2318 case OPCODE_BGNLOOP:
2319 loop_stack[loop_stack_pos] = i;
2320 loop_stack_pos++;
2321 break;
2322 case OPCODE_ENDLOOP:
2323 loop_stack_pos--;
2324 /* Rewrite any breaks/conts at this nesting level (haven't
2325 * already had a BranchTarget assigned) to point to the end
2326 * of the loop.
2327 */
2328 for (j = loop_stack[loop_stack_pos]; j < i; j++) {
2329 if (mesa_instructions[j].Opcode == OPCODE_BRK ||
2330 mesa_instructions[j].Opcode == OPCODE_CONT) {
2331 if (mesa_instructions[j].BranchTarget == -1) {
2332 mesa_instructions[j].BranchTarget = i;
2333 }
2334 }
2335 }
2336 /* The loop ends point at each other. */
2337 mesa_instructions[i].BranchTarget = loop_stack[loop_stack_pos];
2338 mesa_instructions[loop_stack[loop_stack_pos]].BranchTarget = i;
2339 break;
2340 case OPCODE_CAL:
2341 foreach_list(n, &v->function_signatures) {
2342 function_entry *entry = (function_entry *) n;
2343
2344 if (entry->sig_id == mesa_instructions[i].BranchTarget) {
2345 mesa_instructions[i].BranchTarget = entry->inst;
2346 break;
2347 }
2348 }
2349 break;
2350 default:
2351 break;
2352 }
2353 }
2354 }
2355
2356 static void
2357 print_program(struct prog_instruction *mesa_instructions,
2358 ir_instruction **mesa_instruction_annotation,
2359 int num_instructions)
2360 {
2361 ir_instruction *last_ir = NULL;
2362 int i;
2363 int indent = 0;
2364
2365 for (i = 0; i < num_instructions; i++) {
2366 struct prog_instruction *mesa_inst = mesa_instructions + i;
2367 ir_instruction *ir = mesa_instruction_annotation[i];
2368
2369 fprintf(stdout, "%3d: ", i);
2370
2371 if (last_ir != ir && ir) {
2372 int j;
2373
2374 for (j = 0; j < indent; j++) {
2375 fprintf(stdout, " ");
2376 }
2377 ir->print();
2378 printf("\n");
2379 last_ir = ir;
2380
2381 fprintf(stdout, " "); /* line number spacing. */
2382 }
2383
2384 indent = _mesa_fprint_instruction_opt(stdout, mesa_inst, indent,
2385 PROG_PRINT_DEBUG, NULL);
2386 }
2387 }
2388
2389 namespace {
2390
2391 class add_uniform_to_shader : public program_resource_visitor {
2392 public:
2393 add_uniform_to_shader(struct gl_shader_program *shader_program,
2394 struct gl_program_parameter_list *params,
2395 gl_shader_stage shader_type)
2396 : shader_program(shader_program), params(params), idx(-1),
2397 shader_type(shader_type)
2398 {
2399 /* empty */
2400 }
2401
2402 void process(ir_variable *var)
2403 {
2404 this->idx = -1;
2405 this->program_resource_visitor::process(var);
2406
2407 var->data.location = this->idx;
2408 }
2409
2410 private:
2411 virtual void visit_field(const glsl_type *type, const char *name,
2412 bool row_major);
2413
2414 struct gl_shader_program *shader_program;
2415 struct gl_program_parameter_list *params;
2416 int idx;
2417 gl_shader_stage shader_type;
2418 };
2419
2420 } /* anonymous namespace */
2421
2422 void
2423 add_uniform_to_shader::visit_field(const glsl_type *type, const char *name,
2424 bool row_major)
2425 {
2426 unsigned int size;
2427
2428 (void) row_major;
2429
2430 if (type->is_vector() || type->is_scalar()) {
2431 size = type->vector_elements;
2432 } else {
2433 size = type_size(type) * 4;
2434 }
2435
2436 gl_register_file file;
2437 if (type->is_sampler() ||
2438 (type->is_array() && type->fields.array->is_sampler())) {
2439 file = PROGRAM_SAMPLER;
2440 } else {
2441 file = PROGRAM_UNIFORM;
2442 }
2443
2444 int index = _mesa_lookup_parameter_index(params, -1, name);
2445 if (index < 0) {
2446 index = _mesa_add_parameter(params, file, name, size, type->gl_type,
2447 NULL, NULL);
2448
2449 /* Sampler uniform values are stored in prog->SamplerUnits,
2450 * and the entry in that array is selected by this index we
2451 * store in ParameterValues[].
