ir_to_mesa, glsl_to_tgsi: Add support for ir_unop_saturate
[mesa.git] / src / mesa / program / ir_to_mesa.cpp
1 /*
2 * Copyright (C) 2005-2007 Brian Paul All Rights Reserved.
3 * Copyright (C) 2008 VMware, Inc. All Rights Reserved.
4 * Copyright © 2010 Intel Corporation
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
22 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
23 * DEALINGS IN THE SOFTWARE.
24 */
25
26 /**
27 * \file ir_to_mesa.cpp
28 *
29 * Translate GLSL IR to Mesa's gl_program representation.
30 */
31
32 #include <stdio.h>
33 #include "main/compiler.h"
34 #include "ir.h"
35 #include "ir_visitor.h"
36 #include "ir_expression_flattening.h"
37 #include "ir_uniform.h"
38 #include "glsl_types.h"
39 #include "glsl_parser_extras.h"
40 #include "../glsl/program.h"
41 #include "ir_optimization.h"
42 #include "ast.h"
43 #include "linker.h"
44
45 #include "main/mtypes.h"
46 #include "main/shaderobj.h"
47 #include "main/uniforms.h"
48 #include "program/hash_table.h"
49
50 extern "C" {
51 #include "main/shaderapi.h"
52 #include "program/prog_instruction.h"
53 #include "program/prog_optimize.h"
54 #include "program/prog_print.h"
55 #include "program/program.h"
56 #include "program/prog_parameter.h"
57 #include "program/sampler.h"
58 }
59
60 static int swizzle_for_size(int size);
61
62 namespace {
63
64 class src_reg;
65 class dst_reg;
66
67 /**
68 * This struct is a corresponding struct to Mesa prog_src_register, with
69 * wider fields.
70 */
71 class src_reg {
72 public:
73 src_reg(gl_register_file file, int index, const glsl_type *type)
74 {
75 this->file = file;
76 this->index = index;
77 if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
78 this->swizzle = swizzle_for_size(type->vector_elements);
79 else
80 this->swizzle = SWIZZLE_XYZW;
81 this->negate = 0;
82 this->reladdr = NULL;
83 }
84
85 src_reg()
86 {
87 this->file = PROGRAM_UNDEFINED;
88 this->index = 0;
89 this->swizzle = 0;
90 this->negate = 0;
91 this->reladdr = NULL;
92 }
93
94 explicit src_reg(dst_reg reg);
95
96 gl_register_file file; /**< PROGRAM_* from Mesa */
97 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
98 GLuint swizzle; /**< SWIZZLE_XYZWONEZERO swizzles from Mesa. */
99 int negate; /**< NEGATE_XYZW mask from mesa */
100 /** Register index should be offset by the integer in this reg. */
101 src_reg *reladdr;
102 };
103
104 class dst_reg {
105 public:
106 dst_reg(gl_register_file file, int writemask)
107 {
108 this->file = file;
109 this->index = 0;
110 this->writemask = writemask;
111 this->cond_mask = COND_TR;
112 this->reladdr = NULL;
113 }
114
115 dst_reg()
116 {
117 this->file = PROGRAM_UNDEFINED;
118 this->index = 0;
119 this->writemask = 0;
120 this->cond_mask = COND_TR;
121 this->reladdr = NULL;
122 }
123
124 explicit dst_reg(src_reg reg);
125
126 gl_register_file file; /**< PROGRAM_* from Mesa */
127 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
128 int writemask; /**< Bitfield of WRITEMASK_[XYZW] */
129 GLuint cond_mask:4;
130 /** Register index should be offset by the integer in this reg. */
131 src_reg *reladdr;
132 };
133
134 } /* anonymous namespace */
135
136 src_reg::src_reg(dst_reg reg)
137 {
138 this->file = reg.file;
139 this->index = reg.index;
140 this->swizzle = SWIZZLE_XYZW;
141 this->negate = 0;
142 this->reladdr = reg.reladdr;
143 }
144
145 dst_reg::dst_reg(src_reg reg)
146 {
147 this->file = reg.file;
148 this->index = reg.index;
149 this->writemask = WRITEMASK_XYZW;
150 this->cond_mask = COND_TR;
151 this->reladdr = reg.reladdr;
152 }
153
154 namespace {
155
156 class ir_to_mesa_instruction : public exec_node {
157 public:
158 DECLARE_RALLOC_CXX_OPERATORS(ir_to_mesa_instruction)
159
160 enum prog_opcode op;
161 dst_reg dst;
162 src_reg src[3];
163 /** Pointer to the ir source this tree came from for debugging */
164 ir_instruction *ir;
165 GLboolean cond_update;
166 bool saturate;
167 int sampler; /**< sampler index */
168 int tex_target; /**< One of TEXTURE_*_INDEX */
169 GLboolean tex_shadow;
170 };
171
172 class variable_storage : public exec_node {
173 public:
174 variable_storage(ir_variable *var, gl_register_file file, int index)
175 : file(file), index(index), var(var)
176 {
177 /* empty */
178 }
179
180 gl_register_file file;
181 int index;
182 ir_variable *var; /* variable that maps to this, if any */
183 };
184
185 class function_entry : public exec_node {
186 public:
187 ir_function_signature *sig;
188
189 /**
190 * identifier of this function signature used by the program.
191 *
192 * At the point that Mesa instructions for function calls are
193 * generated, we don't know the address of the first instruction of
194 * the function body. So we make the BranchTarget that is called a
195 * small integer and rewrite them during set_branchtargets().
196 */
197 int sig_id;
198
199 /**
200 * Pointer to first instruction of the function body.
201 *
202 * Set during function body emits after main() is processed.
203 */
204 ir_to_mesa_instruction *bgn_inst;
205
206 /**
207 * Index of the first instruction of the function body in actual
208 * Mesa IR.
209 *
210 * Set after convertion from ir_to_mesa_instruction to prog_instruction.
211 */
212 int inst;
213
214 /** Storage for the return value. */
215 src_reg return_reg;
216 };
217
218 class ir_to_mesa_visitor : public ir_visitor {
219 public:
220 ir_to_mesa_visitor();
221 ~ir_to_mesa_visitor();
222
223 function_entry *current_function;
224
225 struct gl_context *ctx;
226 struct gl_program *prog;
227 struct gl_shader_program *shader_program;
228 struct gl_shader_compiler_options *options;
229
230 int next_temp;
231
232 variable_storage *find_variable_storage(const ir_variable *var);
233
234 src_reg get_temp(const glsl_type *type);
235 void reladdr_to_temp(ir_instruction *ir, src_reg *reg, int *num_reladdr);
236
237 src_reg src_reg_for_float(float val);
238
239 /**
240 * \name Visit methods
241 *
242 * As typical for the visitor pattern, there must be one \c visit method for
243 * each concrete subclass of \c ir_instruction. Virtual base classes within
244 * the hierarchy should not have \c visit methods.
245 */
246 /*@{*/
247 virtual void visit(ir_variable *);
248 virtual void visit(ir_loop *);
249 virtual void visit(ir_loop_jump *);
250 virtual void visit(ir_function_signature *);
251 virtual void visit(ir_function *);
252 virtual void visit(ir_expression *);
253 virtual void visit(ir_swizzle *);
254 virtual void visit(ir_dereference_variable *);
255 virtual void visit(ir_dereference_array *);
256 virtual void visit(ir_dereference_record *);
257 virtual void visit(ir_assignment *);
258 virtual void visit(ir_constant *);
259 virtual void visit(ir_call *);
260 virtual void visit(ir_return *);
261 virtual void visit(ir_discard *);
262 virtual void visit(ir_texture *);
263 virtual void visit(ir_if *);
264 virtual void visit(ir_emit_vertex *);
265 virtual void visit(ir_end_primitive *);
266 /*@}*/
267
268 src_reg result;
269
270 /** List of variable_storage */
271 exec_list variables;
272
273 /** List of function_entry */
274 exec_list function_signatures;
275 int next_signature_id;
276
277 /** List of ir_to_mesa_instruction */
278 exec_list instructions;
279
280 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op);
281
282 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
283 dst_reg dst, src_reg src0);
284
285 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
286 dst_reg dst, src_reg src0, src_reg src1);
287
288 ir_to_mesa_instruction *emit(ir_instruction *ir, enum prog_opcode op,
289 dst_reg dst,
290 src_reg src0, src_reg src1, src_reg src2);
291
292 /**
293 * Emit the correct dot-product instruction for the type of arguments
294 */
295 ir_to_mesa_instruction * emit_dp(ir_instruction *ir,
296 dst_reg dst,
297 src_reg src0,
298 src_reg src1,
299 unsigned elements);
300
301 void emit_scalar(ir_instruction *ir, enum prog_opcode op,
302 dst_reg dst, src_reg src0);
303
304 void emit_scalar(ir_instruction *ir, enum prog_opcode op,
305 dst_reg dst, src_reg src0, src_reg src1);
306
307 void emit_scs(ir_instruction *ir, enum prog_opcode op,
308 dst_reg dst, const src_reg &src);
309
310 bool try_emit_mad(ir_expression *ir,
311 int mul_operand);
312 bool try_emit_mad_for_and_not(ir_expression *ir,
313 int mul_operand);
314 bool try_emit_sat(ir_expression *ir);
315
316 void emit_swz(ir_expression *ir);
317
318 bool process_move_condition(ir_rvalue *ir);
319
320 void copy_propagate(void);
321
322 void *mem_ctx;
323 };
324
325 } /* anonymous namespace */
326
327 static src_reg undef_src = src_reg(PROGRAM_UNDEFINED, 0, NULL);
328
329 static dst_reg undef_dst = dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP);
330
331 static dst_reg address_reg = dst_reg(PROGRAM_ADDRESS, WRITEMASK_X);
332
333 static int
334 swizzle_for_size(int size)
335 {
336 static const int size_swizzles[4] = {
337 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
338 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
339 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
340 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
341 };
342
343 assert((size >= 1) && (size <= 4));
344 return size_swizzles[size - 1];
345 }
346
347 ir_to_mesa_instruction *
348 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
349 dst_reg dst,
350 src_reg src0, src_reg src1, src_reg src2)
351 {
352 ir_to_mesa_instruction *inst = new(mem_ctx) ir_to_mesa_instruction();
353 int num_reladdr = 0;
354
355 /* If we have to do relative addressing, we want to load the ARL
356 * reg directly for one of the regs, and preload the other reladdr
357 * sources into temps.
358 */
359 num_reladdr += dst.reladdr != NULL;
360 num_reladdr += src0.reladdr != NULL;
361 num_reladdr += src1.reladdr != NULL;
362 num_reladdr += src2.reladdr != NULL;
363
364 reladdr_to_temp(ir, &src2, &num_reladdr);
365 reladdr_to_temp(ir, &src1, &num_reladdr);
366 reladdr_to_temp(ir, &src0, &num_reladdr);
367
368 if (dst.reladdr) {
369 emit(ir, OPCODE_ARL, address_reg, *dst.reladdr);
370 num_reladdr--;
371 }
372 assert(num_reladdr == 0);
373
374 inst->op = op;
375 inst->dst = dst;
376 inst->src[0] = src0;
377 inst->src[1] = src1;
378 inst->src[2] = src2;
379 inst->ir = ir;
380
381 this->instructions.push_tail(inst);
382
383 return inst;
384 }
385
386
387 ir_to_mesa_instruction *
388 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
389 dst_reg dst, src_reg src0, src_reg src1)
390 {
391 return emit(ir, op, dst, src0, src1, undef_src);
392 }
393
394 ir_to_mesa_instruction *
395 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op,
396 dst_reg dst, src_reg src0)
397 {
398 assert(dst.writemask != 0);
399 return emit(ir, op, dst, src0, undef_src, undef_src);
400 }
401
402 ir_to_mesa_instruction *
403 ir_to_mesa_visitor::emit(ir_instruction *ir, enum prog_opcode op)
404 {
405 return emit(ir, op, undef_dst, undef_src, undef_src, undef_src);
406 }
407
408 ir_to_mesa_instruction *
409 ir_to_mesa_visitor::emit_dp(ir_instruction *ir,
410 dst_reg dst, src_reg src0, src_reg src1,
411 unsigned elements)
412 {
413 static const gl_inst_opcode dot_opcodes[] = {
414 OPCODE_DP2, OPCODE_DP3, OPCODE_DP4
415 };
416
417 return emit(ir, dot_opcodes[elements - 2], dst, src0, src1);
418 }
419
420 /**
421 * Emits Mesa scalar opcodes to produce unique answers across channels.
422 *
423 * Some Mesa opcodes are scalar-only, like ARB_fp/vp. The src X
424 * channel determines the result across all channels. So to do a vec4
425 * of this operation, we want to emit a scalar per source channel used
426 * to produce dest channels.
427 */
428 void
429 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
430 dst_reg dst,
431 src_reg orig_src0, src_reg orig_src1)
432 {
433 int i, j;
434 int done_mask = ~dst.writemask;
435
436 /* Mesa RCP is a scalar operation splatting results to all channels,
437 * like ARB_fp/vp. So emit as many RCPs as necessary to cover our
438 * dst channels.
439 */
440 for (i = 0; i < 4; i++) {
441 GLuint this_mask = (1 << i);
442 ir_to_mesa_instruction *inst;
443 src_reg src0 = orig_src0;
444 src_reg src1 = orig_src1;
445
446 if (done_mask & this_mask)
447 continue;
448
449 GLuint src0_swiz = GET_SWZ(src0.swizzle, i);
450 GLuint src1_swiz = GET_SWZ(src1.swizzle, i);
451 for (j = i + 1; j < 4; j++) {
452 /* If there is another enabled component in the destination that is
453 * derived from the same inputs, generate its value on this pass as
454 * well.
