u_upload_mgr: pass alignment to u_upload_alloc manually
[mesa.git] / src / mesa / state_tracker / st_cb_drawpixels.c
1 /**************************************************************************
2 *
3 * Copyright 2007 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 /*
29 * Authors:
30 * Brian Paul
31 */
32
33 #include "main/imports.h"
34 #include "main/image.h"
35 #include "main/bufferobj.h"
36 #include "main/blit.h"
37 #include "main/format_pack.h"
38 #include "main/macros.h"
39 #include "main/mtypes.h"
40 #include "main/pack.h"
41 #include "main/pbo.h"
42 #include "main/readpix.h"
43 #include "main/texformat.h"
44 #include "main/teximage.h"
45 #include "main/texstore.h"
46 #include "main/glformats.h"
47 #include "program/program.h"
48 #include "program/prog_print.h"
49 #include "program/prog_instruction.h"
50
51 #include "st_atom.h"
52 #include "st_atom_constbuf.h"
53 #include "st_cb_drawpixels.h"
54 #include "st_cb_readpixels.h"
55 #include "st_cb_fbo.h"
56 #include "st_context.h"
57 #include "st_debug.h"
58 #include "st_format.h"
59 #include "st_program.h"
60 #include "st_texture.h"
61
62 #include "pipe/p_context.h"
63 #include "pipe/p_defines.h"
64 #include "tgsi/tgsi_ureg.h"
65 #include "util/u_draw_quad.h"
66 #include "util/u_format.h"
67 #include "util/u_inlines.h"
68 #include "util/u_math.h"
69 #include "util/u_tile.h"
70 #include "util/u_upload_mgr.h"
71 #include "cso_cache/cso_context.h"
72
73
74 /**
75 * Create fragment program that does a TEX() instruction to get a Z and/or
76 * stencil value value, then writes to FRAG_RESULT_DEPTH/FRAG_RESULT_STENCIL.
77 * Used for glDrawPixels(GL_DEPTH_COMPONENT / GL_STENCIL_INDEX).
78 * Pass fragment color through as-is.
79 *
80 * \return CSO of the fragment shader.
81 */
82 static void *
83 get_drawpix_z_stencil_program(struct st_context *st,
84 GLboolean write_depth,
85 GLboolean write_stencil)
86 {
87 struct ureg_program *ureg;
88 struct ureg_src depth_sampler, stencil_sampler;
89 struct ureg_src texcoord, color;
90 struct ureg_dst out_color, out_depth, out_stencil;
91 const GLuint shaderIndex = write_depth * 2 + write_stencil;
92 void *cso;
93
94 assert(shaderIndex < ARRAY_SIZE(st->drawpix.zs_shaders));
95
96 if (st->drawpix.zs_shaders[shaderIndex]) {
97 /* already have the proper shader */
98 return st->drawpix.zs_shaders[shaderIndex];
99 }
100
101 ureg = ureg_create(TGSI_PROCESSOR_FRAGMENT);
102 if (ureg == NULL)
103 return NULL;
104
105 ureg_property(ureg, TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS, TRUE);
106
107 if (write_depth) {
108 color = ureg_DECL_fs_input(ureg, TGSI_SEMANTIC_COLOR, 0,
109 TGSI_INTERPOLATE_COLOR);
110 out_color = ureg_DECL_output(ureg, TGSI_SEMANTIC_COLOR, 0);
111
112 depth_sampler = ureg_DECL_sampler(ureg, 0);
113 out_depth = ureg_DECL_output(ureg, TGSI_SEMANTIC_POSITION, 0);
114 }
115
116 if (write_stencil) {
117 stencil_sampler = ureg_DECL_sampler(ureg, 1);
118 out_stencil = ureg_DECL_output(ureg, TGSI_SEMANTIC_STENCIL, 0);
119 }
120
121 texcoord = ureg_DECL_fs_input(ureg,
122 st->needs_texcoord_semantic ?
123 TGSI_SEMANTIC_TEXCOORD :
124 TGSI_SEMANTIC_GENERIC,
125 0, TGSI_INTERPOLATE_LINEAR);
126
127 if (write_depth) {
128 ureg_TEX(ureg, ureg_writemask(out_depth, TGSI_WRITEMASK_Z),
129 TGSI_TEXTURE_2D, texcoord, depth_sampler);
130 ureg_MOV(ureg, out_color, color);
131 }
132
133 if (write_stencil)
134 ureg_TEX(ureg, ureg_writemask(out_stencil, TGSI_WRITEMASK_Y),
135 TGSI_TEXTURE_2D, texcoord, stencil_sampler);
136
137 ureg_END(ureg);
138 cso = ureg_create_shader_and_destroy(ureg, st->pipe);
139
140 /* save the new shader */
141 st->drawpix.zs_shaders[shaderIndex] = cso;
142 return cso;
143 }
144
145
146 /**
147 * Create a simple vertex shader that just passes through the
148 * vertex position and texcoord (and optionally, color).
149 */
150 static void *
151 make_passthrough_vertex_shader(struct st_context *st,
152 GLboolean passColor)
153 {
154 const unsigned texcoord_semantic = st->needs_texcoord_semantic ?
155 TGSI_SEMANTIC_TEXCOORD : TGSI_SEMANTIC_GENERIC;
156
157 if (!st->drawpix.vert_shaders[passColor]) {
158 struct ureg_program *ureg = ureg_create( TGSI_PROCESSOR_VERTEX );
159
160 if (ureg == NULL)
161 return NULL;
162
163 /* MOV result.pos, vertex.pos; */
164 ureg_MOV(ureg,
165 ureg_DECL_output( ureg, TGSI_SEMANTIC_POSITION, 0 ),
166 ureg_DECL_vs_input( ureg, 0 ));
167
168 /* MOV result.texcoord0, vertex.attr[1]; */
169 ureg_MOV(ureg,
170 ureg_DECL_output( ureg, texcoord_semantic, 0 ),
171 ureg_DECL_vs_input( ureg, 1 ));
172
173 if (passColor) {
174 /* MOV result.color0, vertex.attr[2]; */
175 ureg_MOV(ureg,
176 ureg_DECL_output( ureg, TGSI_SEMANTIC_COLOR, 0 ),
177 ureg_DECL_vs_input( ureg, 2 ));
178 }
179
180 ureg_END( ureg );
181
182 st->drawpix.vert_shaders[passColor] =
183 ureg_create_shader_and_destroy( ureg, st->pipe );
184 }
185
186 return st->drawpix.vert_shaders[passColor];
187 }
188
189
190 /**
191 * Return a texture internalFormat for drawing/copying an image
192 * of the given format and type.