2452 */
2453 if (file == PROGRAM_SAMPLER) {
2454 unsigned location;
2455 const bool found =
2456 this->shader_program->UniformHash->get(location,
2457 params->Parameters[index].Name);
2458 assert(found);
2459
2460 if (!found)
2461 return;
2462
2463 struct gl_uniform_storage *storage =
2464 &this->shader_program->UniformStorage[location];
2465
2466 assert(storage->sampler[shader_type].active);
2467
2468 for (unsigned int j = 0; j < size / 4; j++)
2469 params->ParameterValues[index + j][0].f =
2470 storage->sampler[shader_type].index + j;
2471 }
2472 }
2473
2474 /* The first part of the uniform that's processed determines the base
2475 * location of the whole uniform (for structures).
2476 */
2477 if (this->idx < 0)
2478 this->idx = index;
2479 }
2480
2481 /**
2482 * Generate the program parameters list for the user uniforms in a shader
2483 *
2484 * \param shader_program Linked shader program. This is only used to
2485 * emit possible link errors to the info log.
2486 * \param sh Shader whose uniforms are to be processed.
2487 * \param params Parameter list to be filled in.
2488 */
2489 void
2490 _mesa_generate_parameters_list_for_uniforms(struct gl_shader_program
2491 *shader_program,
2492 struct gl_shader *sh,
2493 struct gl_program_parameter_list
2494 *params)
2495 {
2496 add_uniform_to_shader add(shader_program, params, sh->Stage);
2497
2498 foreach_list(node, sh->ir) {
2499 ir_variable *var = ((ir_instruction *) node)->as_variable();
2500
2501 if ((var == NULL) || (var->data.mode != ir_var_uniform)
2502 || var->is_in_uniform_block() || (strncmp(var->name, "gl_", 3) == 0))
2503 continue;
2504
2505 add.process(var);
2506 }
2507 }
2508
2509 void
2510 _mesa_associate_uniform_storage(struct gl_context *ctx,
2511 struct gl_shader_program *shader_program,
2512 struct gl_program_parameter_list *params)
2513 {
2514 /* After adding each uniform to the parameter list, connect the storage for
2515 * the parameter with the tracking structure used by the API for the
2516 * uniform.
2517 */
2518 unsigned last_location = unsigned(~0);
2519 for (unsigned i = 0; i < params->NumParameters; i++) {
2520 if (params->Parameters[i].Type != PROGRAM_UNIFORM)
2521 continue;
2522
2523 unsigned location;
2524 const bool found =
2525 shader_program->UniformHash->get(location, params->Parameters[i].Name);
2526 assert(found);
2527
2528 if (!found)
2529 continue;
2530
2531 if (location != last_location) {
2532 struct gl_uniform_storage *storage =
2533 &shader_program->UniformStorage[location];
2534 enum gl_uniform_driver_format format = uniform_native;
2535
2536 unsigned columns = 0;
2537 switch (storage->type->base_type) {
2538 case GLSL_TYPE_UINT:
2539 assert(ctx->Const.NativeIntegers);
2540 format = uniform_native;
2541 columns = 1;
2542 break;
2543 case GLSL_TYPE_INT:
2544 format =
2545 (ctx->Const.NativeIntegers) ? uniform_native : uniform_int_float;
2546 columns = 1;
2547 break;
2548 case GLSL_TYPE_FLOAT:
2549 format = uniform_native;
2550 columns = storage->type->matrix_columns;
2551 break;
2552 case GLSL_TYPE_BOOL:
2553 if (ctx->Const.NativeIntegers) {
2554 format = (ctx->Const.UniformBooleanTrue == 1)
2555 ? uniform_bool_int_0_1 : uniform_bool_int_0_not0;
2556 } else {
2557 format = uniform_bool_float;
2558 }
2559 columns = 1;
2560 break;
2561 case GLSL_TYPE_SAMPLER:
2562 case GLSL_TYPE_IMAGE:
2563 format = uniform_native;
2564 columns = 1;
2565 break;
2566 case GLSL_TYPE_ATOMIC_UINT:
2567 case GLSL_TYPE_ARRAY:
2568 case GLSL_TYPE_VOID:
2569 case GLSL_TYPE_STRUCT:
2570 case GLSL_TYPE_ERROR:
2571 case GLSL_TYPE_INTERFACE:
2572 assert(!"Should not get here.");
2573 break;
2574 }
2575
2576 _mesa_uniform_attach_driver_storage(storage,
2577 4 * sizeof(float) * columns,
2578 4 * sizeof(float),
2579 format,
2580 &params->ParameterValues[i]);
2581
2582 /* After attaching the driver's storage to the uniform, propagate any
2583 * data from the linker's backing store. This will cause values from
2584 * initializers in the source code to be copied over.
