Merge branch 'mesa_7_6_branch' into mesa_7_7_branch
[mesa.git] / src / mesa / shader / programopt.c
1 /*
2 * Mesa 3-D graphics library
3 * Version: 6.5.3
4 *
5 * Copyright (C) 1999-2007 Brian Paul All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included
15 * in all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
21 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
22 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25 /**
26 * \file programopt.c
27 * Vertex/Fragment program optimizations and transformations for program
28 * options, etc.
29 *
30 * \author Brian Paul
31 */
32
33
34 #include "main/glheader.h"
35 #include "main/context.h"
36 #include "prog_parameter.h"
37 #include "prog_statevars.h"
38 #include "program.h"
39 #include "programopt.h"
40 #include "prog_instruction.h"
41
42
43 /**
44 * This function inserts instructions for coordinate modelview * projection
45 * into a vertex program.
46 * May be used to implement the position_invariant option.
47 */
48 static void
49 _mesa_insert_mvp_dp4_code(GLcontext *ctx, struct gl_vertex_program *vprog)
50 {
51 struct prog_instruction *newInst;
52 const GLuint origLen = vprog->Base.NumInstructions;
53 const GLuint newLen = origLen + 4;
54 GLuint i;
55
56 /*
57 * Setup state references for the modelview/projection matrix.
58 * XXX we should check if these state vars are already declared.
59 */
60 static const gl_state_index mvpState[4][STATE_LENGTH] = {
61 { STATE_MVP_MATRIX, 0, 0, 0, 0 }, /* state.matrix.mvp.row[0] */
62 { STATE_MVP_MATRIX, 0, 1, 1, 0 }, /* state.matrix.mvp.row[1] */
63 { STATE_MVP_MATRIX, 0, 2, 2, 0 }, /* state.matrix.mvp.row[2] */
64 { STATE_MVP_MATRIX, 0, 3, 3, 0 }, /* state.matrix.mvp.row[3] */
65 };
66 GLint mvpRef[4];
67
68 for (i = 0; i < 4; i++) {
69 mvpRef[i] = _mesa_add_state_reference(vprog->Base.Parameters,
70 mvpState[i]);
71 }
72
73 /* Alloc storage for new instructions */
74 newInst = _mesa_alloc_instructions(newLen);
75 if (!newInst) {
76 _mesa_error(ctx, GL_OUT_OF_MEMORY,
77 "glProgramString(inserting position_invariant code)");
78 return;
79 }
80
81 /*
82 * Generated instructions:
83 * newInst[0] = DP4 result.position.x, mvp.row[0], vertex.position;
84 * newInst[1] = DP4 result.position.y, mvp.row[1], vertex.position;
85 * newInst[2] = DP4 result.position.z, mvp.row[2], vertex.position;
86 * newInst[3] = DP4 result.position.w, mvp.row[3], vertex.position;
87 */
88 _mesa_init_instructions(newInst, 4);
89 for (i = 0; i < 4; i++) {
90 newInst[i].Opcode = OPCODE_DP4;
91 newInst[i].DstReg.File = PROGRAM_OUTPUT;
92 newInst[i].DstReg.Index = VERT_RESULT_HPOS;
93 newInst[i].DstReg.WriteMask = (WRITEMASK_X << i);
94 newInst[i].SrcReg[0].File = PROGRAM_STATE_VAR;
95 newInst[i].SrcReg[0].Index = mvpRef[i];
96 newInst[i].SrcReg[0].Swizzle = SWIZZLE_NOOP;
97 newInst[i].SrcReg[1].File = PROGRAM_INPUT;
98 newInst[i].SrcReg[1].Index = VERT_ATTRIB_POS;
99 newInst[i].SrcReg[1].Swizzle = SWIZZLE_NOOP;
100 }
101
102 /* Append original instructions after new instructions */
103 _mesa_copy_instructions (newInst + 4, vprog->Base.Instructions, origLen);
104
105 /* free old instructions */
106 _mesa_free_instructions(vprog->Base.Instructions, origLen);
107
108 /* install new instructions */
109 vprog->Base.Instructions = newInst;
110 vprog->Base.NumInstructions = newLen;
111 vprog->Base.InputsRead |= VERT_BIT_POS;
112 vprog->Base.OutputsWritten |= BITFIELD64_BIT(VERT_RESULT_HPOS);
113 }
114
115
116 static void
117 _mesa_insert_mvp_mad_code(GLcontext *ctx, struct gl_vertex_program *vprog)
118 {
119 struct prog_instruction *newInst;
120 const GLuint origLen = vprog->Base.NumInstructions;
121 const GLuint newLen = origLen + 4;
122 GLuint hposTemp;
123 GLuint i;
124
125 /*
126 * Setup state references for the modelview/projection matrix.