193 */
194 static GLenum
195 internal_format(struct gl_context *ctx, GLenum format, GLenum type)
196 {
197 switch (format) {
198 case GL_DEPTH_COMPONENT:
199 switch (type) {
200 case GL_UNSIGNED_SHORT:
201 return GL_DEPTH_COMPONENT16;
202
203 case GL_UNSIGNED_INT:
204 return GL_DEPTH_COMPONENT32;
205
206 case GL_FLOAT:
207 if (ctx->Extensions.ARB_depth_buffer_float)
208 return GL_DEPTH_COMPONENT32F;
209 else
210 return GL_DEPTH_COMPONENT;
211
212 default:
213 return GL_DEPTH_COMPONENT;
214 }
215
216 case GL_DEPTH_STENCIL:
217 switch (type) {
218 case GL_FLOAT_32_UNSIGNED_INT_24_8_REV:
219 return GL_DEPTH32F_STENCIL8;
220
221 case GL_UNSIGNED_INT_24_8:
222 default:
223 return GL_DEPTH24_STENCIL8;
224 }
225
226 case GL_STENCIL_INDEX:
227 return GL_STENCIL_INDEX;
228
229 default:
230 if (_mesa_is_enum_format_integer(format)) {
231 switch (type) {
232 case GL_BYTE:
233 return GL_RGBA8I;
234 case GL_UNSIGNED_BYTE:
235 return GL_RGBA8UI;
236 case GL_SHORT:
237 return GL_RGBA16I;
238 case GL_UNSIGNED_SHORT:
239 return GL_RGBA16UI;
240 case GL_INT:
241 return GL_RGBA32I;
242 case GL_UNSIGNED_INT:
243 return GL_RGBA32UI;
244 default:
245 assert(0 && "Unexpected type in internal_format()");
246 return GL_RGBA_INTEGER;
247 }
248 }
249 else {
250 switch (type) {
251 case GL_UNSIGNED_BYTE:
252 case GL_UNSIGNED_INT_8_8_8_8:
253 case GL_UNSIGNED_INT_8_8_8_8_REV:
254 default:
255 return GL_RGBA8;
256
257 case GL_UNSIGNED_BYTE_3_3_2:
258 case GL_UNSIGNED_BYTE_2_3_3_REV:
259 return GL_R3_G3_B2;
260
261 case GL_UNSIGNED_SHORT_4_4_4_4:
262 case GL_UNSIGNED_SHORT_4_4_4_4_REV:
263 return GL_RGBA4;
264
265 case GL_UNSIGNED_SHORT_5_6_5:
266 case GL_UNSIGNED_SHORT_5_6_5_REV:
267 return GL_RGB565;
268
269 case GL_UNSIGNED_SHORT_5_5_5_1:
270 case GL_UNSIGNED_SHORT_1_5_5_5_REV:
271 return GL_RGB5_A1;
272
273 case GL_UNSIGNED_INT_10_10_10_2:
274 case GL_UNSIGNED_INT_2_10_10_10_REV:
275 return GL_RGB10_A2;
276
277 case GL_UNSIGNED_SHORT:
278 case GL_UNSIGNED_INT:
279 return GL_RGBA16;
280
281 case GL_BYTE:
282 return
283 ctx->Extensions.EXT_texture_snorm ? GL_RGBA8_SNORM : GL_RGBA8;
284
285 case GL_SHORT:
286 case GL_INT:
287 return
288 ctx->Extensions.EXT_texture_snorm ? GL_RGBA16_SNORM : GL_RGBA16;
289
290 case GL_HALF_FLOAT_ARB:
291 return
292 ctx->Extensions.ARB_texture_float ? GL_RGBA16F :
293 ctx->Extensions.EXT_texture_snorm ? GL_RGBA16_SNORM : GL_RGBA16;
294
295 case GL_FLOAT:
296 case GL_DOUBLE:
297 return
298 ctx->Extensions.ARB_texture_float ? GL_RGBA32F :
299 ctx->Extensions.EXT_texture_snorm ? GL_RGBA16_SNORM : GL_RGBA16;
300
301 case GL_UNSIGNED_INT_5_9_9_9_REV:
302 assert(ctx->Extensions.EXT_texture_shared_exponent);
303 return GL_RGB9_E5;
304
305 case GL_UNSIGNED_INT_10F_11F_11F_REV:
306 assert(ctx->Extensions.EXT_packed_float);
307 return GL_R11F_G11F_B10F;
308 }
309 }
310 }
311 }
312
313
314 /**
315 * Create a temporary texture to hold an image of the given size.
316 * If width, height are not POT and the driver only handles POT textures,
317 * allocate the next larger size of texture that is POT.
318 */
319 static struct pipe_resource *
320 alloc_texture(struct st_context *st, GLsizei width, GLsizei height,
321 enum pipe_format texFormat, unsigned bind)
322 {
323 struct pipe_resource *pt;
324
325 pt = st_texture_create(st, st->internal_target, texFormat, 0,
326 width, height, 1, 1, 0, bind);
327
328 return pt;
329 }
330
331
332 /**
333 * Make texture containing an image for glDrawPixels image.
334 * If 'pixels' is NULL, leave the texture image data undefined.