2585 */
2586 _mesa_propagate_uniforms_to_driver_storage(storage,
2587 0,
2588 MAX2(1, storage->array_elements));
2589
2590 last_location = location;
2591 }
2592 }
2593 }
2594
2595 /*
2596 * On a basic block basis, tracks available PROGRAM_TEMPORARY register
2597 * channels for copy propagation and updates following instructions to
2598 * use the original versions.
2599 *
2600 * The ir_to_mesa_visitor lazily produces code assuming that this pass
2601 * will occur. As an example, a TXP production before this pass:
2602 *
2603 * 0: MOV TEMP[1], INPUT[4].xyyy;
2604 * 1: MOV TEMP[1].w, INPUT[4].wwww;
2605 * 2: TXP TEMP[2], TEMP[1], texture[0], 2D;
2606 *
2607 * and after:
2608 *
2609 * 0: MOV TEMP[1], INPUT[4].xyyy;
2610 * 1: MOV TEMP[1].w, INPUT[4].wwww;
2611 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
2612 *
2613 * which allows for dead code elimination on TEMP[1]'s writes.
2614 */
2615 void
2616 ir_to_mesa_visitor::copy_propagate(void)
2617 {
2618 ir_to_mesa_instruction **acp = rzalloc_array(mem_ctx,
2619 ir_to_mesa_instruction *,
2620 this->next_temp * 4);
2621 int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
2622 int level = 0;
2623
2624 foreach_list(node, &this->instructions) {
2625 ir_to_mesa_instruction *inst = (ir_to_mesa_instruction *) node;
2626
2627 assert(inst->dst.file != PROGRAM_TEMPORARY
2628 || inst->dst.index < this->next_temp);
2629
2630 /* First, do any copy propagation possible into the src regs. */
2631 for (int r = 0; r < 3; r++) {
2632 ir_to_mesa_instruction *first = NULL;
2633 bool good = true;
2634 int acp_base = inst->src[r].index * 4;
2635
2636 if (inst->src[r].file != PROGRAM_TEMPORARY ||
2637 inst->src[r].reladdr)
2638 continue;
2639
2640 /* See if we can find entries in the ACP consisting of MOVs
2641 * from the same src register for all the swizzled channels
2642 * of this src register reference.
2643 */
2644 for (int i = 0; i < 4; i++) {
2645 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2646 ir_to_mesa_instruction *copy_chan = acp[acp_base + src_chan];
2647
2648 if (!copy_chan) {
2649 good = false;
2650 break;
2651 }
2652
2653 assert(acp_level[acp_base + src_chan] <= level);
2654
2655 if (!first) {
2656 first = copy_chan;
2657 } else {
2658 if (first->src[0].file != copy_chan->src[0].file ||
2659 first->src[0].index != copy_chan->src[0].index) {
2660 good = false;
2661 break;
2662 }
2663 }
2664 }
2665
2666 if (good) {
2667 /* We've now validated that we can copy-propagate to
2668 * replace this src register reference. Do it.