455 */
456 if (!(done_mask & (1 << j)) &&
457 GET_SWZ(src0.swizzle, j) == src0_swiz &&
458 GET_SWZ(src1.swizzle, j) == src1_swiz) {
459 this_mask |= (1 << j);
460 }
461 }
462 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
463 src0_swiz, src0_swiz);
464 src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz,
465 src1_swiz, src1_swiz);
466
467 inst = emit(ir, op, dst, src0, src1);
468 inst->dst.writemask = this_mask;
469 done_mask |= this_mask;
470 }
471 }
472
473 void
474 ir_to_mesa_visitor::emit_scalar(ir_instruction *ir, enum prog_opcode op,
475 dst_reg dst, src_reg src0)
476 {
477 src_reg undef = undef_src;
478
479 undef.swizzle = SWIZZLE_XXXX;
480
481 emit_scalar(ir, op, dst, src0, undef);
482 }
483
484 /**
485 * Emit an OPCODE_SCS instruction
486 *
487 * The \c SCS opcode functions a bit differently than the other Mesa (or
488 * ARB_fragment_program) opcodes. Instead of splatting its result across all
489 * four components of the destination, it writes one value to the \c x
490 * component and another value to the \c y component.
491 *
492 * \param ir IR instruction being processed
493 * \param op Either \c OPCODE_SIN or \c OPCODE_COS depending on which
494 * value is desired.
495 * \param dst Destination register
496 * \param src Source register
497 */
498 void
499 ir_to_mesa_visitor::emit_scs(ir_instruction *ir, enum prog_opcode op,
500 dst_reg dst,
501 const src_reg &src)
502 {
503 /* Vertex programs cannot use the SCS opcode.
504 */
505 if (this->prog->Target == GL_VERTEX_PROGRAM_ARB) {
506 emit_scalar(ir, op, dst, src);
507 return;
508 }
509
510 const unsigned component = (op == OPCODE_SIN) ? 0 : 1;
511 const unsigned scs_mask = (1U << component);
512 int done_mask = ~dst.writemask;
513 src_reg tmp;
514
515 assert(op == OPCODE_SIN || op == OPCODE_COS);
516
517 /* If there are compnents in the destination that differ from the component
518 * that will be written by the SCS instrution, we'll need a temporary.
519 */
520 if (scs_mask != unsigned(dst.writemask)) {
521 tmp = get_temp(glsl_type::vec4_type);
522 }
523
524 for (unsigned i = 0; i < 4; i++) {
525 unsigned this_mask = (1U << i);
526 src_reg src0 = src;
527
528 if ((done_mask & this_mask) != 0)
529 continue;
530
531 /* The source swizzle specified which component of the source generates
532 * sine / cosine for the current component in the destination. The SCS
533 * instruction requires that this value be swizzle to the X component.
534 * Replace the current swizzle with a swizzle that puts the source in
535 * the X component.
536 */
537 unsigned src0_swiz = GET_SWZ(src.swizzle, i);
538
539 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
540 src0_swiz, src0_swiz);
541 for (unsigned j = i + 1; j < 4; j++) {
542 /* If there is another enabled component in the destination that is
543 * derived from the same inputs, generate its value on this pass as
544 * well.
545 */
546 if (!(done_mask & (1 << j)) &&
547 GET_SWZ(src0.swizzle, j) == src0_swiz) {
548 this_mask |= (1 << j);
549 }
550 }
551
552 if (this_mask != scs_mask) {
553 ir_to_mesa_instruction *inst;
554 dst_reg tmp_dst = dst_reg(tmp);
555
556 /* Emit the SCS instruction.
557 */
558 inst = emit(ir, OPCODE_SCS, tmp_dst, src0);
559 inst->dst.writemask = scs_mask;
560
561 /* Move the result of the SCS instruction to the desired location in
562 * the destination.
563 */
564 tmp.swizzle = MAKE_SWIZZLE4(component, component,
565 component, component);
566 inst = emit(ir, OPCODE_SCS, dst, tmp);
567 inst->dst.writemask = this_mask;
568 } else {
569 /* Emit the SCS instruction to write directly to the destination.
570 */
571 ir_to_mesa_instruction *inst = emit(ir, OPCODE_SCS, dst, src0);
572 inst->dst.writemask = scs_mask;
573 }
574
575 done_mask |= this_mask;
576 }
577 }
578
579 src_reg
580 ir_to_mesa_visitor::src_reg_for_float(float val)
581 {
582 src_reg src(PROGRAM_CONSTANT, -1, NULL);
583
584 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
585 (const gl_constant_value *)&val, 1, &src.swizzle);
586
587 return src;
588 }
589
590 static int
591 type_size(const struct glsl_type *type)
592 {
593 unsigned int i;
594 int size;
595
596 switch (type->base_type) {
597 case GLSL_TYPE_UINT:
598 case GLSL_TYPE_INT:
599 case GLSL_TYPE_FLOAT:
600 case GLSL_TYPE_BOOL:
601 if (type->is_matrix()) {
602 return type->matrix_columns;
603 } else {
604 /* Regardless of size of vector, it gets a vec4. This is bad
605 * packing for things like floats, but otherwise arrays become a
606 * mess. Hopefully a later pass over the code can pack scalars
607 * down if appropriate.
608 */
609 return 1;
610 }
611 case GLSL_TYPE_ARRAY:
612 assert(type->length > 0);
613 return type_size(type->fields.array) * type->length;
614 case GLSL_TYPE_STRUCT:
615 size = 0;
616 for (i = 0; i < type->length; i++) {
617 size += type_size(type->fields.structure[i].type);
618 }
619 return size;
620 case GLSL_TYPE_SAMPLER:
621 case GLSL_TYPE_IMAGE:
622 /* Samplers take up one slot in UNIFORMS[], but they're baked in
623 * at link time.
624 */
625 return 1;
626 case GLSL_TYPE_ATOMIC_UINT:
627 case GLSL_TYPE_VOID:
628 case GLSL_TYPE_ERROR:
629 case GLSL_TYPE_INTERFACE:
630 assert(!"Invalid type in type_size");
631 break;
632 }
633
634 return 0;
635 }
636
637 /**
638 * In the initial pass of codegen, we assign temporary numbers to
639 * intermediate results. (not SSA -- variable assignments will reuse
640 * storage). Actual register allocation for the Mesa VM occurs in a
641 * pass over the Mesa IR later.
642 */
643 src_reg
644 ir_to_mesa_visitor::get_temp(const glsl_type *type)
645 {
646 src_reg src;
647
648 src.file = PROGRAM_TEMPORARY;
649 src.index = next_temp;
650 src.reladdr = NULL;
651 next_temp += type_size(type);
652
653 if (type->is_array() || type->is_record()) {
654 src.swizzle = SWIZZLE_NOOP;
655 } else {
656 src.swizzle = swizzle_for_size(type->vector_elements);
657 }
658 src.negate = 0;
659
660 return src;
661 }
662
663 variable_storage *
664 ir_to_mesa_visitor::find_variable_storage(const ir_variable *var)
665 {
666 foreach_in_list(variable_storage, entry, &this->variables) {
667 if (entry->var == var)
668 return entry;
669 }
670
671 return NULL;
672 }
673
674 void
675 ir_to_mesa_visitor::visit(ir_variable *ir)
676 {
677 if (strcmp(ir->name, "gl_FragCoord") == 0) {
678 struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog;
679
680 fp->OriginUpperLeft = ir->data.origin_upper_left;
681 fp->PixelCenterInteger = ir->data.pixel_center_integer;
682 }
683
684 if (ir->data.mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) {
685 unsigned int i;
686 const ir_state_slot *const slots = ir->state_slots;
687 assert(ir->state_slots != NULL);
688
689 /* Check if this statevar's setup in the STATE file exactly
690 * matches how we'll want to reference it as a
691 * struct/array/whatever. If not, then we need to move it into
692 * temporary storage and hope that it'll get copy-propagated
693 * out.
694 */
695 for (i = 0; i < ir->num_state_slots; i++) {
696 if (slots[i].swizzle != SWIZZLE_XYZW) {
697 break;
698 }
699 }
700
701 variable_storage *storage;
702 dst_reg dst;
703 if (i == ir->num_state_slots) {
704 /* We'll set the index later. */
705 storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1);
706 this->variables.push_tail(storage);
707
708 dst = undef_dst;
709 } else {
710 /* The variable_storage constructor allocates slots based on the size
711 * of the type. However, this had better match the number of state
712 * elements that we're going to copy into the new temporary.
713 */
714 assert((int) ir->num_state_slots == type_size(ir->type));
715
716 storage = new(mem_ctx) variable_storage(ir, PROGRAM_TEMPORARY,
717 this->next_temp);
718 this->variables.push_tail(storage);
719 this->next_temp += type_size(ir->type);
720
721 dst = dst_reg(src_reg(PROGRAM_TEMPORARY, storage->index, NULL));
722 }
723
724
725 for (unsigned int i = 0; i < ir->num_state_slots; i++) {
726 int index = _mesa_add_state_reference(this->prog->Parameters,
727 (gl_state_index *)slots[i].tokens);
728
729 if (storage->file == PROGRAM_STATE_VAR) {
730 if (storage->index == -1) {
731 storage->index = index;
732 } else {
733 assert(index == storage->index + (int)i);
734 }
735 } else {
736 src_reg src(PROGRAM_STATE_VAR, index, NULL);
737 src.swizzle = slots[i].swizzle;
738 emit(ir, OPCODE_MOV, dst, src);
739 /* even a float takes up a whole vec4 reg in a struct/array. */
740 dst.index++;
741 }
742 }
743
744 if (storage->file == PROGRAM_TEMPORARY &&
745 dst.index != storage->index + (int) ir->num_state_slots) {
746 linker_error(this->shader_program,
747 "failed to load builtin uniform `%s' "
748 "(%d/%d regs loaded)\n",
749 ir->name, dst.index - storage->index,
750 type_size(ir->type));
751 }
752 }
753 }
754
755 void
756 ir_to_mesa_visitor::visit(ir_loop *ir)
757 {
758 emit(NULL, OPCODE_BGNLOOP);
759
760 visit_exec_list(&ir->body_instructions, this);
761
762 emit(NULL, OPCODE_ENDLOOP);
763 }
764
765 void
766 ir_to_mesa_visitor::visit(ir_loop_jump *ir)
767 {
768 switch (ir->mode) {
769 case ir_loop_jump::jump_break:
770 emit(NULL, OPCODE_BRK);
771 break;
772 case ir_loop_jump::jump_continue:
773 emit(NULL, OPCODE_CONT);
774 break;
775 }
776 }
777
778
779 void
780 ir_to_mesa_visitor::visit(ir_function_signature *ir)
781 {
782 assert(0);
783 (void)ir;
784 }
785
786 void
787 ir_to_mesa_visitor::visit(ir_function *ir)
788 {
789 /* Ignore function bodies other than main() -- we shouldn't see calls to
790 * them since they should all be inlined before we get to ir_to_mesa.
791 */
792 if (strcmp(ir->name, "main") == 0) {
793 const ir_function_signature *sig;
794 exec_list empty;
795
796 sig = ir->matching_signature(NULL, &empty, false);
797
798 assert(sig);
799
800 foreach_in_list(ir_instruction, ir, &sig->body) {
801 ir->accept(this);
802 }
803 }
804 }
805
806 bool
807 ir_to_mesa_visitor::try_emit_mad(ir_expression *ir, int mul_operand)
808 {
809 int nonmul_operand = 1 - mul_operand;
810 src_reg a, b, c;
811
812 ir_expression *expr = ir->operands[mul_operand]->as_expression();
813 if (!expr || expr->operation != ir_binop_mul)
814 return false;
815
816 expr->operands[0]->accept(this);
817 a = this->result;
818 expr->operands[1]->accept(this);
819 b = this->result;
820 ir->operands[nonmul_operand]->accept(this);
821 c = this->result;
822
823 this->result = get_temp(ir->type);
824 emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, c);
825
826 return true;
827 }
828
829 /**
830 * Emit OPCODE_MAD(a, -b, a) instead of AND(a, NOT(b))
831 *
832 * The logic values are 1.0 for true and 0.0 for false. Logical-and is
833 * implemented using multiplication, and logical-or is implemented using
834 * addition. Logical-not can be implemented as (true - x), or (1.0 - x).
835 * As result, the logical expression (a & !b) can be rewritten as:
836 *
837 * - a * !b
838 * - a * (1 - b)
839 * - (a * 1) - (a * b)
840 * - a + -(a * b)
841 * - a + (a * -b)
842 *
843 * This final expression can be implemented as a single MAD(a, -b, a)
844 * instruction.
845 */
846 bool
847 ir_to_mesa_visitor::try_emit_mad_for_and_not(ir_expression *ir, int try_operand)
848 {
849 const int other_operand = 1 - try_operand;
850 src_reg a, b;
851
852 ir_expression *expr = ir->operands[try_operand]->as_expression();
853 if (!expr || expr->operation != ir_unop_logic_not)
854 return false;
855
856 ir->operands[other_operand]->accept(this);
857 a = this->result;
858 expr->operands[0]->accept(this);
859 b = this->result;
860
861 b.negate = ~b.negate;
862
863 this->result = get_temp(ir->type);
864 emit(ir, OPCODE_MAD, dst_reg(this->result), a, b, a);
865
866 return true;
867 }
868
869 bool
870 ir_to_mesa_visitor::try_emit_sat(ir_expression *ir)
871 {
872 /* Saturates were only introduced to vertex programs in
873 * NV_vertex_program3, so don't give them to drivers in the VP.
