glsl: Optionally lower TCS gl_PatchVerticesIn to a uniform.
[mesa.git] / src / mesa / program / prog_statevars.c
1 /*
2 * Mesa 3-D graphics library
3 *
4 * Copyright (C) 1999-2007 Brian Paul All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included
14 * in all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
17 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25 /**
26 * \file prog_statevars.c
27 * Program state variable management.
28 * \author Brian Paul
29 */
30
31
32 #include <stdio.h>
33 #include "main/glheader.h"
34 #include "main/context.h"
35 #include "main/blend.h"
36 #include "main/imports.h"
37 #include "main/macros.h"
38 #include "main/mtypes.h"
39 #include "main/fbobject.h"
40 #include "prog_statevars.h"
41 #include "prog_parameter.h"
42 #include "main/samplerobj.h"
43 #include "main/framebuffer.h"
44
45
46 #define ONE_DIV_SQRT_LN2 (1.201122408786449815)
47
48
49 /**
50 * Use the list of tokens in the state[] array to find global GL state
51 * and return it in <value>. Usually, four values are returned in <value>
52 * but matrix queries may return as many as 16 values.
53 * This function is used for ARB vertex/fragment programs.
54 * The program parser will produce the state[] values.
55 */
56 static void
57 _mesa_fetch_state(struct gl_context *ctx, const gl_state_index state[],
58 gl_constant_value *val)
59 {
60 GLfloat *value = &val->f;
61
62 switch (state[0]) {
63 case STATE_MATERIAL:
64 {
65 /* state[1] is either 0=front or 1=back side */
66 const GLuint face = (GLuint) state[1];
67 const struct gl_material *mat = &ctx->Light.Material;
68 assert(face == 0 || face == 1);
69 /* we rely on tokens numbered so that _BACK_ == _FRONT_+ 1 */
70 assert(MAT_ATTRIB_FRONT_AMBIENT + 1 == MAT_ATTRIB_BACK_AMBIENT);
71 /* XXX we could get rid of this switch entirely with a little
72 * work in arbprogparse.c's parse_state_single_item().
73 */
74 /* state[2] is the material attribute */
75 switch (state[2]) {
76 case STATE_AMBIENT:
77 COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_AMBIENT + face]);
78 return;
79 case STATE_DIFFUSE:
80 COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_DIFFUSE + face]);
81 return;
82 case STATE_SPECULAR:
83 COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_SPECULAR + face]);
84 return;
85 case STATE_EMISSION:
86 COPY_4V(value, mat->Attrib[MAT_ATTRIB_FRONT_EMISSION + face]);
87 return;
88 case STATE_SHININESS:
89 value[0] = mat->Attrib[MAT_ATTRIB_FRONT_SHININESS + face][0];
90 value[1] = 0.0F;
91 value[2] = 0.0F;
92 value[3] = 1.0F;
93 return;
94 default:
95 _mesa_problem(ctx, "Invalid material state in fetch_state");
96 return;
97 }
98 }
99 case STATE_LIGHT:
100 {
101 /* state[1] is the light number */
102 const GLuint ln = (GLuint) state[1];
103 /* state[2] is the light attribute */
104 switch (state[2]) {
105 case STATE_AMBIENT:
106 COPY_4V(value, ctx->Light.Light[ln].Ambient);
107 return;
108 case STATE_DIFFUSE:
109 COPY_4V(value, ctx->Light.Light[ln].Diffuse);
110 return;
111 case STATE_SPECULAR:
112 COPY_4V(value, ctx->Light.Light[ln].Specular);
113 return;
114 case STATE_POSITION:
115 COPY_4V(value, ctx->Light.Light[ln].EyePosition);
116 return;
117 case STATE_ATTENUATION:
118 value[0] = ctx->Light.Light[ln].ConstantAttenuation;
119 value[1] = ctx->Light.Light[ln].LinearAttenuation;
120 value[2] = ctx->Light.Light[ln].QuadraticAttenuation;
121 value[3] = ctx->Light.Light[ln].SpotExponent;
122 return;
123 case STATE_SPOT_DIRECTION:
124 COPY_3V(value, ctx->Light.Light[ln].SpotDirection);
125 value[3] = ctx->Light.Light[ln]._CosCutoff;
126 return;
127 case STATE_SPOT_CUTOFF:
128 value[0] = ctx->Light.Light[ln].SpotCutoff;
129 return;
130 case STATE_HALF_VECTOR:
131 {
132 static const GLfloat eye_z[] = {0, 0, 1};
133 GLfloat p[3];
134 /* Compute infinite half angle vector:
135 * halfVector = normalize(normalize(lightPos) + (0, 0, 1))
136 * light.EyePosition.w should be 0 for infinite lights.