335 */
336 static struct pipe_resource *
337 make_texture(struct st_context *st,
338 GLsizei width, GLsizei height, GLenum format, GLenum type,
339 const struct gl_pixelstore_attrib *unpack,
340 const GLvoid *pixels)
341 {
342 struct gl_context *ctx = st->ctx;
343 struct pipe_context *pipe = st->pipe;
344 mesa_format mformat;
345 struct pipe_resource *pt;
346 enum pipe_format pipeFormat;
347 GLenum baseInternalFormat;
348
349 /* Choose a pixel format for the temp texture which will hold the
350 * image to draw.
351 */
352 pipeFormat = st_choose_matching_format(st, PIPE_BIND_SAMPLER_VIEW,
353 format, type, unpack->SwapBytes);
354
355 if (pipeFormat == PIPE_FORMAT_NONE) {
356 /* Use the generic approach. */
357 GLenum intFormat = internal_format(ctx, format, type);
358
359 pipeFormat = st_choose_format(st, intFormat, format, type,
360 PIPE_TEXTURE_2D, 0, PIPE_BIND_SAMPLER_VIEW,
361 FALSE);
362 assert(pipeFormat != PIPE_FORMAT_NONE);
363 }
364
365 mformat = st_pipe_format_to_mesa_format(pipeFormat);
366 baseInternalFormat = _mesa_get_format_base_format(mformat);
367
368 pixels = _mesa_map_pbo_source(ctx, unpack, pixels);
369 if (!pixels)
370 return NULL;
371
372 /* alloc temporary texture */
373 pt = alloc_texture(st, width, height, pipeFormat, PIPE_BIND_SAMPLER_VIEW);
374 if (!pt) {
375 _mesa_unmap_pbo_source(ctx, unpack);
376 return NULL;
377 }
378
379 {
380 struct pipe_transfer *transfer;
381 GLboolean success;
382 GLubyte *dest;
383 const GLbitfield imageTransferStateSave = ctx->_ImageTransferState;
384
385 /* we'll do pixel transfer in a fragment shader */
386 ctx->_ImageTransferState = 0x0;
387
388 /* map texture transfer */
389 dest = pipe_transfer_map(pipe, pt, 0, 0,
390 PIPE_TRANSFER_WRITE, 0, 0,
391 width, height, &transfer);
392
393
394 /* Put image into texture transfer.
395 * Note that the image is actually going to be upside down in
396 * the texture. We deal with that with texcoords.
397 */
398 if ((format == GL_RGBA || format == GL_BGRA)
399 && type == GL_UNSIGNED_BYTE) {
400 /* Use a memcpy-based texstore to avoid software pixel swizzling.
401 * We'll do the necessary swizzling with the pipe_sampler_view to
402 * give much better performance.
403 * XXX in the future, expand this to accomodate more format and
404 * type combinations.
405 */
406 _mesa_memcpy_texture(ctx, 2,
407 mformat, /* mesa_format */
408 transfer->stride, /* dstRowStride, bytes */
409 &dest, /* destSlices */
410 width, height, 1, /* size */
411 format, type, /* src format/type */
412 pixels, /* data source */
413 unpack);
414 success = GL_TRUE;
415 }
416 else {
417 success = _mesa_texstore(ctx, 2, /* dims */
418 baseInternalFormat, /* baseInternalFormat */
419 mformat, /* mesa_format */
420 transfer->stride, /* dstRowStride, bytes */
421 &dest, /* destSlices */
422 width, height, 1, /* size */
423 format, type, /* src format/type */
424 pixels, /* data source */
425 unpack);
426 }
427
428 /* unmap */
429 pipe_transfer_unmap(pipe, transfer);
430
431 assert(success);
432
433 /* restore */
434 ctx->_ImageTransferState = imageTransferStateSave;
435 }
436
437 _mesa_unmap_pbo_source(ctx, unpack);
438
439 return pt;
440 }
441
442
443 /**
444 * Draw quad with texcoords and optional color.
445 * Coords are gallium window coords with y=0=top.
446 * \param color may be null
447 * \param invertTex if true, flip texcoords vertically
448 */
449 static void
450 draw_quad(struct gl_context *ctx, GLfloat x0, GLfloat y0, GLfloat z,
451 GLfloat x1, GLfloat y1, const GLfloat *color,
452 GLboolean invertTex, GLfloat maxXcoord, GLfloat maxYcoord)
453 {
454 struct st_context *st = st_context(ctx);
455 struct pipe_context *pipe = st->pipe;
456 GLfloat (*verts)[3][4]; /* four verts, three attribs, XYZW */
457 struct pipe_resource *buf = NULL;
458 unsigned offset;
459
460 u_upload_alloc(st->uploader, 0, 4 * sizeof(verts[0]), 4, &offset,
461 &buf, (void **) &verts);
462 if (!buf) {
463 return;
464 }
465
466 /* setup vertex data */
467 {
468 const struct gl_framebuffer *fb = st->ctx->DrawBuffer;
469 const GLfloat fb_width = (GLfloat) fb->Width;
470 const GLfloat fb_height = (GLfloat) fb->Height;