127 * XXX we should check if these state vars are already declared.
128 */
129 static const gl_state_index mvpState[4][STATE_LENGTH] = {
130 { STATE_MVP_MATRIX, 0, 0, 0, STATE_MATRIX_TRANSPOSE },
131 { STATE_MVP_MATRIX, 0, 1, 1, STATE_MATRIX_TRANSPOSE },
132 { STATE_MVP_MATRIX, 0, 2, 2, STATE_MATRIX_TRANSPOSE },
133 { STATE_MVP_MATRIX, 0, 3, 3, STATE_MATRIX_TRANSPOSE },
134 };
135 GLint mvpRef[4];
136
137 for (i = 0; i < 4; i++) {
138 mvpRef[i] = _mesa_add_state_reference(vprog->Base.Parameters,
139 mvpState[i]);
140 }
141
142 /* Alloc storage for new instructions */
143 newInst = _mesa_alloc_instructions(newLen);
144 if (!newInst) {
145 _mesa_error(ctx, GL_OUT_OF_MEMORY,
146 "glProgramString(inserting position_invariant code)");
147 return;
148 }
149
150 /* TEMP hposTemp; */
151 hposTemp = vprog->Base.NumTemporaries++;
152
153 /*
154 * Generated instructions:
155 * emit_op2(p, OPCODE_MUL, tmp, 0, swizzle1(src,X), mat[0]);
156 * emit_op3(p, OPCODE_MAD, tmp, 0, swizzle1(src,Y), mat[1], tmp);
157 * emit_op3(p, OPCODE_MAD, tmp, 0, swizzle1(src,Z), mat[2], tmp);
158 * emit_op3(p, OPCODE_MAD, dest, 0, swizzle1(src,W), mat[3], tmp);
159 */
160 _mesa_init_instructions(newInst, 4);
161
162 newInst[0].Opcode = OPCODE_MUL;
163 newInst[0].DstReg.File = PROGRAM_TEMPORARY;
164 newInst[0].DstReg.Index = hposTemp;
165 newInst[0].DstReg.WriteMask = WRITEMASK_XYZW;
166 newInst[0].SrcReg[0].File = PROGRAM_INPUT;
167 newInst[0].SrcReg[0].Index = VERT_ATTRIB_POS;
168 newInst[0].SrcReg[0].Swizzle = SWIZZLE_XXXX;
169 newInst[0].SrcReg[1].File = PROGRAM_STATE_VAR;
170 newInst[0].SrcReg[1].Index = mvpRef[0];
171 newInst[0].SrcReg[1].Swizzle = SWIZZLE_NOOP;
172
173 for (i = 1; i <= 2; i++) {
174 newInst[i].Opcode = OPCODE_MAD;
175 newInst[i].DstReg.File = PROGRAM_TEMPORARY;
176 newInst[i].DstReg.Index = hposTemp;
177 newInst[i].DstReg.WriteMask = WRITEMASK_XYZW;
178 newInst[i].SrcReg[0].File = PROGRAM_INPUT;
179 newInst[i].SrcReg[0].Index = VERT_ATTRIB_POS;
180 newInst[i].SrcReg[0].Swizzle = MAKE_SWIZZLE4(i,i,i,i);
181 newInst[i].SrcReg[1].File = PROGRAM_STATE_VAR;
182 newInst[i].SrcReg[1].Index = mvpRef[i];
183 newInst[i].SrcReg[1].Swizzle = SWIZZLE_NOOP;
184 newInst[i].SrcReg[2].File = PROGRAM_TEMPORARY;
185 newInst[i].SrcReg[2].Index = hposTemp;
186 newInst[1].SrcReg[2].Swizzle = SWIZZLE_NOOP;
187 }
188
189 newInst[3].Opcode = OPCODE_MAD;
190 newInst[3].DstReg.File = PROGRAM_OUTPUT;
191 newInst[3].DstReg.Index = VERT_RESULT_HPOS;
192 newInst[3].DstReg.WriteMask = WRITEMASK_XYZW;
193 newInst[3].SrcReg[0].File = PROGRAM_INPUT;
194 newInst[3].SrcReg[0].Index = VERT_ATTRIB_POS;
195 newInst[3].SrcReg[0].Swizzle = SWIZZLE_WWWW;
196 newInst[3].SrcReg[1].File = PROGRAM_STATE_VAR;