2669 */
2670 inst->src[r].file = first->src[0].file;
2671 inst->src[r].index = first->src[0].index;
2672
2673 int swizzle = 0;
2674 for (int i = 0; i < 4; i++) {
2675 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2676 ir_to_mesa_instruction *copy_inst = acp[acp_base + src_chan];
2677 swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) <<
2678 (3 * i));
2679 }
2680 inst->src[r].swizzle = swizzle;
2681 }
2682 }
2683
2684 switch (inst->op) {
2685 case OPCODE_BGNLOOP:
2686 case OPCODE_ENDLOOP:
2687 /* End of a basic block, clear the ACP entirely. */
2688 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2689 break;
2690
2691 case OPCODE_IF:
2692 ++level;
2693 break;
2694
2695 case OPCODE_ENDIF:
2696 case OPCODE_ELSE:
2697 /* Clear all channels written inside the block from the ACP, but
2698 * leaving those that were not touched.
2699 */
2700 for (int r = 0; r < this->next_temp; r++) {
2701 for (int c = 0; c < 4; c++) {
2702 if (!acp[4 * r + c])
2703 continue;
2704
2705 if (acp_level[4 * r + c] >= level)
2706 acp[4 * r + c] = NULL;
2707 }
2708 }
2709 if (inst->op == OPCODE_ENDIF)
2710 --level;
2711 break;
2712
2713 default:
2714 /* Continuing the block, clear any written channels from
2715 * the ACP.
2716 */
2717 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.reladdr) {
2718 /* Any temporary might be written, so no copy propagation
2719 * across this instruction.
2720 */
2721 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2722 } else if (inst->dst.file == PROGRAM_OUTPUT &&
2723 inst->dst.reladdr) {
2724 /* Any output might be written, so no copy propagation
2725 * from outputs across this instruction.
2726 */
2727 for (int r = 0; r < this->next_temp; r++) {
2728 for (int c = 0; c < 4; c++) {
2729 if (!acp[4 * r + c])
2730 continue;
2731
2732 if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT)
2733 acp[4 * r + c] = NULL;
2734 }
2735 }
2736 } else if (inst->dst.file == PROGRAM_TEMPORARY ||
2737 inst->dst.file == PROGRAM_OUTPUT) {
2738 /* Clear where it's used as dst. */
2739 if (inst->dst.file == PROGRAM_TEMPORARY) {
2740 for (int c = 0; c < 4; c++) {
2741 if (inst->dst.writemask & (1 << c)) {
2742 acp[4 * inst->dst.index + c] = NULL;
2743 }
2744 }
2745 }
2746
2747 /* Clear where it's used as src. */
2748 for (int r = 0; r < this->next_temp; r++) {
2749 for (int c = 0; c < 4; c++) {
2750 if (!acp[4 * r + c])
2751 continue;
2752
2753 int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c);
2754
2755 if (acp[4 * r + c]->src[0].file == inst->dst.file &&
2756 acp[4 * r + c]->src[0].index == inst->dst.index &&
2757 inst->dst.writemask & (1 << src_chan))
2758 {
2759 acp[4 * r + c] = NULL;
2760 }
2761 }
2762 }
2763 }
2764 break;
2765 }
2766
2767 /* If this is a copy, add it to the ACP. */
2768 if (inst->op == OPCODE_MOV &&
2769 inst->dst.file == PROGRAM_TEMPORARY &&
2770 !(inst->dst.file == inst->src[0].file &&
2771 inst->dst.index == inst->src[0].index) &&
2772 !inst->dst.reladdr &&
2773 !inst->saturate &&
2774 !inst->src[0].reladdr &&
2775 !inst->src[0].negate) {
2776 for (int i = 0; i < 4; i++) {
2777 if (inst->dst.writemask & (1 << i)) {
2778 acp[4 * inst->dst.index + i] = inst;
2779 acp_level[4 * inst->dst.index + i] = level;
2780 }
2781 }
2782 }
2783 }
2784
2785 ralloc_free(acp_level);
2786 ralloc_free(acp);
2787 }
2788
2789
2790 /**
2791 * Convert a shader's GLSL IR into a Mesa gl_program.