471 const GLfloat clip_x0 = x0 / fb_width * 2.0f - 1.0f;
472 const GLfloat clip_y0 = y0 / fb_height * 2.0f - 1.0f;
473 const GLfloat clip_x1 = x1 / fb_width * 2.0f - 1.0f;
474 const GLfloat clip_y1 = y1 / fb_height * 2.0f - 1.0f;
475 const GLfloat sLeft = 0.0f, sRight = maxXcoord;
476 const GLfloat tTop = invertTex ? maxYcoord : 0.0f;
477 const GLfloat tBot = invertTex ? 0.0f : maxYcoord;
478 GLuint i;
479
480 /* upper-left */
481 verts[0][0][0] = clip_x0; /* v[0].attr[0].x */
482 verts[0][0][1] = clip_y0; /* v[0].attr[0].y */
483
484 /* upper-right */
485 verts[1][0][0] = clip_x1;
486 verts[1][0][1] = clip_y0;
487
488 /* lower-right */
489 verts[2][0][0] = clip_x1;
490 verts[2][0][1] = clip_y1;
491
492 /* lower-left */
493 verts[3][0][0] = clip_x0;
494 verts[3][0][1] = clip_y1;
495
496 verts[0][1][0] = sLeft; /* v[0].attr[1].S */
497 verts[0][1][1] = tTop; /* v[0].attr[1].T */
498 verts[1][1][0] = sRight;
499 verts[1][1][1] = tTop;
500 verts[2][1][0] = sRight;
501 verts[2][1][1] = tBot;
502 verts[3][1][0] = sLeft;
503 verts[3][1][1] = tBot;
504
505 /* same for all verts: */
506 if (color) {
507 for (i = 0; i < 4; i++) {
508 verts[i][0][2] = z; /* v[i].attr[0].z */
509 verts[i][0][3] = 1.0f; /* v[i].attr[0].w */
510 verts[i][2][0] = color[0]; /* v[i].attr[2].r */
511 verts[i][2][1] = color[1]; /* v[i].attr[2].g */
512 verts[i][2][2] = color[2]; /* v[i].attr[2].b */
513 verts[i][2][3] = color[3]; /* v[i].attr[2].a */
514 verts[i][1][2] = 0.0f; /* v[i].attr[1].R */
515 verts[i][1][3] = 1.0f; /* v[i].attr[1].Q */
516 }
517 }
518 else {
519 for (i = 0; i < 4; i++) {
520 verts[i][0][2] = z; /*Z*/
521 verts[i][0][3] = 1.0f; /*W*/
522 verts[i][1][2] = 0.0f; /*R*/
523 verts[i][1][3] = 1.0f; /*Q*/
524 }
525 }
526 }
527
528 u_upload_unmap(st->uploader);
529 util_draw_vertex_buffer(pipe, st->cso_context, buf,
530 cso_get_aux_vertex_buffer_slot(st->cso_context),
531 offset,
532 PIPE_PRIM_QUADS,
533 4, /* verts */
534 3); /* attribs/vert */
535 pipe_resource_reference(&buf, NULL);
536 }
537
538
539
540 static void
541 draw_textured_quad(struct gl_context *ctx, GLint x, GLint y, GLfloat z,
542 GLsizei width, GLsizei height,
543 GLfloat zoomX, GLfloat zoomY,
544 struct pipe_sampler_view **sv,
545 int num_sampler_view,
546 void *driver_vp,
547 void *driver_fp,
548 struct st_fp_variant *fpv,
549 const GLfloat *color,
550 GLboolean invertTex,
551 GLboolean write_depth, GLboolean write_stencil)
552 {
553 struct st_context *st = st_context(ctx);
554 struct pipe_context *pipe = st->pipe;
555 struct cso_context *cso = st->cso_context;
556 GLfloat x0, y0, x1, y1;
557 GLsizei maxSize;
558 boolean normalized = sv[0]->texture->target != PIPE_TEXTURE_RECT;
559
560 /* limit checks */
561 /* XXX if DrawPixels image is larger than max texture size, break
562 * it up into chunks.
563 */
564 maxSize = 1 << (pipe->screen->get_param(pipe->screen,
565 PIPE_CAP_MAX_TEXTURE_2D_LEVELS) - 1);
566 assert(width <= maxSize);
567 assert(height <= maxSize);
568
569 cso_save_rasterizer(cso);
570 cso_save_viewport(cso);
571 cso_save_fragment_samplers(cso);
572 cso_save_fragment_sampler_views(cso);
573 cso_save_fragment_shader(cso);
574 cso_save_stream_outputs(cso);
575 cso_save_vertex_shader(cso);
576 cso_save_tessctrl_shader(cso);
577 cso_save_tesseval_shader(cso);
578 cso_save_geometry_shader(cso);
579 cso_save_vertex_elements(cso);
580 cso_save_aux_vertex_buffer_slot(cso);
581 if (write_stencil) {
582 cso_save_depth_stencil_alpha(cso);
583 cso_save_blend(cso);
584 }
585
586 /* rasterizer state: just scissor */
587 {
588 struct pipe_rasterizer_state rasterizer;
589 memset(&rasterizer, 0, sizeof(rasterizer));
590 rasterizer.clamp_fragment_color = !st->clamp_frag_color_in_shader &&
591 ctx->Color._ClampFragmentColor;
592 rasterizer.half_pixel_center = 1;
593 rasterizer.bottom_edge_rule = 1;
594 rasterizer.depth_clip = !ctx->Transform.DepthClamp;
595 rasterizer.scissor = ctx->Scissor.EnableFlags;
596 cso_set_rasterizer(cso, &rasterizer);
597 }
598
599 if (write_stencil) {
600 /* Stencil writing bypasses the normal fragment pipeline to
601 * disable color writing and set stencil test to always pass.
