ra: Use a bitset for storing which registers belong to a class.
[mesa.git] / src / mesa / program / register_allocate.c
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 /** @file register_allocate.c
29 *
30 * Graph-coloring register allocator.
31 *
32 * The basic idea of graph coloring is to make a node in a graph for
33 * every thing that needs a register (color) number assigned, and make
34 * edges in the graph between nodes that interfere (can't be allocated
35 * to the same register at the same time).
36 *
37 * During the "simplify" process, any any node with fewer edges than
38 * there are registers means that that edge can get assigned a
39 * register regardless of what its neighbors choose, so that node is
40 * pushed on a stack and removed (with its edges) from the graph.
41 * That likely causes other nodes to become trivially colorable as well.
42 *
43 * Then during the "select" process, nodes are popped off of that
44 * stack, their edges restored, and assigned a color different from
45 * their neighbors. Because they were pushed on the stack only when
46 * they were trivially colorable, any color chosen won't interfere
47 * with the registers to be popped later.
48 *
49 * The downside to most graph coloring is that real hardware often has
50 * limitations, like registers that need to be allocated to a node in
51 * pairs, or aligned on some boundary. This implementation follows
52 * the paper "Retargetable Graph-Coloring Register Allocation for
53 * Irregular Architectures" by Johan Runeson and Sven-Olof Nyström.
54 *
55 * In this system, there are register classes each containing various
56 * registers, and registers may interfere with other registers. For
57 * example, one might have a class of base registers, and a class of
58 * aligned register pairs that would each interfere with their pair of
59 * the base registers. Each node has a register class it needs to be
60 * assigned to. Define p(B) to be the size of register class B, and
61 * q(B,C) to be the number of registers in B that the worst choice
62 * register in C could conflict with. Then, this system replaces the
63 * basic graph coloring test of "fewer edges from this node than there
64 * are registers" with "For this node of class B, the sum of q(B,C)
65 * for each neighbor node of class C is less than pB".
66 *
67 * A nice feature of the pq test is that q(B,C) can be computed once
68 * up front and stored in a 2-dimensional array, so that the cost of
69 * coloring a node is constant with the number of registers. We do
70 * this during ra_set_finalize().
71 */
72
73 #include <stdbool.h>
74 #include <ralloc.h>
75
76 #include "main/imports.h"
77 #include "main/macros.h"
78 #include "main/mtypes.h"
79 #include "main/bitset.h"
80 #include "register_allocate.h"
81
82 #define NO_REG ~0
83
84 struct ra_reg {
85 bool *conflicts;
86 unsigned int *conflict_list;
87 unsigned int conflict_list_size;
88 unsigned int num_conflicts;
89 };
90
91 struct ra_regs {
92 struct ra_reg *regs;
93 unsigned int count;
94
95 struct ra_class **classes;
96 unsigned int class_count;
97
98 bool round_robin;
99 };
100
101 struct ra_class {
102 /**
103 * Bitset indicating which registers belong to this class.
104 *
105 * (If bit N is set, then register N belongs to this class.)
106 */
107 BITSET_WORD *regs;
108
109 /**
110 * p(B) in Runeson/Nyström paper.
111 *
112 * This is "how many regs are in the set."
113 */
114 unsigned int p;
115
116 /**
117 * q(B,C) (indexed by C, B is this register class) in
118 * Runeson/Nyström paper. This is "how many registers of B could
119 * the worst choice register from C conflict with".
120 */
121 unsigned int *q;
122 };
123
124 struct ra_node {
125 /** @{
126 *
127 * List of which nodes this node interferes with. This should be
128 * symmetric with the other node.
129 */
130 BITSET_WORD *adjacency;
131 unsigned int *adjacency_list;
132 unsigned int adjacency_list_size;
133 unsigned int adjacency_count;
134 /** @} */
135
136 unsigned int class;
137
138 /* Register, if assigned, or NO_REG. */
139 unsigned int reg;
140
141 /**
142 * Set when the node is in the trivially colorable stack. When
143 * set, the adjacency to this node is ignored, to implement the
144 * "remove the edge from the graph" in simplification without
145 * having to actually modify the adjacency_list.
146 */
147 bool in_stack;
148
149 /* For an implementation that needs register spilling, this is the
150 * approximate cost of spilling this node.