874 */
875 if (this->prog->Target == GL_VERTEX_PROGRAM_ARB)
876 return false;
877
878 ir_rvalue *sat_src = ir->as_rvalue_to_saturate();
879 if (!sat_src)
880 return false;
881
882 sat_src->accept(this);
883 src_reg src = this->result;
884
885 /* If we generated an expression instruction into a temporary in
886 * processing the saturate's operand, apply the saturate to that
887 * instruction. Otherwise, generate a MOV to do the saturate.
888 *
889 * Note that we have to be careful to only do this optimization if
890 * the instruction in question was what generated src->result. For
891 * example, ir_dereference_array might generate a MUL instruction
892 * to create the reladdr, and return us a src reg using that
893 * reladdr. That MUL result is not the value we're trying to
894 * saturate.
895 */
896 ir_expression *sat_src_expr = sat_src->as_expression();
897 ir_to_mesa_instruction *new_inst;
898 new_inst = (ir_to_mesa_instruction *)this->instructions.get_tail();
899 if (sat_src_expr && (sat_src_expr->operation == ir_binop_mul ||
900 sat_src_expr->operation == ir_binop_add ||
901 sat_src_expr->operation == ir_binop_dot)) {
902 new_inst->saturate = true;
903 } else {
904 this->result = get_temp(ir->type);
905 ir_to_mesa_instruction *inst;
906 inst = emit(ir, OPCODE_MOV, dst_reg(this->result), src);
907 inst->saturate = true;
908 }
909
910 return true;
911 }
912
913 void
914 ir_to_mesa_visitor::reladdr_to_temp(ir_instruction *ir,
915 src_reg *reg, int *num_reladdr)
916 {
917 if (!reg->reladdr)
918 return;
919
920 emit(ir, OPCODE_ARL, address_reg, *reg->reladdr);
921
922 if (*num_reladdr != 1) {
923 src_reg temp = get_temp(glsl_type::vec4_type);
924
925 emit(ir, OPCODE_MOV, dst_reg(temp), *reg);
926 *reg = temp;
927 }
928
929 (*num_reladdr)--;
930 }
931
932 void
933 ir_to_mesa_visitor::emit_swz(ir_expression *ir)
934 {
935 /* Assume that the vector operator is in a form compatible with OPCODE_SWZ.
936 * This means that each of the operands is either an immediate value of -1,
937 * 0, or 1, or is a component from one source register (possibly with
938 * negation).
939 */
940 uint8_t components[4] = { 0 };
941 bool negate[4] = { false };
942 ir_variable *var = NULL;
943
944 for (unsigned i = 0; i < ir->type->vector_elements; i++) {
945 ir_rvalue *op = ir->operands[i];
946
947 assert(op->type->is_scalar());
948
949 while (op != NULL) {
950 switch (op->ir_type) {
951 case ir_type_constant: {
952
953 assert(op->type->is_scalar());
954
955 const ir_constant *const c = op->as_constant();
956 if (c->is_one()) {
957 components[i] = SWIZZLE_ONE;
958 } else if (c->is_zero()) {
959 components[i] = SWIZZLE_ZERO;
960 } else if (c->is_negative_one()) {
961 components[i] = SWIZZLE_ONE;
962 negate[i] = true;
963 } else {
964 assert(!"SWZ constant must be 0.0 or 1.0.");
965 }
966
967 op = NULL;
968 break;
969 }
970
971 case ir_type_dereference_variable: {
972 ir_dereference_variable *const deref =
973 (ir_dereference_variable *) op;
974
975 assert((var == NULL) || (deref->var == var));
976 components[i] = SWIZZLE_X;
977 var = deref->var;
978 op = NULL;
979 break;
980 }
981
982 case ir_type_expression: {
983 ir_expression *const expr = (ir_expression *) op;
984
985 assert(expr->operation == ir_unop_neg);
986 negate[i] = true;
987
988 op = expr->operands[0];
989 break;
990 }
991
992 case ir_type_swizzle: {
993 ir_swizzle *const swiz = (ir_swizzle *) op;
994
995 components[i] = swiz->mask.x;
996 op = swiz->val;
997 break;
998 }
999
1000 default:
1001 assert(!"Should not get here.");
1002 return;
1003 }
1004 }
1005 }
1006
1007 assert(var != NULL);
1008
1009 ir_dereference_variable *const deref =
1010 new(mem_ctx) ir_dereference_variable(var);
1011
1012 this->result.file = PROGRAM_UNDEFINED;
1013 deref->accept(this);
1014 if (this->result.file == PROGRAM_UNDEFINED) {
1015 printf("Failed to get tree for expression operand:\n");
1016 deref->print();
1017 printf("\n");
1018 exit(1);
1019 }
1020
1021 src_reg src;
1022
1023 src = this->result;
1024 src.swizzle = MAKE_SWIZZLE4(components[0],
1025 components[1],
1026 components[2],
1027 components[3]);
1028 src.negate = ((unsigned(negate[0]) << 0)
1029 | (unsigned(negate[1]) << 1)
1030 | (unsigned(negate[2]) << 2)
1031 | (unsigned(negate[3]) << 3));
1032
1033 /* Storage for our result. Ideally for an assignment we'd be using the
1034 * actual storage for the result here, instead.
1035 */
1036 const src_reg result_src = get_temp(ir->type);
1037 dst_reg result_dst = dst_reg(result_src);
1038
1039 /* Limit writes to the channels that will be used by result_src later.
1040 * This does limit this temp's use as a temporary for multi-instruction
1041 * sequences.
1042 */
1043 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1044
1045 emit(ir, OPCODE_SWZ, result_dst, src);
1046 this->result = result_src;
1047 }
1048
1049 void
1050 ir_to_mesa_visitor::visit(ir_expression *ir)
1051 {
1052 unsigned int operand;
1053 src_reg op[Elements(ir->operands)];
1054 src_reg result_src;
1055 dst_reg result_dst;
1056
1057 /* Quick peephole: Emit OPCODE_MAD(a, b, c) instead of ADD(MUL(a, b), c)
1058 */
1059 if (ir->operation == ir_binop_add) {
1060 if (try_emit_mad(ir, 1))
1061 return;
1062 if (try_emit_mad(ir, 0))
1063 return;
1064 }
1065
1066 /* Quick peephole: Emit OPCODE_MAD(-a, -b, a) instead of AND(a, NOT(b))
1067 */
1068 if (ir->operation == ir_binop_logic_and) {
1069 if (try_emit_mad_for_and_not(ir, 1))
1070 return;
1071 if (try_emit_mad_for_and_not(ir, 0))
1072 return;
1073 }
1074
1075 if (try_emit_sat(ir))
1076 return;
1077
1078 if (ir->operation == ir_quadop_vector) {
1079 this->emit_swz(ir);
1080 return;
1081 }
1082
1083 for (operand = 0; operand < ir->get_num_operands(); operand++) {
1084 this->result.file = PROGRAM_UNDEFINED;
1085 ir->operands[operand]->accept(this);
1086 if (this->result.file == PROGRAM_UNDEFINED) {
1087 printf("Failed to get tree for expression operand:\n");
1088 ir->operands[operand]->print();
1089 printf("\n");
1090 exit(1);
1091 }
1092 op[operand] = this->result;
1093
1094 /* Matrix expression operands should have been broken down to vector
1095 * operations already.
1096 */
1097 assert(!ir->operands[operand]->type->is_matrix());
1098 }
1099
1100 int vector_elements = ir->operands[0]->type->vector_elements;
1101 if (ir->operands[1]) {
1102 vector_elements = MAX2(vector_elements,
1103 ir->operands[1]->type->vector_elements);
1104 }
1105
1106 this->result.file = PROGRAM_UNDEFINED;
1107
1108 /* Storage for our result. Ideally for an assignment we'd be using
1109 * the actual storage for the result here, instead.
1110 */
1111 result_src = get_temp(ir->type);
1112 /* convenience for the emit functions below. */
1113 result_dst = dst_reg(result_src);
1114 /* Limit writes to the channels that will be used by result_src later.
1115 * This does limit this temp's use as a temporary for multi-instruction
1116 * sequences.
1117 */
1118 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1119
1120 switch (ir->operation) {
1121 case ir_unop_logic_not:
1122 /* Previously 'SEQ dst, src, 0.0' was used for this. However, many
1123 * older GPUs implement SEQ using multiple instructions (i915 uses two
1124 * SGE instructions and a MUL instruction). Since our logic values are
1125 * 0.0 and 1.0, 1-x also implements !x.
1126 */
1127 op[0].negate = ~op[0].negate;
1128 emit(ir, OPCODE_ADD, result_dst, op[0], src_reg_for_float(1.0));
1129 break;
1130 case ir_unop_neg:
1131 op[0].negate = ~op[0].negate;
1132 result_src = op[0];
1133 break;
1134 case ir_unop_abs:
1135 emit(ir, OPCODE_ABS, result_dst, op[0]);
1136 break;
1137 case ir_unop_sign:
1138 emit(ir, OPCODE_SSG, result_dst, op[0]);
1139 break;
1140 case ir_unop_rcp:
1141 emit_scalar(ir, OPCODE_RCP, result_dst, op[0]);
1142 break;
1143
1144 case ir_unop_exp2:
1145 emit_scalar(ir, OPCODE_EX2, result_dst, op[0]);
1146 break;
1147 case ir_unop_exp:
1148 case ir_unop_log:
1149 assert(!"not reached: should be handled by ir_explog_to_explog2");
1150 break;
1151 case ir_unop_log2:
1152 emit_scalar(ir, OPCODE_LG2, result_dst, op[0]);
1153 break;
1154 case ir_unop_sin:
1155 emit_scalar(ir, OPCODE_SIN, result_dst, op[0]);
1156 break;
1157 case ir_unop_cos:
1158 emit_scalar(ir, OPCODE_COS, result_dst, op[0]);
1159 break;
1160 case ir_unop_sin_reduced:
1161 emit_scs(ir, OPCODE_SIN, result_dst, op[0]);
1162 break;
1163 case ir_unop_cos_reduced:
1164 emit_scs(ir, OPCODE_COS, result_dst, op[0]);
1165 break;
1166
1167 case ir_unop_dFdx:
1168 emit(ir, OPCODE_DDX, result_dst, op[0]);
1169 break;
1170 case ir_unop_dFdy:
1171 emit(ir, OPCODE_DDY, result_dst, op[0]);
1172 break;
1173
1174 case ir_unop_saturate: {
1175 ir_to_mesa_instruction *inst = emit(ir, OPCODE_MOV,
1176 result_dst, op[0]);
1177 inst->saturate = true;
1178 break;
1179 }
1180 case ir_unop_noise: {
1181 const enum prog_opcode opcode =
1182 prog_opcode(OPCODE_NOISE1
1183 + (ir->operands[0]->type->vector_elements) - 1);
1184 assert((opcode >= OPCODE_NOISE1) && (opcode <= OPCODE_NOISE4));
1185
1186 emit(ir, opcode, result_dst, op[0]);
1187 break;
1188 }
1189
1190 case ir_binop_add:
1191 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1192 break;
1193 case ir_binop_sub:
1194 emit(ir, OPCODE_SUB, result_dst, op[0], op[1]);
1195 break;
1196
1197 case ir_binop_mul:
1198 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1199 break;
1200 case ir_binop_div:
1201 assert(!"not reached: should be handled by ir_div_to_mul_rcp");
1202 break;
1203 case ir_binop_mod:
1204 /* Floating point should be lowered by MOD_TO_FRACT in the compiler. */
1205 assert(ir->type->is_integer());
1206 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1207 break;
1208
1209 case ir_binop_less:
1210 emit(ir, OPCODE_SLT, result_dst, op[0], op[1]);
1211 break;
1212 case ir_binop_greater:
1213 emit(ir, OPCODE_SGT, result_dst, op[0], op[1]);
1214 break;
1215 case ir_binop_lequal:
1216 emit(ir, OPCODE_SLE, result_dst, op[0], op[1]);
1217 break;
1218 case ir_binop_gequal:
1219 emit(ir, OPCODE_SGE, result_dst, op[0], op[1]);
1220 break;
1221 case ir_binop_equal:
1222 emit(ir, OPCODE_SEQ, result_dst, op[0], op[1]);
1223 break;
1224 case ir_binop_nequal:
1225 emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
1226 break;
1227 case ir_binop_all_equal:
1228 /* "==" operator producing a scalar boolean. */
1229 if (ir->operands[0]->type->is_vector() ||
1230 ir->operands[1]->type->is_vector()) {
1231 src_reg temp = get_temp(glsl_type::vec4_type);
1232 emit(ir, OPCODE_SNE, dst_reg(temp), op[0], op[1]);
1233
1234 /* After the dot-product, the value will be an integer on the
1235 * range [0,4]. Zero becomes 1.0, and positive values become zero.
1236 */
1237 emit_dp(ir, result_dst, temp, temp, vector_elements);
1238
1239 /* Negating the result of the dot-product gives values on the range
1240 * [-4, 0]. Zero becomes 1.0, and negative values become zero. This
1241 * achieved using SGE.
