program: remove extern "C" around #includes
[mesa.git] / src / mesa / program / ir_to_mesa.cpp
1 /*
2 * Copyright (C) 2005-2007 Brian Paul All Rights Reserved.
3 * Copyright (C) 2008 VMware, Inc. All Rights Reserved.
4 * Copyright © 2010 Intel Corporation
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
22 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
23 * DEALINGS IN THE SOFTWARE.
24 */
25
26 /**
27 * \file ir_to_mesa.cpp
28 *
29 * Translate GLSL IR to Mesa's gl_program representation.
30 */
31
32 #include <stdio.h>
33 #include "main/compiler.h"
34 #include "ir.h"
35 #include "ir_visitor.h"
36 #include "ir_expression_flattening.h"
37 #include "ir_uniform.h"
38 #include "glsl_types.h"
39 #include "glsl_parser_extras.h"
40 #include "../glsl/program.h"
41 #include "ir_optimization.h"
42 #include "ast.h"
43 #include "linker.h"
44
45 #include "main/mtypes.h"
46 #include "main/shaderapi.h"
47 #include "main/shaderobj.h"
48 #include "main/uniforms.h"
49
50 #include "program/hash_table.h"
51 #include "program/prog_instruction.h"
52 #include "program/prog_optimize.h"
53 #include "program/prog_print.h"
54 #include "program/program.h"
55 #include "program/prog_parameter.h"
56 #include "program/sampler.h"
57
58
59 static int swizzle_for_size(int size);
60
61 namespace {
62
63 class src_reg;
64 class dst_reg;
65
66 /**
67 * This struct is a corresponding struct to Mesa prog_src_register, with
68 * wider fields.
69 */
70 class src_reg {
71 public:
72 src_reg(gl_register_file file, int index, const glsl_type *type)
73 {
74 this->file = file;
75 this->index = index;
76 if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
77 this->swizzle = swizzle_for_size(type->vector_elements);
78 else
79 this->swizzle = SWIZZLE_XYZW;
80 this->negate = 0;
81 this->reladdr = NULL;
82 }
83
84 src_reg()
85 {
86 this->file = PROGRAM_UNDEFINED;
87 this->index = 0;
88 this->swizzle = 0;
89 this->negate = 0;
90 this->reladdr = NULL;
91 }
92
93 explicit src_reg(dst_reg reg);
94
95 gl_register_file file; /**< PROGRAM_* from Mesa */
96 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
97 GLuint swizzle; /**< SWIZZLE_XYZWONEZERO swizzles from Mesa. */
98 int negate; /**< NEGATE_XYZW mask from mesa */
99 /** Register index should be offset by the integer in this reg. */
100 src_reg *reladdr;
101 };
102
103 class dst_reg {
104 public:
105 dst_reg(gl_register_file file, int writemask)
106 {
107 this->file = file;
108 this->index = 0;
109 this->writemask = writemask;
110 this->cond_mask = COND_TR;
111 this->reladdr = NULL;
112 }
113
114 dst_reg()
115 {
116 this->file = PROGRAM_UNDEFINED;
117 this->index = 0;
118 this->writemask = 0;
119 this->cond_mask = COND_TR;
120 this->reladdr = NULL;
121 }
122
123 explicit dst_reg(src_reg reg);
124
125 gl_register_file file; /**< PROGRAM_* from Mesa */
126 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
127 int writemask; /**< Bitfield of WRITEMASK_[XYZW] */
128 GLuint cond_mask:4;
129 /** Register index should be offset by the integer in this reg. */
130 src_reg *reladdr;
131 };
132
133 } /* anonymous namespace */
134
135 src_reg::src_reg(dst_reg reg)
136 {
137 this->file = reg.file;
138 this->index = reg.index;
139 this->swizzle = SWIZZLE_XYZW;
140 this->negate = 0;
141 this->reladdr = reg.reladdr;
142 }
143
144 dst_reg::dst_reg(src_reg reg)
145 {
146 this->file = reg.file;
147 this->index = reg.index;
148 this->writemask = WRITEMASK_XYZW;
149 this->cond_mask = COND_TR;
150 this->reladdr = reg.reladdr;
151 }
152
153 namespace {
154
155 class ir_to_mesa_instruction : public exec_node {
156 public:
157 DECLARE_RALLOC_CXX_OPERATORS(ir_to_mesa_instruction)
158
159 enum prog_opcode op;
160 dst_reg dst;
161 src_reg src[3];
162 /** Pointer to the ir source this tree came from for debugging */
163 ir_instruction *ir;
164 GLboolean cond_update;
165 bool saturate;
166 int sampler; /**< sampler index */
167 int tex_target; /**< One of TEXTURE_*_INDEX */
168 GLboolean tex_shadow;
169 };
170
171 class variable_storage : public exec_node {
172 public:
173 variable_storage(ir_variable *var, gl_register_file file, int index)
174 : file(file), index(index), var(var)
175 {
176 /* empty */
177 }
178
179 gl_register_file file;
180 int index;
181 ir_variable *var; /* variable that maps to this, if any */
182 };
183
184 class function_entry : public exec_node {
185 public:
186 ir_function_signature *sig;
187
188 /**
189 * identifier of this function signature used by the program.
190 *
191 * At the point that Mesa instructions for function calls are
192 * generated, we don't know the address of the first instruction of
193 * the function body. So we make the BranchTarget that is called a
194 * small integer and rewrite them during set_branchtargets().
195 */
196 int sig_id;
197
198 /**
199 * Pointer to first instruction of the function body.
200 *
201 * Set during function body emits after main() is processed.
202 */
203 ir_to_mesa_instruction *bgn_inst;
204
205 /**
206 * Index of the first instruction of the function body in actual
207 * Mesa IR.
208 *
209 * Set after convertion from ir_to_mesa_instruction to prog_instruction.
210 */
211 int inst;
212
213 /** Storage for the return value. */
214 src_reg return_reg;
215 };
216
217 class ir_to_mesa_visitor : public ir_visitor {
218 public:
219 ir_to_mesa_visitor();
220 ~ir_to_mesa_visitor();
221
222 function_entry *current_function;
223
224 struct gl_context *ctx;
225 struct gl_program *prog;
226 struct gl_shader_program *shader_program;
227 struct gl_shader_compiler_options *options;
228
229 int next_temp;
230
231 variable_storage *find_variable_storage(const ir_variable *var);
232
233 src_reg get_temp(const glsl_type *type);
234 void reladdr_to_temp(ir_instruction *ir, src_reg *reg, int *num_reladdr);
235
236 src_reg src_reg_for_float(float val);
237
238 /**
239 * \name Visit methods
240 *
241 * As typical for the visitor pattern, there must be one \c visit method for
242 * each concrete subclass of \c ir_instruction. Virtual base classes within
243 * the hierarchy should not have \c visit methods.
244 */
245 /*@{*/
246 virtual void visit(ir_variable *);
247 virtual void visit(ir_loop *);
248 virtual void visit(ir_loop_jump *);
249 virtual void visit(ir_function_signature *);
250 virtual void visit(ir_function *);
251 virtual void visit(ir_expression *);
252 virtual void visit(ir_swizzle *);
253 virtual void visit(ir_dereference_variable *);
254 virtual void visit(ir_dereference_array *);
255 virtual void visit(ir_dereference_record *);
256 virtual void visit(ir_assignment *);
257 virtual void visit(ir_constant *);
258 virtual void visit(ir_call *);
259 virtual void visit(ir_return *);
260 virtual void visit(ir_discard *);
261 virtual void visit(ir_texture *);
262 virtual void visit(ir_if *);
263 virtual void visit(ir_emit_vertex *);
264 virtual void visit(ir_end_primitive *);
265 /*@}*/
266
267 src_reg result;
268
269 /** List of variable_storage */
270 exec_list variables;
271
272 /** List of function_entry */
273 exec_list function_signatures;
274 int next_signature_id;
275
276 /** List of ir_to_mesa_instruction */
277 exec_list instructions;
278
279 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op);
280
281 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
282 dst_reg dst, src_reg src0);
283
284 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
285 dst_reg dst, src_reg src0, src_reg src1);
286
287 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
288 dst_reg dst,
289 src_reg src0, src_reg src1, src_reg src2);
290
291 /**
292 * Emit the correct dot-product instruction for the type of arguments
293 */
294 ir_to_mesa_instruction * emit_dp(ir_instruction *ir,
295 dst_reg dst,
296 src_reg src0,
297 src_reg src1,
298 unsigned elements);
299
300 void emit_scalar(ir_instruction *ir, enum prog_opcode op,
301 dst_reg dst, src_reg src0);
302
303 void emit_scalar(ir_instruction *ir, enum prog_opcode op,
304 dst_reg dst, src_reg src0, src_reg src1);
305
306 void emit_scs(ir_instruction *ir, enum prog_opcode op,
307 dst_reg dst, const src_reg &src);
308
309 bool try_emit_mad(ir_expression *ir,
310 int mul_operand);
311 bool try_emit_mad_for_and_not(ir_expression *ir,
312 int mul_operand);
313
314 void emit_swz(ir_expression *ir);
315
316 bool process_move_condition(ir_rvalue *ir);
317
318 void copy_propagate(void);
319
320 void *mem_ctx;
321 };
322
323 } /* anonymous namespace */
324
325 static src_reg undef_src = src_reg(PROGRAM_UNDEFINED, 0, NULL);
326
327 static dst_reg undef_dst = dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP);
328
329 static dst_reg address_reg = dst_reg(PROGRAM_ADDRESS, WRITEMASK_X);
330
331 static int
332 swizzle_for_size(int size)
333 {
334 static const int size_swizzles[4] = {
335 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
336 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
337 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
338 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
339 };
340
341 assert((size >= 1) && (size <= 4));
342 return size_swizzles[size - 1];
343 }
344
345 ir_to_mesa_instruction *
346 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
347 dst_reg dst,
348 src_reg src0, src_reg src1, src_reg src2)
349 {
350 ir_to_mesa_instruction *inst = new(mem_ctx) ir_to_mesa_instruction();
351 int num_reladdr = 0;
352
353 /* If we have to do relative addressing, we want to load the ARL
354 * reg directly for one of the regs, and preload the other reladdr
355 * sources into temps.
356 */
357 num_reladdr += dst.reladdr != NULL;
358 num_reladdr += src0.reladdr != NULL;
359 num_reladdr += src1.reladdr != NULL;
360 num_reladdr += src2.reladdr != NULL;
361
362 reladdr_to_temp(ir, &src2, &num_reladdr);
363 reladdr_to_temp(ir, &src1, &num_reladdr);
364 reladdr_to_temp(ir, &src0, &num_reladdr);
365
366 if (dst.reladdr) {
367 emit(ir, OPCODE_ARL, address_reg, *dst.reladdr);
368 num_reladdr--;
369 }
370 assert(num_reladdr == 0);
371
372 inst->op = op;
373 inst->dst = dst;
374 inst->src[0] = src0;
375 inst->src[1] = src1;
376 inst->src[2] = src2;
377 inst->ir = ir;
378
379 this->instructions.push_tail(inst);
380
381 return inst;
382 }
383
384
385 ir_to_mesa_instruction *
386 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
387 dst_reg dst, src_reg src0, src_reg src1)
388 {
389 return emit(ir, op, dst, src0, src1, undef_src);
390 }
391
392 ir_to_mesa_instruction *
393 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
394 dst_reg dst, src_reg src0)
395 {
396 assert(dst.writemask != 0);
397 return emit(ir, op, dst, src0, undef_src, undef_src);
398 }
399
400 ir_to_mesa_instruction *
401 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op)
402 {
403 return emit(ir, op, undef_dst, undef_src, undef_src, undef_src);
404 }
405
406 ir_to_mesa_instruction *
407 ir_to_mesa_visitor::emit_dp(ir_instruction *ir,
408 dst_reg dst, src_reg src0, src_reg src1,
409 unsigned elements)
410 {
411 static const gl_inst_opcode dot_opcodes[] = {
412 OPCODE_DP2, OPCODE_DP3, OPCODE_DP4
413 };
414
415 return emit(ir, dot_opcodes[elements - 2], dst, src0, src1);
416 }
417
418 /**
419 * Emits Mesa scalar opcodes to produce unique answers across channels.
420 *
421 * Some Mesa opcodes are scalar-only, like ARB_fp/vp. The src X
422 * channel determines the result across all channels. So to do a vec4
423 * of this operation, we want to emit a scalar per source channel used
424 * to produce dest channels.
425 */
426 void
427 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
428 dst_reg dst,
429 src_reg orig_src0, src_reg orig_src1)
430 {
431 int i, j;
432 int done_mask = ~dst.writemask;
433
434 /* Mesa RCP is a scalar operation splatting results to all channels,
435 * like ARB_fp/vp. So emit as many RCPs as necessary to cover our
436 * dst channels.