151 */
152 float spill_cost;
153 };
154
155 struct ra_graph {
156 struct ra_regs *regs;
157 /**
158 * the variables that need register allocation.
159 */
160 struct ra_node *nodes;
161 unsigned int count; /**< count of nodes. */
162
163 unsigned int *stack;
164 unsigned int stack_count;
165
166 /**
167 * Tracks the start of the set of optimistically-colored registers in the
168 * stack.
169 *
170 * Along with any registers not in the stack (if one called ra_simplify()
171 * and didn't do optimistic coloring), these need to be considered for
172 * spilling.
173 */
174 unsigned int stack_optimistic_start;
175 };
176
177 /**
178 * Creates a set of registers for the allocator.
179 *
180 * mem_ctx is a ralloc context for the allocator. The reg set may be freed
181 * using ralloc_free().
182 */
183 struct ra_regs *
184 ra_alloc_reg_set(void *mem_ctx, unsigned int count)
185 {
186 unsigned int i;
187 struct ra_regs *regs;
188
189 regs = rzalloc(mem_ctx, struct ra_regs);
190 regs->count = count;
191 regs->regs = rzalloc_array(regs, struct ra_reg, count);
192
193 for (i = 0; i < count; i++) {
194 regs->regs[i].conflicts = rzalloc_array(regs->regs, bool, count);
195 regs->regs[i].conflicts[i] = true;
196
197 regs->regs[i].conflict_list = ralloc_array(regs->regs, unsigned int, 4);
198 regs->regs[i].conflict_list_size = 4;
199 regs->regs[i].conflict_list[0] = i;
200 regs->regs[i].num_conflicts = 1;
201 }
202
203 return regs;
204 }
205
206 /**
207 * The register allocator by default prefers to allocate low register numbers,
208 * since it was written for hardware (gen4/5 Intel) that is limited in its
209 * multithreadedness by the number of registers used in a given shader.
210 *
211 * However, for hardware without that restriction, densely packed register
212 * allocation can put serious constraints on instruction scheduling. This
213 * function tells the allocator to rotate around the registers if possible as
214 * it allocates the nodes.
215 */
216 void
217 ra_set_allocate_round_robin(struct ra_regs *regs)
218 {
219 regs->round_robin = true;
220 }
221
222 static void
223 ra_add_conflict_list(struct ra_regs *regs, unsigned int r1, unsigned int r2)
224 {
225 struct ra_reg *reg1 = &regs->regs[r1];
226
227 if (reg1->conflict_list_size == reg1->num_conflicts) {
228 reg1->conflict_list_size *= 2;
229 reg1->conflict_list = reralloc(regs->regs, reg1->conflict_list,
230 unsigned int, reg1->conflict_list_size);
231 }
232 reg1->conflict_list[reg1->num_conflicts++] = r2;
233 reg1->conflicts[r2] = true;
234 }
235
236 void
237 ra_add_reg_conflict(struct ra_regs *regs, unsigned int r1, unsigned int r2)
238 {
239 if (!regs->regs[r1].conflicts[r2]) {
240 ra_add_conflict_list(regs, r1, r2);
241 ra_add_conflict_list(regs, r2, r1);
242 }
243 }
244
245 /**
246 * Adds a conflict between base_reg and reg, and also between reg and
247 * anything that base_reg conflicts with.
248 *
249 * This can simplify code for setting up multiple register classes
250 * which are aggregates of some base hardware registers, compared to
251 * explicitly using ra_add_reg_conflict.
252 */
253 void
254 ra_add_transitive_reg_conflict(struct ra_regs *regs,
255 unsigned int base_reg, unsigned int reg)
256 {
257 int i;
258
259 ra_add_reg_conflict(regs, reg, base_reg);
260
261 for (i = 0; i < regs->regs[base_reg].num_conflicts; i++) {
262 ra_add_reg_conflict(regs, reg, regs->regs[base_reg].conflict_list[i]);
263 }
264 }
265
266 unsigned int
267 ra_alloc_reg_class(struct ra_regs *regs)
268 {
269 struct ra_class *class;
270
271 regs->classes = reralloc(regs->regs, regs->classes, struct ra_class *,
272 regs->class_count + 1);
273
274 class = rzalloc(regs, struct ra_class);
275 regs->classes[regs->class_count] = class;
276
277 class->regs = rzalloc_array(class, BITSET_WORD, BITSET_WORDS(regs->count));
278
279 return regs->class_count++;
280 }
281
282 void
283 ra_class_add_reg(struct ra_regs *regs, unsigned int c, unsigned int r)
284 {
285 struct ra_class *class = regs->classes[c];
286
287 BITSET_SET(class->regs, r);
288 class->p++;
289 }
290
291 /**
292 * Returns true if the register belongs to the given class.