137 */
138 COPY_3V(p, ctx->Light.Light[ln].EyePosition);
139 NORMALIZE_3FV(p);
140 ADD_3V(value, p, eye_z);
141 NORMALIZE_3FV(value);
142 value[3] = 1.0;
143 }
144 return;
145 default:
146 _mesa_problem(ctx, "Invalid light state in fetch_state");
147 return;
148 }
149 }
150 case STATE_LIGHTMODEL_AMBIENT:
151 COPY_4V(value, ctx->Light.Model.Ambient);
152 return;
153 case STATE_LIGHTMODEL_SCENECOLOR:
154 if (state[1] == 0) {
155 /* front */
156 GLint i;
157 for (i = 0; i < 3; i++) {
158 value[i] = ctx->Light.Model.Ambient[i]
159 * ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_AMBIENT][i]
160 + ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_EMISSION][i];
161 }
162 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE][3];
163 }
164 else {
165 /* back */
166 GLint i;
167 for (i = 0; i < 3; i++) {
168 value[i] = ctx->Light.Model.Ambient[i]
169 * ctx->Light.Material.Attrib[MAT_ATTRIB_BACK_AMBIENT][i]
170 + ctx->Light.Material.Attrib[MAT_ATTRIB_BACK_EMISSION][i];
171 }
172 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_BACK_DIFFUSE][3];
173 }
174 return;
175 case STATE_LIGHTPROD:
176 {
177 const GLuint ln = (GLuint) state[1];
178 const GLuint face = (GLuint) state[2];
179 GLint i;
180 assert(face == 0 || face == 1);
181 switch (state[3]) {
182 case STATE_AMBIENT:
183 for (i = 0; i < 3; i++) {
184 value[i] = ctx->Light.Light[ln].Ambient[i] *
185 ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_AMBIENT+face][i];
186 }
187 /* [3] = material alpha */
188 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_AMBIENT+face][3];
189 return;
190 case STATE_DIFFUSE:
191 for (i = 0; i < 3; i++) {
192 value[i] = ctx->Light.Light[ln].Diffuse[i] *
193 ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE+face][i];
194 }
195 /* [3] = material alpha */
196 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_DIFFUSE+face][3];
197 return;
198 case STATE_SPECULAR:
199 for (i = 0; i < 3; i++) {
200 value[i] = ctx->Light.Light[ln].Specular[i] *
201 ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_SPECULAR+face][i];
202 }
203 /* [3] = material alpha */
204 value[3] = ctx->Light.Material.Attrib[MAT_ATTRIB_FRONT_SPECULAR+face][3];
205 return;
206 default:
207 _mesa_problem(ctx, "Invalid lightprod state in fetch_state");
208 return;
209 }
210 }
211 case STATE_TEXGEN:
212 {
213 /* state[1] is the texture unit */
214 const GLuint unit = (GLuint) state[1];
215 /* state[2] is the texgen attribute */
216 switch (state[2]) {
217 case STATE_TEXGEN_EYE_S:
218 COPY_4V(value, ctx->Texture.Unit[unit].GenS.EyePlane);
219 return;
220 case STATE_TEXGEN_EYE_T:
221 COPY_4V(value, ctx->Texture.Unit[unit].GenT.EyePlane);
222 return;
223 case STATE_TEXGEN_EYE_R:
224 COPY_4V(value, ctx->Texture.Unit[unit].GenR.EyePlane);
225 return;
226 case STATE_TEXGEN_EYE_Q:
227 COPY_4V(value, ctx->Texture.Unit[unit].GenQ.EyePlane);
228 return;
229 case STATE_TEXGEN_OBJECT_S:
230 COPY_4V(value, ctx->Texture.Unit[unit].GenS.ObjectPlane);
231 return;
232 case STATE_TEXGEN_OBJECT_T:
233 COPY_4V(value, ctx->Texture.Unit[unit].GenT.ObjectPlane);
234 return;
235 case STATE_TEXGEN_OBJECT_R:
236 COPY_4V(value, ctx->Texture.Unit[unit].GenR.ObjectPlane);
237 return;
238 case STATE_TEXGEN_OBJECT_Q:
239 COPY_4V(value, ctx->Texture.Unit[unit].GenQ.ObjectPlane);
240 return;
241 default:
242 _mesa_problem(ctx, "Invalid texgen state in fetch_state");
243 return;
244 }
245 }
246 case STATE_TEXENV_COLOR:
247 {
248 /* state[1] is the texture unit */
249 const GLuint unit = (GLuint) state[1];
250 if (_mesa_get_clamp_fragment_color(ctx, ctx->DrawBuffer))
251 COPY_4V(value, ctx->Texture.Unit[unit].EnvColor);
252 else
253 COPY_4V(value, ctx->Texture.Unit[unit].EnvColorUnclamped);
254 }
255 return;
256 case STATE_FOG_COLOR:
257 if (_mesa_get_clamp_fragment_color(ctx, ctx->DrawBuffer))
258 COPY_4V(value, ctx->Fog.Color);