437 */
438 for (i = 0; i < 4; i++) {
439 GLuint this_mask = (1 << i);
440 ir_to_mesa_instruction *inst;
441 src_reg src0 = orig_src0;
442 src_reg src1 = orig_src1;
443
444 if (done_mask & this_mask)
445 continue;
446
447 GLuint src0_swiz = GET_SWZ(src0.swizzle, i);
448 GLuint src1_swiz = GET_SWZ(src1.swizzle, i);
449 for (j = i + 1; j < 4; j++) {
450 /* If there is another enabled component in the destination that is
451 * derived from the same inputs, generate its value on this pass as
452 * well.
453 */
454 if (!(done_mask & (1 << j)) &&
455 GET_SWZ(src0.swizzle, j) == src0_swiz &&
456 GET_SWZ(src1.swizzle, j) == src1_swiz) {
457 this_mask |= (1 << j);
458 }
459 }
460 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
461 src0_swiz, src0_swiz);
462 src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz,
463 src1_swiz, src1_swiz);
464
465 inst = emit(ir, op, dst, src0, src1);
466 inst->dst.writemask = this_mask;
467 done_mask |= this_mask;
468 }
469 }
470
471 void
472 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
473 dst_reg dst, src_reg src0)
474 {
475 src_reg undef = undef_src;
476
477 undef.swizzle = SWIZZLE_XXXX;
478
479 emit_scalar(ir, op, dst, src0, undef);
480 }
481
482 /**
483 * Emit an OPCODE_SCS instruction
484 *
485 * The \c SCS opcode functions a bit differently than the other Mesa (or
486 * ARB_fragment_program) opcodes. Instead of splatting its result across all
487 * four components of the destination, it writes one value to the \c x
488 * component and another value to the \c y component.
489 *
490 * \param ir IR instruction being processed
491 * \param op Either \c OPCODE_SIN or \c OPCODE_COS depending on which
492 * value is desired.
493 * \param dst Destination register
494 * \param src Source register
495 */
496 void
497 ir_to_mesa_visitor::emit_scs(ir_instruction *ir, enum prog_opcode op,
498 dst_reg dst,
499 const src_reg &src)
500 {
501 /* Vertex programs cannot use the SCS opcode.
502 */
503 if (this->prog->Target == GL_VERTEX_PROGRAM_ARB) {
504 emit_scalar(ir, op, dst, src);
505 return;
506 }
507
508 const unsigned component = (op == OPCODE_SIN) ? 0 : 1;
509 const unsigned scs_mask = (1U << component);
510 int done_mask = ~dst.writemask;
511 src_reg tmp;
512
513 assert(op == OPCODE_SIN || op == OPCODE_COS);
514
515 /* If there are compnents in the destination that differ from the component
516 * that will be written by the SCS instrution, we'll need a temporary.
517 */
518 if (scs_mask != unsigned(dst.writemask)) {
519 tmp = get_temp(glsl_type::vec4_type);
520 }
521
522 for (unsigned i = 0; i < 4; i++) {
523 unsigned this_mask = (1U << i);
524 src_reg src0 = src;
525
526 if ((done_mask & this_mask) != 0)
527 continue;
528
529 /* The source swizzle specified which component of the source generates
530 * sine / cosine for the current component in the destination. The SCS
531 * instruction requires that this value be swizzle to the X component.
532 * Replace the current swizzle with a swizzle that puts the source in
533 * the X component.
534 */
535 unsigned src0_swiz = GET_SWZ(src.swizzle, i);
536
537 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
538 src0_swiz, src0_swiz);
539 for (unsigned j = i + 1; j < 4; j++) {
540 /* If there is another enabled component in the destination that is
541 * derived from the same inputs, generate its value on this pass as
542 * well.
543 */
544 if (!(done_mask & (1 << j)) &&
545 GET_SWZ(src0.swizzle, j) == src0_swiz) {
546 this_mask |= (1 << j);
547 }
548 }
549
550 if (this_mask != scs_mask) {
551 ir_to_mesa_instruction *inst;
552 dst_reg tmp_dst = dst_reg(tmp);
553
554 /* Emit the SCS instruction.
555 */
556 inst = emit(ir, OPCODE_SCS, tmp_dst, src0);
557 inst->dst.writemask = scs_mask;
558
559 /* Move the result of the SCS instruction to the desired location in
560 * the destination.
561 */
562 tmp.swizzle = MAKE_SWIZZLE4(component, component,
563 component, component);
564 inst = emit(ir, OPCODE_SCS, dst, tmp);
565 inst->dst.writemask = this_mask;
566 } else {
567 /* Emit the SCS instruction to write directly to the destination.
568 */
569 ir_to_mesa_instruction *inst = emit(ir, OPCODE_SCS, dst, src0);
570 inst->dst.writemask = scs_mask;
571 }
572
573 done_mask |= this_mask;
574 }
575 }
576
577 src_reg
578 ir_to_mesa_visitor::src_reg_for_float(float val)
579 {
580 src_reg src(PROGRAM_CONSTANT, -1, NULL);
581
582 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
583 (const gl_constant_value *)&val, 1, &src.swizzle);
584
585 return src;
586 }
587
588 static int
589 type_size(const struct glsl_type *type)
590 {
591 unsigned int i;
592 int size;
593
594 switch (type->base_type) {
595 case GLSL_TYPE_UINT:
596 case GLSL_TYPE_INT:
597 case GLSL_TYPE_FLOAT:
598 case GLSL_TYPE_BOOL:
599 if (type->is_matrix()) {
600 return type->matrix_columns;
601 } else {
602 /* Regardless of size of vector, it gets a vec4. This is bad
603 * packing for things like floats, but otherwise arrays become a
604 * mess. Hopefully a later pass over the code can pack scalars
605 * down if appropriate.
606 */
607 return 1;
608 }
609 case GLSL_TYPE_ARRAY:
610 assert(type->length > 0);
611 return type_size(type->fields.array) * type->length;
612 case GLSL_TYPE_STRUCT:
613 size = 0;
614 for (i = 0; i < type->length; i++) {
615 size += type_size(type->fields.structure[i].type);
616 }
617 return size;
618 case GLSL_TYPE_SAMPLER:
619 case GLSL_TYPE_IMAGE:
620 /* Samplers take up one slot in UNIFORMS[], but they're baked in
621 * at link time.
622 */
623 return 1;
624 case GLSL_TYPE_ATOMIC_UINT:
625 case GLSL_TYPE_VOID:
626 case GLSL_TYPE_ERROR:
627 case GLSL_TYPE_INTERFACE:
628 assert(!"Invalid type in type_size");
629 break;
630 }
631
632 return 0;
633 }
634
635 /**
636 * In the initial pass of codegen, we assign temporary numbers to
637 * intermediate results. (not SSA -- variable assignments will reuse
638 * storage). Actual register allocation for the Mesa VM occurs in a
639 * pass over the Mesa IR later.
640 */
641 src_reg
642 ir_to_mesa_visitor::get_temp(const glsl_type *type)
643 {
644 src_reg src;
645
646 src.file = PROGRAM_TEMPORARY;
647 src.index = next_temp;
648 src.reladdr = NULL;
649 next_temp += type_size(type);
650
651 if (type->is_array() || type->is_record()) {
652 src.swizzle = SWIZZLE_NOOP;
653 } else {
654 src.swizzle = swizzle_for_size(type->vector_elements);
655 }
656 src.negate = 0;
657
658 return src;
659 }
660
661 variable_storage *
662 ir_to_mesa_visitor::find_variable_storage(const ir_variable *var)
663 {
664 foreach_in_list(variable_storage, entry, &this->variables) {
665 if (entry->var == var)
666 return entry;
667 }
668
669 return NULL;
670 }
671
672 void
673 ir_to_mesa_visitor::visit(ir_variable *ir)
674 {
675 if (strcmp(ir->name, "gl_FragCoord") == 0) {
676 struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog;
677
678 fp->OriginUpperLeft = ir->data.origin_upper_left;
679 fp->PixelCenterInteger = ir->data.pixel_center_integer;
680 }
681
682 if (ir->data.mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) {
683 unsigned int i;
684 const ir_state_slot *const slots = ir->get_state_slots();
685 assert(slots != NULL);
686
687 /* Check if this statevar's setup in the STATE file exactly
688 * matches how we'll want to reference it as a
689 * struct/array/whatever. If not, then we need to move it into
690 * temporary storage and hope that it'll get copy-propagated
691 * out.
692 */
693 for (i = 0; i < ir->get_num_state_slots(); i++) {
694 if (slots[i].swizzle != SWIZZLE_XYZW) {
695 break;
696 }
697 }
698
699 variable_storage *storage;
700 dst_reg dst;
701 if (i == ir->get_num_state_slots()) {
702 /* We'll set the index later. */
703 storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1);
704 this->variables.push_tail(storage);
705
706 dst = undef_dst;
707 } else {
708 /* The variable_storage constructor allocates slots based on the size
709 * of the type. However, this had better match the number of state
710 * elements that we're going to copy into the new temporary.
711 */
712 assert((int) ir->get_num_state_slots() == type_size(ir->type));
713
714 storage = new(mem_ctx) variable_storage(ir, PROGRAM_TEMPORARY,
715 this->next_temp);
716 this->variables.push_tail(storage);
717 this->next_temp += type_size(ir->type);
718
719 dst = dst_reg(src_reg(PROGRAM_TEMPORARY, storage->index, NULL));
720 }
721
722
723 for (unsigned int i = 0; i < ir->get_num_state_slots(); i++) {
724 int index = _mesa_add_state_reference(this->prog->Parameters,
725 (gl_state_index *)slots[i].tokens);
726
727 if (storage->file == PROGRAM_STATE_VAR) {
728 if (storage->index == -1) {
729 storage->index = index;
730 } else {
731 assert(index == storage->index + (int)i);
732 }
733 } else {
734 src_reg src(PROGRAM_STATE_VAR, index, NULL);
735 src.swizzle = slots[i].swizzle;
736 emit(ir, OPCODE_MOV, dst, src);
737 /* even a float takes up a whole vec4 reg in a struct/array. */
738 dst.index++;
739 }
740 }
741
742 if (storage->file == PROGRAM_TEMPORARY &&
743 dst.index != storage->index + (int) ir->get_num_state_slots()) {
744 linker_error(this->shader_program,
745 "failed to load builtin uniform `%s' "
746 "(%d/%d regs loaded)\n",
747 ir->name, dst.index - storage->index,
748 type_size(ir->type));
749 }
750 }
751 }
752
753 void
754 ir_to_mesa_visitor::visit(ir_loop *ir)
755 {
756 emit(NULL, OPCODE_BGNLOOP);
757
758 visit_exec_list(&ir->body_instructions, this);
759
760 emit(NULL, OPCODE_ENDLOOP);
761 }
762
763 void
764 ir_to_mesa_visitor::visit(ir_loop_jump *ir)
765 {
766 switch (ir->mode) {
767 case ir_loop_jump::jump_break:
768 emit(NULL, OPCODE_BRK);
769 break;
770 case ir_loop_jump::jump_continue:
771 emit(NULL, OPCODE_CONT);
772 break;
773 }
774 }
775
776
777 void
778 ir_to_mesa_visitor::visit(ir_function_signature *ir)
779 {
780 assert(0);
781 (void)ir;
782 }
783
784 void
785 ir_to_mesa_visitor::visit(ir_function *ir)
786 {
787 /* Ignore function bodies other than main() -- we shouldn't see calls to
788 * them since they should all be inlined before we get to ir_to_mesa.
789 */
790 if (strcmp(ir->name, "main") == 0) {
791 const ir_function_signature *sig;
792 exec_list empty;
793
794 sig = ir->matching_signature(NULL, &empty, false);
795
796 assert(sig);
797
798 foreach_in_list(ir_instruction, ir, &sig->body) {
799 ir->accept(this);
800 }
801 }
802 }
803
804 bool
805 ir_to_mesa_visitor::try_emit_mad(ir_expression *ir, int mul_operand)
806 {
807 int nonmul_operand = 1 - mul_operand;
808 src_reg a, b, c;
809
810 ir_expression *expr = ir->operands[mul_operand]->as_expression();
811 if (!expr || expr->operation != ir_binop_mul)
812 return false;
813
814 expr->operands[0]->accept(this);
815 a = this->result;
816 expr->operands[1]->accept(this);
817 b = this->result;
818 ir->operands[nonmul_operand]->accept(this);
819 c = this->result;
820
821 this->result = get_temp(ir->type);
822 emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, c);
823
824 return true;
825 }
826
827 /**
828 * Emit OPCODE_MAD(a, -b, a) instead of AND(a, NOT(b))
829 *
830 * The logic values are 1.0 for true and 0.0 for false. Logical-and is
831 * implemented using multiplication, and logical-or is implemented using
832 * addition. Logical-not can be implemented as (true - x), or (1.0 - x).
833 * As result, the logical expression (a & !b) can be rewritten as:
834 *
835 * - a * !b
836 * - a * (1 - b)
837 * - (a * 1) - (a * b)
838 * - a + -(a * b)
839 * - a + (a * -b)
840 *
841 * This final expression can be implemented as a single MAD(a, -b, a)
842 * instruction.