1242 */
1243 src_reg sge_src = result_src;
1244 sge_src.negate = ~sge_src.negate;
1245 emit(ir, OPCODE_SGE, result_dst, sge_src, src_reg_for_float(0.0));
1246 } else {
1247 emit(ir, OPCODE_SEQ, result_dst, op[0], op[1]);
1248 }
1249 break;
1250 case ir_binop_any_nequal:
1251 /* "!=" operator producing a scalar boolean. */
1252 if (ir->operands[0]->type->is_vector() ||
1253 ir->operands[1]->type->is_vector()) {
1254 src_reg temp = get_temp(glsl_type::vec4_type);
1255 emit(ir, OPCODE_SNE, dst_reg(temp), op[0], op[1]);
1256
1257 /* After the dot-product, the value will be an integer on the
1258 * range [0,4]. Zero stays zero, and positive values become 1.0.
1259 */
1260 ir_to_mesa_instruction *const dp =
1261 emit_dp(ir, result_dst, temp, temp, vector_elements);
1262 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1263 /* The clamping to [0,1] can be done for free in the fragment
1264 * shader with a saturate.
1265 */
1266 dp->saturate = true;
1267 } else {
1268 /* Negating the result of the dot-product gives values on the range
1269 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1270 * achieved using SLT.
1271 */
1272 src_reg slt_src = result_src;
1273 slt_src.negate = ~slt_src.negate;
1274 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1275 }
1276 } else {
1277 emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
1278 }
1279 break;
1280
1281 case ir_unop_any: {
1282 assert(ir->operands[0]->type->is_vector());
1283
1284 /* After the dot-product, the value will be an integer on the
1285 * range [0,4]. Zero stays zero, and positive values become 1.0.
1286 */
1287 ir_to_mesa_instruction *const dp =
1288 emit_dp(ir, result_dst, op[0], op[0],
1289 ir->operands[0]->type->vector_elements);
1290 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1291 /* The clamping to [0,1] can be done for free in the fragment
1292 * shader with a saturate.
1293 */
1294 dp->saturate = true;
1295 } else {
1296 /* Negating the result of the dot-product gives values on the range
1297 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1298 * is achieved using SLT.
1299 */
1300 src_reg slt_src = result_src;
1301 slt_src.negate = ~slt_src.negate;
1302 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1303 }
1304 break;
1305 }
1306
1307 case ir_binop_logic_xor:
1308 emit(ir, OPCODE_SNE, result_dst, op[0], op[1]);
1309 break;
1310
1311 case ir_binop_logic_or: {
1312 /* After the addition, the value will be an integer on the
1313 * range [0,2]. Zero stays zero, and positive values become 1.0.
1314 */
1315 ir_to_mesa_instruction *add =
1316 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1317 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1318 /* The clamping to [0,1] can be done for free in the fragment
1319 * shader with a saturate.
1320 */
1321 add->saturate = true;
1322 } else {
1323 /* Negating the result of the addition gives values on the range
1324 * [-2, 0]. Zero stays zero, and negative values become 1.0. This
1325 * is achieved using SLT.
1326 */
1327 src_reg slt_src = result_src;
1328 slt_src.negate = ~slt_src.negate;
1329 emit(ir, OPCODE_SLT, result_dst, slt_src, src_reg_for_float(0.0));
1330 }
1331 break;
1332 }
1333
1334 case ir_binop_logic_and:
1335 /* the bool args are stored as float 0.0 or 1.0, so "mul" gives us "and". */
1336 emit(ir, OPCODE_MUL, result_dst, op[0], op[1]);
1337 break;
1338
1339 case ir_binop_dot:
1340 assert(ir->operands[0]->type->is_vector());
1341 assert(ir->operands[0]->type == ir->operands[1]->type);
1342 emit_dp(ir, result_dst, op[0], op[1],
1343 ir->operands[0]->type->vector_elements);
1344 break;
1345
1346 case ir_unop_sqrt:
1347 /* sqrt(x) = x * rsq(x). */
1348 emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1349 emit(ir, OPCODE_MUL, result_dst, result_src, op[0]);
1350 /* For incoming channels <= 0, set the result to 0. */
1351 op[0].negate = ~op[0].negate;
1352 emit(ir, OPCODE_CMP, result_dst,
1353 op[0], result_src, src_reg_for_float(0.0));
1354 break;
1355 case ir_unop_rsq:
1356 emit_scalar(ir, OPCODE_RSQ, result_dst, op[0]);
1357 break;
1358 case ir_unop_i2f:
1359 case ir_unop_u2f:
1360 case ir_unop_b2f:
1361 case ir_unop_b2i:
1362 case ir_unop_i2u:
1363 case ir_unop_u2i:
1364 /* Mesa IR lacks types, ints are stored as truncated floats. */
1365 result_src = op[0];
1366 break;
1367 case ir_unop_f2i:
1368 case ir_unop_f2u:
1369 emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1370 break;
1371 case ir_unop_f2b:
1372 case ir_unop_i2b:
1373 emit(ir, OPCODE_SNE, result_dst,
1374 op[0], src_reg_for_float(0.0));
1375 break;
1376 case ir_unop_bitcast_f2i: // Ignore these 4, they can't happen here anyway
1377 case ir_unop_bitcast_f2u:
1378 case ir_unop_bitcast_i2f:
1379 case ir_unop_bitcast_u2f:
1380 break;
1381 case ir_unop_trunc:
1382 emit(ir, OPCODE_TRUNC, result_dst, op[0]);
1383 break;
1384 case ir_unop_ceil:
1385 op[0].negate = ~op[0].negate;
1386 emit(ir, OPCODE_FLR, result_dst, op[0]);
1387 result_src.negate = ~result_src.negate;
1388 break;
1389 case ir_unop_floor:
1390 emit(ir, OPCODE_FLR, result_dst, op[0]);
1391 break;
1392 case ir_unop_fract:
1393 emit(ir, OPCODE_FRC, result_dst, op[0]);
1394 break;
1395 case ir_unop_pack_snorm_2x16:
1396 case ir_unop_pack_snorm_4x8:
1397 case ir_unop_pack_unorm_2x16:
1398 case ir_unop_pack_unorm_4x8:
1399 case ir_unop_pack_half_2x16:
1400 case ir_unop_unpack_snorm_2x16:
1401 case ir_unop_unpack_snorm_4x8:
1402 case ir_unop_unpack_unorm_2x16:
1403 case ir_unop_unpack_unorm_4x8:
1404 case ir_unop_unpack_half_2x16:
1405 case ir_unop_unpack_half_2x16_split_x:
1406 case ir_unop_unpack_half_2x16_split_y:
1407 case ir_binop_pack_half_2x16_split:
1408 case ir_unop_bitfield_reverse:
1409 case ir_unop_bit_count:
1410 case ir_unop_find_msb:
1411 case ir_unop_find_lsb:
1412 assert(!"not supported");
1413 break;
1414 case ir_binop_min:
1415 emit(ir, OPCODE_MIN, result_dst, op[0], op[1]);
1416 break;
1417 case ir_binop_max:
1418 emit(ir, OPCODE_MAX, result_dst, op[0], op[1]);
1419 break;
1420 case ir_binop_pow:
1421 emit_scalar(ir, OPCODE_POW, result_dst, op[0], op[1]);
1422 break;
1423
1424 /* GLSL 1.30 integer ops are unsupported in Mesa IR, but since
1425 * hardware backends have no way to avoid Mesa IR generation
1426 * even if they don't use it, we need to emit "something" and
1427 * continue.
1428 */
1429 case ir_binop_lshift:
1430 case ir_binop_rshift:
1431 case ir_binop_bit_and:
1432 case ir_binop_bit_xor:
1433 case ir_binop_bit_or:
1434 emit(ir, OPCODE_ADD, result_dst, op[0], op[1]);
1435 break;
1436
1437 case ir_unop_bit_not:
1438 case ir_unop_round_even:
1439 emit(ir, OPCODE_MOV, result_dst, op[0]);
1440 break;
1441
1442 case ir_binop_ubo_load:
1443 assert(!"not supported");
1444 break;
1445
1446 case ir_triop_lrp:
1447 /* ir_triop_lrp operands are (x, y, a) while
1448 * OPCODE_LRP operands are (a, y, x) to match ARB_fragment_program.
1449 */
1450 emit(ir, OPCODE_LRP, result_dst, op[2], op[1], op[0]);
1451 break;
1452
1453 case ir_binop_vector_extract:
1454 case ir_binop_bfm:
1455 case ir_triop_fma:
1456 case ir_triop_bfi:
1457 case ir_triop_bitfield_extract:
1458 case ir_triop_vector_insert:
1459 case ir_quadop_bitfield_insert:
1460 case ir_binop_ldexp:
1461 case ir_triop_csel:
1462 case ir_binop_carry:
1463 case ir_binop_borrow:
1464 case ir_binop_imul_high:
1465 case ir_unop_interpolate_at_centroid:
1466 case ir_binop_interpolate_at_offset:
1467 case ir_binop_interpolate_at_sample:
1468 case ir_unop_dFdx_coarse:
1469 case ir_unop_dFdx_fine:
1470 case ir_unop_dFdy_coarse:
1471 case ir_unop_dFdy_fine:
1472 assert(!"not supported");
1473 break;
1474
1475 case ir_quadop_vector:
1476 /* This operation should have already been handled.
1477 */
1478 assert(!"Should not get here.");
1479 break;
1480 }
1481
1482 this->result = result_src;
1483 }
1484
1485
1486 void
1487 ir_to_mesa_visitor::visit(ir_swizzle *ir)
1488 {
1489 src_reg src;
1490 int i;
1491 int swizzle[4];
1492
1493 /* Note that this is only swizzles in expressions, not those on the left
1494 * hand side of an assignment, which do write masking. See ir_assignment
1495 * for that.
1496 */
1497
1498 ir->val->accept(this);
1499 src = this->result;
1500 assert(src.file != PROGRAM_UNDEFINED);
1501
1502 for (i = 0; i < 4; i++) {
1503 if (i < ir->type->vector_elements) {
1504 switch (i) {
1505 case 0:
1506 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x);
1507 break;
1508 case 1:
1509 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y);
1510 break;
1511 case 2:
1512 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z);
1513 break;
1514 case 3:
1515 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w);
1516 break;
1517 }
1518 } else {
1519 /* If the type is smaller than a vec4, replicate the last
1520 * channel out.
1521 */
1522 swizzle[i] = swizzle[ir->type->vector_elements - 1];
1523 }
1524 }
1525
1526 src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
1527
1528 this->result = src;
1529 }
1530
1531 void
1532 ir_to_mesa_visitor::visit(ir_dereference_variable *ir)
1533 {
1534 variable_storage *entry = find_variable_storage(ir->var);
1535 ir_variable *var = ir->var;
1536
1537 if (!entry) {
1538 switch (var->data.mode) {
1539 case ir_var_uniform:
1540 entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM,
1541 var->data.location);
1542 this->variables.push_tail(entry);
1543 break;
1544 case ir_var_shader_in:
1545 /* The linker assigns locations for varyings and attributes,
1546 * including deprecated builtins (like gl_Color),
1547 * user-assigned generic attributes (glBindVertexLocation),
1548 * and user-defined varyings.
1549 */
1550 assert(var->data.location != -1);
1551 entry = new(mem_ctx) variable_storage(var,
1552 PROGRAM_INPUT,
1553 var->data.location);
1554 break;
1555 case ir_var_shader_out:
1556 assert(var->data.location != -1);
1557 entry = new(mem_ctx) variable_storage(var,
1558 PROGRAM_OUTPUT,
1559 var->data.location);
1560 break;
1561 case ir_var_system_value:
1562 entry = new(mem_ctx) variable_storage(var,
1563 PROGRAM_SYSTEM_VALUE,
1564 var->data.location);
1565 break;
1566 case ir_var_auto:
1567 case ir_var_temporary:
1568 entry = new(mem_ctx) variable_storage(var, PROGRAM_TEMPORARY,
1569 this->next_temp);
1570 this->variables.push_tail(entry);
1571
1572 next_temp += type_size(var->type);
1573 break;
1574 }
1575
1576 if (!entry) {
1577 printf("Failed to make storage for %s\n", var->name);
1578 exit(1);
1579 }
1580 }
1581
1582 this->result = src_reg(entry->file, entry->index, var->type);
1583 }
1584
1585 void
1586 ir_to_mesa_visitor::visit(ir_dereference_array *ir)
1587 {
1588 ir_constant *index;
1589 src_reg src;
1590 int element_size = type_size(ir->type);
1591
1592 index = ir->array_index->constant_expression_value();
1593
1594 ir->array->accept(this);
1595 src = this->result;
1596
1597 if (index) {
1598 src.index += index->value.i[0] * element_size;
1599 } else {
1600 /* Variable index array dereference. It eats the "vec4" of the
1601 * base of the array and an index that offsets the Mesa register
1602 * index.
1603 */
1604 ir->array_index->accept(this);
1605
1606 src_reg index_reg;
1607
1608 if (element_size == 1) {
1609 index_reg = this->result;
1610 } else {
1611 index_reg = get_temp(glsl_type::float_type);
1612
1613 emit(ir, OPCODE_MUL, dst_reg(index_reg),
1614 this->result, src_reg_for_float(element_size));
1615 }
1616
1617 /* If there was already a relative address register involved, add the
1618 * new and the old together to get the new offset.