259 else
260 COPY_4V(value, ctx->Fog.ColorUnclamped);
261 return;
262 case STATE_FOG_PARAMS:
263 value[0] = ctx->Fog.Density;
264 value[1] = ctx->Fog.Start;
265 value[2] = ctx->Fog.End;
266 value[3] = 1.0f / (ctx->Fog.End - ctx->Fog.Start);
267 return;
268 case STATE_CLIPPLANE:
269 {
270 const GLuint plane = (GLuint) state[1];
271 COPY_4V(value, ctx->Transform.EyeUserPlane[plane]);
272 }
273 return;
274 case STATE_POINT_SIZE:
275 value[0] = ctx->Point.Size;
276 value[1] = ctx->Point.MinSize;
277 value[2] = ctx->Point.MaxSize;
278 value[3] = ctx->Point.Threshold;
279 return;
280 case STATE_POINT_ATTENUATION:
281 value[0] = ctx->Point.Params[0];
282 value[1] = ctx->Point.Params[1];
283 value[2] = ctx->Point.Params[2];
284 value[3] = 1.0F;
285 return;
286 case STATE_MODELVIEW_MATRIX:
287 case STATE_PROJECTION_MATRIX:
288 case STATE_MVP_MATRIX:
289 case STATE_TEXTURE_MATRIX:
290 case STATE_PROGRAM_MATRIX:
291 {
292 /* state[0] = modelview, projection, texture, etc. */
293 /* state[1] = which texture matrix or program matrix */
294 /* state[2] = first row to fetch */
295 /* state[3] = last row to fetch */
296 /* state[4] = transpose, inverse or invtrans */
297 const GLmatrix *matrix;
298 const gl_state_index mat = state[0];
299 const GLuint index = (GLuint) state[1];
300 const GLuint firstRow = (GLuint) state[2];
301 const GLuint lastRow = (GLuint) state[3];
302 const gl_state_index modifier = state[4];
303 const GLfloat *m;
304 GLuint row, i;
305 assert(firstRow < 4);
306 assert(lastRow < 4);
307 if (mat == STATE_MODELVIEW_MATRIX) {
308 matrix = ctx->ModelviewMatrixStack.Top;
309 }
310 else if (mat == STATE_PROJECTION_MATRIX) {
311 matrix = ctx->ProjectionMatrixStack.Top;
312 }
313 else if (mat == STATE_MVP_MATRIX) {
314 matrix = &ctx->_ModelProjectMatrix;
315 }
316 else if (mat == STATE_TEXTURE_MATRIX) {
317 assert(index < ARRAY_SIZE(ctx->TextureMatrixStack));
318 matrix = ctx->TextureMatrixStack[index].Top;
319 }
320 else if (mat == STATE_PROGRAM_MATRIX) {
321 assert(index < ARRAY_SIZE(ctx->ProgramMatrixStack));
322 matrix = ctx->ProgramMatrixStack[index].Top;
323 }
324 else {
325 _mesa_problem(ctx, "Bad matrix name in _mesa_fetch_state()");
326 return;
327 }
328 if (modifier == STATE_MATRIX_INVERSE ||
329 modifier == STATE_MATRIX_INVTRANS) {
330 /* Be sure inverse is up to date:
331 */
332 _math_matrix_analyse( (GLmatrix*) matrix );
333 m = matrix->inv;
334 }
335 else {
336 m = matrix->m;
337 }
338 if (modifier == STATE_MATRIX_TRANSPOSE ||
339 modifier == STATE_MATRIX_INVTRANS) {
340 for (i = 0, row = firstRow; row <= lastRow; row++) {
341 value[i++] = m[row * 4 + 0];
342 value[i++] = m[row * 4 + 1];
343 value[i++] = m[row * 4 + 2];
344 value[i++] = m[row * 4 + 3];
345 }
346 }
347 else {
348 for (i = 0, row = firstRow; row <= lastRow; row++) {
349 value[i++] = m[row + 0];
350 value[i++] = m[row + 4];
351 value[i++] = m[row + 8];
352 value[i++] = m[row + 12];
353 }
354 }
355 }
356 return;
357 case STATE_NUM_SAMPLES:
358 val[0].i = MAX2(1, _mesa_geometric_samples(ctx->DrawBuffer));
359 return;
360 case STATE_DEPTH_RANGE:
361 value[0] = ctx->ViewportArray[0].Near; /* near */
362 value[1] = ctx->ViewportArray[0].Far; /* far */
363 value[2] = ctx->ViewportArray[0].Far - ctx->ViewportArray[0].Near; /* far - near */
364 value[3] = 1.0;
365 return;
366 case STATE_FRAGMENT_PROGRAM:
367 {
368 /* state[1] = {STATE_ENV, STATE_LOCAL} */
369 /* state[2] = parameter index */
370 const int idx = (int) state[2];
371 switch (state[1]) {
372 case STATE_ENV:
373 COPY_4V(value, ctx->FragmentProgram.Parameters[idx]);
374 return;
375 case STATE_LOCAL:
376 if (!ctx->FragmentProgram.Current->Base.LocalParams) {
377 ctx->FragmentProgram.Current->Base.LocalParams =
378 calloc(MAX_PROGRAM_LOCAL_PARAMS, sizeof(float[4]));
379 if (!ctx->FragmentProgram.Current->Base.LocalParams)