293 */
294 static bool
295 reg_belongs_to_class(unsigned int r, struct ra_class *c)
296 {
297 return BITSET_TEST(c->regs, r);
298 }
299
300 /**
301 * Must be called after all conflicts and register classes have been
302 * set up and before the register set is used for allocation.
303 * To avoid costly q value computation, use the q_values paramater
304 * to pass precomputed q values to this function.
305 */
306 void
307 ra_set_finalize(struct ra_regs *regs, unsigned int **q_values)
308 {
309 unsigned int b, c;
310
311 for (b = 0; b < regs->class_count; b++) {
312 regs->classes[b]->q = ralloc_array(regs, unsigned int, regs->class_count);
313 }
314
315 if (q_values) {
316 for (b = 0; b < regs->class_count; b++) {
317 for (c = 0; c < regs->class_count; c++) {
318 regs->classes[b]->q[c] = q_values[b][c];
319 }
320 }
321 return;
322 }
323
324 /* Compute, for each class B and C, how many regs of B an
325 * allocation to C could conflict with.
326 */
327 for (b = 0; b < regs->class_count; b++) {
328 for (c = 0; c < regs->class_count; c++) {
329 unsigned int rc;
330 int max_conflicts = 0;
331
332 for (rc = 0; rc < regs->count; rc++) {
333 int conflicts = 0;
334 int i;
335
336 if (!reg_belongs_to_class(rc, regs->classes[c]))
337 continue;
338
339 for (i = 0; i < regs->regs[rc].num_conflicts; i++) {
340 unsigned int rb = regs->regs[rc].conflict_list[i];
341 if (BITSET_TEST(regs->classes[b]->regs, rb))
342 conflicts++;
343 }
344 max_conflicts = MAX2(max_conflicts, conflicts);
345 }
346 regs->classes[b]->q[c] = max_conflicts;
347 }
348 }
349 }
350
351 static void
352 ra_add_node_adjacency(struct ra_graph *g, unsigned int n1, unsigned int n2)
353 {
354 BITSET_SET(g->nodes[n1].adjacency, n2);
355
356 if (g->nodes[n1].adjacency_count >=
357 g->nodes[n1].adjacency_list_size) {
358 g->nodes[n1].adjacency_list_size *= 2;
359 g->nodes[n1].adjacency_list = reralloc(g, g->nodes[n1].adjacency_list,
360 unsigned int,
361 g->nodes[n1].adjacency_list_size);
362 }
363
364 g->nodes[n1].adjacency_list[g->nodes[n1].adjacency_count] = n2;
365 g->nodes[n1].adjacency_count++;
366 }
367
368 struct ra_graph *
369 ra_alloc_interference_graph(struct ra_regs *regs, unsigned int count)
370 {
371 struct ra_graph *g;
372 unsigned int i;
373
374 g = rzalloc(regs, struct ra_graph);
375 g->regs = regs;
376 g->nodes = rzalloc_array(g, struct ra_node, count);
377 g->count = count;
378
379 g->stack = rzalloc_array(g, unsigned int, count);
380
381 for (i = 0; i < count; i++) {
382 int bitset_count = BITSET_WORDS(count);
383 g->nodes[i].adjacency = rzalloc_array(g, BITSET_WORD, bitset_count);
384
385 g->nodes[i].adjacency_list_size = 4;
386 g->nodes[i].adjacency_list =
387 ralloc_array(g, unsigned int, g->nodes[i].adjacency_list_size);
388 g->nodes[i].adjacency_count = 0;
389
390 ra_add_node_adjacency(g, i, i);
391 g->nodes[i].reg = NO_REG;
392 }
393
394 return g;
395 }
396
397 void
398 ra_set_node_class(struct ra_graph *g,
399 unsigned int n, unsigned int class)
400 {
401 g->nodes[n].class = class;
402 }
403
404 void
405 ra_add_node_interference(struct ra_graph *g,
406 unsigned int n1, unsigned int n2)
407 {
408 if (!BITSET_TEST(g->nodes[n1].adjacency, n2)) {
409 ra_add_node_adjacency(g, n1, n2);
410 ra_add_node_adjacency(g, n2, n1);
411 }
412 }
413
414 static bool
415 pq_test(struct ra_graph *g, unsigned int n)
416 {
417 unsigned int j;
418 unsigned int q = 0;
419 int n_class = g->nodes[n].class;
420
421 for (j = 0; j < g->nodes[n].adjacency_count; j++) {
422 unsigned int n2 = g->nodes[n].adjacency_list[j];
423 unsigned int n2_class = g->nodes[n2].class;
424
425 if (n != n2 && !g->nodes[n2].in_stack) {
426 q += g->regs->classes[n_class]->q[n2_class];
427 }
428 }
429
430 return q < g->regs->classes[n_class]->p;
431 }
432
433 /**
434 * Simplifies the interference graph by pushing all
435 * trivially-colorable nodes into a stack of nodes to be colored,
436 * removing them from the graph, and rinsing and repeating.