1619 */
1620 if (src.reladdr != NULL) {
1621 src_reg accum_reg = get_temp(glsl_type::float_type);
1622
1623 emit(ir, OPCODE_ADD, dst_reg(accum_reg),
1624 index_reg, *src.reladdr);
1625
1626 index_reg = accum_reg;
1627 }
1628
1629 src.reladdr = ralloc(mem_ctx, src_reg);
1630 memcpy(src.reladdr, &index_reg, sizeof(index_reg));
1631 }
1632
1633 /* If the type is smaller than a vec4, replicate the last channel out. */
1634 if (ir->type->is_scalar() || ir->type->is_vector())
1635 src.swizzle = swizzle_for_size(ir->type->vector_elements);
1636 else
1637 src.swizzle = SWIZZLE_NOOP;
1638
1639 this->result = src;
1640 }
1641
1642 void
1643 ir_to_mesa_visitor::visit(ir_dereference_record *ir)
1644 {
1645 unsigned int i;
1646 const glsl_type *struct_type = ir->record->type;
1647 int offset = 0;
1648
1649 ir->record->accept(this);
1650
1651 for (i = 0; i < struct_type->length; i++) {
1652 if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
1653 break;
1654 offset += type_size(struct_type->fields.structure[i].type);
1655 }
1656
1657 /* If the type is smaller than a vec4, replicate the last channel out. */
1658 if (ir->type->is_scalar() || ir->type->is_vector())
1659 this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
1660 else
1661 this->result.swizzle = SWIZZLE_NOOP;
1662
1663 this->result.index += offset;
1664 }
1665
1666 /**
1667 * We want to be careful in assignment setup to hit the actual storage
1668 * instead of potentially using a temporary like we might with the
1669 * ir_dereference handler.
1670 */
1671 static dst_reg
1672 get_assignment_lhs(ir_dereference *ir, ir_to_mesa_visitor *v)
1673 {
1674 /* The LHS must be a dereference. If the LHS is a variable indexed array
1675 * access of a vector, it must be separated into a series conditional moves
1676 * before reaching this point (see ir_vec_index_to_cond_assign).
1677 */
1678 assert(ir->as_dereference());
1679 ir_dereference_array *deref_array = ir->as_dereference_array();
1680 if (deref_array) {
1681 assert(!deref_array->array->type->is_vector());
1682 }
1683
1684 /* Use the rvalue deref handler for the most part. We'll ignore
1685 * swizzles in it and write swizzles using writemask, though.
1686 */
1687 ir->accept(v);
1688 return dst_reg(v->result);
1689 }
1690
1691 /**
1692 * Process the condition of a conditional assignment
1693 *
1694 * Examines the condition of a conditional assignment to generate the optimal
1695 * first operand of a \c CMP instruction. If the condition is a relational
1696 * operator with 0 (e.g., \c ir_binop_less), the value being compared will be
1697 * used as the source for the \c CMP instruction. Otherwise the comparison
1698 * is processed to a boolean result, and the boolean result is used as the
1699 * operand to the CMP instruction.
1700 */
1701 bool
1702 ir_to_mesa_visitor::process_move_condition(ir_rvalue *ir)
1703 {
1704 ir_rvalue *src_ir = ir;
1705 bool negate = true;
1706 bool switch_order = false;
1707
1708 ir_expression *const expr = ir->as_expression();
1709 if ((expr != NULL) && (expr->get_num_operands() == 2)) {
1710 bool zero_on_left = false;
1711
1712 if (expr->operands[0]->is_zero()) {
1713 src_ir = expr->operands[1];
1714 zero_on_left = true;
1715 } else if (expr->operands[1]->is_zero()) {
1716 src_ir = expr->operands[0];
1717 zero_on_left = false;
1718 }
1719
1720 /* a is - 0 + - 0 +
1721 * (a < 0) T F F ( a < 0) T F F
1722 * (0 < a) F F T (-a < 0) F F T
1723 * (a <= 0) T T F (-a < 0) F F T (swap order of other operands)
1724 * (0 <= a) F T T ( a < 0) T F F (swap order of other operands)
1725 * (a > 0) F F T (-a < 0) F F T
1726 * (0 > a) T F F ( a < 0) T F F
1727 * (a >= 0) F T T ( a < 0) T F F (swap order of other operands)
1728 * (0 >= a) T T F (-a < 0) F F T (swap order of other operands)
1729 *
1730 * Note that exchanging the order of 0 and 'a' in the comparison simply
1731 * means that the value of 'a' should be negated.
1732 */
1733 if (src_ir != ir) {
1734 switch (expr->operation) {
1735 case ir_binop_less:
1736 switch_order = false;
1737 negate = zero_on_left;
1738 break;
1739
1740 case ir_binop_greater:
1741 switch_order = false;
1742 negate = !zero_on_left;
1743 break;
1744
1745 case ir_binop_lequal:
1746 switch_order = true;
1747 negate = !zero_on_left;
1748 break;
1749
1750 case ir_binop_gequal:
1751 switch_order = true;
1752 negate = zero_on_left;
1753 break;
1754
1755 default:
1756 /* This isn't the right kind of comparison afterall, so make sure
1757 * the whole condition is visited.
1758 */
1759 src_ir = ir;
1760 break;
1761 }
1762 }
1763 }
1764
1765 src_ir->accept(this);
1766
1767 /* We use the OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the
1768 * condition we produced is 0.0 or 1.0. By flipping the sign, we can
1769 * choose which value OPCODE_CMP produces without an extra instruction
1770 * computing the condition.
1771 */
1772 if (negate)
1773 this->result.negate = ~this->result.negate;
1774
1775 return switch_order;
1776 }
1777
1778 void
1779 ir_to_mesa_visitor::visit(ir_assignment *ir)
1780 {
1781 dst_reg l;
1782 src_reg r;
1783 int i;
1784
1785 ir->rhs->accept(this);
1786 r = this->result;
1787
1788 l = get_assignment_lhs(ir->lhs, this);
1789
1790 /* FINISHME: This should really set to the correct maximal writemask for each
1791 * FINISHME: component written (in the loops below). This case can only
1792 * FINISHME: occur for matrices, arrays, and structures.
1793 */
1794 if (ir->write_mask == 0) {
1795 assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
1796 l.writemask = WRITEMASK_XYZW;
1797 } else if (ir->lhs->type->is_scalar()) {
1798 /* FINISHME: This hack makes writing to gl_FragDepth, which lives in the
1799 * FINISHME: W component of fragment shader output zero, work correctly.
1800 */
1801 l.writemask = WRITEMASK_XYZW;
1802 } else {
1803 int swizzles[4];
1804 int first_enabled_chan = 0;
1805 int rhs_chan = 0;
1806
1807 assert(ir->lhs->type->is_vector());
1808 l.writemask = ir->write_mask;
1809
1810 for (int i = 0; i < 4; i++) {
1811 if (l.writemask & (1 << i)) {
1812 first_enabled_chan = GET_SWZ(r.swizzle, i);
1813 break;
1814 }
1815 }
1816
1817 /* Swizzle a small RHS vector into the channels being written.
1818 *
1819 * glsl ir treats write_mask as dictating how many channels are
1820 * present on the RHS while Mesa IR treats write_mask as just
1821 * showing which channels of the vec4 RHS get written.
1822 */
1823 for (int i = 0; i < 4; i++) {
1824 if (l.writemask & (1 << i))
1825 swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++);
1826 else
1827 swizzles[i] = first_enabled_chan;
1828 }
1829 r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1],
1830 swizzles[2], swizzles[3]);
1831 }
1832
1833 assert(l.file != PROGRAM_UNDEFINED);
1834 assert(r.file != PROGRAM_UNDEFINED);
1835
1836 if (ir->condition) {
1837 const bool switch_order = this->process_move_condition(ir->condition);
1838 src_reg condition = this->result;
1839
1840 for (i = 0; i < type_size(ir->lhs->type); i++) {
1841 if (switch_order) {
1842 emit(ir, OPCODE_CMP, l, condition, src_reg(l), r);
1843 } else {
1844 emit(ir, OPCODE_CMP, l, condition, r, src_reg(l));
1845 }
1846
1847 l.index++;
1848 r.index++;
1849 }
1850 } else {
1851 for (i = 0; i < type_size(ir->lhs->type); i++) {
1852 emit(ir, OPCODE_MOV, l, r);
1853 l.index++;
1854 r.index++;
1855 }
1856 }
1857 }
1858
1859
1860 void
1861 ir_to_mesa_visitor::visit(ir_constant *ir)
1862 {
1863 src_reg src;
1864 GLfloat stack_vals[4] = { 0 };
1865 GLfloat *values = stack_vals;
1866 unsigned int i;
1867
1868 /* Unfortunately, 4 floats is all we can get into
1869 * _mesa_add_unnamed_constant. So, make a temp to store an
1870 * aggregate constant and move each constant value into it. If we
1871 * get lucky, copy propagation will eliminate the extra moves.
1872 */
1873
1874 if (ir->type->base_type == GLSL_TYPE_STRUCT) {
1875 src_reg temp_base = get_temp(ir->type);
1876 dst_reg temp = dst_reg(temp_base);
1877
1878 foreach_in_list(ir_constant, field_value, &ir->components) {
1879 int size = type_size(field_value->type);
1880
1881 assert(size > 0);
1882
1883 field_value->accept(this);
1884 src = this->result;
1885
1886 for (i = 0; i < (unsigned int)size; i++) {
1887 emit(ir, OPCODE_MOV, temp, src);
1888
1889 src.index++;
1890 temp.index++;
1891 }
1892 }
1893 this->result = temp_base;
1894 return;
1895 }
1896
1897 if (ir->type->is_array()) {
1898 src_reg temp_base = get_temp(ir->type);
1899 dst_reg temp = dst_reg(temp_base);
1900 int size = type_size(ir->type->fields.array);
1901
1902 assert(size > 0);
1903
1904 for (i = 0; i < ir->type->length; i++) {
1905 ir->array_elements[i]->accept(this);
1906 src = this->result;
1907 for (int j = 0; j < size; j++) {
1908 emit(ir, OPCODE_MOV, temp, src);
1909
1910 src.index++;
1911 temp.index++;
1912 }
1913 }
1914 this->result = temp_base;
1915 return;
1916 }
1917
1918 if (ir->type->is_matrix()) {
1919 src_reg mat = get_temp(ir->type);
1920 dst_reg mat_column = dst_reg(mat);
1921
1922 for (i = 0; i < ir->type->matrix_columns; i++) {
1923 assert(ir->type->base_type == GLSL_TYPE_FLOAT);
1924 values = &ir->value.f[i * ir->type->vector_elements];
1925
1926 src = src_reg(PROGRAM_CONSTANT, -1, NULL);
1927 src.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1928 (gl_constant_value *) values,
1929 ir->type->vector_elements,
1930 &src.swizzle);
1931 emit(ir, OPCODE_MOV, mat_column, src);
1932
1933 mat_column.index++;
1934 }
1935
1936 this->result = mat;
1937 return;
1938 }
1939
1940 src.file = PROGRAM_CONSTANT;
1941 switch (ir->type->base_type) {
1942 case GLSL_TYPE_FLOAT:
1943 values = &ir->value.f[0];
1944 break;
1945 case GLSL_TYPE_UINT:
1946 for (i = 0; i < ir->type->vector_elements; i++) {
1947 values[i] = ir->value.u[i];
1948 }
1949 break;
1950 case GLSL_TYPE_INT:
1951 for (i = 0; i < ir->type->vector_elements; i++) {
1952 values[i] = ir->value.i[i];
1953 }
1954 break;
1955 case GLSL_TYPE_BOOL:
1956 for (i = 0; i < ir->type->vector_elements; i++) {
1957 values[i] = ir->value.b[i];
1958 }
1959 break;
1960 default:
1961 assert(!"Non-float/uint/int/bool constant");
1962 }
1963
1964 this->result = src_reg(PROGRAM_CONSTANT, -1, ir->type);
1965 this->result.index = _mesa_add_unnamed_constant(this->prog->Parameters,
1966 (gl_constant_value *) values,
1967 ir->type->vector_elements,
1968 &this->result.swizzle);
1969 }
1970
1971 void
1972 ir_to_mesa_visitor::visit(ir_call *)
1973 {
1974 assert(!"ir_to_mesa: All function calls should have been inlined by now.");
1975 }
1976
1977 void
1978 ir_to_mesa_visitor::visit(ir_texture *ir)
1979 {
1980 src_reg result_src, coord, lod_info, projector, dx, dy;
1981 dst_reg result_dst, coord_dst;
1982 ir_to_mesa_instruction *inst = NULL;
1983 prog_opcode opcode = OPCODE_NOP;
1984
1985 if (ir->op == ir_txs)
1986 this->result = src_reg_for_float(0.0);
1987 else
1988 ir->coordinate->accept(this);
1989
1990 /* Put our coords in a temp. We'll need to modify them for shadow,
1991 * projection, or LOD, so the only case we'd use it as is is if
1992 * we're doing plain old texturing. Mesa IR optimization should
1993 * handle cleaning up our mess in that case.
1994 */
1995 coord = get_temp(glsl_type::vec4_type);
1996 coord_dst = dst_reg(coord);
1997 emit(ir, OPCODE_MOV, coord_dst, this->result);
1998
1999 if (ir->projector) {
2000 ir->projector->accept(this);
2001 projector = this->result;
2002 }
2003
2004 /* Storage for our result. Ideally for an assignment we'd be using
2005 * the actual storage for the result here, instead.