380 return;
381 }
382
383 COPY_4V(value, ctx->FragmentProgram.Current->Base.LocalParams[idx]);
384 return;
385 default:
386 _mesa_problem(ctx, "Bad state switch in _mesa_fetch_state()");
387 return;
388 }
389 }
390 return;
391
392 case STATE_VERTEX_PROGRAM:
393 {
394 /* state[1] = {STATE_ENV, STATE_LOCAL} */
395 /* state[2] = parameter index */
396 const int idx = (int) state[2];
397 switch (state[1]) {
398 case STATE_ENV:
399 COPY_4V(value, ctx->VertexProgram.Parameters[idx]);
400 return;
401 case STATE_LOCAL:
402 if (!ctx->VertexProgram.Current->Base.LocalParams) {
403 ctx->VertexProgram.Current->Base.LocalParams =
404 calloc(MAX_PROGRAM_LOCAL_PARAMS, sizeof(float[4]));
405 if (!ctx->VertexProgram.Current->Base.LocalParams)
406 return;
407 }
408
409 COPY_4V(value, ctx->VertexProgram.Current->Base.LocalParams[idx]);
410 return;
411 default:
412 _mesa_problem(ctx, "Bad state switch in _mesa_fetch_state()");
413 return;
414 }
415 }
416 return;
417
418 case STATE_NORMAL_SCALE:
419 ASSIGN_4V(value, ctx->_ModelViewInvScale, 0, 0, 1);
420 return;
421
422 case STATE_INTERNAL:
423 switch (state[1]) {
424 case STATE_CURRENT_ATTRIB:
425 {
426 const GLuint idx = (GLuint) state[2];
427 COPY_4V(value, ctx->Current.Attrib[idx]);
428 }
429 return;
430
431 case STATE_CURRENT_ATTRIB_MAYBE_VP_CLAMPED:
432 {
433 const GLuint idx = (GLuint) state[2];
434 if(ctx->Light._ClampVertexColor &&
435 (idx == VERT_ATTRIB_COLOR0 ||
436 idx == VERT_ATTRIB_COLOR1)) {
437 value[0] = CLAMP(ctx->Current.Attrib[idx][0], 0.0f, 1.0f);
438 value[1] = CLAMP(ctx->Current.Attrib[idx][1], 0.0f, 1.0f);
439 value[2] = CLAMP(ctx->Current.Attrib[idx][2], 0.0f, 1.0f);
440 value[3] = CLAMP(ctx->Current.Attrib[idx][3], 0.0f, 1.0f);
441 }
442 else
443 COPY_4V(value, ctx->Current.Attrib[idx]);
444 }
445 return;
446
447 case STATE_NORMAL_SCALE:
448 ASSIGN_4V(value,
449 ctx->_ModelViewInvScale,
450 ctx->_ModelViewInvScale,
451 ctx->_ModelViewInvScale,
452 1);
453 return;
454
455 case STATE_TEXRECT_SCALE:
456 /* Value = { 1/texWidth, 1/texHeight, 0, 1 }.
457 * Used to convert unnormalized texcoords to normalized texcoords.
458 */
459 {
460 const int unit = (int) state[2];
461 const struct gl_texture_object *texObj
462 = ctx->Texture.Unit[unit]._Current;
463 if (texObj) {
464 struct gl_texture_image *texImage = texObj->Image[0][0];
465 ASSIGN_4V(value,
466 (GLfloat) (1.0 / texImage->Width),
467 (GLfloat) (1.0 / texImage->Height),
468 0.0f, 1.0f);
469 }
470 }
471 return;
472
473 case STATE_FOG_PARAMS_OPTIMIZED:
474 /* for simpler per-vertex/pixel fog calcs. POW (for EXP/EXP2 fog)
475 * might be more expensive than EX2 on some hw, plus it needs
476 * another constant (e) anyway. Linear fog can now be done with a
477 * single MAD.
478 * linear: fogcoord * -1/(end-start) + end/(end-start)
479 * exp: 2^-(density/ln(2) * fogcoord)
480 * exp2: 2^-((density/(sqrt(ln(2))) * fogcoord)^2)
481 */
482 value[0] = (ctx->Fog.End == ctx->Fog.Start)
483 ? 1.0f : (GLfloat)(-1.0F / (ctx->Fog.End - ctx->Fog.Start));
484 value[1] = ctx->Fog.End * -value[0];
485 value[2] = (GLfloat)(ctx->Fog.Density * M_LOG2E); /* M_LOG2E == 1/ln(2) */
486 value[3] = (GLfloat)(ctx->Fog.Density * ONE_DIV_SQRT_LN2);
487 return;
488
489 case STATE_POINT_SIZE_CLAMPED:
490 {
491 /* this includes implementation dependent limits, to avoid
492 * another potentially necessary clamp.
493 * Note: for sprites, point smooth (point AA) is ignored
494 * and we'll clamp to MinPointSizeAA and MaxPointSize, because we
495 * expect drivers will want to say their minimum for AA size is 0.0
496 * but for non-AA it's 1.0 (because normal points with size below 1.0
497 * need to get rounded up to 1.0, hence never disappear). GL does
498 * not specify max clamp size for sprites, other than it needs to be
499 * at least as large as max AA size, hence use non-AA size there.