843 */
844 bool
845 ir_to_mesa_visitor::try_emit_mad_for_and_not(ir_expression *ir, int try_operand)
846 {
847 const int other_operand = 1 - try_operand;
848 src_reg a, b;
849
850 ir_expression *expr = ir->operands[try_operand]->as_expression();
851 if (!expr || expr->operation != ir_unop_logic_not)
852 return false;
853
854 ir->operands[other_operand]->accept(this);
855 a = this->result;
856 expr->operands[0]->accept(this);
857 b = this->result;
858
859 b.negate = ~b.negate;
860
861 this->result = get_temp(ir->type);
862 emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, a);
863
864 return true;
865 }
866
867 void
868 ir_to_mesa_visitor::reladdr_to_temp(ir_instruction *ir,
869 src_reg *reg, int *num_reladdr)
870 {
871 if (!reg->reladdr)
872 return;
873
874 emit(ir, OPCODE_ARL, address_reg, *reg->reladdr);
875
876 if (*num_reladdr != 1) {
877 src_reg temp = get_temp(glsl_type::vec4_type);
878
879 emit(ir, OPCODE_MOV, dst_reg(temp), *reg);
880 *reg = temp;
881 }
882
883 (*num_reladdr)--;
884 }
885
886 void
887 ir_to_mesa_visitor::emit_swz(ir_expression *ir)
888 {
889 /* Assume that the vector operator is in a form compatible with OPCODE_SWZ.
890 * This means that each of the operands is either an immediate value of -1,
891 * 0, or 1, or is a component from one source register (possibly with
892 * negation).
893 */
894 uint8_t components[4] = { 0 };
895 bool negate[4] = { false };
896 ir_variable *var = NULL;
897
898 for (unsigned i = 0; i < ir->type->vector_elements; i++) {
899 ir_rvalue *op = ir->operands[i];
900
901 assert(op->type->is_scalar());
902
903 while (op != NULL) {
904 switch (op->ir_type) {
905 case ir_type_constant: {
906
907 assert(op->type->is_scalar());
908
909 const ir_constant *const c = op->as_constant();
910 if (c->is_one()) {
911 components[i] = SWIZZLE_ONE;
912 } else if (c->is_zero()) {
913 components[i] = SWIZZLE_ZERO;
914 } else if (c->is_negative_one()) {
915 components[i] = SWIZZLE_ONE;
916 negate[i] = true;
917 } else {
918 assert(!"SWZ constant must be 0.0 or 1.0.");
919 }
920
921 op = NULL;
922 break;
923 }
924
925 case ir_type_dereference_variable: {
926 ir_dereference_variable *const deref =
927 (ir_dereference_variable *) op;
928
929 assert((var == NULL) || (deref->var == var));
930 components[i] = SWIZZLE_X;
931 var = deref->var;
932 op = NULL;
933 break;
934 }
935
936 case ir_type_expression: {
937 ir_expression *const expr = (ir_expression *) op;
938
939 assert(expr->operation == ir_unop_neg);
940 negate[i] = true;
941
942 op = expr->operands[0];
943 break;
944 }
945
946 case ir_type_swizzle: {
947 ir_swizzle *const swiz = (ir_swizzle *) op;
948
949 components[i] = swiz->mask.x;
950 op = swiz->val;
951 break;
952 }
953
954 default:
955 assert(!"Should not get here.");
956 return;
957 }
958 }
959 }
960
961 assert(var != NULL);
962
963 ir_dereference_variable *const deref =
964 new(mem_ctx) ir_dereference_variable(var);
965
966 this->result.file = PROGRAM_UNDEFINED;
967 deref->accept(this);
968 if (this->result.file == PROGRAM_UNDEFINED) {
969 printf("Failed to get tree for expression operand:\n");
970 deref->print();
971 printf("\n");
972 exit(1);
973 }
974
975 src_reg src;
976
977 src = this->result;
978 src.swizzle = MAKE_SWIZZLE4(components[0],
979 components[1],
980 components[2],
981 components[3]);
982 src.negate = ((unsigned(negate[0]) << 0)
983 | (unsigned(negate[1]) << 1)
984 | (unsigned(negate[2]) << 2)
985 | (unsigned(negate[3]) << 3));
986
987 /* Storage for our result. Ideally for an assignment we'd be using the
988 * actual storage for the result here, instead.
989 */
990 const src_reg result_src = get_temp(ir->type);
991 dst_reg result_dst = dst_reg(result_src);
992
993 /* Limit writes to the channels that will be used by result_src later.
994 * This does limit this temp's use as a temporary for multi-instruction
995 * sequences.
996 */
997 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
998
999 emit(ir, OPCODE_SWZ, result_dst, src);
1000 this->result = result_src;
1001 }
1002
1003 void
1004 ir_to_mesa_visitor::visit(ir_expression *ir)
1005 {
1006 unsigned int operand;
1007 src_reg op[Elements(ir->operands)];
1008 src_reg result_src;
1009 dst_reg result_dst;
1010
1011 /* Quick peephole: Emit OPCODE_MAD(a, b, c) instead of ADD(MUL(a, b), c)
1012 */
1013 if (ir->operation == ir_binop_add) {
1014 if (try_emit_mad(ir, 1))
1015 return;
1016 if (try_emit_mad(ir, 0))
1017 return;
1018 }
1019
1020 /* Quick peephole: Emit OPCODE_MAD(-a, -b, a) instead of AND(a, NOT(b))
1021 */
1022 if (ir->operation == ir_binop_logic_and) {
1023 if (try_emit_mad_for_and_not(ir, 1))
1024 return;
1025 if (try_emit_mad_for_and_not(ir, 0))
1026 return;
1027 }
1028
1029 if (ir->operation == ir_quadop_vector) {
1030 this->emit_swz(ir);
1031 return;
1032 }
1033
1034 for (operand = 0; operand < ir->get_num_operands(); operand++) {
1035 this->result.file = PROGRAM_UNDEFINED;
1036 ir->operands[operand]->accept(this);
1037 if (this->result.file == PROGRAM_UNDEFINED) {
1038 printf("Failed to get tree for expression operand:\n");
1039 ir->operands[operand]->print();
1040 printf("\n");
1041 exit(1);
1042 }
1043 op[operand] = this->result;
1044
1045 /* Matrix expression operands should have been broken down to vector
1046 * operations already.
1047 */
1048 assert(!ir->operands[operand]->type->is_matrix());
1049 }
1050
1051 int vector_elements = ir->operands[0]->type->vector_elements;
1052 if (ir->operands[1]) {
1053 vector_elements = MAX2(vector_elements,
1054 ir->operands[1]->type->vector_elements);
1055 }
1056
1057 this->result.file = PROGRAM_UNDEFINED;
1058
1059 /* Storage for our result. Ideally for an assignment we'd be using
1060 * the actual storage for the result here, instead.
1061 */
1062 result_src = get_temp(ir->type);
1063 /* convenience for the emit functions below. */
1064 result_dst = dst_reg(result_src);
1065 /* Limit writes to the channels that will be used by result_src later.
1066 * This does limit this temp's use as a temporary for multi-instruction
1067 * sequences.
1068 */
1069 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1070
1071 switch (ir->operation) {
1072 case ir_unop_logic_not:
1073 /* Previously 'SEQ dst, src, 0.0' was used for this. However, many
1074 * older GPUs implement SEQ using multiple instructions (i915 uses two
1075 * SGE instructions and a MUL instruction). Since our logic values are
1076 * 0.0 and 1.0, 1-x also implements !x.
1077 */
1078 op[0].negate = ~op[0].negate;
1079 emit(ir, OPCODE_ADD, result_dst, op[0], src_reg_for_float(1.0));
1080 break;
1081 case ir_unop_neg:
1082 op[0].negate = ~op[0].negate;
1083 result_src = op[0];
1084 break;
1085 case ir_unop_abs:
1086 emit(ir, OPCODE_ABS, result_dst, op[0]);
1087 break;
1088 case ir_unop_sign:
1089 emit(ir, OPCODE_SSG, result_dst, op[0]);
1090 break;
1091 case ir_unop_rcp:
1092 emit_scalar(ir, OPCODE_RCP, result_dst, op[0]);
1093 break;
1094
1095 case ir_unop_exp2:
1096 emit_scalar(ir, OPCODE_EX2, result_dst, op[0]);
1097 break;
1098 case ir_unop_exp:
1099 case ir_unop_log:
1100 assert(!"not reached: should be handled by ir_explog_to_explog2");
1101 break;
1102 case ir_unop_log2:
1103 emit_scalar(ir, OPCODE_LG2, result_dst, op[0]);
1104 break;
1105 case ir_unop_sin:
1106 emit_scalar(ir, OPCODE_SIN, result_dst, op[0]);
1107 break;
1108 case ir_unop_cos:
1109 emit_scalar(ir, OPCODE_COS, result_dst, op[0]);
1110 break;
1111 case ir_unop_sin_reduced:
1112 emit_scs(ir, OPCODE_SIN, result_dst, op[0]);
1113 break;
1114 case ir_unop_cos_reduced:
1115 emit_scs(ir, OPCODE_COS, result_dst, op[0]);
1116 break;
1117
1118 case ir_unop_dFdx:
1119 emit(ir, OPCODE_DDX, result_dst, op[0]);
1120 break;
1121 case ir_unop_dFdy:
1122 emit(ir, OPCODE_DDY, result_dst, op[0]);
1123 break;
1124
1125 case ir_unop_saturate: {
1126 ir_to_mesa_instruction *inst = emit(ir, OPCODE_MOV,
1127 result_dst, op[0]);
1128 inst->saturate = true;
1129 break;
1130 }
1131 case ir_unop_noise: {
1132 const enum prog_opcode opcode =
1133 prog_opcode(OPCODE_NOISE1
1134 + (ir->operands[0]->type->vector_elements) - 1);
1135 assert((opcode >= OPCODE_NOISE1) && (opcode <= OPCODE_NOISE4));
1136
1137 emit(ir, opcode, result_dst, op[0]);
1138 break;
1139 }
1140
1141 case ir_binop_add:
1142 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1143 break;
1144 case ir_binop_sub:
1145 emit(ir, OPCODE_SUB, result_dst, op[0], op[1]);
1146 break;
1147
1148 case ir_binop_mul:
1149 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1150 break;
1151 case ir_binop_div:
1152 assert(!"not reached: should be handled by ir_div_to_mul_rcp");
1153 break;
1154 case ir_binop_mod:
1155 /* Floating point should be lowered by MOD_TO_FRACT in the compiler. */
1156 assert(ir->type->is_integer());
1157 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1158 break;
1159
1160 case ir_binop_less:
1161 emit(ir, OPCODE_SLT, result_dst, op[0], op[1]);
1162 break;
1163 case ir_binop_greater:
1164 emit(ir, OPCODE_SGT, result_dst, op[0], op[1]);
1165 break;
1166 case ir_binop_lequal:
1167 emit(ir, OPCODE_SLE, result_dst, op[0], op[1]);
1168 break;
1169 case ir_binop_gequal:
1170 emit(ir, OPCODE_SGE, result_dst, op[0], op[1]);
1171 break;
1172 case ir_binop_equal:
1173 emit(ir, OPCODE_SEQ, result_dst, op[0], op[1]);
1174 break;
1175 case ir_binop_nequal:
1176 emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
1177 break;
1178 case ir_binop_all_equal:
1179 /* "==" operator producing a scalar boolean. */
1180 if (ir->operands[0]->type->is_vector() ||
1181 ir->operands[1]->type->is_vector()) {
1182 src_reg temp = get_temp(glsl_type::vec4_type);
1183 emit(ir, OPCODE_SNE, dst_reg(temp), op[0], op[1]);
1184
1185 /* After the dot-product, the value will be an integer on the
1186 * range [0,4]. Zero becomes 1.0, and positive values become zero.
1187 */
1188 emit_dp(ir, result_dst, temp, temp, vector_elements);
1189
1190 /* Negating the result of the dot-product gives values on the range
1191 * [-4, 0]. Zero becomes 1.0, and negative values become zero. This
1192 * achieved using SGE.
1193 */
1194 src_reg sge_src = result_src;
1195 sge_src.negate = ~sge_src.negate;
1196 emit(ir, OPCODE_SGE, result_dst, sge_src, src_reg_for_float(0.0));
1197 } else {
1198 emit(ir, OPCODE_SEQ, result_dst, op[0], op[1]);
1199 }
1200 break;
1201 case ir_binop_any_nequal:
1202 /* "!=" operator producing a scalar boolean. */
1203 if (ir->operands[0]->type->is_vector() ||
1204 ir->operands[1]->type->is_vector()) {
1205 src_reg temp = get_temp(glsl_type::vec4_type);
1206 emit(ir, OPCODE_SNE, dst_reg(temp), op[0], op[1]);
1207
1208 /* After the dot-product, the value will be an integer on the
1209 * range [0,4]. Zero stays zero, and positive values become 1.0.
1210 */
1211 ir_to_mesa_instruction *const dp =
1212 emit_dp(ir, result_dst, temp, temp, vector_elements);
1213 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1214 /* The clamping to [0,1] can be done for free in the fragment
1215 * shader with a saturate.