2006 */
2007 result_src = get_temp(glsl_type::vec4_type);
2008 result_dst = dst_reg(result_src);
2009
2010 switch (ir->op) {
2011 case ir_tex:
2012 case ir_txs:
2013 opcode = OPCODE_TEX;
2014 break;
2015 case ir_txb:
2016 opcode = OPCODE_TXB;
2017 ir->lod_info.bias->accept(this);
2018 lod_info = this->result;
2019 break;
2020 case ir_txf:
2021 /* Pretend to be TXL so the sampler, coordinate, lod are available */
2022 case ir_txl:
2023 opcode = OPCODE_TXL;
2024 ir->lod_info.lod->accept(this);
2025 lod_info = this->result;
2026 break;
2027 case ir_txd:
2028 opcode = OPCODE_TXD;
2029 ir->lod_info.grad.dPdx->accept(this);
2030 dx = this->result;
2031 ir->lod_info.grad.dPdy->accept(this);
2032 dy = this->result;
2033 break;
2034 case ir_txf_ms:
2035 assert(!"Unexpected ir_txf_ms opcode");
2036 break;
2037 case ir_lod:
2038 assert(!"Unexpected ir_lod opcode");
2039 break;
2040 case ir_tg4:
2041 assert(!"Unexpected ir_tg4 opcode");
2042 break;
2043 case ir_query_levels:
2044 assert(!"Unexpected ir_query_levels opcode");
2045 break;
2046 }
2047
2048 const glsl_type *sampler_type = ir->sampler->type;
2049
2050 if (ir->projector) {
2051 if (opcode == OPCODE_TEX) {
2052 /* Slot the projector in as the last component of the coord. */
2053 coord_dst.writemask = WRITEMASK_W;
2054 emit(ir, OPCODE_MOV, coord_dst, projector);
2055 coord_dst.writemask = WRITEMASK_XYZW;
2056 opcode = OPCODE_TXP;
2057 } else {
2058 src_reg coord_w = coord;
2059 coord_w.swizzle = SWIZZLE_WWWW;
2060
2061 /* For the other TEX opcodes there's no projective version
2062 * since the last slot is taken up by lod info. Do the
2063 * projective divide now.
2064 */
2065 coord_dst.writemask = WRITEMASK_W;
2066 emit(ir, OPCODE_RCP, coord_dst, projector);
2067
2068 /* In the case where we have to project the coordinates "by hand,"
2069 * the shadow comparitor value must also be projected.
2070 */
2071 src_reg tmp_src = coord;
2072 if (ir->shadow_comparitor) {
2073 /* Slot the shadow value in as the second to last component of the
2074 * coord.
2075 */
2076 ir->shadow_comparitor->accept(this);
2077
2078 tmp_src = get_temp(glsl_type::vec4_type);
2079 dst_reg tmp_dst = dst_reg(tmp_src);
2080
2081 /* Projective division not allowed for array samplers. */
2082 assert(!sampler_type->sampler_array);
2083
2084 tmp_dst.writemask = WRITEMASK_Z;
2085 emit(ir, OPCODE_MOV, tmp_dst, this->result);
2086
2087 tmp_dst.writemask = WRITEMASK_XY;
2088 emit(ir, OPCODE_MOV, tmp_dst, coord);
2089 }
2090
2091 coord_dst.writemask = WRITEMASK_XYZ;
2092 emit(ir, OPCODE_MUL, coord_dst, tmp_src, coord_w);
2093
2094 coord_dst.writemask = WRITEMASK_XYZW;
2095 coord.swizzle = SWIZZLE_XYZW;
2096 }
2097 }
2098
2099 /* If projection is done and the opcode is not OPCODE_TXP, then the shadow
2100 * comparitor was put in the correct place (and projected) by the code,
2101 * above, that handles by-hand projection.
2102 */
2103 if (ir->shadow_comparitor && (!ir->projector || opcode == OPCODE_TXP)) {
2104 /* Slot the shadow value in as the second to last component of the
2105 * coord.
2106 */
2107 ir->shadow_comparitor->accept(this);
2108
2109 /* XXX This will need to be updated for cubemap array samplers. */
2110 if (sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_2D &&
2111 sampler_type->sampler_array) {
2112 coord_dst.writemask = WRITEMASK_W;
2113 } else {
2114 coord_dst.writemask = WRITEMASK_Z;
2115 }
2116
2117 emit(ir, OPCODE_MOV, coord_dst, this->result);
2118 coord_dst.writemask = WRITEMASK_XYZW;
2119 }
2120
2121 if (opcode == OPCODE_TXL || opcode == OPCODE_TXB) {
2122 /* Mesa IR stores lod or lod bias in the last channel of the coords. */
2123 coord_dst.writemask = WRITEMASK_W;
2124 emit(ir, OPCODE_MOV, coord_dst, lod_info);
2125 coord_dst.writemask = WRITEMASK_XYZW;
2126 }
2127
2128 if (opcode == OPCODE_TXD)
2129 inst = emit(ir, opcode, result_dst, coord, dx, dy);
2130 else
2131 inst = emit(ir, opcode, result_dst, coord);
2132
2133 if (ir->shadow_comparitor)
2134 inst->tex_shadow = GL_TRUE;
2135
2136 inst->sampler = _mesa_get_sampler_uniform_value(ir->sampler,
2137 this->shader_program,
2138 this->prog);
2139
2140 switch (sampler_type->sampler_dimensionality) {
2141 case GLSL_SAMPLER_DIM_1D:
2142 inst->tex_target = (sampler_type->sampler_array)
2143 ? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX;
2144 break;
2145 case GLSL_SAMPLER_DIM_2D:
2146 inst->tex_target = (sampler_type->sampler_array)
2147 ? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX;
2148 break;
2149 case GLSL_SAMPLER_DIM_3D:
2150 inst->tex_target = TEXTURE_3D_INDEX;
2151 break;
2152 case GLSL_SAMPLER_DIM_CUBE:
2153 inst->tex_target = TEXTURE_CUBE_INDEX;
2154 break;
2155 case GLSL_SAMPLER_DIM_RECT:
2156 inst->tex_target = TEXTURE_RECT_INDEX;
2157 break;
2158 case GLSL_SAMPLER_DIM_BUF:
2159 assert(!"FINISHME: Implement ARB_texture_buffer_object");
2160 break;
2161 case GLSL_SAMPLER_DIM_EXTERNAL:
2162 inst->tex_target = TEXTURE_EXTERNAL_INDEX;
2163 break;
2164 default:
2165 assert(!"Should not get here.");
2166 }
2167
2168 this->result = result_src;
2169 }
2170
2171 void
2172 ir_to_mesa_visitor::visit(ir_return *ir)
2173 {
2174 /* Non-void functions should have been inlined. We may still emit RETs
2175 * from main() unless the EmitNoMainReturn option is set.
2176 */
2177 assert(!ir->get_value());
2178 emit(ir, OPCODE_RET);
2179 }
2180
2181 void
2182 ir_to_mesa_visitor::visit(ir_discard *ir)
2183 {
2184 if (ir->condition) {
2185 ir->condition->accept(this);
2186 this->result.negate = ~this->result.negate;
2187 emit(ir, OPCODE_KIL, undef_dst, this->result);
2188 } else {
2189 emit(ir, OPCODE_KIL_NV);
2190 }
2191 }
2192
2193 void
2194 ir_to_mesa_visitor::visit(ir_if *ir)
2195 {
2196 ir_to_mesa_instruction *cond_inst, *if_inst;
2197 ir_to_mesa_instruction *prev_inst;
2198
2199 prev_inst = (ir_to_mesa_instruction *)this->instructions.get_tail();
2200
2201 ir->condition->accept(this);
2202 assert(this->result.file != PROGRAM_UNDEFINED);
2203
2204 if (this->options->EmitCondCodes) {
2205 cond_inst = (ir_to_mesa_instruction *)this->instructions.get_tail();
2206
2207 /* See if we actually generated any instruction for generating
2208 * the condition. If not, then cook up a move to a temp so we
2209 * have something to set cond_update on.
2210 */
2211 if (cond_inst == prev_inst) {
2212 src_reg temp = get_temp(glsl_type::bool_type);
2213 cond_inst = emit(ir->condition, OPCODE_MOV, dst_reg(temp), result);
2214 }
2215 cond_inst->cond_update = GL_TRUE;
2216
2217 if_inst = emit(ir->condition, OPCODE_IF);
2218 if_inst->dst.cond_mask = COND_NE;
2219 } else {
2220 if_inst = emit(ir->condition, OPCODE_IF, undef_dst, this->result);
2221 }
2222
2223 this->instructions.push_tail(if_inst);
2224
2225 visit_exec_list(&ir->then_instructions, this);
2226
2227 if (!ir->else_instructions.is_empty()) {
2228 emit(ir->condition, OPCODE_ELSE);
2229 visit_exec_list(&ir->else_instructions, this);
2230 }
2231
2232 emit(ir->condition, OPCODE_ENDIF);
2233 }
2234
2235 void
2236 ir_to_mesa_visitor::visit(ir_emit_vertex *)
2237 {
2238 assert(!"Geometry shaders not supported.");
2239 }
2240
2241 void
2242 ir_to_mesa_visitor::visit(ir_end_primitive *)
2243 {
2244 assert(!"Geometry shaders not supported.");
2245 }
2246
2247 ir_to_mesa_visitor::ir_to_mesa_visitor()
2248 {
2249 result.file = PROGRAM_UNDEFINED;
2250 next_temp = 1;
2251 next_signature_id = 1;
2252 current_function = NULL;
2253 mem_ctx = ralloc_context(NULL);
2254 }
2255
2256 ir_to_mesa_visitor::~ir_to_mesa_visitor()
2257 {
2258 ralloc_free(mem_ctx);
2259 }
2260
2261 static struct prog_src_register
2262 mesa_src_reg_from_ir_src_reg(src_reg reg)
2263 {
2264 struct prog_src_register mesa_reg;
2265
2266 mesa_reg.File = reg.file;
2267 assert(reg.index < (1 << INST_INDEX_BITS));
2268 mesa_reg.Index = reg.index;
2269 mesa_reg.Swizzle = reg.swizzle;
2270 mesa_reg.RelAddr = reg.reladdr != NULL;
2271 mesa_reg.Negate = reg.negate;
2272 mesa_reg.Abs = 0;
2273 mesa_reg.HasIndex2 = GL_FALSE;
2274 mesa_reg.RelAddr2 = 0;
2275 mesa_reg.Index2 = 0;
2276
2277 return mesa_reg;
2278 }
2279
2280 static void
2281 set_branchtargets(ir_to_mesa_visitor *v,
2282 struct prog_instruction *mesa_instructions,
2283 int num_instructions)
2284 {
2285 int if_count = 0, loop_count = 0;
2286 int *if_stack, *loop_stack;
2287 int if_stack_pos = 0, loop_stack_pos = 0;
2288 int i, j;
2289
2290 for (i = 0; i < num_instructions; i++) {
2291 switch (mesa_instructions[i].Opcode) {
2292 case OPCODE_IF:
2293 if_count++;
2294 break;
2295 case OPCODE_BGNLOOP:
2296 loop_count++;
2297 break;
2298 case OPCODE_BRK:
2299 case OPCODE_CONT:
2300 mesa_instructions[i].BranchTarget = -1;
2301 break;
2302 default:
2303 break;
2304 }
2305 }
2306
2307 if_stack = rzalloc_array(v->mem_ctx, int, if_count);
2308 loop_stack = rzalloc_array(v->mem_ctx, int, loop_count);
2309
2310 for (i = 0; i < num_instructions; i++) {
2311 switch (mesa_instructions[i].Opcode) {
2312 case OPCODE_IF:
2313 if_stack[if_stack_pos] = i;
2314 if_stack_pos++;
2315 break;
2316 case OPCODE_ELSE:
2317 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2318 if_stack[if_stack_pos - 1] = i;
2319 break;
2320 case OPCODE_ENDIF:
2321 mesa_instructions[if_stack[if_stack_pos - 1]].BranchTarget = i;
2322 if_stack_pos--;
2323 break;
2324 case OPCODE_BGNLOOP:
2325 loop_stack[loop_stack_pos] = i;
2326 loop_stack_pos++;
2327 break;
2328 case OPCODE_ENDLOOP:
2329 loop_stack_pos--;
2330 /* Rewrite any breaks/conts at this nesting level (haven't
2331 * already had a BranchTarget assigned) to point to the end
2332 * of the loop.