437 *
438 * Returns true if all nodes were removed from the graph. false
439 * means that either spilling will be required, or optimistic coloring
440 * should be applied.
441 */
442 bool
443 ra_simplify(struct ra_graph *g)
444 {
445 bool progress = true;
446 int i;
447
448 while (progress) {
449 progress = false;
450
451 for (i = g->count - 1; i >= 0; i--) {
452 if (g->nodes[i].in_stack || g->nodes[i].reg != NO_REG)
453 continue;
454
455 if (pq_test(g, i)) {
456 g->stack[g->stack_count] = i;
457 g->stack_count++;
458 g->nodes[i].in_stack = true;
459 progress = true;
460 }
461 }
462 }
463
464 for (i = 0; i < g->count; i++) {
465 if (!g->nodes[i].in_stack && g->nodes[i].reg == -1)
466 return false;
467 }
468
469 return true;
470 }
471
472 /**
473 * Pops nodes from the stack back into the graph, coloring them with
474 * registers as they go.
475 *
476 * If all nodes were trivially colorable, then this must succeed. If
477 * not (optimistic coloring), then it may return false;
478 */
479 bool
480 ra_select(struct ra_graph *g)
481 {
482 int i;
483 int start_search_reg = 0;
484
485 while (g->stack_count != 0) {
486 unsigned int ri;
487 unsigned int r = -1;
488 int n = g->stack[g->stack_count - 1];
489 struct ra_class *c = g->regs->classes[g->nodes[n].class];
490
491 /* Find the lowest-numbered reg which is not used by a member
492 * of the graph adjacent to us.
493 */
494 for (ri = 0; ri < g->regs->count; ri++) {
495 r = (start_search_reg + ri) % g->regs->count;
496 if (!reg_belongs_to_class(r, c))
497 continue;
498
499 /* Check if any of our neighbors conflict with this register choice. */
500 for (i = 0; i < g->nodes[n].adjacency_count; i++) {
501 unsigned int n2 = g->nodes[n].adjacency_list[i];
502
503 if (!g->nodes[n2].in_stack &&
504 g->regs->regs[r].conflicts[g->nodes[n2].reg]) {
505 break;
506 }
507 }
508 if (i == g->nodes[n].adjacency_count)
509 break;
510 }
511 if (ri == g->regs->count)
512 return false;
513
514 g->nodes[n].reg = r;
515 g->nodes[n].in_stack = false;
516 g->stack_count--;
517
518 if (g->regs->round_robin)
519 start_search_reg = r + 1;
520 }
521
522 return true;
523 }
524
525 /**
526 * Optimistic register coloring: Just push the remaining nodes
527 * on the stack. They'll be colored first in ra_select(), and
528 * if they succeed then the locally-colorable nodes are still
529 * locally-colorable and the rest of the register allocation
530 * will succeed.