1216 */
1217 dp->saturate = true;
1218 } else {
1219 /* Negating the result of the dot-product gives values on the range
1220 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1221 * achieved using SLT.
1222 */
1223 src_reg slt_src = result_src;
1224 slt_src.negate = ~slt_src.negate;
1225 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1226 }
1227 } else {
1228 emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
1229 }
1230 break;
1231
1232 case ir_unop_any: {
1233 assert(ir->operands[0]->type->is_vector());
1234
1235 /* After the dot-product, the value will be an integer on the
1236 * range [0,4]. Zero stays zero, and positive values become 1.0.
1237 */
1238 ir_to_mesa_instruction *const dp =
1239 emit_dp(ir, result_dst, op[0], op[0],
1240 ir->operands[0]->type->vector_elements);
1241 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1242 /* The clamping to [0,1] can be done for free in the fragment
1243 * shader with a saturate.
1244 */
1245 dp->saturate = true;
1246 } else {
1247 /* Negating the result of the dot-product gives values on the range
1248 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1249 * is achieved using SLT.
1250 */
1251 src_reg slt_src = result_src;
1252 slt_src.negate = ~slt_src.negate;
1253 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1254 }
1255 break;
1256 }
1257
1258 case ir_binop_logic_xor:
1259 emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
1260 break;
1261
1262 case ir_binop_logic_or: {
1263 /* After the addition, the value will be an integer on the
1264 * range [0,2]. Zero stays zero, and positive values become 1.0.
1265 */
1266 ir_to_mesa_instruction *add =
1267 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1268 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1269 /* The clamping to [0,1] can be done for free in the fragment
1270 * shader with a saturate.
1271 */
1272 add->saturate = true;
1273 } else {
1274 /* Negating the result of the addition gives values on the range
1275 * [-2, 0]. Zero stays zero, and negative values become 1.0. This
1276 * is achieved using SLT.
1277 */
1278 src_reg slt_src = result_src;
1279 slt_src.negate = ~slt_src.negate;
1280 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1281 }
1282 break;
1283 }
1284
1285 case ir_binop_logic_and:
1286 /* the bool args are stored as float 0.0 or 1.0, so "mul" gives us "and". */
1287 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1288 break;
1289
1290 case ir_binop_dot:
1291 assert(ir->operands[0]->type->is_vector());
1292 assert(ir->operands[0]->type == ir->operands[1]->type);
1293 emit_dp(ir, result_dst, op[0], op[1],
1294 ir->operands[0]->type->vector_elements);
1295 break;
1296
1297 case ir_unop_sqrt:
1298 /* sqrt(x) = x * rsq(x). */
1299 emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1300 emit(ir, OPCODE_MUL, result_dst, result_src, op[0]);
1301 /* For incoming channels <= 0, set the result to 0. */
1302 op[0].negate = ~op[0].negate;
1303 emit(ir, OPCODE_CMP, result_dst,
1304 op[0], result_src, src_reg_for_float(0.0));
1305 break;
1306 case ir_unop_rsq:
1307 emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1308 break;
1309 case ir_unop_i2f:
1310 case ir_unop_u2f:
1311 case ir_unop_b2f:
1312 case ir_unop_b2i:
1313 case ir_unop_i2u:
1314 case ir_unop_u2i:
1315 /* Mesa IR lacks types, ints are stored as truncated floats. */
1316 result_src = op[0];
1317 break;
1318 case ir_unop_f2i:
1319 case ir_unop_f2u:
1320 emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1321 break;
1322 case ir_unop_f2b:
1323 case ir_unop_i2b:
1324 emit(ir, OPCODE_SNE, result_dst,
1325 op[0], src_reg_for_float(0.0));
1326 break;
1327 case ir_unop_bitcast_f2i: // Ignore these 4, they can't happen here anyway
1328 case ir_unop_bitcast_f2u:
1329 case ir_unop_bitcast_i2f:
1330 case ir_unop_bitcast_u2f:
1331 break;
1332 case ir_unop_trunc:
1333 emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1334 break;
1335 case ir_unop_ceil:
1336 op[0].negate = ~op[0].negate;
1337 emit(ir, OPCODE_FLR, result_dst, op[0]);
1338 result_src.negate = ~result_src.negate;
1339 break;
1340 case ir_unop_floor:
1341 emit(ir, OPCODE_FLR, result_dst, op[0]);
1342 break;
1343 case ir_unop_fract:
1344 emit(ir, OPCODE_FRC, result_dst, op[0]);
1345 break;
1346 case ir_unop_pack_snorm_2x16:
1347 case ir_unop_pack_snorm_4x8:
1348 case ir_unop_pack_unorm_2x16:
1349 case ir_unop_pack_unorm_4x8:
1350 case ir_unop_pack_half_2x16:
1351 case ir_unop_unpack_snorm_2x16:
1352 case ir_unop_unpack_snorm_4x8:
1353 case ir_unop_unpack_unorm_2x16:
1354 case ir_unop_unpack_unorm_4x8:
1355 case ir_unop_unpack_half_2x16:
1356 case ir_unop_unpack_half_2x16_split_x:
1357 case ir_unop_unpack_half_2x16_split_y:
1358 case ir_binop_pack_half_2x16_split:
1359 case ir_unop_bitfield_reverse:
1360 case ir_unop_bit_count:
1361 case ir_unop_find_msb:
1362 case ir_unop_find_lsb:
1363 assert(!"not supported");
1364 break;
1365 case ir_binop_min:
1366 emit(ir, OPCODE_MIN, result_dst, op[0], op[1]);
1367 break;
1368 case ir_binop_max:
1369 emit(ir, OPCODE_MAX, result_dst, op[0], op[1]);
1370 break;
1371 case ir_binop_pow:
1372 emit_scalar(ir, OPCODE_POW, result_dst, op[0], op[1]);
1373 break;
1374
1375 /* GLSL 1.30 integer ops are unsupported in Mesa IR, but since
1376 * hardware backends have no way to avoid Mesa IR generation
1377 * even if they don't use it, we need to emit "something" and
1378 * continue.
1379 */
1380 case ir_binop_lshift:
1381 case ir_binop_rshift:
1382 case ir_binop_bit_and:
1383 case ir_binop_bit_xor:
1384 case ir_binop_bit_or:
1385 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1386 break;
1387
1388 case ir_unop_bit_not:
1389 case ir_unop_round_even:
1390 emit(ir, OPCODE_MOV, result_dst, op[0]);
1391 break;
1392
1393 case ir_binop_ubo_load:
1394 assert(!"not supported");
1395 break;
1396
1397 case ir_triop_lrp:
1398 /* ir_triop_lrp operands are (x, y, a) while
1399 * OPCODE_LRP operands are (a, y, x) to match ARB_fragment_program.
1400 */
1401 emit(ir, OPCODE_LRP, result_dst, op[2], op[1], op[0]);
1402 break;
1403
1404 case ir_binop_vector_extract:
1405 case ir_binop_bfm:
1406 case ir_triop_fma:
1407 case ir_triop_bfi:
1408 case ir_triop_bitfield_extract:
1409 case ir_triop_vector_insert:
1410 case ir_quadop_bitfield_insert:
1411 case ir_binop_ldexp:
1412 case ir_triop_csel:
1413 case ir_binop_carry:
1414 case ir_binop_borrow:
1415 case ir_binop_imul_high:
1416 case ir_unop_interpolate_at_centroid:
1417 case ir_binop_interpolate_at_offset:
1418 case ir_binop_interpolate_at_sample:
1419 case ir_unop_dFdx_coarse:
1420 case ir_unop_dFdx_fine:
1421 case ir_unop_dFdy_coarse:
1422 case ir_unop_dFdy_fine:
1423 assert(!"not supported");
1424 break;
1425
1426 case ir_quadop_vector:
1427 /* This operation should have already been handled.
1428 */
1429 assert(!"Should not get here.");
1430 break;
1431 }
1432
1433 this->result = result_src;
1434 }
1435
1436
1437 void
1438 ir_to_mesa_visitor::visit(ir_swizzle *ir)
1439 {
1440 src_reg src;
1441 int i;
1442 int swizzle[4];
1443
1444 /* Note that this is only swizzles in expressions, not those on the left
1445 * hand side of an assignment, which do write masking. See ir_assignment
1446 * for that.
1447 */
1448
1449 ir->val->accept(this);
1450 src = this->result;
1451 assert(src.file != PROGRAM_UNDEFINED);
1452
1453 for (i = 0; i < 4; i++) {
1454 if (i < ir->type->vector_elements) {
1455 switch (i) {
1456 case 0:
1457 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x);
1458 break;
1459 case 1:
1460 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y);
1461 break;
1462 case 2:
1463 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z);
1464 break;
1465 case 3:
1466 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w);
1467 break;
1468 }
1469 } else {
1470 /* If the type is smaller than a vec4, replicate the last
1471 * channel out.
1472 */
1473 swizzle[i] = swizzle[ir->type->vector_elements - 1];
1474 }
1475 }
1476
1477 src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
1478
1479 this->result = src;
1480 }
1481
1482 void
1483 ir_to_mesa_visitor::visit(ir_dereference_variable *ir)
1484 {
1485 variable_storage *entry = find_variable_storage(ir->var);
1486 ir_variable *var = ir->var;
1487
1488 if (!entry) {
1489 switch (var->data.mode) {
1490 case ir_var_uniform:
1491 entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM,
1492 var->data.location);
1493 this->variables.push_tail(entry);
1494 break;
1495 case ir_var_shader_in:
1496 /* The linker assigns locations for varyings and attributes,
1497 * including deprecated builtins (like gl_Color),
1498 * user-assigned generic attributes (glBindVertexLocation),
1499 * and user-defined varyings.
1500 */
1501 assert(var->data.location != -1);
1502 entry = new(mem_ctx) variable_storage(var,
1503 PROGRAM_INPUT,
1504 var->data.location);
1505 break;
1506 case ir_var_shader_out:
1507 assert(var->data.location != -1);
1508 entry = new(mem_ctx) variable_storage(var,
1509 PROGRAM_OUTPUT,
1510 var->data.location);
1511 break;
1512 case ir_var_system_value:
1513 entry = new(mem_ctx) variable_storage(var,
1514 PROGRAM_SYSTEM_VALUE,
1515 var->data.location);
1516 break;
1517 case ir_var_auto:
1518 case ir_var_temporary:
1519 entry = new(mem_ctx) variable_storage(var, PROGRAM_TEMPORARY,
1520 this->next_temp);
1521 this->variables.push_tail(entry);
1522
1523 next_temp += type_size(var->type);
1524 break;
1525 }
1526
1527 if (!entry) {
1528 printf("Failed to make storage for %s\n", var->name);
1529 exit(1);
1530 }
1531 }
1532
1533 this->result = src_reg(entry->file, entry->index, var->type);
1534 }
1535
1536 void
1537 ir_to_mesa_visitor::visit(ir_dereference_array *ir)
1538 {
1539 ir_constant *index;
1540 src_reg src;
1541 int element_size = type_size(ir->type);
1542
1543 index = ir->array_index->constant_expression_value();
1544
1545 ir->array->accept(this);
1546 src = this->result;
1547
1548 if (index) {
1549 src.index += index->value.i[0] * element_size;
1550 } else {
1551 /* Variable index array dereference. It eats the "vec4" of the
1552 * base of the array and an index that offsets the Mesa register
1553 * index.
1554 */
1555 ir->array_index->accept(this);
1556
1557 src_reg index_reg;
1558
1559 if (element_size == 1) {
1560 index_reg = this->result;
1561 } else {
1562 index_reg = get_temp(glsl_type::float_type);
1563
1564 emit(ir, OPCODE_MUL, dst_reg(index_reg),
1565 this->result, src_reg_for_float(element_size));
1566 }
1567
1568 /* If there was already a relative address register involved, add the
1569 * new and the old together to get the new offset.
1570 */
1571 if (src.reladdr != NULL) {
1572 src_reg accum_reg = get_temp(glsl_type::float_type);
1573
1574 emit(ir, OPCODE_ADD, dst_reg(accum_reg),
1575 index_reg, *src.reladdr);
1576
1577 index_reg = accum_reg;
1578 }
1579
1580 src.reladdr = ralloc(mem_ctx, src_reg);
1581 memcpy(src.reladdr, &index_reg, sizeof(index_reg));
1582 }
1583
1584 /* If the type is smaller than a vec4, replicate the last channel out. */
1585 if (ir->type->is_scalar() || ir->type->is_vector())
1586 src.swizzle = swizzle_for_size(ir->type->vector_elements);
1587 else
1588 src.swizzle = SWIZZLE_NOOP;
1589
1590 this->result = src;
1591 }
1592
1593 void
1594 ir_to_mesa_visitor::visit(ir_dereference_record *ir)
1595 {
1596 unsigned int i;
1597 const glsl_type *struct_type = ir->record->type;
1598 int offset = 0;
1599
1600 ir->record->accept(this);
1601
1602 for (i = 0; i < struct_type->length; i++) {
1603 if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
1604 break;
1605 offset += type_size(struct_type->fields.structure[i].type);
1606 }
1607
1608 /* If the type is smaller than a vec4, replicate the last channel out. */
1609 if (ir->type->is_scalar() || ir->type->is_vector())
1610 this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
1611 else
1612 this->result.swizzle = SWIZZLE_NOOP;
1613
1614 this->result.index += offset;
1615 }
1616
1617 /**
1618 * We want to be careful in assignment setup to hit the actual storage
1619 * instead of potentially using a temporary like we might with the
1620 * ir_dereference handler.