2333 */
2334 for (j = loop_stack[loop_stack_pos]; j < i; j++) {
2335 if (mesa_instructions[j].Opcode == OPCODE_BRK ||
2336 mesa_instructions[j].Opcode == OPCODE_CONT) {
2337 if (mesa_instructions[j].BranchTarget == -1) {
2338 mesa_instructions[j].BranchTarget = i;
2339 }
2340 }
2341 }
2342 /* The loop ends point at each other. */
2343 mesa_instructions[i].BranchTarget = loop_stack[loop_stack_pos];
2344 mesa_instructions[loop_stack[loop_stack_pos]].BranchTarget = i;
2345 break;
2346 case OPCODE_CAL:
2347 foreach_in_list(function_entry, entry, &v->function_signatures) {
2348 if (entry->sig_id == mesa_instructions[i].BranchTarget) {
2349 mesa_instructions[i].BranchTarget = entry->inst;
2350 break;
2351 }
2352 }
2353 break;
2354 default:
2355 break;
2356 }
2357 }
2358 }
2359
2360 static void
2361 print_program(struct prog_instruction *mesa_instructions,
2362 ir_instruction **mesa_instruction_annotation,
2363 int num_instructions)
2364 {
2365 ir_instruction *last_ir = NULL;
2366 int i;
2367 int indent = 0;
2368
2369 for (i = 0; i < num_instructions; i++) {
2370 struct prog_instruction *mesa_inst = mesa_instructions + i;
2371 ir_instruction *ir = mesa_instruction_annotation[i];
2372
2373 fprintf(stdout, "%3d: ", i);
2374
2375 if (last_ir != ir && ir) {
2376 int j;
2377
2378 for (j = 0; j < indent; j++) {
2379 fprintf(stdout, " ");
2380 }
2381 ir->print();
2382 printf("\n");
2383 last_ir = ir;
2384
2385 fprintf(stdout, " "); /* line number spacing. */
2386 }
2387
2388 indent = _mesa_fprint_instruction_opt(stdout, mesa_inst, indent,
2389 PROG_PRINT_DEBUG, NULL);
2390 }
2391 }
2392
2393 namespace {
2394
2395 class add_uniform_to_shader : public program_resource_visitor {
2396 public:
2397 add_uniform_to_shader(struct gl_shader_program *shader_program,
2398 struct gl_program_parameter_list *params,
2399 gl_shader_stage shader_type)
2400 : shader_program(shader_program), params(params), idx(-1),
2401 shader_type(shader_type)
2402 {
2403 /* empty */
2404 }
2405
2406 void process(ir_variable *var)
2407 {
2408 this->idx = -1;
2409 this->program_resource_visitor::process(var);
2410
2411 var->data.location = this->idx;
2412 }
2413
2414 private:
2415 virtual void visit_field(const glsl_type *type, const char *name,
2416 bool row_major);
2417
2418 struct gl_shader_program *shader_program;
2419 struct gl_program_parameter_list *params;
2420 int idx;
2421 gl_shader_stage shader_type;
2422 };
2423
2424 } /* anonymous namespace */
2425
2426 void
2427 add_uniform_to_shader::visit_field(const glsl_type *type, const char *name,
2428 bool row_major)
2429 {
2430 unsigned int size;
2431
2432 (void) row_major;
2433
2434 if (type->is_vector() || type->is_scalar()) {
2435 size = type->vector_elements;
2436 } else {
2437 size = type_size(type) * 4;
2438 }
2439
2440 gl_register_file file;
2441 if (type->without_array()->is_sampler()) {
2442 file = PROGRAM_SAMPLER;
2443 } else {
2444 file = PROGRAM_UNIFORM;
2445 }
2446
2447 int index = _mesa_lookup_parameter_index(params, -1, name);
2448 if (index < 0) {
2449 index = _mesa_add_parameter(params, file, name, size, type->gl_type,
2450 NULL, NULL);
2451
2452 /* Sampler uniform values are stored in prog->SamplerUnits,
2453 * and the entry in that array is selected by this index we
2454 * store in ParameterValues[].
2455 */
2456 if (file == PROGRAM_SAMPLER) {
2457 unsigned location;
2458 const bool found =
2459 this->shader_program->UniformHash->get(location,
2460 params->Parameters[index].Name);
2461 assert(found);
2462
2463 if (!found)
2464 return;
2465
2466 struct gl_uniform_storage *storage =
2467 &this->shader_program->UniformStorage[location];
2468
2469 assert(storage->sampler[shader_type].active);
2470
2471 for (unsigned int j = 0; j < size / 4; j++)
2472 params->ParameterValues[index + j][0].f =
2473 storage->sampler[shader_type].index + j;
2474 }
2475 }
2476
2477 /* The first part of the uniform that's processed determines the base
2478 * location of the whole uniform (for structures).
2479 */
2480 if (this->idx < 0)
2481 this->idx = index;
2482 }
2483
2484 /**
2485 * Generate the program parameters list for the user uniforms in a shader
2486 *
2487 * \param shader_program Linked shader program. This is only used to
2488 * emit possible link errors to the info log.
2489 * \param sh Shader whose uniforms are to be processed.
2490 * \param params Parameter list to be filled in.
2491 */
2492 void
2493 _mesa_generate_parameters_list_for_uniforms(struct gl_shader_program
2494 *shader_program,
2495 struct gl_shader *sh,
2496 struct gl_program_parameter_list
2497 *params)
2498 {
2499 add_uniform_to_shader add(shader_program, params, sh->Stage);
2500
2501 foreach_in_list(ir_instruction, node, sh->ir) {
2502 ir_variable *var = node->as_variable();
2503
2504 if ((var == NULL) || (var->data.mode != ir_var_uniform)
2505 || var->is_in_uniform_block() || (strncmp(var->name, "gl_", 3) == 0))
2506 continue;
2507
2508 add.process(var);
2509 }
2510 }
2511
2512 void
2513 _mesa_associate_uniform_storage(struct gl_context *ctx,
2514 struct gl_shader_program *shader_program,
2515 struct gl_program_parameter_list *params)
2516 {
2517 /* After adding each uniform to the parameter list, connect the storage for
2518 * the parameter with the tracking structure used by the API for the
2519 * uniform.
2520 */
2521 unsigned last_location = unsigned(~0);
2522 for (unsigned i = 0; i < params->NumParameters; i++) {
2523 if (params->Parameters[i].Type != PROGRAM_UNIFORM)
2524 continue;
2525
2526 unsigned location;
2527 const bool found =
2528 shader_program->UniformHash->get(location, params->Parameters[i].Name);
2529 assert(found);
2530
2531 if (!found)
2532 continue;
2533
2534 if (location != last_location) {
2535 struct gl_uniform_storage *storage =
2536 &shader_program->UniformStorage[location];
2537 enum gl_uniform_driver_format format = uniform_native;
2538
2539 unsigned columns = 0;
2540 switch (storage->type->base_type) {
2541 case GLSL_TYPE_UINT:
2542 assert(ctx->Const.NativeIntegers);
2543 format = uniform_native;
2544 columns = 1;
2545 break;
2546 case GLSL_TYPE_INT:
2547 format =
2548 (ctx->Const.NativeIntegers) ? uniform_native : uniform_int_float;
2549 columns = 1;
2550 break;
2551 case GLSL_TYPE_FLOAT:
2552 format = uniform_native;
2553 columns = storage->type->matrix_columns;
2554 break;
2555 case GLSL_TYPE_BOOL:
2556 if (ctx->Const.NativeIntegers) {
2557 format = (ctx->Const.UniformBooleanTrue == 1)
2558 ? uniform_bool_int_0_1 : uniform_bool_int_0_not0;
2559 } else {
2560 format = uniform_bool_float;
2561 }
2562 columns = 1;
2563 break;
2564 case GLSL_TYPE_SAMPLER:
2565 case GLSL_TYPE_IMAGE:
2566 format = uniform_native;
2567 columns = 1;
2568 break;
2569 case GLSL_TYPE_ATOMIC_UINT:
2570 case GLSL_TYPE_ARRAY:
2571 case GLSL_TYPE_VOID:
2572 case GLSL_TYPE_STRUCT:
2573 case GLSL_TYPE_ERROR:
2574 case GLSL_TYPE_INTERFACE:
2575 assert(!"Should not get here.");
2576 break;
2577 }
2578
2579 _mesa_uniform_attach_driver_storage(storage,
2580 4 * sizeof(float) * columns,
2581 4 * sizeof(float),
2582 format,
2583 &params->ParameterValues[i]);
2584
2585 /* After attaching the driver's storage to the uniform, propagate any
2586 * data from the linker's backing store. This will cause values from
2587 * initializers in the source code to be copied over.
2588 */
2589 _mesa_propagate_uniforms_to_driver_storage(storage,
2590 0,
2591 MAX2(1, storage->array_elements));
2592
2593 last_location = location;
2594 }
2595 }
2596 }
2597
2598 /*
2599 * On a basic block basis, tracks available PROGRAM_TEMPORARY register
2600 * channels for copy propagation and updates following instructions to
2601 * use the original versions.
2602 *
2603 * The ir_to_mesa_visitor lazily produces code assuming that this pass
2604 * will occur. As an example, a TXP production before this pass:
2605 *
2606 * 0: MOV TEMP[1], INPUT[4].xyyy;
2607 * 1: MOV TEMP[1].w, INPUT[4].wwww;
2608 * 2: TXP TEMP[2], TEMP[1], texture[0], 2D;
2609 *
2610 * and after:
2611 *
2612 * 0: MOV TEMP[1], INPUT[4].xyyy;
2613 * 1: MOV TEMP[1].w, INPUT[4].wwww;
2614 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
2615 *
2616 * which allows for dead code elimination on TEMP[1]'s writes.
2617 */
2618 void
2619 ir_to_mesa_visitor::copy_propagate(void)
2620 {
2621 ir_to_mesa_instruction **acp = rzalloc_array(mem_ctx,
2622 ir_to_mesa_instruction *,
2623 this->next_temp * 4);
2624 int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
2625 int level = 0;
2626
2627 foreach_in_list(ir_to_mesa_instruction, inst, &this->instructions) {
2628 assert(inst->dst.file != PROGRAM_TEMPORARY
2629 || inst->dst.index < this->next_temp);
2630
2631 /* First, do any copy propagation possible into the src regs. */
2632 for (int r = 0; r < 3; r++) {
2633 ir_to_mesa_instruction *first = NULL;
2634 bool good = true;
2635 int acp_base = inst->src[r].index * 4;
2636
2637 if (inst->src[r].file != PROGRAM_TEMPORARY ||
2638 inst->src[r].reladdr)
2639 continue;
2640
2641 /* See if we can find entries in the ACP consisting of MOVs
2642 * from the same src register for all the swizzled channels
2643 * of this src register reference.
2644 */
2645 for (int i = 0; i < 4; i++) {
2646 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2647 ir_to_mesa_instruction *copy_chan = acp[acp_base + src_chan];
2648
2649 if (!copy_chan) {
2650 good = false;
2651 break;
2652 }
2653
2654 assert(acp_level[acp_base + src_chan] <= level);
2655
2656 if (!first) {
2657 first = copy_chan;
2658 } else {
2659 if (first->src[0].file != copy_chan->src[0].file ||
2660 first->src[0].index != copy_chan->src[0].index) {
2661 good = false;
2662 break;
2663 }
2664 }
2665 }
2666
2667 if (good) {
2668 /* We've now validated that we can copy-propagate to
2669 * replace this src register reference. Do it.
2670 */
2671 inst->src[r].file = first->src[0].file;
2672 inst->src[r].index = first->src[0].index;
2673
2674 int swizzle = 0;
2675 for (int i = 0; i < 4; i++) {
2676 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
2677 ir_to_mesa_instruction *copy_inst = acp[acp_base + src_chan];
2678 swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) <<
2679 (3 * i));
2680 }
2681 inst->src[r].swizzle = swizzle;
2682 }
2683 }
2684
2685 switch (inst->op) {
2686 case OPCODE_BGNLOOP:
2687 case OPCODE_ENDLOOP:
2688 /* End of a basic block, clear the ACP entirely. */
2689 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2690 break;
2691
2692 case OPCODE_IF:
2693 ++level;
2694 break;
2695
2696 case OPCODE_ENDIF:
2697 case OPCODE_ELSE:
2698 /* Clear all channels written inside the block from the ACP, but
2699 * leaving those that were not touched.
2700 */
2701 for (int r = 0; r < this->next_temp; r++) {
2702 for (int c = 0; c < 4; c++) {
2703 if (!acp[4 * r + c])
2704 continue;
2705
2706 if (acp_level[4 * r + c] >= level)
2707 acp[4 * r + c] = NULL;
2708 }
2709 }
2710 if (inst->op == OPCODE_ENDIF)
2711 --level;
2712 break;
2713
2714 default:
2715 /* Continuing the block, clear any written channels from
2716 * the ACP.
2717 */
2718 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.reladdr) {
2719 /* Any temporary might be written, so no copy propagation
2720 * across this instruction.
2721 */
2722 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
2723 } else if (inst->dst.file == PROGRAM_OUTPUT &&
2724 inst->dst.reladdr) {
2725 /* Any output might be written, so no copy propagation
2726 * from outputs across this instruction.
2727 */
2728 for (int r = 0; r < this->next_temp; r++) {
2729 for (int c = 0; c < 4; c++) {
2730 if (!acp[4 * r + c])
2731 continue;
2732
2733 if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT)
2734 acp[4 * r + c] = NULL;
2735 }
2736 }
2737 } else if (inst->dst.file == PROGRAM_TEMPORARY ||
2738 inst->dst.file == PROGRAM_OUTPUT) {
2739 /* Clear where it's used as dst. */
2740 if (inst->dst.file == PROGRAM_TEMPORARY) {
2741 for (int c = 0; c < 4; c++) {
2742 if (inst->dst.writemask & (1 << c)) {
2743 acp[4 * inst->dst.index + c] = NULL;
2744 }
2745 }
2746 }
2747
2748 /* Clear where it's used as src. */
2749 for (int r = 0; r < this->next_temp; r++) {
2750 for (int c = 0; c < 4; c++) {
2751 if (!acp[4 * r + c])
2752 continue;
2753
2754 int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c);
2755
2756 if (acp[4 * r + c]->src[0].file == inst->dst.file &&
2757 acp[4 * r + c]->src[0].index == inst->dst.index &&
2758 inst->dst.writemask & (1 << src_chan))
2759 {
2760 acp[4 * r + c] = NULL;
2761 }
2762 }
2763 }
2764 }
2765 break;
2766 }
2767
2768 /* If this is a copy, add it to the ACP. */
2769 if (inst->op == OPCODE_MOV &&
2770 inst->dst.file == PROGRAM_TEMPORARY &&
2771 !(inst->dst.file == inst->src[0].file &&
2772 inst->dst.index == inst->src[0].index) &&
2773 !inst->dst.reladdr &&
2774 !inst->saturate &&
2775 !inst->src[0].reladdr &&
2776 !inst->src[0].negate) {
2777 for (int i = 0; i < 4; i++) {
2778 if (inst->dst.writemask & (1 << i)) {
2779 acp[4 * inst->dst.index + i] = inst;
2780 acp_level[4 * inst->dst.index + i] = level;
2781 }
2782 }
2783 }
2784 }
2785
2786 ralloc_free(acp_level);
2787 ralloc_free(acp);
2788 }
2789
2790
2791 /**
2792 * Convert a shader's GLSL IR into a Mesa gl_program.