2792 */
2793 static struct gl_program *
2794 get_mesa_program(struct gl_context *ctx,
2795 struct gl_shader_program *shader_program,
2796 struct gl_shader *shader)
2797 {
2798 ir_to_mesa_visitor v;
2799 struct prog_instruction *mesa_instructions, *mesa_inst;
2800 ir_instruction **mesa_instruction_annotation;
2801 int i;
2802 struct gl_program *prog;
2803 GLenum target = _mesa_shader_stage_to_program(shader->Stage);
2804 const char *target_string = _mesa_shader_stage_to_string(shader->Stage);
2805 struct gl_shader_compiler_options *options =
2806 &ctx->ShaderCompilerOptions[shader->Stage];
2807
2808 validate_ir_tree(shader->ir);
2809
2810 prog = ctx->Driver.NewProgram(ctx, target, shader_program->Name);
2811 if (!prog)
2812 return NULL;
2813 prog->Parameters = _mesa_new_parameter_list();
2814 v.ctx = ctx;
2815 v.prog = prog;
2816 v.shader_program = shader_program;
2817 v.options = options;
2818
2819 _mesa_generate_parameters_list_for_uniforms(shader_program, shader,
2820 prog->Parameters);
2821
2822 /* Emit Mesa IR for main(). */
2823 visit_exec_list(shader->ir, &v);
2824 v.emit(NULL, OPCODE_END);
2825
2826 prog->NumTemporaries = v.next_temp;
2827
2828 int num_instructions = 0;
2829 foreach_list(node, &v.instructions) {
2830 num_instructions++;
2831 }
2832
2833 mesa_instructions =
2834 (struct prog_instruction *)calloc(num_instructions,
2835 sizeof(*mesa_instructions));
2836 mesa_instruction_annotation = ralloc_array(v.mem_ctx, ir_instruction *,
2837 num_instructions);
2838
2839 v.copy_propagate();
2840
2841 /* Convert ir_mesa_instructions into prog_instructions.
2842 */
2843 mesa_inst = mesa_instructions;
2844 i = 0;
2845 foreach_list(node, &v.instructions) {
2846 const ir_to_mesa_instruction *inst = (ir_to_mesa_instruction *) node;
2847
2848 mesa_inst->Opcode = inst->op;
2849 mesa_inst->CondUpdate = inst->cond_update;
2850 if (inst->saturate)
2851 mesa_inst->SaturateMode = SATURATE_ZERO_ONE;
2852 mesa_inst->DstReg.File = inst->dst.file;
2853 mesa_inst->DstReg.Index = inst->dst.index;
2854 mesa_inst->DstReg.CondMask = inst->dst.cond_mask;
2855 mesa_inst->DstReg.WriteMask = inst->dst.writemask;
2856 mesa_inst->DstReg.RelAddr = inst->dst.reladdr != NULL;
2857 mesa_inst->SrcReg[0] = mesa_src_reg_from_ir_src_reg(inst->src[0]);
2858 mesa_inst->SrcReg[1] = mesa_src_reg_from_ir_src_reg(inst->src[1]);
2859 mesa_inst->SrcReg[2] = mesa_src_reg_from_ir_src_reg(inst->src[2]);
2860 mesa_inst->TexSrcUnit = inst->sampler;
2861 mesa_inst->TexSrcTarget = inst->tex_target;
2862 mesa_inst->TexShadow = inst->tex_shadow;
2863 mesa_instruction_annotation[i] = inst->ir;
2864
2865 /* Set IndirectRegisterFiles. */
2866 if (mesa_inst->DstReg.RelAddr)
2867 prog->IndirectRegisterFiles |= 1 << mesa_inst->DstReg.File;
2868
2869 /* Update program's bitmask of indirectly accessed register files */
2870 for (unsigned src = 0; src < 3; src++)
2871 if (mesa_inst->SrcReg[src].RelAddr)
2872 prog->IndirectRegisterFiles |= 1 << mesa_inst->SrcReg[src].File;
2873
2874 switch (mesa_inst->Opcode) {
2875 case OPCODE_IF:
2876 if (options->MaxIfDepth == 0) {