1621 */
1622 static dst_reg
1623 get_assignment_lhs(ir_dereference *ir, ir_to_mesa_visitor *v)
1624 {
1625 /* The LHS must be a dereference. If the LHS is a variable indexed array
1626 * access of a vector, it must be separated into a series conditional moves
1627 * before reaching this point (see ir_vec_index_to_cond_assign).
1628 */
1629 assert(ir->as_dereference());
1630 ir_dereference_array *deref_array = ir->as_dereference_array();
1631 if (deref_array) {
1632 assert(!deref_array->array->type->is_vector());
1633 }
1634
1635 /* Use the rvalue deref handler for the most part. We'll ignore
1636 * swizzles in it and write swizzles using writemask, though.
1637 */
1638 ir->accept(v);
1639 return dst_reg(v->result);
1640 }
1641
1642 /**
1643 * Process the condition of a conditional assignment
1644 *
1645 * Examines the condition of a conditional assignment to generate the optimal
1646 * first operand of a \c CMP instruction. If the condition is a relational
1647 * operator with 0 (e.g., \c ir_binop_less), the value being compared will be
1648 * used as the source for the \c CMP instruction. Otherwise the comparison
1649 * is processed to a boolean result, and the boolean result is used as the
1650 * operand to the CMP instruction.
1651 */
1652 bool
1653 ir_to_mesa_visitor::process_move_condition(ir_rvalue *ir)
1654 {
1655 ir_rvalue *src_ir = ir;
1656 bool negate = true;
1657 bool switch_order = false;
1658
1659 ir_expression *const expr = ir->as_expression();
1660 if ((expr != NULL) && (expr->get_num_operands() == 2)) {
1661 bool zero_on_left = false;
1662
1663 if (expr->operands[0]->is_zero()) {
1664 src_ir = expr->operands[1];
1665 zero_on_left = true;
1666 } else if (expr->operands[1]->is_zero()) {
1667 src_ir = expr->operands[0];
1668 zero_on_left = false;
1669 }
1670
1671 /* a is - 0 + - 0 +
1672 * (a < 0) T F F ( a < 0) T F F
1673 * (0 < a) F F T (-a < 0) F F T
1674 * (a <= 0) T T F (-a < 0) F F T (swap order of other operands)
1675 * (0 <= a) F T T ( a < 0) T F F (swap order of other operands)
1676 * (a > 0) F F T (-a < 0) F F T
1677 * (0 > a) T F F ( a < 0) T F F
1678 * (a >= 0) F T T ( a < 0) T F F (swap order of other operands)
1679 * (0 >= a) T T F (-a < 0) F F T (swap order of other operands)
1680 *
1681 * Note that exchanging the order of 0 and 'a' in the comparison simply
1682 * means that the value of 'a' should be negated.
1683 */
1684 if (src_ir != ir) {
1685 switch (expr->operation) {
1686 case ir_binop_less:
1687 switch_order = false;
1688 negate = zero_on_left;
1689 break;
1690
1691 case ir_binop_greater:
1692 switch_order = false;
1693 negate = !zero_on_left;
1694 break;
1695
1696 case ir_binop_lequal:
1697 switch_order = true;
1698 negate = !zero_on_left;
1699 break;
1700
1701 case ir_binop_gequal:
1702 switch_order = true;
1703 negate = zero_on_left;
1704 break;
1705
1706 default:
1707 /* This isn't the right kind of comparison afterall, so make sure
1708 * the whole condition is visited.
1709 */
1710 src_ir = ir;
1711 break;
1712 }
1713 }
1714 }
1715
1716 src_ir->accept(this);
1717
1718 /* We use the OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the
1719 * condition we produced is 0.0 or 1.0. By flipping the sign, we can
1720 * choose which value OPCODE_CMP produces without an extra instruction
1721 * computing the condition.
1722 */
1723 if (negate)
1724 this->result.negate = ~this->result.negate;
1725
1726 return switch_order;
1727 }
1728
1729 void
1730 ir_to_mesa_visitor::visit(ir_assignment *ir)
1731 {
1732 dst_reg l;
1733 src_reg r;
1734 int i;
1735
1736 ir->rhs->accept(this);
1737 r = this->result;
1738
1739 l = get_assignment_lhs(ir->lhs, this);
1740
1741 /* FINISHME: This should really set to the correct maximal writemask for each
1742 * FINISHME: component written (in the loops below). This case can only
1743 * FINISHME: occur for matrices, arrays, and structures.
1744 */
1745 if (ir->write_mask == 0) {
1746 assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
1747 l.writemask = WRITEMASK_XYZW;
1748 } else if (ir->lhs->type->is_scalar()) {
1749 /* FINISHME: This hack makes writing to gl_FragDepth, which lives in the
1750 * FINISHME: W component of fragment shader output zero, work correctly.
1751 */
1752 l.writemask = WRITEMASK_XYZW;
1753 } else {
1754 int swizzles[4];
1755 int first_enabled_chan = 0;
1756 int rhs_chan = 0;
1757
1758 assert(ir->lhs->type->is_vector());
1759 l.writemask = ir->write_mask;
1760
1761 for (int i = 0; i < 4; i++) {
1762 if (l.writemask & (1 << i)) {
1763 first_enabled_chan = GET_SWZ(r.swizzle, i);
1764 break;
1765 }
1766 }
1767
1768 /* Swizzle a small RHS vector into the channels being written.
1769 *
1770 * glsl ir treats write_mask as dictating how many channels are
1771 * present on the RHS while Mesa IR treats write_mask as just
1772 * showing which channels of the vec4 RHS get written.
1773 */
1774 for (int i = 0; i < 4; i++) {
1775 if (l.writemask & (1 << i))
1776 swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++);
1777 else
1778 swizzles[i] = first_enabled_chan;
1779 }
1780 r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1],
1781 swizzles[2], swizzles[3]);
1782 }
1783
1784 assert(l.file != PROGRAM_UNDEFINED);
1785 assert(r.file != PROGRAM_UNDEFINED);
1786
1787 if (ir->condition) {
1788 const bool switch_order = this->process_move_condition(ir->condition);
1789 src_reg condition = this->result;
1790
1791 for (i = 0; i < type_size(ir->lhs->type); i++) {
1792 if (switch_order) {
1793 emit(ir, OPCODE_CMP, l, condition, src_reg(l), r);
1794 } else {
1795 emit(ir, OPCODE_CMP, l, condition, r, src_reg(l));
1796 }
1797
1798 l.index++;
1799 r.index++;
1800 }
1801 } else {
1802 for (i = 0; i < type_size(ir->lhs->type); i++) {
1803 emit(ir, OPCODE_MOV, l, r);
1804 l.index++;
1805 r.index++;
1806 }
1807 }
1808 }
1809
1810
1811 void
1812 ir_to_mesa_visitor::visit(ir_constant *ir)
1813 {
1814 src_reg src;
1815 GLfloat stack_vals[4] = { 0 };
1816 GLfloat *values = stack_vals;
1817 unsigned int i;
1818
1819 /* Unfortunately, 4 floats is all we can get into
1820 * _mesa_add_unnamed_constant. So, make a temp to store an
1821 * aggregate constant and move each constant value into it. If we
1822 * get lucky, copy propagation will eliminate the extra moves.
1823 */
1824
1825 if (ir->type->base_type == GLSL_TYPE_STRUCT) {
1826 src_reg temp_base = get_temp(ir->type);
1827 dst_reg temp = dst_reg(temp_base);
1828
1829 foreach_in_list(ir_constant, field_value, &ir->components) {
1830 int size = type_size(field_value->type);
1831
1832 assert(size > 0);
1833
1834 field_value->accept(this);
1835 src = this->result;
1836
1837 for (i = 0; i < (unsigned int)size; i++) {
1838 emit(ir, OPCODE_MOV, temp, src);
1839
1840 src.index++;
1841 temp.index++;
1842 }
1843 }
1844 this->result = temp_base;
1845 return;
1846 }
1847
1848 if (ir->type->is_array()) {
1849 src_reg temp_base = get_temp(ir->type);
1850 dst_reg temp = dst_reg(temp_base);
1851 int size = type_size(ir->type->fields.array);
1852
1853 assert(size > 0);
1854
1855 for (i = 0; i < ir->type->length; i++) {
1856 ir->array_elements[i]->accept(this);
1857 src = this->result;
1858 for (int j = 0; j < size; j++) {
1859 emit(ir, OPCODE_MOV, temp, src);
1860
1861 src.index++;
1862 temp.index++;
1863 }
1864 }
1865 this->result = temp_base;
1866 return;
1867 }
1868
1869 if (ir->type->is_matrix()) {
1870 src_reg mat = get_temp(ir->type);
1871 dst_reg mat_column = dst_reg(mat);
1872
1873 for (i = 0; i < ir->type->matrix_columns; i++) {
1874 assert(ir->type->base_type == GLSL_TYPE_FLOAT);
1875 values = &ir->value.f[i * ir->type->vector_elements];
1876
1877 src = src_reg(PROGRAM_CONSTANT, -1, NULL);
1878 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1879 (gl_constant_value *) values,
1880 ir->type->vector_elements,
1881 &src.swizzle);
1882 emit(ir, OPCODE_MOV, mat_column, src);
1883
1884 mat_column.index++;
1885 }
1886
1887 this->result = mat;
1888 return;
1889 }
1890
1891 src.file = PROGRAM_CONSTANT;
1892 switch (ir->type->base_type) {
1893 case GLSL_TYPE_FLOAT:
1894 values = &ir->value.f[0];
1895 break;
1896 case GLSL_TYPE_UINT:
1897 for (i = 0; i < ir->type->vector_elements; i++) {
1898 values[i] = ir->value.u[i];
1899 }
1900 break;
1901 case GLSL_TYPE_INT:
1902 for (i = 0; i < ir->type->vector_elements; i++) {
1903 values[i] = ir->value.i[i];
1904 }
1905 break;
1906 case GLSL_TYPE_BOOL:
1907 for (i = 0; i < ir->type->vector_elements; i++) {
1908 values[i] = ir->value.b[i];
1909 }
1910 break;
1911 default:
1912 assert(!"Non-float/uint/int/bool constant");
1913 }
1914
1915 this->result = src_reg(PROGRAM_CONSTANT, -1, ir->type);
1916 this->result.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1917 (gl_constant_value *) values,
1918 ir->type->vector_elements,
1919 &this->result.swizzle);
1920 }
1921
1922 void
1923 ir_to_mesa_visitor::visit(ir_call *)
1924 {
1925 assert(!"ir_to_mesa: All function calls should have been inlined by now.");
1926 }
1927
1928 void
1929 ir_to_mesa_visitor::visit(ir_texture *ir)
1930 {
1931 src_reg result_src, coord, lod_info, projector, dx, dy;
1932 dst_reg result_dst, coord_dst;
1933 ir_to_mesa_instruction *inst = NULL;
1934 prog_opcode opcode = OPCODE_NOP;
1935
1936 if (ir->op == ir_txs)
1937 this->result = src_reg_for_float(0.0);
1938 else
1939 ir->coordinate->accept(this);
1940
1941 /* Put our coords in a temp. We'll need to modify them for shadow,
1942 * projection, or LOD, so the only case we'd use it as is is if
1943 * we're doing plain old texturing. Mesa IR optimization should
1944 * handle cleaning up our mess in that case.
1945 */
1946 coord = get_temp(glsl_type::vec4_type);
1947 coord_dst = dst_reg(coord);
1948 emit(ir, OPCODE_MOV, coord_dst, this->result);
1949
1950 if (ir->projector) {
1951 ir->projector->accept(this);
1952 projector = this->result;
1953 }
1954
1955 /* Storage for our result. Ideally for an assignment we'd be using
1956 * the actual storage for the result here, instead.