602 */
603 struct pipe_depth_stencil_alpha_state dsa;
604 struct pipe_blend_state blend;
605
606 /* depth/stencil */
607 memset(&dsa, 0, sizeof(dsa));
608 dsa.stencil[0].enabled = 1;
609 dsa.stencil[0].func = PIPE_FUNC_ALWAYS;
610 dsa.stencil[0].writemask = ctx->Stencil.WriteMask[0] & 0xff;
611 dsa.stencil[0].zpass_op = PIPE_STENCIL_OP_REPLACE;
612 if (write_depth) {
613 /* writing depth+stencil: depth test always passes */
614 dsa.depth.enabled = 1;
615 dsa.depth.writemask = ctx->Depth.Mask;
616 dsa.depth.func = PIPE_FUNC_ALWAYS;
617 }
618 cso_set_depth_stencil_alpha(cso, &dsa);
619
620 /* blend (colormask) */
621 memset(&blend, 0, sizeof(blend));
622 cso_set_blend(cso, &blend);
623 }
624
625 /* fragment shader state: TEX lookup program */
626 cso_set_fragment_shader_handle(cso, driver_fp);
627
628 /* vertex shader state: position + texcoord pass-through */
629 cso_set_vertex_shader_handle(cso, driver_vp);
630
631 /* disable other shaders */
632 cso_set_tessctrl_shader_handle(cso, NULL);
633 cso_set_tesseval_shader_handle(cso, NULL);
634 cso_set_geometry_shader_handle(cso, NULL);
635
636 /* user samplers, plus the drawpix samplers */
637 {
638 struct pipe_sampler_state sampler;
639
640 memset(&sampler, 0, sizeof(sampler));
641 sampler.wrap_s = PIPE_TEX_WRAP_CLAMP;
642 sampler.wrap_t = PIPE_TEX_WRAP_CLAMP;
643 sampler.wrap_r = PIPE_TEX_WRAP_CLAMP;
644 sampler.min_img_filter = PIPE_TEX_FILTER_NEAREST;
645 sampler.min_mip_filter = PIPE_TEX_MIPFILTER_NONE;
646 sampler.mag_img_filter = PIPE_TEX_FILTER_NEAREST;
647 sampler.normalized_coords = normalized;
648
649 if (fpv) {
650 const struct pipe_sampler_state *samplers[PIPE_MAX_SAMPLERS];
651 uint num = MAX2(MAX2(fpv->drawpix_sampler, fpv->pixelmap_sampler) + 1,
652 st->state.num_samplers[PIPE_SHADER_FRAGMENT]);
653 uint i;
654
655 for (i = 0; i < st->state.num_samplers[PIPE_SHADER_FRAGMENT]; i++)
656 samplers[i] = &st->state.samplers[PIPE_SHADER_FRAGMENT][i];
657
658 samplers[fpv->drawpix_sampler] = &sampler;
659 if (sv[1])
660 samplers[fpv->pixelmap_sampler] = &sampler;
661
662 cso_set_samplers(cso, PIPE_SHADER_FRAGMENT, num, samplers);
663 } else {
664 const struct pipe_sampler_state *samplers[2] = {&sampler, &sampler};
665
666 cso_set_samplers(cso, PIPE_SHADER_FRAGMENT, num_sampler_view, samplers);
667 }
668 }
669
670 /* viewport state: viewport matching window dims */
671 {
672 const float w = (float) ctx->DrawBuffer->Width;
673 const float h = (float) ctx->DrawBuffer->Height;
674 struct pipe_viewport_state vp;
675 vp.scale[0] = 0.5f * w;
676 vp.scale[1] = -0.5f * h;
677 vp.scale[2] = 0.5f;
678 vp.translate[0] = 0.5f * w;
679 vp.translate[1] = 0.5f * h;
680 vp.translate[2] = 0.5f;
681 cso_set_viewport(cso, &vp);
682 }
683
684 cso_set_vertex_elements(cso, 3, st->velems_util_draw);
685 cso_set_stream_outputs(st->cso_context, 0, NULL, NULL);
686
687 /* user textures, plus the drawpix textures */
688 if (fpv) {
689 struct pipe_sampler_view *sampler_views[PIPE_MAX_SAMPLERS];
690 uint num = MAX3(fpv->drawpix_sampler + 1,
691 fpv->pixelmap_sampler + 1,
692 st->state.num_sampler_views[PIPE_SHADER_FRAGMENT]);
693
694 memcpy(sampler_views, st->state.sampler_views[PIPE_SHADER_FRAGMENT],
695 sizeof(sampler_views));
696
697 sampler_views[fpv->drawpix_sampler] = sv[0];
698 if (sv[1])
699 sampler_views[fpv->pixelmap_sampler] = sv[1];
700 cso_set_sampler_views(cso, PIPE_SHADER_FRAGMENT, num, sampler_views);
701 } else
702 cso_set_sampler_views(cso, PIPE_SHADER_FRAGMENT, num_sampler_view, sv);
703
704 /* Compute Gallium window coords (y=0=top) with pixel zoom.
705 * Recall that these coords are transformed by the current
706 * vertex shader and viewport transformation.
707 */
708 if (st_fb_orientation(ctx->DrawBuffer) == Y_0_BOTTOM) {
709 y = ctx->DrawBuffer->Height - (int) (y + height * ctx->Pixel.ZoomY);
710 invertTex = !invertTex;
711 }
712
713 x0 = (GLfloat) x;
714 x1 = x + width * ctx->Pixel.ZoomX;
715 y0 = (GLfloat) y;
716 y1 = y + height * ctx->Pixel.ZoomY;
717
718 /* convert Z from [0,1] to [-1,-1] to match viewport Z scale/bias */
719 z = z * 2.0f - 1.0f;
720
721 draw_quad(ctx, x0, y0, z, x1, y1, color, invertTex,
722 normalized ? ((GLfloat) width / sv[0]->texture->width0) : (GLfloat)width,
723 normalized ? ((GLfloat) height / sv[0]->texture->height0) : (GLfloat)height);
724
725 /* restore state */
726 cso_restore_rasterizer(cso);
727 cso_restore_viewport(cso);
728 cso_restore_fragment_samplers(cso);
729 cso_restore_fragment_sampler_views(cso);
730 cso_restore_fragment_shader(cso);
731 cso_restore_vertex_shader(cso);
732 cso_restore_tessctrl_shader(cso);
733 cso_restore_tesseval_shader(cso);
734 cso_restore_geometry_shader(cso);
735 cso_restore_vertex_elements(cso);
736 cso_restore_aux_vertex_buffer_slot(cso);
737 cso_restore_stream_outputs(cso);
738 if (write_stencil) {
739 cso_restore_depth_stencil_alpha(cso);
740 cso_restore_blend(cso);
741 }
742 }
743
744
745 /**
746 * Software fallback to do glDrawPixels(GL_STENCIL_INDEX) when we
747 * can't use a fragment shader to write stencil values.