2793 */
2794 static struct gl_program *
2795 get_mesa_program(struct gl_context *ctx,
2796 struct gl_shader_program *shader_program,
2797 struct gl_shader *shader)
2798 {
2799 ir_to_mesa_visitor v;
2800 struct prog_instruction *mesa_instructions, *mesa_inst;
2801 ir_instruction **mesa_instruction_annotation;
2802 int i;
2803 struct gl_program *prog;
2804 GLenum target = _mesa_shader_stage_to_program(shader->Stage);
2805 const char *target_string = _mesa_shader_stage_to_string(shader->Stage);
2806 struct gl_shader_compiler_options *options =
2807 &ctx->Const.ShaderCompilerOptions[shader->Stage];
2808
2809 validate_ir_tree(shader->ir);
2810
2811 prog = ctx->Driver.NewProgram(ctx, target, shader_program->Name);
2812 if (!prog)
2813 return NULL;
2814 prog->Parameters = _mesa_new_parameter_list();
2815 v.ctx = ctx;
2816 v.prog = prog;
2817 v.shader_program = shader_program;
2818 v.options = options;
2819
2820 _mesa_generate_parameters_list_for_uniforms(shader_program, shader,
2821 prog->Parameters);
2822
2823 /* Emit Mesa IR for main(). */
2824 visit_exec_list(shader->ir, &v);
2825 v.emit(NULL, OPCODE_END);
2826
2827 prog->NumTemporaries = v.next_temp;
2828
2829 unsigned num_instructions = v.instructions.length();
2830
2831 mesa_instructions =
2832 (struct prog_instruction *)calloc(num_instructions,
2833 sizeof(*mesa_instructions));
2834 mesa_instruction_annotation = ralloc_array(v.mem_ctx, ir_instruction *,
2835 num_instructions);
2836
2837 v.copy_propagate();
2838
2839 /* Convert ir_mesa_instructions into prog_instructions.
2840 */
2841 mesa_inst = mesa_instructions;
2842 i = 0;
2843 foreach_in_list(const ir_to_mesa_instruction, inst, &v.instructions) {
2844 mesa_inst->Opcode = inst->op;
2845 mesa_inst->CondUpdate = inst->cond_update;
2846 if (inst->saturate)
2847 mesa_inst->SaturateMode = SATURATE_ZERO_ONE;
2848 mesa_inst->DstReg.File = inst->dst.file;
2849 mesa_inst->DstReg.Index = inst->dst.index;
2850 mesa_inst->DstReg.CondMask = inst->dst.cond_mask;
2851 mesa_inst->DstReg.WriteMask = inst->dst.writemask;
2852 mesa_inst->DstReg.RelAddr = inst->dst.reladdr != NULL;
2853 mesa_inst->SrcReg[0] = mesa_src_reg_from_ir_src_reg(inst->src[0]);
2854 mesa_inst->SrcReg[1] = mesa_src_reg_from_ir_src_reg(inst->src[1]);
2855 mesa_inst->SrcReg[2] = mesa_src_reg_from_ir_src_reg(inst->src[2]);
2856 mesa_inst->TexSrcUnit = inst->sampler;
2857 mesa_inst->TexSrcTarget = inst->tex_target;
2858 mesa_inst->TexShadow = inst->tex_shadow;
2859 mesa_instruction_annotation[i] = inst->ir;
2860
2861 /* Set IndirectRegisterFiles. */
2862 if (mesa_inst->DstReg.RelAddr)
2863 prog->IndirectRegisterFiles |= 1 << mesa_inst->DstReg.File;
2864
2865 /* Update program's bitmask of indirectly accessed register files */
2866 for (unsigned src = 0; src < 3; src++)
2867 if (mesa_inst->SrcReg[src].RelAddr)
2868 prog->IndirectRegisterFiles |= 1 << mesa_inst->SrcReg[src].File;
2869
2870 switch (mesa_inst->Opcode) {
2871 case OPCODE_IF:
2872 if (options->MaxIfDepth == 0) {
2873 linker_warning(shader_program,
2874 "Couldn't flatten if-statement. "
2875 "This will likely result in software "
2876 "rasterization.\n");
2877 }
2878 break;
2879 case OPCODE_BGNLOOP:
2880 if (options->EmitNoLoops) {
2881 linker_warning(shader_program,
2882 "Couldn't unroll loop. "
2883 "This will likely result in software "
2884 "rasterization.\n");
2885 }
2886 break;
2887 case OPCODE_CONT:
2888 if (options->EmitNoCont) {
2889 linker_warning(shader_program,
2890 "Couldn't lower continue-statement. "
2891 "This will likely result in software "
2892 "rasterization.\n");
2893 }
2894 break;
2895 case OPCODE_ARL:
2896 prog->NumAddressRegs = 1;
2897 break;
2898 default:
2899 break;
2900 }
2901
2902 mesa_inst++;
2903 i++;
2904
2905 if (!shader_program->LinkStatus)
2906 break;
2907 }
2908
2909 if (!shader_program->LinkStatus) {
2910 goto fail_exit;
2911 }
2912
2913 set_branchtargets(&v, mesa_instructions, num_instructions);
2914
2915 if (ctx->_Shader->Flags & GLSL_DUMP) {
2916 fprintf(stderr, "\n");
2917 fprintf(stderr, "GLSL IR for linked %s program %d:\n", target_string,
2918 shader_program->Name);
2919 _mesa_print_ir(stderr, shader->ir, NULL);
2920 fprintf(stderr, "\n");
2921 fprintf(stderr, "\n");
2922 fprintf(stderr, "Mesa IR for linked %s program %d:\n", target_string,
2923 shader_program->Name);
2924 print_program(mesa_instructions, mesa_instruction_annotation,
2925 num_instructions);
2926 fflush(stderr);
2927 }
2928
2929 prog->Instructions = mesa_instructions;
2930 prog->NumInstructions = num_instructions;
2931
2932 /* Setting this to NULL prevents a possible double free in the fail_exit
2933 * path (far below).
2934 */
2935 mesa_instructions = NULL;
2936
2937 do_set_program_inouts(shader->ir, prog, shader->Stage);
2938
2939 prog->SamplersUsed = shader->active_samplers;
2940 prog->ShadowSamplers = shader->shadow_samplers;
2941 _mesa_update_shader_textures_used(shader_program, prog);
2942
2943 /* Set the gl_FragDepth layout. */
2944 if (target == GL_FRAGMENT_PROGRAM_ARB) {
2945 struct gl_fragment_program *fp = (struct gl_fragment_program *)prog;
2946 fp->FragDepthLayout = shader_program->FragDepthLayout;
2947 }
2948
2949 _mesa_reference_program(ctx, &shader->Program, prog);
2950
2951 if ((ctx->_Shader->Flags & GLSL_NO_OPT) == 0) {
2952 _mesa_optimize_program(ctx, prog);
2953 }
2954
2955 /* This has to be done last. Any operation that can cause
2956 * prog->ParameterValues to get reallocated (e.g., anything that adds a
2957 * program constant) has to happen before creating this linkage.
2958 */
2959 _mesa_associate_uniform_storage(ctx, shader_program, prog->Parameters);
2960 if (!shader_program->LinkStatus) {
2961 goto fail_exit;
2962 }
2963
2964 return prog;
2965
2966 fail_exit:
2967 free(mesa_instructions);
2968 _mesa_reference_program(ctx, &shader->Program, NULL);
2969 return NULL;
2970 }
2971
2972 extern "C" {
2973
2974 /**
2975 * Link a shader.
2976 * Called via ctx->Driver.LinkShader()
2977 * This actually involves converting GLSL IR into Mesa gl_programs with
2978 * code lowering and other optimizations.
2979 */
2980 GLboolean
2981 _mesa_ir_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
2982 {
2983 assert(prog->LinkStatus);
2984
2985 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
2986 if (prog->_LinkedShaders[i] == NULL)
2987 continue;
2988
2989 bool progress;
2990 exec_list *ir = prog->_LinkedShaders[i]->ir;
2991 const struct gl_shader_compiler_options *options =
2992 &ctx->Const.ShaderCompilerOptions[prog->_LinkedShaders[i]->Stage];
2993
2994 do {
2995 progress = false;
2996
2997 /* Lowering */
2998 do_mat_op_to_vec(ir);
2999 GLenum target = _mesa_shader_stage_to_program(prog->_LinkedShaders[i]->Stage);
3000 lower_instructions(ir, (MOD_TO_FRACT | DIV_TO_MUL_RCP | EXP_TO_EXP2
3001 | LOG_TO_LOG2 | INT_DIV_TO_MUL_RCP
3002 | ((options->EmitNoPow) ? POW_TO_EXP2 : 0)
3003 | ((target == GL_VERTEX_PROGRAM_ARB) ? SAT_TO_CLAMP
3004 : 0)));
3005
3006 progress = do_lower_jumps(ir, true, true, options->EmitNoMainReturn, options->EmitNoCont, options->EmitNoLoops) || progress;
3007
3008 progress = do_common_optimization(ir, true, true,
3009 options, ctx->Const.NativeIntegers)
3010 || progress;
3011
3012 progress = lower_quadop_vector(ir, true) || progress;
3013
3014 if (options->MaxIfDepth == 0)
3015 progress = lower_discard(ir) || progress;
3016
3017 progress = lower_if_to_cond_assign(ir, options->MaxIfDepth) || progress;
3018
3019 if (options->EmitNoNoise)
3020 progress = lower_noise(ir) || progress;
3021
3022 /* If there are forms of indirect addressing that the driver
3023 * cannot handle, perform the lowering pass.
3024 */
3025 if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput
3026 || options->EmitNoIndirectTemp || options->EmitNoIndirectUniform)
3027 progress =
3028 lower_variable_index_to_cond_assign(ir,
3029 options->EmitNoIndirectInput,
3030 options->EmitNoIndirectOutput,
3031 options->EmitNoIndirectTemp,
3032 options->EmitNoIndirectUniform)
3033 || progress;
3034
3035 progress = do_vec_index_to_cond_assign(ir) || progress;
3036 progress = lower_vector_insert(ir, true) || progress;
3037 } while (progress);
3038
3039 validate_ir_tree(ir);
3040 }
3041
3042 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
3043 struct gl_program *linked_prog;
3044
3045 if (prog->_LinkedShaders[i] == NULL)
3046 continue;
3047
3048 linked_prog = get_mesa_program(ctx, prog, prog->_LinkedShaders[i]);
3049
3050 if (linked_prog) {
3051 _mesa_copy_linked_program_data((gl_shader_stage) i, prog, linked_prog);
3052
3053 _mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program,
3054 linked_prog);
3055 if (!ctx->Driver.ProgramStringNotify(ctx,
3056 _mesa_shader_stage_to_program(i),
3057 linked_prog)) {
3058 return GL_FALSE;
3059 }
3060 }
3061
3062 _mesa_reference_program(ctx, &linked_prog, NULL);
3063 }
3064
3065 return prog->LinkStatus;
3066 }
3067
3068 /**
3069 * Link a GLSL shader program. Called via glLinkProgram().
3070 */
3071 void
3072 _mesa_glsl_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
3073 {
3074 unsigned int i;
3075
3076 _mesa_clear_shader_program_data(ctx, prog);
3077
3078 prog->LinkStatus = GL_TRUE;
3079
3080 for (i = 0; i < prog->NumShaders; i++) {
3081 if (!prog->Shaders[i]->CompileStatus) {
3082 linker_error(prog, "linking with uncompiled shader");
3083 }
3084 }
3085
3086 if (prog->LinkStatus) {
3087 link_shaders(ctx, prog);
3088 }
3089
3090 if (prog->LinkStatus) {
3091 if (!ctx->Driver.LinkShader(ctx, prog)) {
3092 prog->LinkStatus = GL_FALSE;
3093 }
3094 }
3095
3096 if (ctx->_Shader->Flags & GLSL_DUMP) {
3097 if (!prog->LinkStatus) {
3098 fprintf(stderr, "GLSL shader program %d failed to link\n", prog->Name);
3099 }
3100
3101 if (prog->InfoLog && prog->InfoLog[0] != 0) {
3102 fprintf(stderr, "GLSL shader program %d info log:\n", prog->Name);
3103 fprintf(stderr, "%s\n", prog->InfoLog);
3104 }
3105 }
3106 }
3107
3108 } /* extern "C" */