1957 */
1958 result_src = get_temp(glsl_type::vec4_type);
1959 result_dst = dst_reg(result_src);
1960
1961 switch (ir->op) {
1962 case ir_tex:
1963 case ir_txs:
1964 opcode = OPCODE_TEX;
1965 break;
1966 case ir_txb:
1967 opcode = OPCODE_TXB;
1968 ir->lod_info.bias->accept(this);
1969 lod_info = this->result;
1970 break;
1971 case ir_txf:
1972 /* Pretend to be TXL so the sampler, coordinate, lod are available */
1973 case ir_txl:
1974 opcode = OPCODE_TXL;
1975 ir->lod_info.lod->accept(this);
1976 lod_info = this->result;
1977 break;
1978 case ir_txd:
1979 opcode = OPCODE_TXD;
1980 ir->lod_info.grad.dPdx->accept(this);
1981 dx = this->result;
1982 ir->lod_info.grad.dPdy->accept(this);
1983 dy = this->result;
1984 break;
1985 case ir_txf_ms:
1986 assert(!"Unexpected ir_txf_ms opcode");
1987 break;
1988 case ir_lod:
1989 assert(!"Unexpected ir_lod opcode");
1990 break;
1991 case ir_tg4:
1992 assert(!"Unexpected ir_tg4 opcode");
1993 break;
1994 case ir_query_levels:
1995 assert(!"Unexpected ir_query_levels opcode");
1996 break;
1997 }
1998
1999 const glsl_type *sampler_type = ir->sampler->type;
2000
2001 if (ir->projector) {
2002 if (opcode == OPCODE_TEX) {
2003 /* Slot the projector in as the last component of the coord. */
2004 coord_dst.writemask = WRITEMASK_W;
2005 emit(ir, OPCODE_MOV, coord_dst, projector);
2006 coord_dst.writemask = WRITEMASK_XYZW;
2007 opcode = OPCODE_TXP;
2008 } else {
2009 src_reg coord_w = coord;
2010 coord_w.swizzle = SWIZZLE_WWWW;
2011
2012 /* For the other TEX opcodes there's no projective version
2013 * since the last slot is taken up by lod info. Do the
2014 * projective divide now.
2015 */
2016 coord_dst.writemask = WRITEMASK_W;
2017 emit(ir, OPCODE_RCP, coord_dst, projector);
2018
2019 /* In the case where we have to project the coordinates "by hand,"
2020 * the shadow comparitor value must also be projected.
2021 */
2022 src_reg tmp_src = coord;
2023 if (ir->shadow_comparitor) {
2024 /* Slot the shadow value in as the second to last component of the
2025 * coord.
2026 */
2027 ir->shadow_comparitor->accept(this);
2028
2029 tmp_src = get_temp(glsl_type::vec4_type);
2030 dst_reg tmp_dst = dst_reg(tmp_src);
2031
2032 /* Projective division not allowed for array samplers. */
2033 assert(!sampler_type->sampler_array);
2034
2035 tmp_dst.writemask = WRITEMASK_Z;
2036 emit(ir, OPCODE_MOV, tmp_dst, this->result);
2037
2038 tmp_dst.writemask = WRITEMASK_XY;
2039 emit(ir, OPCODE_MOV, tmp_dst, coord);
2040 }
2041
2042 coord_dst.writemask = WRITEMASK_XYZ;
2043 emit(ir, OPCODE_MUL, coord_dst, tmp_src, coord_w);
2044
2045 coord_dst.writemask = WRITEMASK_XYZW;
2046 coord.swizzle = SWIZZLE_XYZW;
2047 }
2048 }
2049
2050 /* If projection is done and the opcode is not OPCODE_TXP, then the shadow
2051 * comparitor was put in the correct place (and projected) by the code,
2052 * above, that handles by-hand projection.
2053 */
2054 if (ir->shadow_comparitor && (!ir->projector || opcode == OPCODE_TXP)) {
2055 /* Slot the shadow value in as the second to last component of the
2056 * coord.
2057 */
2058 ir->shadow_comparitor->accept(this);
2059
2060 /* XXX This will need to be updated for cubemap array samplers. */
2061 if (sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_2D &&
2062 sampler_type->sampler_array) {
2063 coord_dst.writemask = WRITEMASK_W;
2064 } else {
2065 coord_dst.writemask = WRITEMASK_Z;
2066 }
2067
2068 emit(ir, OPCODE_MOV, coord_dst, this->result);
2069 coord_dst.writemask = WRITEMASK_XYZW;
2070 }
2071
2072 if (opcode == OPCODE_TXL || opcode == OPCODE_TXB) {
2073 /* Mesa IR stores lod or lod bias in the last channel of the coords. */
2074 coord_dst.writemask = WRITEMASK_W;
2075 emit(ir, OPCODE_MOV, coord_dst, lod_info);
2076 coord_dst.writemask = WRITEMASK_XYZW;
2077 }
2078
2079 if (opcode == OPCODE_TXD)
2080 inst = emit(ir, opcode, result_dst, coord, dx, dy);
2081 else
2082 inst = emit(ir, opcode, result_dst, coord);
2083
2084 if (ir->shadow_comparitor)
2085 inst->tex_shadow = GL_TRUE;
2086
2087 inst->sampler = _mesa_get_sampler_uniform_value(ir->sampler,
2088 this->shader_program,
2089 this->prog);
2090
2091 switch (sampler_type->sampler_dimensionality) {
2092 case GLSL_SAMPLER_DIM_1D:
2093 inst->tex_target = (sampler_type->sampler_array)
2094 ? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX;
2095 break;
2096 case GLSL_SAMPLER_DIM_2D:
2097 inst->tex_target = (sampler_type->sampler_array)
2098 ? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX;
2099 break;
2100 case GLSL_SAMPLER_DIM_3D:
2101 inst->tex_target = TEXTURE_3D_INDEX;
2102 break;
2103 case GLSL_SAMPLER_DIM_CUBE:
2104 inst->tex_target = TEXTURE_CUBE_INDEX;
2105 break;
2106 case GLSL_SAMPLER_DIM_RECT:
2107 inst->tex_target = TEXTURE_RECT_INDEX;
2108 break;
2109 case GLSL_SAMPLER_DIM_BUF:
2110 assert(!"FINISHME: Implement ARB_texture_buffer_object");
2111 break;
2112 case GLSL_SAMPLER_DIM_EXTERNAL:
2113 inst->tex_target = TEXTURE_EXTERNAL_INDEX;
2114 break;
2115 default:
2116 assert(!"Should not get here.");
2117 }
2118
2119 this->result = result_src;
2120 }
2121
2122 void
2123 ir_to_mesa_visitor::visit(ir_return *ir)
2124 {
2125 /* Non-void functions should have been inlined. We may still emit RETs
2126 * from main() unless the EmitNoMainReturn option is set.
2127 */
2128 assert(!ir->get_value());
2129 emit(ir, OPCODE_RET);
2130 }
2131
2132 void
2133 ir_to_mesa_visitor::visit(ir_discard *ir)
2134 {
2135 if (ir->condition) {
2136 ir->condition->accept(this);
2137 this->result.negate = ~this->result.negate;
2138 emit(ir, OPCODE_KIL, undef_dst, this->result);
2139 } else {
2140 emit(ir, OPCODE_KIL_NV);
2141 }
2142 }
2143
2144 void
2145 ir_to_mesa_visitor::visit(ir_if *ir)
2146 {
2147 ir_to_mesa_instruction *cond_inst, *if_inst;
2148 ir_to_mesa_instruction *prev_inst;
2149
2150 prev_inst = (ir_to_mesa_instruction *)this->instructions.get_tail();
2151
2152 ir->condition->accept(this);
2153 assert(this->result.file != PROGRAM_UNDEFINED);
2154
2155 if (this->options->EmitCondCodes) {
2156 cond_inst = (ir_to_mesa_instruction *)this->instructions.get_tail();
2157
2158 /* See if we actually generated any instruction for generating
2159 * the condition. If not, then cook up a move to a temp so we
2160 * have something to set cond_update on.
2161 */
2162 if (cond_inst == prev_inst) {
2163 src_reg temp = get_temp(glsl_type::bool_type);
2164 cond_inst = emit(ir->condition, OPCODE_MOV, dst_reg(temp), result);
2165 }
2166 cond_inst->cond_update = GL_TRUE;
2167
2168 if_inst = emit(ir->condition, OPCODE_IF);
2169 if_inst->dst.cond_mask = COND_NE;
2170 } else {
2171 if_inst = emit(ir->condition, OPCODE_IF, undef_dst, this->result);
2172 }
2173
2174 this->instructions.push_tail(if_inst);
2175
2176 visit_exec_list(&ir->then_instructions, this);
2177
2178 if (!ir->else_instructions.is_empty()) {
2179 emit(ir->condition, OPCODE_ELSE);
2180 visit_exec_list(&ir->else_instructions, this);
2181 }
2182
2183 emit(ir->condition, OPCODE_ENDIF);
2184 }
2185
2186 void
2187 ir_to_mesa_visitor::visit(ir_emit_vertex *)
2188 {
2189 assert(!"Geometry shaders not supported.");
2190 }
2191
2192 void
2193 ir_to_mesa_visitor::visit(ir_end_primitive *)
2194 {
2195 assert(!"Geometry shaders not supported.");
2196 }
2197
2198 ir_to_mesa_visitor::ir_to_mesa_visitor()
2199 {
2200 result.file = PROGRAM_UNDEFINED;
2201 next_temp = 1;
2202 next_signature_id = 1;
2203 current_function = NULL;
2204 mem_ctx = ralloc_context(NULL);
2205 }
2206
2207 ir_to_mesa_visitor::~ir_to_mesa_visitor()
2208 {
2209 ralloc_free(mem_ctx);
2210 }
2211
2212 static struct prog_src_register
2213 mesa_src_reg_from_ir_src_reg(src_reg reg)
2214 {
2215 struct prog_src_register mesa_reg;
2216
2217 mesa_reg.File = reg.file;
2218 assert(reg.index < (1 << INST_INDEX_BITS));
2219 mesa_reg.Index = reg.index;
2220 mesa_reg.Swizzle = reg.swizzle;
2221 mesa_reg.RelAddr = reg.reladdr != NULL;
2222 mesa_reg.Negate = reg.negate;
2223 mesa_reg.Abs = 0;
2224 mesa_reg.HasIndex2 = GL_FALSE;
2225 mesa_reg.RelAddr2 = 0;
2226 mesa_reg.Index2 = 0;
2227
2228 return mesa_reg;
2229 }
2230
2231 static void
2232 set_branchtargets(ir_to_mesa_visitor *v,
2233 struct prog_instruction *mesa_instructions,
2234 int num_instructions)
2235 {
2236 int if_count = 0, loop_count = 0;
2237 int *if_stack, *loop_stack;
2238 int if_stack_pos = 0, loop_stack_pos = 0;
2239 int i, j;
2240
2241 for (i = 0; i < num_instructions; i++) {
2242 switch (mesa_instructions[i].Opcode) {
2243 case OPCODE_IF:
2244 if_count++;
2245 break;
2246 case OPCODE_BGNLOOP:
2247 loop_count++;
2248 break;
2249 case OPCODE_BRK:
2250 case OPCODE_CONT:
2251 mesa_instructions[i].BranchTarget = -1;
2252 break;
2253 default:
2254 break;
2255 }
2256 }
2257
2258 if_stack = rzalloc_array(v->mem_ctx, int, if_count);
2259 loop_stack = rzalloc_array(v->mem_ctx, int, loop_count);
2260
2261 for (i = 0; i < num_instructions; i++) {
2262 switch (mesa_instructions[i].Opcode) {
2263 case OPCODE_IF:
2264 if_stack[if_stack_pos] = i;
2265 if_stack_pos++;
2266 break;
2267 case OPCODE_ELSE:
2268 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2269 if_stack[if_stack_pos - 1] = i;
2270 break;
2271 case OPCODE_ENDIF:
2272 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2273 if_stack_pos--;
2274 break;
2275 case OPCODE_BGNLOOP:
2276 loop_stack[loop_stack_pos] = i;
2277 loop_stack_pos++;
2278 break;
2279 case OPCODE_ENDLOOP:
2280 loop_stack_pos--;
2281 /* Rewrite any breaks/conts at this nesting level (haven't
2282 * already had a BranchTarget assigned) to point to the end
2283 * of the loop.