500 */
501 GLfloat minImplSize;
502 GLfloat maxImplSize;
503 if (ctx->Point.PointSprite) {
504 minImplSize = ctx->Const.MinPointSizeAA;
505 maxImplSize = ctx->Const.MaxPointSize;
506 }
507 else if (ctx->Point.SmoothFlag || _mesa_is_multisample_enabled(ctx)) {
508 minImplSize = ctx->Const.MinPointSizeAA;
509 maxImplSize = ctx->Const.MaxPointSizeAA;
510 }
511 else {
512 minImplSize = ctx->Const.MinPointSize;
513 maxImplSize = ctx->Const.MaxPointSize;
514 }
515 value[0] = ctx->Point.Size;
516 value[1] = ctx->Point.MinSize >= minImplSize ? ctx->Point.MinSize : minImplSize;
517 value[2] = ctx->Point.MaxSize <= maxImplSize ? ctx->Point.MaxSize : maxImplSize;
518 value[3] = ctx->Point.Threshold;
519 }
520 return;
521 case STATE_LIGHT_SPOT_DIR_NORMALIZED:
522 {
523 /* here, state[2] is the light number */
524 /* pre-normalize spot dir */
525 const GLuint ln = (GLuint) state[2];
526 COPY_3V(value, ctx->Light.Light[ln]._NormSpotDirection);
527 value[3] = ctx->Light.Light[ln]._CosCutoff;
528 }
529 return;
530
531 case STATE_LIGHT_POSITION:
532 {
533 const GLuint ln = (GLuint) state[2];
534 COPY_4V(value, ctx->Light.Light[ln]._Position);
535 }
536 return;
537
538 case STATE_LIGHT_POSITION_NORMALIZED:
539 {
540 const GLuint ln = (GLuint) state[2];
541 COPY_4V(value, ctx->Light.Light[ln]._Position);
542 NORMALIZE_3FV( value );
543 }
544 return;
545
546 case STATE_LIGHT_HALF_VECTOR:
547 {
548 const GLuint ln = (GLuint) state[2];
549 GLfloat p[3];
550 /* Compute infinite half angle vector:
551 * halfVector = normalize(normalize(lightPos) + (0, 0, 1))
552 * light.EyePosition.w should be 0 for infinite lights.
553 */
554 COPY_3V(p, ctx->Light.Light[ln]._Position);
555 NORMALIZE_3FV(p);
556 ADD_3V(value, p, ctx->_EyeZDir);
557 NORMALIZE_3FV(value);
558 value[3] = 1.0;
559 }
560 return;
561
562 case STATE_PT_SCALE:
563 value[0] = ctx->Pixel.RedScale;
564 value[1] = ctx->Pixel.GreenScale;
565 value[2] = ctx->Pixel.BlueScale;
566 value[3] = ctx->Pixel.AlphaScale;
567 return;
568
569 case STATE_PT_BIAS:
570 value[0] = ctx->Pixel.RedBias;
571 value[1] = ctx->Pixel.GreenBias;
572 value[2] = ctx->Pixel.BlueBias;
573 value[3] = ctx->Pixel.AlphaBias;
574 return;
575
576 case STATE_FB_SIZE:
577 value[0] = (GLfloat) (ctx->DrawBuffer->Width - 1);
578 value[1] = (GLfloat) (ctx->DrawBuffer->Height - 1);
579 value[2] = 0.0F;
580 value[3] = 0.0F;
581 return;
582
583 case STATE_FB_WPOS_Y_TRANSFORM:
584 /* A driver may negate this conditional by using ZW swizzle
585 * instead of XY (based on e.g. some other state). */
586 if (_mesa_is_user_fbo(ctx->DrawBuffer)) {
587 /* Identity (XY) followed by flipping Y upside down (ZW). */
588 value[0] = 1.0F;
589 value[1] = 0.0F;
590 value[2] = -1.0F;
591 value[3] = (GLfloat) ctx->DrawBuffer->Height;
592 } else {
593 /* Flipping Y upside down (XY) followed by identity (ZW). */
594 value[0] = -1.0F;
595 value[1] = (GLfloat) ctx->DrawBuffer->Height;
596 value[2] = 1.0F;
597 value[3] = 0.0F;
598 }
599 return;
600
601 case STATE_TCS_PATCH_VERTICES_IN:
602 val[0].i = ctx->TessCtrlProgram.patch_vertices;
603 return;
604
605 case STATE_TES_PATCH_VERTICES_IN:
606 if (ctx->TessCtrlProgram._Current)
607 val[0].i = ctx->TessCtrlProgram._Current->VerticesOut;
608 else
609 val[0].i = ctx->TessCtrlProgram.patch_vertices;
610 return;
611
612 /* XXX: make sure new tokens added here are also handled in the
613 * _mesa_program_state_flags() switch, below.
614 */
615 default:
616 /* Unknown state indexes are silently ignored here.
617 * Drivers may do something special.
618 */
619 return;
620 }
621 return;
622
623 default:
624 _mesa_problem(ctx, "Invalid state in _mesa_fetch_state");
625 return;
626 }
627 }
628
629
630 /**
631 * Return a bitmask of the Mesa state flags (_NEW_* values) which would
632 * indicate that the given context state may have changed.
633 * The bitmask is used during validation to determine if we need to update
634 * vertex/fragment program parameters (like "state.material.color") when
635 * some GL state has changed.