748 */
749 static void
750 draw_stencil_pixels(struct gl_context *ctx, GLint x, GLint y,
751 GLsizei width, GLsizei height, GLenum format, GLenum type,
752 const struct gl_pixelstore_attrib *unpack,
753 const GLvoid *pixels)
754 {
755 struct st_context *st = st_context(ctx);
756 struct pipe_context *pipe = st->pipe;
757 struct st_renderbuffer *strb;
758 enum pipe_transfer_usage usage;
759 struct pipe_transfer *pt;
760 const GLboolean zoom = ctx->Pixel.ZoomX != 1.0 || ctx->Pixel.ZoomY != 1.0;
761 ubyte *stmap;
762 struct gl_pixelstore_attrib clippedUnpack = *unpack;
763 GLubyte *sValues;
764 GLuint *zValues;
765
766 if (!zoom) {
767 if (!_mesa_clip_drawpixels(ctx, &x, &y, &width, &height,
768 &clippedUnpack)) {
769 /* totally clipped */
770 return;
771 }
772 }
773
774 strb = st_renderbuffer(ctx->DrawBuffer->
775 Attachment[BUFFER_STENCIL].Renderbuffer);
776
777 if (st_fb_orientation(ctx->DrawBuffer) == Y_0_TOP) {
778 y = ctx->DrawBuffer->Height - y - height;
779 }
780
781 if (format == GL_STENCIL_INDEX &&
782 _mesa_is_format_packed_depth_stencil(strb->Base.Format)) {
783 /* writing stencil to a combined depth+stencil buffer */
784 usage = PIPE_TRANSFER_READ_WRITE;
785 }
786 else {
787 usage = PIPE_TRANSFER_WRITE;
788 }
789
790 stmap = pipe_transfer_map(pipe, strb->texture,
791 strb->surface->u.tex.level,
792 strb->surface->u.tex.first_layer,
793 usage, x, y,
794 width, height, &pt);
795
796 pixels = _mesa_map_pbo_source(ctx, &clippedUnpack, pixels);
797 assert(pixels);
798
799 sValues = malloc(width * sizeof(GLubyte));
800 zValues = malloc(width * sizeof(GLuint));
801
802 if (sValues && zValues) {
803 GLint row;
804 for (row = 0; row < height; row++) {
805 GLfloat *zValuesFloat = (GLfloat*)zValues;
806 GLenum destType = GL_UNSIGNED_BYTE;
807 const GLvoid *source = _mesa_image_address2d(&clippedUnpack, pixels,
808 width, height,
809 format, type,
810 row, 0);
811 _mesa_unpack_stencil_span(ctx, width, destType, sValues,
812 type, source, &clippedUnpack,
813 ctx->_ImageTransferState);
814
815 if (format == GL_DEPTH_STENCIL) {
816 GLenum ztype =
817 pt->resource->format == PIPE_FORMAT_Z32_FLOAT_S8X24_UINT ?
818 GL_FLOAT : GL_UNSIGNED_INT;
819
820 _mesa_unpack_depth_span(ctx, width, ztype, zValues,
821 (1 << 24) - 1, type, source,
822 &clippedUnpack);
823 }
824
825 if (zoom) {
826 _mesa_problem(ctx, "Gallium glDrawPixels(GL_STENCIL) with "
827 "zoom not complete");
828 }
829
830 {
831 GLint spanY;
832
833 if (st_fb_orientation(ctx->DrawBuffer) == Y_0_TOP) {
834 spanY = height - row - 1;
835 }
836 else {
837 spanY = row;
838 }
839
840 /* now pack the stencil (and Z) values in the dest format */
841 switch (pt->resource->format) {
842 case PIPE_FORMAT_S8_UINT:
843 {
844 ubyte *dest = stmap + spanY * pt->stride;
845 assert(usage == PIPE_TRANSFER_WRITE);
846 memcpy(dest, sValues, width);
847 }
848 break;
849 case PIPE_FORMAT_Z24_UNORM_S8_UINT:
850 if (format == GL_DEPTH_STENCIL) {
851 uint *dest = (uint *) (stmap + spanY * pt->stride);
852 GLint k;
853 assert(usage == PIPE_TRANSFER_WRITE);
854 for (k = 0; k < width; k++) {
855 dest[k] = zValues[k] | (sValues[k] << 24);
856 }
857 }
858 else {
859 uint *dest = (uint *) (stmap + spanY * pt->stride);
860 GLint k;
861 assert(usage == PIPE_TRANSFER_READ_WRITE);
862 for (k = 0; k < width; k++) {
863 dest[k] = (dest[k] & 0xffffff) | (sValues[k] << 24);
864 }
865 }
866 break;
867 case PIPE_FORMAT_S8_UINT_Z24_UNORM:
868 if (format == GL_DEPTH_STENCIL) {
869 uint *dest = (uint *) (stmap + spanY * pt->stride);
870 GLint k;
871 assert(usage == PIPE_TRANSFER_WRITE);
872 for (k = 0; k < width; k++) {
873 dest[k] = (zValues[k] << 8) | (sValues[k] & 0xff);
874 }
875 }
876 else {
877 uint *dest = (uint *) (stmap + spanY * pt->stride);
878 GLint k;
879 assert(usage == PIPE_TRANSFER_READ_WRITE);
880 for (k = 0; k < width; k++) {
881 dest[k] = (dest[k] & 0xffffff00) | (sValues[k] & 0xff);
882 }
883 }
884 break;
885 case PIPE_FORMAT_Z32_FLOAT_S8X24_UINT:
886 if (format == GL_DEPTH_STENCIL) {
887 uint *dest = (uint *) (stmap + spanY * pt->stride);
888 GLfloat *destf = (GLfloat*)dest;
889 GLint k;
890 assert(usage == PIPE_TRANSFER_WRITE);
891 for (k = 0; k < width; k++) {
892 destf[k*2] = zValuesFloat[k];
893 dest[k*2+1] = sValues[k] & 0xff;
894 }
895 }
896 else {
897 uint *dest = (uint *) (stmap + spanY * pt->stride);
898 GLint k;
899 assert(usage == PIPE_TRANSFER_READ_WRITE);
900 for (k = 0; k < width; k++) {
901 dest[k*2+1] = sValues[k] & 0xff;
902 }
903 }
904 break;
905 default:
906 assert(0);
907 }
908 }
909 }
910 }
911 else {
912 _mesa_error(ctx, GL_OUT_OF_MEMORY, "glDrawPixels()");
913 }
914
915 free(sValues);
916 free(zValues);
917
918 _mesa_unmap_pbo_source(ctx, &clippedUnpack);
919
920 /* unmap the stencil buffer */
921 pipe_transfer_unmap(pipe, pt);
922 }
923
924
925 /**
926 * Get fragment program variant for a glDrawPixels or glCopyPixels
927 * command for RGBA data.