2284 */
2285 for (j = loop_stack[loop_stack_pos]; j < i; j++) {
2286 if (mesa_instructions[j].Opcode == OPCODE_BRK ||
2287 mesa_instructions[j].Opcode == OPCODE_CONT) {
2288 if (mesa_instructions[j].BranchTarget == -1) {
2289 mesa_instructions[j].BranchTarget = i;
2290 }
2291 }
2292 }
2293 /* The loop ends point at each other. */
2294 mesa_instructions[i].BranchTarget = loop_stack[loop_stack_pos];
2295 mesa_instructions[loop_stack[loop_stack_pos]].BranchTarget = i;
2296 break;
2297 case OPCODE_CAL:
2298 foreach_in_list(function_entry, entry, &v->function_signatures) {
2299 if (entry->sig_id == mesa_instructions[i].BranchTarget) {
2300 mesa_instructions[i].BranchTarget = entry->inst;
2301 break;
2302 }
2303 }
2304 break;
2305 default:
2306 break;
2307 }
2308 }
2309 }
2310
2311 static void
2312 print_program(struct prog_instruction *mesa_instructions,
2313 ir_instruction **mesa_instruction_annotation,
2314 int num_instructions)
2315 {
2316 ir_instruction *last_ir = NULL;
2317 int i;
2318 int indent = 0;
2319
2320 for (i = 0; i < num_instructions; i++) {
2321 struct prog_instruction *mesa_inst = mesa_instructions + i;
2322 ir_instruction *ir = mesa_instruction_annotation[i];
2323
2324 fprintf(stdout, "%3d: ", i);
2325
2326 if (last_ir != ir && ir) {
2327 int j;
2328
2329 for (j = 0; j < indent; j++) {
2330 fprintf(stdout, " ");
2331 }
2332 ir->print();
2333 printf("\n");
2334 last_ir = ir;
2335
2336 fprintf(stdout, " "); /* line number spacing. */
2337 }
2338
2339 indent = _mesa_fprint_instruction_opt(stdout, mesa_inst, indent,
2340 PROG_PRINT_DEBUG, NULL);
2341 }
2342 }
2343
2344 namespace {
2345
2346 class add_uniform_to_shader : public program_resource_visitor {
2347 public:
2348 add_uniform_to_shader(struct gl_shader_program *shader_program,
2349 struct gl_program_parameter_list *params,
2350 gl_shader_stage shader_type)
2351 : shader_program(shader_program), params(params), idx(-1),
2352 shader_type(shader_type)
2353 {
2354 /* empty */
2355 }
2356
2357 void process(ir_variable *var)
2358 {
2359 this->idx = -1;
2360 this->program_resource_visitor::process(var);
2361
2362 var->data.location = this->idx;
2363 }
2364
2365 private:
2366 virtual void visit_field(const glsl_type *type, const char *name,
2367 bool row_major);
2368
2369 struct gl_shader_program *shader_program;
2370 struct gl_program_parameter_list *params;
2371 int idx;
2372 gl_shader_stage shader_type;
2373 };
2374
2375 } /* anonymous namespace */
2376
2377 void
2378 add_uniform_to_shader::visit_field(const glsl_type *type, const char *name,
2379 bool row_major)
2380 {
2381 unsigned int size;
2382
2383 (void) row_major;
2384
2385 if (type->is_vector() || type->is_scalar()) {
2386 size = type->vector_elements;
2387 } else {
2388 size = type_size(type) * 4;
2389 }
2390
2391 gl_register_file file;
2392 if (type->without_array()->is_sampler()) {
2393 file = PROGRAM_SAMPLER;
2394 } else {
2395 file = PROGRAM_UNIFORM;
2396 }
2397
2398 int index = _mesa_lookup_parameter_index(params, -1, name);
2399 if (index < 0) {
2400 index = _mesa_add_parameter(params, file, name, size, type->gl_type,
2401 NULL, NULL);
2402
2403 /* Sampler uniform values are stored in prog->SamplerUnits,
2404 * and the entry in that array is selected by this index we
2405 * store in ParameterValues[].
2406 */
2407 if (file == PROGRAM_SAMPLER) {
2408 unsigned location;
2409 const bool found =
2410 this->shader_program->UniformHash->get(location,
2411 params->Parameters[index].Name);
2412 assert(found);
2413
2414 if (!found)
2415 return;
2416
2417 struct gl_uniform_storage *storage =
2418 &this->shader_program->UniformStorage[location];
2419
2420 assert(storage->sampler[shader_type].active);
2421
2422 for (unsigned int j = 0; j < size / 4; j++)
2423 params->ParameterValues[index + j][0].f =
2424 storage->sampler[shader_type].index + j;
2425 }
2426 }
2427
2428 /* The first part of the uniform that's processed determines the base
2429 * location of the whole uniform (for structures).
2430 */
2431 if (this->idx < 0)
2432 this->idx = index;
2433 }
2434
2435 /**
2436 * Generate the program parameters list for the user uniforms in a shader
2437 *
2438 * \param shader_program Linked shader program. This is only used to
2439 * emit possible link errors to the info log.
2440 * \param sh Shader whose uniforms are to be processed.
2441 * \param params Parameter list to be filled in.
2442 */
2443 void
2444 _mesa_generate_parameters_list_for_uniforms(struct gl_shader_program
2445 *shader_program,
2446 struct gl_shader *sh,
2447 struct gl_program_parameter_list
2448 *params)
2449 {
2450 add_uniform_to_shader add(shader_program, params, sh->Stage);
2451
2452 foreach_in_list(ir_instruction, node, sh->ir) {
2453 ir_variable *var = node->as_variable();
2454
2455 if ((var == NULL) || (var->data.mode != ir_var_uniform)
2456 || var->is_in_uniform_block() || (strncmp(var->name, "gl_", 3) == 0))
2457 continue;
2458
2459 add.process(var);
2460 }
2461 }
2462
2463 void
2464 _mesa_associate_uniform_storage(struct gl_context *ctx,
2465 struct gl_shader_program *shader_program,
2466 struct gl_program_parameter_list *params)
2467 {
2468 /* After adding each uniform to the parameter list, connect the storage for
2469 * the parameter with the tracking structure used by the API for the
2470 * uniform.
2471 */
2472 unsigned last_location = unsigned(~0);
2473 for (unsigned i = 0; i < params->NumParameters; i++) {
2474 if (params->Parameters[i].Type != PROGRAM_UNIFORM)
2475 continue;
2476
2477 unsigned location;
2478 const bool found =
2479 shader_program->UniformHash->get(location, params->Parameters[i].Name);
2480 assert(found);
2481
2482 if (!found)
2483 continue;
2484
2485 if (location != last_location) {
2486 struct gl_uniform_storage *storage =
2487 &shader_program->UniformStorage[location];
2488 enum gl_uniform_driver_format format = uniform_native;
2489
2490 unsigned columns = 0;
2491 switch (storage->type->base_type) {
2492 case GLSL_TYPE_UINT:
2493 assert(ctx->Const.NativeIntegers);
2494 format = uniform_native;
2495 columns = 1;
2496 break;
2497 case GLSL_TYPE_INT:
2498 format =
2499 (ctx->Const.NativeIntegers) ? uniform_native : uniform_int_float;
2500 columns = 1;
2501 break;
2502 case GLSL_TYPE_FLOAT:
2503 format = uniform_native;
2504 columns = storage->type->matrix_columns;
2505 break;
2506 case GLSL_TYPE_BOOL:
2507 format = uniform_native;
2508 columns = 1;
2509 break;
2510 case GLSL_TYPE_SAMPLER:
2511 case GLSL_TYPE_IMAGE:
2512 format = uniform_native;
2513 columns = 1;
2514 break;
2515 case GLSL_TYPE_ATOMIC_UINT:
2516 case GLSL_TYPE_ARRAY:
2517 case GLSL_TYPE_VOID:
2518 case GLSL_TYPE_STRUCT:
2519 case GLSL_TYPE_ERROR:
2520 case GLSL_TYPE_INTERFACE:
2521 assert(!"Should not get here.");
2522 break;
2523 }
2524
2525 _mesa_uniform_attach_driver_storage(storage,
2526 4 * sizeof(float) * columns,
2527 4 * sizeof(float),
2528 format,
2529 &params->ParameterValues[i]);
2530
2531 /* After attaching the driver's storage to the uniform, propagate any
2532 * data from the linker's backing store. This will cause values from
2533 * initializers in the source code to be copied over.
2534 */
2535 _mesa_propagate_uniforms_to_driver_storage(storage,
2536 0,
2537 MAX2(1, storage->array_elements));
2538
2539 last_location = location;
2540 }
2541 }
2542 }
2543
2544 /*
2545 * On a basic block basis, tracks available PROGRAM_TEMPORARY register
2546 * channels for copy propagation and updates following instructions to
2547 * use the original versions.
2548 *
2549 * The ir_to_mesa_visitor lazily produces code assuming that this pass
2550 * will occur. As an example, a TXP production before this pass:
2551 *
2552 * 0: MOV TEMP[1], INPUT[4].xyyy;
2553 * 1: MOV TEMP[1].w, INPUT[4].wwww;
2554 * 2: TXP TEMP[2], TEMP[1], texture[0], 2D;
2555 *
2556 * and after:
2557 *
2558 * 0: MOV TEMP[1], INPUT[4].xyyy;
2559 * 1: MOV TEMP[1].w, INPUT[4].wwww;
2560 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
2561 *
2562 * which allows for dead code elimination on TEMP[1]'s writes.
2563 */
2564 void
2565 ir_to_mesa_visitor::copy_propagate(void)
2566 {
2567 ir_to_mesa_instruction **acp = rzalloc_array(mem_ctx,
2568 ir_to_mesa_instruction *,
2569 this->next_temp * 4);
2570 int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
2571 int level = 0;
2572
2573 foreach_in_list(ir_to_mesa_instruction, inst, &this->instructions) {
2574 assert(inst->dst.file != PROGRAM_TEMPORARY
2575 || inst->dst.index < this->next_temp);
2576
2577 /* First, do any copy propagation possible into the src regs. */
2578 for (int r = 0; r < 3; r++) {
2579 ir_to_mesa_instruction *first = NULL;
2580 bool good = true;
2581 int acp_base = inst->src[r].index * 4;
2582
2583 if (inst->src[r].file != PROGRAM_TEMPORARY ||
2584 inst->src[r].reladdr)
2585 continue;
2586
2587 /* See if we can find entries in the ACP consisting of MOVs
2588 * from the same src register for all the swizzled channels
2589 * of this src register reference.
2590 */
2591 for (int i = 0; i < 4; i++) {
2592 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2593 ir_to_mesa_instruction *copy_chan = acp[acp_base + src_chan];
2594
2595 if (!copy_chan) {
2596 good = false;
2597 break;
2598 }
2599
2600 assert(acp_level[acp_base + src_chan] <= level);
2601
2602 if (!first) {
2603 first = copy_chan;
2604 } else {
2605 if (first->src[0].file != copy_chan->src[0].file ||
2606 first->src[0].index != copy_chan->src[0].index) {
2607 good = false;
2608 break;
2609 }
2610 }
2611 }
2612
2613 if (good) {
2614 /* We've now validated that we can copy-propagate to
2615 * replace this src register reference. Do it.
2616 */
2617 inst->src[r].file = first->src[0].file;
2618 inst->src[r].index = first->src[0].index;
2619
2620 int swizzle = 0;
2621 for (int i = 0; i < 4; i++) {
2622 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2623 ir_to_mesa_instruction *copy_inst = acp[acp_base + src_chan];
2624 swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) <<
2625 (3 * i));
2626 }
2627 inst->src[r].swizzle = swizzle;
2628 }
2629 }
2630
2631 switch (inst->op) {
2632 case OPCODE_BGNLOOP:
2633 case OPCODE_ENDLOOP:
2634 /* End of a basic block, clear the ACP entirely. */
2635 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2636 break;
2637
2638 case OPCODE_IF:
2639 ++level;
2640 break;
2641
2642 case OPCODE_ENDIF:
2643 case OPCODE_ELSE:
2644 /* Clear all channels written inside the block from the ACP, but
2645 * leaving those that were not touched.
2646 */
2647 for (int r = 0; r < this->next_temp; r++) {
2648 for (int c = 0; c < 4; c++) {
2649 if (!acp[4 * r + c])
2650 continue;
2651
2652 if (acp_level[4 * r + c] >= level)
2653 acp[4 * r + c] = NULL;
2654 }
2655 }
2656 if (inst->op == OPCODE_ENDIF)
2657 --level;
2658 break;
2659
2660 default:
2661 /* Continuing the block, clear any written channels from
2662 * the ACP.
2663 */
2664 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.reladdr) {
2665 /* Any temporary might be written, so no copy propagation
2666 * across this instruction.
2667 */
2668 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2669 } else if (inst->dst.file == PROGRAM_OUTPUT &&
2670 inst->dst.reladdr) {
2671 /* Any output might be written, so no copy propagation
2672 * from outputs across this instruction.
2673 */
2674 for (int r = 0; r < this->next_temp; r++) {
2675 for (int c = 0; c < 4; c++) {
2676 if (!acp[4 * r + c])
2677 continue;
2678
2679 if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT)
2680 acp[4 * r + c] = NULL;
2681 }
2682 }
2683 } else if (inst->dst.file == PROGRAM_TEMPORARY ||
2684 inst->dst.file == PROGRAM_OUTPUT) {
2685 /* Clear where it's used as dst. */
2686 if (inst->dst.file == PROGRAM_TEMPORARY) {
2687 for (int c = 0; c < 4; c++) {
2688 if (inst->dst.writemask & (1 << c)) {
2689 acp[4 * inst->dst.index + c] = NULL;
2690 }
2691 }
2692 }
2693
2694 /* Clear where it's used as src. */
2695 for (int r = 0; r < this->next_temp; r++) {
2696 for (int c = 0; c < 4; c++) {
2697 if (!acp[4 * r + c])
2698 continue;
2699
2700 int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c);
2701
2702 if (acp[4 * r + c]->src[0].file == inst->dst.file &&
2703 acp[4 * r + c]->src[0].index == inst->dst.index &&
2704 inst->dst.writemask & (1 << src_chan))
2705 {
2706 acp[4 * r + c] = NULL;
2707 }
2708 }
2709 }
2710 }
2711 break;
2712 }
2713
2714 /* If this is a copy, add it to the ACP. */
2715 if (inst->op == OPCODE_MOV &&
2716 inst->dst.file == PROGRAM_TEMPORARY &&
2717 !(inst->dst.file == inst->src[0].file &&
2718 inst->dst.index == inst->src[0].index) &&
2719 !inst->dst.reladdr &&
2720 !inst->saturate &&
2721 !inst->src[0].reladdr &&
2722 !inst->src[0].negate) {
2723 for (int i = 0; i < 4; i++) {
2724 if (inst->dst.writemask & (1 << i)) {
2725 acp[4 * inst->dst.index + i] = inst;
2726 acp_level[4 * inst->dst.index + i] = level;
2727 }
2728 }
2729 }
2730 }
2731
2732 ralloc_free(acp_level);
2733 ralloc_free(acp);
2734 }
2735
2736
2737 /**
2738 * Convert a shader's GLSL IR into a Mesa gl_program.