636 */
637 GLbitfield
638 _mesa_program_state_flags(const gl_state_index state[STATE_LENGTH])
639 {
640 switch (state[0]) {
641 case STATE_MATERIAL:
642 case STATE_LIGHTPROD:
643 case STATE_LIGHTMODEL_SCENECOLOR:
644 /* these can be effected by glColor when colormaterial mode is used */
645 return _NEW_LIGHT | _NEW_CURRENT_ATTRIB;
646
647 case STATE_LIGHT:
648 case STATE_LIGHTMODEL_AMBIENT:
649 return _NEW_LIGHT;
650
651 case STATE_TEXGEN:
652 return _NEW_TEXTURE;
653 case STATE_TEXENV_COLOR:
654 return _NEW_TEXTURE | _NEW_BUFFERS | _NEW_FRAG_CLAMP;
655
656 case STATE_FOG_COLOR:
657 return _NEW_FOG | _NEW_BUFFERS | _NEW_FRAG_CLAMP;
658 case STATE_FOG_PARAMS:
659 return _NEW_FOG;
660
661 case STATE_CLIPPLANE:
662 return _NEW_TRANSFORM;
663
664 case STATE_POINT_SIZE:
665 case STATE_POINT_ATTENUATION:
666 return _NEW_POINT;
667
668 case STATE_MODELVIEW_MATRIX:
669 return _NEW_MODELVIEW;
670 case STATE_PROJECTION_MATRIX:
671 return _NEW_PROJECTION;
672 case STATE_MVP_MATRIX:
673 return _NEW_MODELVIEW | _NEW_PROJECTION;
674 case STATE_TEXTURE_MATRIX:
675 return _NEW_TEXTURE_MATRIX;
676 case STATE_PROGRAM_MATRIX:
677 return _NEW_TRACK_MATRIX;
678
679 case STATE_NUM_SAMPLES:
680 return _NEW_BUFFERS;
681
682 case STATE_DEPTH_RANGE:
683 return _NEW_VIEWPORT;
684
685 case STATE_FRAGMENT_PROGRAM:
686 case STATE_VERTEX_PROGRAM:
687 return _NEW_PROGRAM;
688
689 case STATE_NORMAL_SCALE:
690 return _NEW_MODELVIEW;
691
692 case STATE_INTERNAL:
693 switch (state[1]) {
694 case STATE_CURRENT_ATTRIB:
695 return _NEW_CURRENT_ATTRIB;
696 case STATE_CURRENT_ATTRIB_MAYBE_VP_CLAMPED:
697 return _NEW_CURRENT_ATTRIB | _NEW_LIGHT | _NEW_BUFFERS;
698
699 case STATE_NORMAL_SCALE:
700 return _NEW_MODELVIEW;
701
702 case STATE_TEXRECT_SCALE:
703 return _NEW_TEXTURE;
704 case STATE_FOG_PARAMS_OPTIMIZED:
705 return _NEW_FOG;
706 case STATE_POINT_SIZE_CLAMPED:
707 return _NEW_POINT | _NEW_MULTISAMPLE;
708 case STATE_LIGHT_SPOT_DIR_NORMALIZED:
709 case STATE_LIGHT_POSITION:
710 case STATE_LIGHT_POSITION_NORMALIZED:
711 case STATE_LIGHT_HALF_VECTOR:
712 return _NEW_LIGHT;
713
714 case STATE_PT_SCALE:
715 case STATE_PT_BIAS:
716 return _NEW_PIXEL;
717
718 case STATE_FB_SIZE:
719 case STATE_FB_WPOS_Y_TRANSFORM:
720 return _NEW_BUFFERS;
721
722 default:
723 /* unknown state indexes are silently ignored and
724 * no flag set, since it is handled by the driver.
725 */
726 return 0;
727 }
728
729 default:
730 _mesa_problem(NULL, "unexpected state[0] in make_state_flags()");
731 return 0;
732 }
733 }
734
735
736 static void
737 append(char *dst, const char *src)
738 {
739 while (*dst)
740 dst++;
741 while (*src)
742 *dst++ = *src++;
743 *dst = 0;
744 }
745
746
747 /**
748 * Convert token 'k' to a string, append it onto 'dst' string.