928 */
929 static struct st_fp_variant *
930 get_color_fp_variant(struct st_context *st)
931 {
932 struct gl_context *ctx = st->ctx;
933 struct st_fp_variant_key key;
934 struct st_fp_variant *fpv;
935
936 memset(&key, 0, sizeof(key));
937
938 key.st = st->has_shareable_shaders ? NULL : st;
939 key.drawpixels = 1;
940 key.scaleAndBias = (ctx->Pixel.RedBias != 0.0 ||
941 ctx->Pixel.RedScale != 1.0 ||
942 ctx->Pixel.GreenBias != 0.0 ||
943 ctx->Pixel.GreenScale != 1.0 ||
944 ctx->Pixel.BlueBias != 0.0 ||
945 ctx->Pixel.BlueScale != 1.0 ||
946 ctx->Pixel.AlphaBias != 0.0 ||
947 ctx->Pixel.AlphaScale != 1.0);
948 key.pixelMaps = ctx->Pixel.MapColorFlag;
949 key.clamp_color = st->clamp_frag_color_in_shader &&
950 st->ctx->Color._ClampFragmentColor;
951
952 fpv = st_get_fp_variant(st, st->fp, &key);
953
954 return fpv;
955 }
956
957
958 /**
959 * Clamp glDrawPixels width and height to the maximum texture size.
960 */
961 static void
962 clamp_size(struct pipe_context *pipe, GLsizei *width, GLsizei *height,
963 struct gl_pixelstore_attrib *unpack)
964 {
965 const int maxSize =
966 1 << (pipe->screen->get_param(pipe->screen,
967 PIPE_CAP_MAX_TEXTURE_2D_LEVELS) - 1);
968
969 if (*width > maxSize) {
970 if (unpack->RowLength == 0)
971 unpack->RowLength = *width;
972 *width = maxSize;
973 }
974 if (*height > maxSize) {
975 *height = maxSize;
976 }
977 }
978
979
980 /**
981 * Search the array of 4 swizzle components for the named component and return
982 * its position.
983 */
984 static unsigned
985 search_swizzle(const unsigned char swizzle[4], unsigned component)
986 {
987 unsigned i;
988 for (i = 0; i < 4; i++) {
989 if (swizzle[i] == component)
990 return i;
991 }
992 assert(!"search_swizzle() failed");
993 return 0;
994 }
995
996
997 /**
998 * Set the sampler view's swizzle terms. This is used to handle RGBA
999 * swizzling when the incoming image format isn't an exact match for
1000 * the actual texture format. For example, if we have glDrawPixels(
1001 * GL_RGBA, GL_UNSIGNED_BYTE) and we chose the texture format
1002 * PIPE_FORMAT_B8G8R8A8 then we can do use the sampler view swizzle to
1003 * avoid swizzling all the pixels in software in the texstore code.
1004 */
1005 static void
1006 setup_sampler_swizzle(struct pipe_sampler_view *sv, GLenum format, GLenum type)
1007 {
1008 if ((format == GL_RGBA || format == GL_BGRA) && type == GL_UNSIGNED_BYTE) {
1009 const struct util_format_description *desc =
1010 util_format_description(sv->texture->format);
1011 unsigned c0, c1, c2, c3;
1012
1013 /* Every gallium driver supports at least one 32-bit packed RGBA format.
1014 * We must have chosen one for (GL_RGBA, GL_UNSIGNED_BYTE).
1015 */
1016 assert(desc->block.bits == 32);
1017
1018 /* invert the format's swizzle to setup the sampler's swizzle */
1019 if (format == GL_RGBA) {
1020 c0 = UTIL_FORMAT_SWIZZLE_X;
1021 c1 = UTIL_FORMAT_SWIZZLE_Y;
1022 c2 = UTIL_FORMAT_SWIZZLE_Z;
1023 c3 = UTIL_FORMAT_SWIZZLE_W;
1024 }
1025 else {
1026 assert(format == GL_BGRA);
1027 c0 = UTIL_FORMAT_SWIZZLE_Z;
1028 c1 = UTIL_FORMAT_SWIZZLE_Y;
1029 c2 = UTIL_FORMAT_SWIZZLE_X;
1030 c3 = UTIL_FORMAT_SWIZZLE_W;
1031 }
1032 sv->swizzle_r = search_swizzle(desc->swizzle, c0);
1033 sv->swizzle_g = search_swizzle(desc->swizzle, c1);
1034 sv->swizzle_b = search_swizzle(desc->swizzle, c2);
1035 sv->swizzle_a = search_swizzle(desc->swizzle, c3);
1036 }
1037 else {
1038 /* use the default sampler swizzle */
1039 }
1040 }
1041
1042
1043 /**
1044 * Called via ctx->Driver.DrawPixels()
1045 */
1046 static void
1047 st_DrawPixels(struct gl_context *ctx, GLint x, GLint y,
1048 GLsizei width, GLsizei height,
1049 GLenum format, GLenum type,
1050 const struct gl_pixelstore_attrib *unpack, const GLvoid *pixels)
1051 {
1052 void *driver_vp, *driver_fp;
1053 struct st_context *st = st_context(ctx);
1054 const GLfloat *color;
1055 struct pipe_context *pipe = st->pipe;
1056 GLboolean write_stencil = GL_FALSE, write_depth = GL_FALSE;
1057 struct pipe_sampler_view *sv[2] = { NULL };
1058 int num_sampler_view = 1;
1059 struct gl_pixelstore_attrib clippedUnpack;
1060 struct st_fp_variant *fpv = NULL;
1061 struct pipe_resource *pt;
1062
1063 /* Mesa state should be up to date by now */
1064 assert(ctx->NewState == 0x0);
1065
1066 st_validate_state(st);
1067
1068 /* Limit the size of the glDrawPixels to the max texture size.