531 */
532 void
533 ra_optimistic_color(struct ra_graph *g)
534 {
535 unsigned int i;
536
537 g->stack_optimistic_start = g->stack_count;
538 for (i = 0; i < g->count; i++) {
539 if (g->nodes[i].in_stack || g->nodes[i].reg != NO_REG)
540 continue;
541
542 g->stack[g->stack_count] = i;
543 g->stack_count++;
544 g->nodes[i].in_stack = true;
545 }
546 }
547
548 bool
549 ra_allocate_no_spills(struct ra_graph *g)
550 {
551 if (!ra_simplify(g)) {
552 ra_optimistic_color(g);
553 }
554 return ra_select(g);
555 }
556
557 unsigned int
558 ra_get_node_reg(struct ra_graph *g, unsigned int n)
559 {
560 return g->nodes[n].reg;
561 }
562
563 /**
564 * Forces a node to a specific register. This can be used to avoid
565 * creating a register class containing one node when handling data
566 * that must live in a fixed location and is known to not conflict
567 * with other forced register assignment (as is common with shader
568 * input data). These nodes do not end up in the stack during
569 * ra_simplify(), and thus at ra_select() time it is as if they were
570 * the first popped off the stack and assigned their fixed locations.
571 * Nodes that use this function do not need to be assigned a register
572 * class.
573 *
574 * Must be called before ra_simplify().
575 */
576 void
577 ra_set_node_reg(struct ra_graph *g, unsigned int n, unsigned int reg)
578 {
579 g->nodes[n].reg = reg;
580 g->nodes[n].in_stack = false;
581 }
582
583 static float
584 ra_get_spill_benefit(struct ra_graph *g, unsigned int n)
585 {
586 int j;
587 float benefit = 0;
588 int n_class = g->nodes[n].class;
589
590 /* Define the benefit of eliminating an interference between n, n2
591 * through spilling as q(C, B) / p(C). This is similar to the
592 * "count number of edges" approach of traditional graph coloring,
593 * but takes classes into account.
594 */
595 for (j = 0; j < g->nodes[n].adjacency_count; j++) {
596 unsigned int n2 = g->nodes[n].adjacency_list[j];
597 if (n != n2) {
598 unsigned int n2_class = g->nodes[n2].class;
599 benefit += ((float)g->regs->classes[n_class]->q[n2_class] /
600 g->regs->classes[n_class]->p);
601 }
602 }
603
604 return benefit;
605 }
606
607 /**
608 * Returns a node number to be spilled according to the cost/benefit using
609 * the pq test, or -1 if there are no spillable nodes.
610 */
611 int
612 ra_get_best_spill_node(struct ra_graph *g)
613 {
614 unsigned int best_node = -1;
615 float best_benefit = 0.0;
616 unsigned int n, i;
617
618 /* For any registers not in the stack to be colored, consider them for
619 * spilling. This will mostly collect nodes that were being optimistally
620 * colored as part of ra_allocate_no_spills() if we didn't successfully
621 * optimistically color.
622 *
623 * It also includes nodes not trivially colorable by ra_simplify() if it
624 * was used directly instead of as part of ra_allocate_no_spills().
625 */
626 for (n = 0; n < g->count; n++) {
627 float cost = g->nodes[n].spill_cost;
628 float benefit;
629
630 if (cost <= 0.0)
631 continue;
632
633 if (g->nodes[n].in_stack)
634 continue;
635
636 benefit = ra_get_spill_benefit(g, n);
637
638 if (benefit / cost > best_benefit) {
639 best_benefit = benefit / cost;
640 best_node = n;
641 }
642 }
643
644 /* Also consider spilling any nodes that were set up to be optimistically
645 * colored that we couldn't manage to color in ra_select().
646 */
647 for (i = g->stack_optimistic_start; i < g->stack_count; i++) {
648 float cost, benefit;
649
650 n = g->stack[i];
651 cost = g->nodes[n].spill_cost;
652
653 if (cost <= 0.0)
654 continue;
655
656 benefit = ra_get_spill_benefit(g, n);
657
658 if (benefit / cost > best_benefit) {
659 best_benefit = benefit / cost;
660 best_node = n;
661 }
662 }
663
664 return best_node;
665 }
666
667 /**
668 * Only nodes with a spill cost set (cost != 0.0) will be considered
669 * for register spilling.
670 */
671 void
672 ra_set_node_spill_cost(struct ra_graph *g, unsigned int n, float cost)
673 {
674 g->nodes[n].spill_cost = cost;
675 }