749 */
750 static void
751 append_token(char *dst, gl_state_index k)
752 {
753 switch (k) {
754 case STATE_MATERIAL:
755 append(dst, "material");
756 break;
757 case STATE_LIGHT:
758 append(dst, "light");
759 break;
760 case STATE_LIGHTMODEL_AMBIENT:
761 append(dst, "lightmodel.ambient");
762 break;
763 case STATE_LIGHTMODEL_SCENECOLOR:
764 break;
765 case STATE_LIGHTPROD:
766 append(dst, "lightprod");
767 break;
768 case STATE_TEXGEN:
769 append(dst, "texgen");
770 break;
771 case STATE_FOG_COLOR:
772 append(dst, "fog.color");
773 break;
774 case STATE_FOG_PARAMS:
775 append(dst, "fog.params");
776 break;
777 case STATE_CLIPPLANE:
778 append(dst, "clip");
779 break;
780 case STATE_POINT_SIZE:
781 append(dst, "point.size");
782 break;
783 case STATE_POINT_ATTENUATION:
784 append(dst, "point.attenuation");
785 break;
786 case STATE_MODELVIEW_MATRIX:
787 append(dst, "matrix.modelview");
788 break;
789 case STATE_PROJECTION_MATRIX:
790 append(dst, "matrix.projection");
791 break;
792 case STATE_MVP_MATRIX:
793 append(dst, "matrix.mvp");
794 break;
795 case STATE_TEXTURE_MATRIX:
796 append(dst, "matrix.texture");
797 break;
798 case STATE_PROGRAM_MATRIX:
799 append(dst, "matrix.program");
800 break;
801 case STATE_MATRIX_INVERSE:
802 append(dst, ".inverse");
803 break;
804 case STATE_MATRIX_TRANSPOSE:
805 append(dst, ".transpose");
806 break;
807 case STATE_MATRIX_INVTRANS:
808 append(dst, ".invtrans");
809 break;
810 case STATE_AMBIENT:
811 append(dst, ".ambient");
812 break;
813 case STATE_DIFFUSE:
814 append(dst, ".diffuse");
815 break;
816 case STATE_SPECULAR:
817 append(dst, ".specular");
818 break;
819 case STATE_EMISSION:
820 append(dst, ".emission");
821 break;
822 case STATE_SHININESS:
823 append(dst, "lshininess");
824 break;
825 case STATE_HALF_VECTOR:
826 append(dst, ".half");
827 break;
828 case STATE_POSITION:
829 append(dst, ".position");
830 break;
831 case STATE_ATTENUATION:
832 append(dst, ".attenuation");
833 break;
834 case STATE_SPOT_DIRECTION:
835 append(dst, ".spot.direction");
836 break;
837 case STATE_SPOT_CUTOFF:
838 append(dst, ".spot.cutoff");
839 break;
840 case STATE_TEXGEN_EYE_S:
841 append(dst, ".eye.s");
842 break;
843 case STATE_TEXGEN_EYE_T:
844 append(dst, ".eye.t");
845 break;
846 case STATE_TEXGEN_EYE_R:
847 append(dst, ".eye.r");
848 break;
849 case STATE_TEXGEN_EYE_Q:
850 append(dst, ".eye.q");
851 break;
852 case STATE_TEXGEN_OBJECT_S:
853 append(dst, ".object.s");
854 break;
855 case STATE_TEXGEN_OBJECT_T:
856 append(dst, ".object.t");
857 break;
858 case STATE_TEXGEN_OBJECT_R:
859 append(dst, ".object.r");
860 break;
861 case STATE_TEXGEN_OBJECT_Q:
862 append(dst, ".object.q");
863 break;
864 case STATE_TEXENV_COLOR:
865 append(dst, "texenv");
866 break;
867 case STATE_NUM_SAMPLES:
868 append(dst, "numsamples");
869 break;
870 case STATE_DEPTH_RANGE:
871 append(dst, "depth.range");
872 break;
873 case STATE_VERTEX_PROGRAM:
874 case STATE_FRAGMENT_PROGRAM:
875 break;
876 case STATE_ENV:
877 append(dst, "env");
878 break;
879 case STATE_LOCAL:
880 append(dst, "local");
881 break;
882 /* BEGIN internal state vars */
883 case STATE_INTERNAL:
884 append(dst, ".internal.");
885 break;
886 case STATE_CURRENT_ATTRIB:
887 append(dst, "current");
888 break;
889 case STATE_CURRENT_ATTRIB_MAYBE_VP_CLAMPED:
890 append(dst, "currentAttribMaybeVPClamped");
891 break;
892 case STATE_NORMAL_SCALE:
893 append(dst, "normalScale");
894 break;
895 case STATE_TEXRECT_SCALE:
896 append(dst, "texrectScale");
897 break;
898 case STATE_FOG_PARAMS_OPTIMIZED:
899 append(dst, "fogParamsOptimized");
900 break;
901 case STATE_POINT_SIZE_CLAMPED:
902 append(dst, "pointSizeClamped");
903 break;
904 case STATE_LIGHT_SPOT_DIR_NORMALIZED:
905 append(dst, "lightSpotDirNormalized");
906 break;
907 case STATE_LIGHT_POSITION:
908 append(dst, "lightPosition");
909 break;
910 case STATE_LIGHT_POSITION_NORMALIZED:
911 append(dst, "light.position.normalized");
912 break;
913 case STATE_LIGHT_HALF_VECTOR:
914 append(dst, "lightHalfVector");
915 break;
916 case STATE_PT_SCALE:
917 append(dst, "PTscale");
918 break;
919 case STATE_PT_BIAS:
920 append(dst, "PTbias");
921 break;
922 case STATE_FB_SIZE:
923 append(dst, "FbSize");
924 break;
925 case STATE_FB_WPOS_Y_TRANSFORM:
926 append(dst, "FbWposYTransform");
927 break;
928 default:
929 /* probably STATE_INTERNAL_DRIVER+i (driver private state) */
930 append(dst, "driverState");
931 }
932 }
933
934 static void
935 append_face(char *dst, GLint face)
936 {
937 if (face == 0)
938 append(dst, "front.");
939 else
940 append(dst, "back.");
941 }
942
943 static void
944 append_index(char *dst, GLint index)
945 {
946 char s[20];
947 sprintf(s, "[%d]", index);
948 append(dst, s);
949 }
950
951 /**
952 * Make a string from the given state vector.