197 newInst[3].SrcReg[1].Index = mvpRef[3];
198 newInst[3].SrcReg[1].Swizzle = SWIZZLE_NOOP;
199 newInst[3].SrcReg[2].File = PROGRAM_TEMPORARY;
200 newInst[3].SrcReg[2].Index = hposTemp;
201 newInst[3].SrcReg[2].Swizzle = SWIZZLE_NOOP;
202
203
204 /* Append original instructions after new instructions */
205 _mesa_copy_instructions (newInst + 4, vprog->Base.Instructions, origLen);
206
207 /* free old instructions */
208 _mesa_free_instructions(vprog->Base.Instructions, origLen);
209
210 /* install new instructions */
211 vprog->Base.Instructions = newInst;
212 vprog->Base.NumInstructions = newLen;
213 vprog->Base.InputsRead |= VERT_BIT_POS;
214 vprog->Base.OutputsWritten |= BITFIELD64_BIT(VERT_RESULT_HPOS);
215 }
216
217
218 void
219 _mesa_insert_mvp_code(GLcontext *ctx, struct gl_vertex_program *vprog)
220 {
221 if (ctx->mvp_with_dp4)
222 _mesa_insert_mvp_dp4_code( ctx, vprog );
223 else
224 _mesa_insert_mvp_mad_code( ctx, vprog );
225 }
226
227
228
229
230
231
232 /**
233 * Append extra instructions onto the given fragment program to implement
234 * the fog mode specified by fprog->FogOption.
235 * The fragment.fogcoord input is used to compute the fog blend factor.
236 *
237 * XXX with a little work, this function could be adapted to add fog code
238 * to vertex programs too.
239 */
240 void
241 _mesa_append_fog_code(GLcontext *ctx, struct gl_fragment_program *fprog)
242 {
243 static const gl_state_index fogPStateOpt[STATE_LENGTH]
244 = { STATE_INTERNAL, STATE_FOG_PARAMS_OPTIMIZED, 0, 0, 0 };
245 static const gl_state_index fogColorState[STATE_LENGTH]
246 = { STATE_FOG_COLOR, 0, 0, 0, 0};
247 struct prog_instruction *newInst, *inst;
248 const GLuint origLen = fprog->Base.NumInstructions;
249 const GLuint newLen = origLen + 5;
250 GLuint i;
251 GLint fogPRefOpt, fogColorRef; /* state references */
252 GLuint colorTemp, fogFactorTemp; /* temporary registerss */
253
254 if (fprog->FogOption == GL_NONE) {
255 _mesa_problem(ctx, "_mesa_append_fog_code() called for fragment program"
256 " with FogOption == GL_NONE");
257 return;
258 }
259
260 /* Alloc storage for new instructions */
261 newInst = _mesa_alloc_instructions(newLen);
262 if (!newInst) {
263 _mesa_error(ctx, GL_OUT_OF_MEMORY,
264 "glProgramString(inserting fog_option code)");
265 return;
266 }
267
268 /* Copy orig instructions into new instruction buffer */
269 _mesa_copy_instructions(newInst, fprog->Base.Instructions, origLen);
270
271 /* PARAM fogParamsRefOpt = internal optimized fog params; */
272 fogPRefOpt
273 = _mesa_add_state_reference(fprog->Base.Parameters, fogPStateOpt);
274 /* PARAM fogColorRef = state.fog.color; */
275 fogColorRef
276 = _mesa_add_state_reference(fprog->Base.Parameters, fogColorState);