2739 */
2740 static struct gl_program *
2741 get_mesa_program(struct gl_context *ctx,
2742 struct gl_shader_program *shader_program,
2743 struct gl_shader *shader)
2744 {
2745 ir_to_mesa_visitor v;
2746 struct prog_instruction *mesa_instructions, *mesa_inst;
2747 ir_instruction **mesa_instruction_annotation;
2748 int i;
2749 struct gl_program *prog;
2750 GLenum target = _mesa_shader_stage_to_program(shader->Stage);
2751 const char *target_string = _mesa_shader_stage_to_string(shader->Stage);
2752 struct gl_shader_compiler_options *options =
2753 &ctx->Const.ShaderCompilerOptions[shader->Stage];
2754
2755 validate_ir_tree(shader->ir);
2756
2757 prog = ctx->Driver.NewProgram(ctx, target, shader_program->Name);
2758 if (!prog)
2759 return NULL;
2760 prog->Parameters = _mesa_new_parameter_list();
2761 v.ctx = ctx;
2762 v.prog = prog;
2763 v.shader_program = shader_program;
2764 v.options = options;
2765
2766 _mesa_generate_parameters_list_for_uniforms(shader_program, shader,
2767 prog->Parameters);
2768
2769 /* Emit Mesa IR for main(). */
2770 visit_exec_list(shader->ir, &v);
2771 v.emit(NULL, OPCODE_END);
2772
2773 prog->NumTemporaries = v.next_temp;
2774
2775 unsigned num_instructions = v.instructions.length();
2776
2777 mesa_instructions =
2778 (struct prog_instruction *)calloc(num_instructions,
2779 sizeof(*mesa_instructions));
2780 mesa_instruction_annotation = ralloc_array(v.mem_ctx, ir_instruction *,
2781 num_instructions);
2782
2783 v.copy_propagate();
2784
2785 /* Convert ir_mesa_instructions into prog_instructions.
2786 */
2787 mesa_inst = mesa_instructions;
2788 i = 0;
2789 foreach_in_list(const ir_to_mesa_instruction, inst, &v.instructions) {
2790 mesa_inst->Opcode = inst->op;
2791 mesa_inst->CondUpdate = inst->cond_update;
2792 if (inst->saturate)
2793 mesa_inst->SaturateMode = SATURATE_ZERO_ONE;
2794 mesa_inst->DstReg.File = inst->dst.file;
2795 mesa_inst->DstReg.Index = inst->dst.index;
2796 mesa_inst->DstReg.CondMask = inst->dst.cond_mask;
2797 mesa_inst->DstReg.WriteMask = inst->dst.writemask;
2798 mesa_inst->DstReg.RelAddr = inst->dst.reladdr != NULL;
2799 mesa_inst->SrcReg[0] = mesa_src_reg_from_ir_src_reg(inst->src[0]);
2800 mesa_inst->SrcReg[1] = mesa_src_reg_from_ir_src_reg(inst->src[1]);
2801 mesa_inst->SrcReg[2] = mesa_src_reg_from_ir_src_reg(inst->src[2]);
2802 mesa_inst->TexSrcUnit = inst->sampler;
2803 mesa_inst->TexSrcTarget = inst->tex_target;
2804 mesa_inst->TexShadow = inst->tex_shadow;
2805 mesa_instruction_annotation[i] = inst->ir;
2806
2807 /* Set IndirectRegisterFiles. */
2808 if (mesa_inst->DstReg.RelAddr)
2809 prog->IndirectRegisterFiles |= 1 << mesa_inst->DstReg.File;
2810
2811 /* Update program's bitmask of indirectly accessed register files */
2812 for (unsigned src = 0; src < 3; src++)
2813 if (mesa_inst->SrcReg[src].RelAddr)
2814 prog->IndirectRegisterFiles |= 1 << mesa_inst->SrcReg[src].File;
2815
2816 switch (mesa_inst->Opcode) {
2817 case OPCODE_IF:
2818 if (options->MaxIfDepth == 0) {
2819 linker_warning(shader_program,
2820 "Couldn't flatten if-statement. "
2821 "This will likely result in software "
2822 "rasterization.\n");
2823 }
2824 break;
2825 case OPCODE_BGNLOOP:
2826 if (options->EmitNoLoops) {
2827 linker_warning(shader_program,
2828 "Couldn't unroll loop. "
2829 "This will likely result in software "
2830 "rasterization.\n");
2831 }
2832 break;
2833 case OPCODE_CONT:
2834 if (options->EmitNoCont) {
2835 linker_warning(shader_program,
2836 "Couldn't lower continue-statement. "
2837 "This will likely result in software "
2838 "rasterization.\n");
2839 }
2840 break;
2841 case OPCODE_ARL:
2842 prog->NumAddressRegs = 1;
2843 break;
2844 default:
2845 break;
2846 }
2847
2848 mesa_inst++;
2849 i++;
2850
2851 if (!shader_program->LinkStatus)
2852 break;
2853 }
2854
2855 if (!shader_program->LinkStatus) {
2856 goto fail_exit;
2857 }
2858
2859 set_branchtargets(&v, mesa_instructions, num_instructions);
2860
2861 if (ctx->_Shader->Flags & GLSL_DUMP) {
2862 fprintf(stderr, "\n");
2863 fprintf(stderr, "GLSL IR for linked %s program %d:\n", target_string,
2864 shader_program->Name);
2865 _mesa_print_ir(stderr, shader->ir, NULL);
2866 fprintf(stderr, "\n");
2867 fprintf(stderr, "\n");
2868 fprintf(stderr, "Mesa IR for linked %s program %d:\n", target_string,
2869 shader_program->Name);
2870 print_program(mesa_instructions, mesa_instruction_annotation,
2871 num_instructions);
2872 fflush(stderr);
2873 }
2874
2875 prog->Instructions = mesa_instructions;
2876 prog->NumInstructions = num_instructions;
2877
2878 /* Setting this to NULL prevents a possible double free in the fail_exit
2879 * path (far below).
2880 */
2881 mesa_instructions = NULL;
2882
2883 do_set_program_inouts(shader->ir, prog, shader->Stage);
2884
2885 prog->SamplersUsed = shader->active_samplers;
2886 prog->ShadowSamplers = shader->shadow_samplers;
2887 _mesa_update_shader_textures_used(shader_program, prog);
2888
2889 /* Set the gl_FragDepth layout. */
2890 if (target == GL_FRAGMENT_PROGRAM_ARB) {
2891 struct gl_fragment_program *fp = (struct gl_fragment_program *)prog;
2892 fp->FragDepthLayout = shader_program->FragDepthLayout;
2893 }
2894
2895 _mesa_reference_program(ctx, &shader->Program, prog);
2896
2897 if ((ctx->_Shader->Flags & GLSL_NO_OPT) == 0) {
2898 _mesa_optimize_program(ctx, prog);
2899 }
2900
2901 /* This has to be done last. Any operation that can cause
2902 * prog->ParameterValues to get reallocated (e.g., anything that adds a
2903 * program constant) has to happen before creating this linkage.
2904 */
2905 _mesa_associate_uniform_storage(ctx, shader_program, prog->Parameters);
2906 if (!shader_program->LinkStatus) {
2907 goto fail_exit;
2908 }
2909
2910 return prog;
2911
2912 fail_exit:
2913 free(mesa_instructions);
2914 _mesa_reference_program(ctx, &shader->Program, NULL);
2915 return NULL;
2916 }
2917
2918 extern "C" {
2919
2920 /**
2921 * Link a shader.
2922 * Called via ctx->Driver.LinkShader()
2923 * This actually involves converting GLSL IR into Mesa gl_programs with
2924 * code lowering and other optimizations.
2925 */
2926 GLboolean
2927 _mesa_ir_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
2928 {
2929 assert(prog->LinkStatus);
2930
2931 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2932 if (prog->_LinkedShaders[i] == NULL)
2933 continue;
2934
2935 bool progress;
2936 exec_list *ir = prog->_LinkedShaders[i]->ir;
2937 const struct gl_shader_compiler_options *options =
2938 &ctx->Const.ShaderCompilerOptions[prog->_LinkedShaders[i]->Stage];
2939
2940 do {
2941 progress = false;
2942
2943 /* Lowering */
2944 do_mat_op_to_vec(ir);
2945 lower_instructions(ir, (MOD_TO_FRACT | DIV_TO_MUL_RCP | EXP_TO_EXP2
2946 | LOG_TO_LOG2 | INT_DIV_TO_MUL_RCP
2947 | ((options->EmitNoPow) ? POW_TO_EXP2 : 0)));
2948
2949 progress = do_lower_jumps(ir, true, true, options->EmitNoMainReturn, options->EmitNoCont, options->EmitNoLoops) || progress;
2950
2951 progress = do_common_optimization(ir, true, true,
2952 options, ctx->Const.NativeIntegers)
2953 || progress;
2954
2955 progress = lower_quadop_vector(ir, true) || progress;
2956
2957 if (options->MaxIfDepth == 0)
2958 progress = lower_discard(ir) || progress;
2959
2960 progress = lower_if_to_cond_assign(ir, options->MaxIfDepth) || progress;
2961
2962 if (options->EmitNoNoise)
2963 progress = lower_noise(ir) || progress;
2964
2965 /* If there are forms of indirect addressing that the driver
2966 * cannot handle, perform the lowering pass.
2967 */
2968 if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput
2969 || options->EmitNoIndirectTemp || options->EmitNoIndirectUniform)
2970 progress =
2971 lower_variable_index_to_cond_assign(ir,
2972 options->EmitNoIndirectInput,
2973 options->EmitNoIndirectOutput,
2974 options->EmitNoIndirectTemp,
2975 options->EmitNoIndirectUniform)
2976 || progress;
2977
2978 progress = do_vec_index_to_cond_assign(ir) || progress;
2979 progress = lower_vector_insert(ir, true) || progress;
2980 } while (progress);
2981
2982 validate_ir_tree(ir);
2983 }
2984
2985 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2986 struct gl_program *linked_prog;
2987
2988 if (prog->_LinkedShaders[i] == NULL)
2989 continue;
2990
2991 linked_prog = get_mesa_program(ctx, prog, prog->_LinkedShaders[i]);
2992
2993 if (linked_prog) {
2994 _mesa_copy_linked_program_data((gl_shader_stage) i, prog, linked_prog);
2995
2996 _mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program,
2997 linked_prog);
2998 if (!ctx->Driver.ProgramStringNotify(ctx,
2999 _mesa_shader_stage_to_program(i),
3000 linked_prog)) {
3001 return GL_FALSE;
3002 }
3003 }
3004
3005 _mesa_reference_program(ctx, &linked_prog, NULL);
3006 }
3007
3008 return prog->LinkStatus;
3009 }
3010
3011 /**
3012 * Link a GLSL shader program. Called via glLinkProgram().
3013 */
3014 void
3015 _mesa_glsl_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
3016 {
3017 unsigned int i;
3018
3019 _mesa_clear_shader_program_data(prog);
3020
3021 prog->LinkStatus = GL_TRUE;
3022
3023 for (i = 0; i < prog->NumShaders; i++) {
3024 if (!prog->Shaders[i]->CompileStatus) {
3025 linker_error(prog, "linking with uncompiled shader");
3026 }
3027 }
3028
3029 if (prog->LinkStatus) {
3030 link_shaders(ctx, prog);
3031 }
3032
3033 if (prog->LinkStatus) {
3034 if (!ctx->Driver.LinkShader(ctx, prog)) {
3035 prog->LinkStatus = GL_FALSE;
3036 }
3037 }
3038
3039 if (ctx->_Shader->Flags & GLSL_DUMP) {
3040 if (!prog->LinkStatus) {
3041 fprintf(stderr, "GLSL shader program %d failed to link\n", prog->Name);
3042 }
3043
3044 if (prog->InfoLog && prog->InfoLog[0] != 0) {
3045 fprintf(stderr, "GLSL shader program %d info log:\n", prog->Name);
3046 fprintf(stderr, "%s\n", prog->InfoLog);
3047 }
3048 }
3049 }
3050
3051 } /* extern "C" */