2877 linker_warning(shader_program,
2878 "Couldn't flatten if-statement. "
2879 "This will likely result in software "
2880 "rasterization.\n");
2881 }
2882 break;
2883 case OPCODE_BGNLOOP:
2884 if (options->EmitNoLoops) {
2885 linker_warning(shader_program,
2886 "Couldn't unroll loop. "
2887 "This will likely result in software "
2888 "rasterization.\n");
2889 }
2890 break;
2891 case OPCODE_CONT:
2892 if (options->EmitNoCont) {
2893 linker_warning(shader_program,
2894 "Couldn't lower continue-statement. "
2895 "This will likely result in software "
2896 "rasterization.\n");
2897 }
2898 break;
2899 case OPCODE_ARL:
2900 prog->NumAddressRegs = 1;
2901 break;
2902 default:
2903 break;
2904 }
2905
2906 mesa_inst++;
2907 i++;
2908
2909 if (!shader_program->LinkStatus)
2910 break;
2911 }
2912
2913 if (!shader_program->LinkStatus) {
2914 goto fail_exit;
2915 }
2916
2917 set_branchtargets(&v, mesa_instructions, num_instructions);
2918
2919 if (ctx->_Shader->Flags & GLSL_DUMP) {
2920 fprintf(stderr, "\n");
2921 fprintf(stderr, "GLSL IR for linked %s program %d:\n", target_string,
2922 shader_program->Name);
2923 _mesa_print_ir(stderr, shader->ir, NULL);
2924 fprintf(stderr, "\n");
2925 fprintf(stderr, "\n");
2926 fprintf(stderr, "Mesa IR for linked %s program %d:\n", target_string,
2927 shader_program->Name);
2928 print_program(mesa_instructions, mesa_instruction_annotation,
2929 num_instructions);
2930 fflush(stderr);
2931 }
2932
2933 prog->Instructions = mesa_instructions;
2934 prog->NumInstructions = num_instructions;
2935
2936 /* Setting this to NULL prevents a possible double free in the fail_exit
2937 * path (far below).
2938 */
2939 mesa_instructions = NULL;
2940
2941 do_set_program_inouts(shader->ir, prog, shader->Stage);
2942
2943 prog->SamplersUsed = shader->active_samplers;
2944 prog->ShadowSamplers = shader->shadow_samplers;
2945 _mesa_update_shader_textures_used(shader_program, prog);
2946
2947 /* Set the gl_FragDepth layout. */
2948 if (target == GL_FRAGMENT_PROGRAM_ARB) {
2949 struct gl_fragment_program *fp = (struct gl_fragment_program *)prog;
2950 fp->FragDepthLayout = shader_program->FragDepthLayout;
2951 }
2952
2953 _mesa_reference_program(ctx, &shader->Program, prog);
2954
2955 if ((ctx->_Shader->Flags & GLSL_NO_OPT) == 0) {
2956 _mesa_optimize_program(ctx, prog);
2957 }
2958
2959 /* This has to be done last. Any operation that can cause
2960 * prog->ParameterValues to get reallocated (e.g., anything that adds a
2961 * program constant) has to happen before creating this linkage.
2962 */
2963 _mesa_associate_uniform_storage(ctx, shader_program, prog->Parameters);
2964 if (!shader_program->LinkStatus) {
2965 goto fail_exit;
2966 }
2967
2968 return prog;
2969
2970 fail_exit:
2971 free(mesa_instructions);
2972 _mesa_reference_program(ctx, &shader->Program, NULL);
2973 return NULL;
2974 }
2975
2976 extern "C" {
2977
2978 /**
2979 * Link a shader.
2980 * Called via ctx->Driver.LinkShader()
2981 * This actually involves converting GLSL IR into Mesa gl_programs with
2982 * code lowering and other optimizations.