277
278 /* TEMP colorTemp; */
279 colorTemp = fprog->Base.NumTemporaries++;
280 /* TEMP fogFactorTemp; */
281 fogFactorTemp = fprog->Base.NumTemporaries++;
282
283 /* Scan program to find where result.color is written */
284 inst = newInst;
285 for (i = 0; i < fprog->Base.NumInstructions; i++) {
286 if (inst->Opcode == OPCODE_END)
287 break;
288 if (inst->DstReg.File == PROGRAM_OUTPUT &&
289 inst->DstReg.Index == FRAG_RESULT_COLOR) {
290 /* change the instruction to write to colorTemp w/ clamping */
291 inst->DstReg.File = PROGRAM_TEMPORARY;
292 inst->DstReg.Index = colorTemp;
293 inst->SaturateMode = SATURATE_ZERO_ONE;
294 /* don't break (may be several writes to result.color) */
295 }
296 inst++;
297 }
298 assert(inst->Opcode == OPCODE_END); /* we'll overwrite this inst */
299
300 _mesa_init_instructions(inst, 5);
301
302 /* emit instructions to compute fog blending factor */
303 if (fprog->FogOption == GL_LINEAR) {
304 /* MAD fogFactorTemp.x, fragment.fogcoord.x, fogPRefOpt.x, fogPRefOpt.y; */
305 inst->Opcode = OPCODE_MAD;
306 inst->DstReg.File = PROGRAM_TEMPORARY;
307 inst->DstReg.Index = fogFactorTemp;
308 inst->DstReg.WriteMask = WRITEMASK_X;
309 inst->SrcReg[0].File = PROGRAM_INPUT;
310 inst->SrcReg[0].Index = FRAG_ATTRIB_FOGC;
311 inst->SrcReg[0].Swizzle = SWIZZLE_XXXX;
312 inst->SrcReg[1].File = PROGRAM_STATE_VAR;
313 inst->SrcReg[1].Index = fogPRefOpt;
314 inst->SrcReg[1].Swizzle = SWIZZLE_XXXX;
315 inst->SrcReg[2].File = PROGRAM_STATE_VAR;
316 inst->SrcReg[2].Index = fogPRefOpt;
317 inst->SrcReg[2].Swizzle = SWIZZLE_YYYY;
318 inst->SaturateMode = SATURATE_ZERO_ONE;
319 inst++;
320 }
321 else {
322 ASSERT(fprog->FogOption == GL_EXP || fprog->FogOption == GL_EXP2);
323 /* fogPRefOpt.z = d/ln(2), fogPRefOpt.w = d/sqrt(ln(2) */
324 /* EXP: MUL fogFactorTemp.x, fogPRefOpt.z, fragment.fogcoord.x; */
325 /* EXP2: MUL fogFactorTemp.x, fogPRefOpt.w, fragment.fogcoord.x; */
326 inst->Opcode = OPCODE_MUL;
327 inst->DstReg.File = PROGRAM_TEMPORARY;
328 inst->DstReg.Index = fogFactorTemp;
329 inst->DstReg.WriteMask = WRITEMASK_X;
330 inst->SrcReg[0].File = PROGRAM_STATE_VAR;
331 inst->SrcReg[0].Index = fogPRefOpt;
332 inst->SrcReg[0].Swizzle
333 = (fprog->FogOption == GL_EXP) ? SWIZZLE_ZZZZ : SWIZZLE_WWWW;
334 inst->SrcReg[1].File = PROGRAM_INPUT;
335 inst->SrcReg[1].Index = FRAG_ATTRIB_FOGC;
336 inst->SrcReg[1].Swizzle = SWIZZLE_XXXX;
337 inst++;
338 if (fprog->FogOption == GL_EXP2) {
339 /* MUL fogFactorTemp.x, fogFactorTemp.x, fogFactorTemp.x; */
340 inst->Opcode = OPCODE_MUL;
341 inst->DstReg.File = PROGRAM_TEMPORARY;
342 inst->DstReg.Index = fogFactorTemp;
343 inst->DstReg.WriteMask = WRITEMASK_X;
344 inst->SrcReg[0].File = PROGRAM_TEMPORARY;