953 * For example, return "state.matrix.texture[2].inverse".
954 * Use free() to deallocate the string.
955 */
956 char *
957 _mesa_program_state_string(const gl_state_index state[STATE_LENGTH])
958 {
959 char str[1000] = "";
960 char tmp[30];
961
962 append(str, "state.");
963 append_token(str, state[0]);
964
965 switch (state[0]) {
966 case STATE_MATERIAL:
967 append_face(str, state[1]);
968 append_token(str, state[2]);
969 break;
970 case STATE_LIGHT:
971 append_index(str, state[1]); /* light number [i]. */
972 append_token(str, state[2]); /* coefficients */
973 break;
974 case STATE_LIGHTMODEL_AMBIENT:
975 append(str, "lightmodel.ambient");
976 break;
977 case STATE_LIGHTMODEL_SCENECOLOR:
978 if (state[1] == 0) {
979 append(str, "lightmodel.front.scenecolor");
980 }
981 else {
982 append(str, "lightmodel.back.scenecolor");
983 }
984 break;
985 case STATE_LIGHTPROD:
986 append_index(str, state[1]); /* light number [i]. */
987 append_face(str, state[2]);
988 append_token(str, state[3]);
989 break;
990 case STATE_TEXGEN:
991 append_index(str, state[1]); /* tex unit [i] */
992 append_token(str, state[2]); /* plane coef */
993 break;
994 case STATE_TEXENV_COLOR:
995 append_index(str, state[1]); /* tex unit [i] */
996 append(str, "color");
997 break;
998 case STATE_CLIPPLANE:
999 append_index(str, state[1]); /* plane [i] */
1000 append(str, ".plane");
1001 break;
1002 case STATE_MODELVIEW_MATRIX:
1003 case STATE_PROJECTION_MATRIX:
1004 case STATE_MVP_MATRIX:
1005 case STATE_TEXTURE_MATRIX:
1006 case STATE_PROGRAM_MATRIX:
1007 {
1008 /* state[0] = modelview, projection, texture, etc. */
1009 /* state[1] = which texture matrix or program matrix */
1010 /* state[2] = first row to fetch */
1011 /* state[3] = last row to fetch */
1012 /* state[4] = transpose, inverse or invtrans */
1013 const gl_state_index mat = state[0];
1014 const GLuint index = (GLuint) state[1];
1015 const GLuint firstRow = (GLuint) state[2];
1016 const GLuint lastRow = (GLuint) state[3];
1017 const gl_state_index modifier = state[4];
1018 if (index ||
1019 mat == STATE_TEXTURE_MATRIX ||
1020 mat == STATE_PROGRAM_MATRIX)
1021 append_index(str, index);
1022 if (modifier)
1023 append_token(str, modifier);
1024 if (firstRow == lastRow)
1025 sprintf(tmp, ".row[%d]", firstRow);
1026 else
1027 sprintf(tmp, ".row[%d..%d]", firstRow, lastRow);
1028 append(str, tmp);
1029 }
1030 break;
1031 case STATE_POINT_SIZE:
1032 break;
1033 case STATE_POINT_ATTENUATION:
1034 break;
1035 case STATE_FOG_PARAMS:
1036 break;
1037 case STATE_FOG_COLOR:
1038 break;
1039 case STATE_NUM_SAMPLES:
1040 break;
1041 case STATE_DEPTH_RANGE:
1042 break;
1043 case STATE_FRAGMENT_PROGRAM:
1044 case STATE_VERTEX_PROGRAM:
1045 /* state[1] = {STATE_ENV, STATE_LOCAL} */
1046 /* state[2] = parameter index */
1047 append_token(str, state[1]);
1048 append_index(str, state[2]);
1049 break;
1050 case STATE_NORMAL_SCALE:
1051 break;
1052 case STATE_INTERNAL:
1053 append_token(str, state[1]);
1054 if (state[1] == STATE_CURRENT_ATTRIB)
1055 append_index(str, state[2]);
1056 break;
1057 default:
1058 _mesa_problem(NULL, "Invalid state in _mesa_program_state_string");
1059 break;
1060 }
1061
1062 return strdup(str);
1063 }
1064
1065
1066 /**
1067 * Loop over all the parameters in a parameter list. If the parameter
1068 * is a GL state reference, look up the current value of that state
1069 * variable and put it into the parameter's Value[4] array.
1070 * Other parameter types never change or are explicitly set by the user
1071 * with glUniform() or glProgramParameter(), etc.
1072 * This would be called at glBegin time.
1073 */
1074 void
1075 _mesa_load_state_parameters(struct gl_context *ctx,
1076 struct gl_program_parameter_list *paramList)
1077 {
1078 GLuint i;
1079
1080 if (!paramList)
1081 return;
1082
1083 for (i = 0; i < paramList->NumParameters; i++) {
1084 if (paramList->Parameters[i].Type == PROGRAM_STATE_VAR) {
1085 _mesa_fetch_state(ctx,
1086 paramList->Parameters[i].StateIndexes,
1087 &paramList->ParameterValues[i][0]);
1088 }
1089 }
1090 }