2983 */
2984 GLboolean
2985 _mesa_ir_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
2986 {
2987 assert(prog->LinkStatus);
2988
2989 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2990 if (prog->_LinkedShaders[i] == NULL)
2991 continue;
2992
2993 bool progress;
2994 exec_list *ir = prog->_LinkedShaders[i]->ir;
2995 const struct gl_shader_compiler_options *options =
2996 &ctx->ShaderCompilerOptions[prog->_LinkedShaders[i]->Stage];
2997
2998 do {
2999 progress = false;
3000
3001 /* Lowering */
3002 do_mat_op_to_vec(ir);
3003 lower_instructions(ir, (MOD_TO_FRACT | DIV_TO_MUL_RCP | EXP_TO_EXP2
3004 | LOG_TO_LOG2 | INT_DIV_TO_MUL_RCP
3005 | ((options->EmitNoPow) ? POW_TO_EXP2 : 0)));
3006
3007 progress = do_lower_jumps(ir, true, true, options->EmitNoMainReturn, options->EmitNoCont, options->EmitNoLoops) || progress;
3008
3009 progress = do_common_optimization(ir, true, true,
3010 options->MaxUnrollIterations,
3011 options)
3012 || progress;
3013
3014 progress = lower_quadop_vector(ir, true) || progress;
3015
3016 if (options->MaxIfDepth == 0)
3017 progress = lower_discard(ir) || progress;
3018
3019 progress = lower_if_to_cond_assign(ir, options->MaxIfDepth) || progress;
3020
3021 if (options->EmitNoNoise)
3022 progress = lower_noise(ir) || progress;
3023
3024 /* If there are forms of indirect addressing that the driver
3025 * cannot handle, perform the lowering pass.
3026 */
3027 if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput
3028 || options->EmitNoIndirectTemp || options->EmitNoIndirectUniform)
3029 progress =
3030 lower_variable_index_to_cond_assign(ir,
3031 options->EmitNoIndirectInput,
3032 options->EmitNoIndirectOutput,
3033 options->EmitNoIndirectTemp,
3034 options->EmitNoIndirectUniform)
3035 || progress;
3036
3037 progress = do_vec_index_to_cond_assign(ir) || progress;
3038 progress = lower_vector_insert(ir, true) || progress;
3039 } while (progress);
3040
3041 validate_ir_tree(ir);
3042 }
3043
3044 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3045 struct gl_program *linked_prog;
3046
3047 if (prog->_LinkedShaders[i] == NULL)
3048 continue;
3049
3050 linked_prog = get_mesa_program(ctx, prog, prog->_LinkedShaders[i]);
3051
3052 if (linked_prog) {
3053 _mesa_copy_linked_program_data((gl_shader_stage) i, prog, linked_prog);
3054
3055 _mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program,
3056 linked_prog);
3057 if (!ctx->Driver.ProgramStringNotify(ctx,
3058 _mesa_shader_stage_to_program(i),
3059 linked_prog)) {
3060 return GL_FALSE;
3061 }
3062 }
3063
3064 _mesa_reference_program(ctx, &linked_prog, NULL);
3065 }
3066
3067 return prog->LinkStatus;
3068 }
3069
3070 /**
3071 * Link a GLSL shader program. Called via glLinkProgram().
3072 */
3073 void
3074 _mesa_glsl_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
3075 {
3076 unsigned int i;
3077
3078 _mesa_clear_shader_program_data(ctx, prog);
3079
3080 prog->LinkStatus = GL_TRUE;
3081
3082 for (i = 0; i < prog->NumShaders; i++) {
3083 if (!prog->Shaders[i]->CompileStatus) {
3084 linker_error(prog, "linking with uncompiled shader");
3085 }
3086 }
3087
3088 if (prog->LinkStatus) {
3089 link_shaders(ctx, prog);
3090 }
3091
3092 if (prog->LinkStatus) {
3093 if (!ctx->Driver.LinkShader(ctx, prog)) {
3094 prog->LinkStatus = GL_FALSE;
3095 }
3096 }
3097
3098 if (ctx->_Shader->Flags & GLSL_DUMP) {
3099 if (!prog->LinkStatus) {
3100 fprintf(stderr, "GLSL shader program %d failed to link\n", prog->Name);
3101 }
3102
3103 if (prog->InfoLog && prog->InfoLog[0] != 0) {
3104 fprintf(stderr, "GLSL shader program %d info log:\n", prog->Name);
3105 fprintf(stderr, "%s\n", prog->InfoLog);
3106 }
3107 }
3108 }
3109
3110 } /* extern "C" */