345 inst->SrcReg[0].Index = fogFactorTemp;
346 inst->SrcReg[0].Swizzle = SWIZZLE_XXXX;
347 inst->SrcReg[1].File = PROGRAM_TEMPORARY;
348 inst->SrcReg[1].Index = fogFactorTemp;
349 inst->SrcReg[1].Swizzle = SWIZZLE_XXXX;
350 inst++;
351 }
352 /* EX2_SAT fogFactorTemp.x, -fogFactorTemp.x; */
353 inst->Opcode = OPCODE_EX2;
354 inst->DstReg.File = PROGRAM_TEMPORARY;
355 inst->DstReg.Index = fogFactorTemp;
356 inst->DstReg.WriteMask = WRITEMASK_X;
357 inst->SrcReg[0].File = PROGRAM_TEMPORARY;
358 inst->SrcReg[0].Index = fogFactorTemp;
359 inst->SrcReg[0].Negate = NEGATE_XYZW;
360 inst->SrcReg[0].Swizzle = SWIZZLE_XXXX;
361 inst->SaturateMode = SATURATE_ZERO_ONE;
362 inst++;
363 }
364 /* LRP result.color.xyz, fogFactorTemp.xxxx, colorTemp, fogColorRef; */
365 inst->Opcode = OPCODE_LRP;
366 inst->DstReg.File = PROGRAM_OUTPUT;
367 inst->DstReg.Index = FRAG_RESULT_COLOR;
368 inst->DstReg.WriteMask = WRITEMASK_XYZ;
369 inst->SrcReg[0].File = PROGRAM_TEMPORARY;
370 inst->SrcReg[0].Index = fogFactorTemp;
371 inst->SrcReg[0].Swizzle = SWIZZLE_XXXX;
372 inst->SrcReg[1].File = PROGRAM_TEMPORARY;
373 inst->SrcReg[1].Index = colorTemp;
374 inst->SrcReg[1].Swizzle = SWIZZLE_NOOP;
375 inst->SrcReg[2].File = PROGRAM_STATE_VAR;
376 inst->SrcReg[2].Index = fogColorRef;
377 inst->SrcReg[2].Swizzle = SWIZZLE_NOOP;
378 inst++;
379 /* MOV result.color.w, colorTemp.x; # copy alpha */
380 inst->Opcode = OPCODE_MOV;
381 inst->DstReg.File = PROGRAM_OUTPUT;
382 inst->DstReg.Index = FRAG_RESULT_COLOR;
383 inst->DstReg.WriteMask = WRITEMASK_W;
384 inst->SrcReg[0].File = PROGRAM_TEMPORARY;
385 inst->SrcReg[0].Index = colorTemp;
386 inst->SrcReg[0].Swizzle = SWIZZLE_NOOP;
387 inst++;
388 /* END; */
389 inst->Opcode = OPCODE_END;
390 inst++;
391
392 /* free old instructions */
393 _mesa_free_instructions(fprog->Base.Instructions, origLen);
394
395 /* install new instructions */
396 fprog->Base.Instructions = newInst;
397 fprog->Base.NumInstructions = inst - newInst;
398 fprog->Base.InputsRead |= FRAG_BIT_FOGC;
399 /* XXX do this? fprog->FogOption = GL_NONE; */
400 }
401
402
403
404 static GLboolean
405 is_texture_instruction(const struct prog_instruction *inst)
406 {
407 switch (inst->Opcode) {
408 case OPCODE_TEX:
409 case OPCODE_TXB:
410 case OPCODE_TXD:
411 case OPCODE_TXL:
412 case OPCODE_TXP:
413 case OPCODE_TXP_NV:
414 return GL_TRUE;
415 default:
416 return GL_FALSE;
417 }
418 }
419
420
421 /**
422 * Count the number of texure indirections in the given program.
423 * The program's NumTexIndirections field will be updated.
424 * See the GL_ARB_fragment_program spec (issue 24) for details.
425 * XXX we count texture indirections in texenvprogram.c (maybe use this code
426 * instead and elsewhere).
427 */
428 void
429 _mesa_count_texture_indirections(struct gl_program *prog)
430 {
431 GLuint indirections = 1;
432 GLbitfield tempsOutput = 0x0;
433 GLbitfield aluTemps = 0x0;
434 GLuint i;
435
436 for (i = 0; i < prog->NumInstructions; i++) {
437 const struct prog_instruction *inst = prog->Instructions + i;
438
439 if (is_texture_instruction(inst)) {
440 if (((inst->SrcReg[0].File == PROGRAM_TEMPORARY) &&
441 (tempsOutput & (1 << inst->SrcReg[0].Index))) ||
442 ((inst->Opcode != OPCODE_KIL) &&
443 (inst->DstReg.File == PROGRAM_TEMPORARY) &&
444 (aluTemps & (1 << inst->DstReg.Index))))
445 {
446 indirections++;
447 tempsOutput = 0x0;
448 aluTemps = 0x0;
449 }
450 }
451 else {
452 GLuint j;
453 for (j = 0; j < 3; j++) {
454 if (inst->SrcReg[j].File == PROGRAM_TEMPORARY)
455 aluTemps |= (1 << inst->SrcReg[j].Index);
456 }
457 if (inst->DstReg.File == PROGRAM_TEMPORARY)
458 aluTemps |= (1 << inst->DstReg.Index);
459 }
460
461 if ((inst->Opcode != OPCODE_KIL) && (inst->DstReg.File == PROGRAM_TEMPORARY))
462 tempsOutput |= (1 << inst->DstReg.Index);
463 }
464
465 prog->NumTexIndirections = indirections;
466 }
467
468
469 /**
470 * Count number of texture instructions in given program and update the
471 * program's NumTexInstructions field.
472 */
473 void
474 _mesa_count_texture_instructions(struct gl_program *prog)
475 {
476 GLuint i;
477 prog->NumTexInstructions = 0;
478 for (i = 0; i < prog->NumInstructions; i++) {
479 prog->NumTexInstructions += is_texture_instruction(prog->Instructions + i);
480 }
481 }
482
483
484 /**
485 * Scan/rewrite program to remove reads of custom (output) registers.
486 * The passed type has to be either PROGRAM_OUTPUT or PROGRAM_VARYING
487 * (for vertex shaders).
488 * In GLSL shaders, varying vars can be read and written.
489 * On some hardware, trying to read an output register causes trouble.
490 * So, rewrite the program to use a temporary register in this case.
491 */
492 void
493 _mesa_remove_output_reads(struct gl_program *prog, gl_register_file type)
494 {
495 GLuint i;
496 GLint outputMap[VERT_RESULT_MAX];
497 GLuint numVaryingReads = 0;
498
499 assert(type == PROGRAM_VARYING || type == PROGRAM_OUTPUT);
500 assert(prog->Target == GL_VERTEX_PROGRAM_ARB || type != PROGRAM_VARYING);
501
502 for (i = 0; i < VERT_RESULT_MAX; i++)
503 outputMap[i] = -1;
504
505 /* look for instructions which read from varying vars */
506 for (i = 0; i < prog->NumInstructions; i++) {
507 struct prog_instruction *inst = prog->Instructions + i;
508 const GLuint numSrc = _mesa_num_inst_src_regs(inst->Opcode);
509 GLuint j;
510 for (j = 0; j < numSrc; j++) {
511 if (inst->SrcReg[j].File == type) {
512 /* replace the read with a temp reg */
513 const GLuint var = inst->SrcReg[j].Index;
514 if (outputMap[var] == -1) {
515 numVaryingReads++;
516 outputMap[var] = _mesa_find_free_register(prog,
517 PROGRAM_TEMPORARY);
518 }
519 inst->SrcReg[j].File = PROGRAM_TEMPORARY;
520 inst->SrcReg[j].Index = outputMap[var];
521 }
522 }
523 }
524
525 if (numVaryingReads == 0)
526 return; /* nothing to be done */
527
528 /* look for instructions which write to the varying vars identified above */
529 for (i = 0; i < prog->NumInstructions; i++) {
530 struct prog_instruction *inst = prog->Instructions + i;
531 if (inst->DstReg.File == type &&
532 outputMap[inst->DstReg.Index] >= 0) {
533 /* change inst to write to the temp reg, instead of the varying */
534 inst->DstReg.File = PROGRAM_TEMPORARY;
535 inst->DstReg.Index = outputMap[inst->DstReg.Index];
536 }
537 }
538
539 /* insert new instructions to copy the temp vars to the varying vars */
540 {
541 struct prog_instruction *inst;
542 GLint endPos, var;
543
544 /* Look for END instruction and insert the new varying writes */
545 endPos = -1;
546 for (i = 0; i < prog->NumInstructions; i++) {
547 struct prog_instruction *inst = prog->Instructions + i;
548 if (inst->Opcode == OPCODE_END) {
549 endPos = i;
550 _mesa_insert_instructions(prog, i, numVaryingReads);
551 break;
552 }
553 }
554
555 assert(endPos >= 0);
556
557 /* insert new MOV instructions here */
558 inst = prog->Instructions + endPos;
559 for (var = 0; var < VERT_RESULT_MAX; var++) {
560 if (outputMap[var] >= 0) {
561 /* MOV VAR[var], TEMP[tmp]; */
562 inst->Opcode = OPCODE_MOV;
563 inst->DstReg.File = type;
564 inst->DstReg.Index = var;
565 inst->SrcReg[0].File = PROGRAM_TEMPORARY;
566 inst->SrcReg[0].Index = outputMap[var];
567 inst++;
568 }
569 }
570 }
571 }
572
573
574 /**
575 * Make the given fragment program into a "no-op" shader.
576 * Actually, just copy the incoming fragment color (or texcoord)
577 * to the output color.
578 * This is for debug/test purposes.
579 */
580 void
581 _mesa_nop_fragment_program(GLcontext *ctx, struct gl_fragment_program *prog)
582 {
583 struct prog_instruction *inst;
584 GLuint inputAttr;
585
586 inst = _mesa_alloc_instructions(2);
587 if (!inst) {
588 _mesa_error(ctx, GL_OUT_OF_MEMORY, "_mesa_nop_fragment_program");
589 return;
590 }
591
592 _mesa_init_instructions(inst, 2);
593
594 inst[0].Opcode = OPCODE_MOV;
595 inst[0].DstReg.File = PROGRAM_OUTPUT;
596 inst[0].DstReg.Index = FRAG_RESULT_COLOR;
597 inst[0].SrcReg[0].File = PROGRAM_INPUT;
598 if (prog->Base.InputsRead & FRAG_BIT_COL0)
599 inputAttr = FRAG_ATTRIB_COL0;
600 else
601 inputAttr = FRAG_ATTRIB_TEX0;
602 inst[0].SrcReg[0].Index = inputAttr;
603
604 inst[1].Opcode = OPCODE_END;
605
606 _mesa_free_instructions(prog->Base.Instructions,
607 prog->Base.NumInstructions);
608
609 prog->Base.Instructions = inst;
610 prog->Base.NumInstructions = 2;
611 prog->Base.InputsRead = 1 << inputAttr;
612 prog->Base.OutputsWritten = BITFIELD64_BIT(FRAG_RESULT_COLOR);
613 }
614
615
616 /**
617 * \sa _mesa_nop_fragment_program
618 * Replace the given vertex program with a "no-op" program that just
619 * transforms vertex position and emits color.
620 */
621 void
622 _mesa_nop_vertex_program(GLcontext *ctx, struct gl_vertex_program *prog)
623 {
624 struct prog_instruction *inst;
625 GLuint inputAttr;
626
627 /*
628 * Start with a simple vertex program that emits color.
629 */
630 inst = _mesa_alloc_instructions(2);
631 if (!inst) {
632 _mesa_error(ctx, GL_OUT_OF_MEMORY, "_mesa_nop_vertex_program");
633 return;
634 }
635
636 _mesa_init_instructions(inst, 2);
637
638 inst[0].Opcode = OPCODE_MOV;
639 inst[0].DstReg.File = PROGRAM_OUTPUT;
640 inst[0].DstReg.Index = VERT_RESULT_COL0;
641 inst[0].SrcReg[0].File = PROGRAM_INPUT;
642 if (prog->Base.InputsRead & VERT_BIT_COLOR0)
643 inputAttr = VERT_ATTRIB_COLOR0;
644 else
645 inputAttr = VERT_ATTRIB_TEX0;
646 inst[0].SrcReg[0].Index = inputAttr;
647
648 inst[1].Opcode = OPCODE_END;
649
650 _mesa_free_instructions(prog->Base.Instructions,
651 prog->Base.NumInstructions);
652
653 prog->Base.Instructions = inst;
654 prog->Base.NumInstructions = 2;
655 prog->Base.InputsRead = 1 << inputAttr;
656 prog->Base.OutputsWritten = BITFIELD64_BIT(VERT_RESULT_COL0);
657
658 /*
659 * Now insert code to do standard modelview/projection transformation.
660 */
661 _mesa_insert_mvp_code(ctx, prog);
662 }