1069 * Strictly speaking, that's not correct but since we don't handle
1070 * larger images yet, this is better than crashing.
1071 */
1072 clippedUnpack = *unpack;
1073 unpack = &clippedUnpack;
1074 clamp_size(st->pipe, &width, &height, &clippedUnpack);
1075
1076 if (format == GL_DEPTH_STENCIL)
1077 write_stencil = write_depth = GL_TRUE;
1078 else if (format == GL_STENCIL_INDEX)
1079 write_stencil = GL_TRUE;
1080 else if (format == GL_DEPTH_COMPONENT)
1081 write_depth = GL_TRUE;
1082
1083 if (write_stencil &&
1084 !pipe->screen->get_param(pipe->screen, PIPE_CAP_SHADER_STENCIL_EXPORT)) {
1085 /* software fallback */
1086 draw_stencil_pixels(ctx, x, y, width, height, format, type,
1087 unpack, pixels);
1088 return;
1089 }
1090
1091 /*
1092 * Get vertex/fragment shaders
1093 */
1094 if (write_depth || write_stencil) {
1095 driver_fp = get_drawpix_z_stencil_program(st, write_depth,
1096 write_stencil);
1097 driver_vp = make_passthrough_vertex_shader(st, GL_TRUE);
1098 color = ctx->Current.RasterColor;
1099 }
1100 else {
1101 fpv = get_color_fp_variant(st);
1102
1103 driver_fp = fpv->driver_shader;
1104 driver_vp = make_passthrough_vertex_shader(st, GL_FALSE);
1105
1106 color = NULL;
1107 if (ctx->Pixel.MapColorFlag) {
1108 pipe_sampler_view_reference(&sv[1],
1109 st->pixel_xfer.pixelmap_sampler_view);
1110 num_sampler_view++;
1111 }
1112
1113 /* compiling a new fragment shader variant added new state constants
1114 * into the constant buffer, we need to update them
1115 */
1116 st_upload_constants(st, st->fp->Base.Base.Parameters,
1117 PIPE_SHADER_FRAGMENT);
1118 }
1119
1120 /* Put glDrawPixels image into a texture */
1121 pt = make_texture(st, width, height, format, type, unpack, pixels);
1122 if (!pt) {
1123 _mesa_error(ctx, GL_OUT_OF_MEMORY, "glDrawPixels");
1124 return;
1125 }
1126
1127 /* create sampler view for the image */
1128 sv[0] = st_create_texture_sampler_view(st->pipe, pt);
1129 if (!sv[0]) {
1130 _mesa_error(ctx, GL_OUT_OF_MEMORY, "glDrawPixels");
1131 pipe_resource_reference(&pt, NULL);
1132 return;
1133 }
1134
1135 /* Set up the sampler view's swizzle */
1136 setup_sampler_swizzle(sv[0], format, type);
1137
1138 /* Create a second sampler view to read stencil. The stencil is
1139 * written using the shader stencil export functionality.
1140 */
1141 if (write_stencil) {
1142 enum pipe_format stencil_format =
1143 util_format_stencil_only(pt->format);
1144 /* we should not be doing pixel map/transfer (see above) */
1145 assert(num_sampler_view == 1);
1146 sv[1] = st_create_texture_sampler_view_format(st->pipe, pt,
1147 stencil_format);
1148 if (!sv[1]) {
1149 _mesa_error(ctx, GL_OUT_OF_MEMORY, "glDrawPixels");
1150 pipe_resource_reference(&pt, NULL);
1151 pipe_sampler_view_reference(&sv[0], NULL);
1152 return;
1153 }
1154 num_sampler_view++;
1155 }
1156
1157 draw_textured_quad(ctx, x, y, ctx->Current.RasterPos[2],
1158 width, height,
1159 ctx->Pixel.ZoomX, ctx->Pixel.ZoomY,
1160 sv,
1161 num_sampler_view,
1162 driver_vp,
1163 driver_fp, fpv,
1164 color, GL_FALSE, write_depth, write_stencil);
1165 pipe_sampler_view_reference(&sv[0], NULL);
1166 if (num_sampler_view > 1)
1167 pipe_sampler_view_reference(&sv[1], NULL);
1168
1169 pipe_resource_reference(&pt, NULL);
1170 }
1171
1172
1173
1174 /**
1175 * Software fallback for glCopyPixels(GL_STENCIL).
1176 */
1177 static void
1178 copy_stencil_pixels(struct gl_context *ctx, GLint srcx, GLint srcy,
1179 GLsizei width, GLsizei height,
1180 GLint dstx, GLint dsty)
1181 {
1182 struct st_renderbuffer *rbDraw;
1183 struct pipe_context *pipe = st_context(ctx)->pipe;
1184 enum pipe_transfer_usage usage;
1185 struct pipe_transfer *ptDraw;
1186 ubyte *drawMap;
1187 ubyte *buffer;
1188 int i;
1189
1190 buffer = malloc(width * height * sizeof(ubyte));
1191 if (!buffer) {
1192 _mesa_error(ctx, GL_OUT_OF_MEMORY, "glCopyPixels(stencil)");
1193 return;
1194 }
1195
1196 /* Get the dest renderbuffer */
1197 rbDraw = st_renderbuffer(ctx->DrawBuffer->
1198 Attachment[BUFFER_STENCIL].Renderbuffer);
1199
1200 /* this will do stencil pixel transfer ops */
1201 _mesa_readpixels(ctx, srcx, srcy, width, height,
1202 GL_STENCIL_INDEX, GL_UNSIGNED_BYTE,
1203 &ctx->DefaultPacking, buffer);
1204
1205 if (0) {
1206 /* debug code: dump stencil values */
1207 GLint row, col;
1208 for (row = 0; row < height; row++) {
1209 printf("%3d: ", row);
1210 for (col = 0; col < width; col++) {
1211 printf("%02x ", buffer[col + row * width]);
1212 }
1213 printf("\n");
1214 }
1215 }
1216
1217 if (_mesa_is_format_packed_depth_stencil(rbDraw->Base.Format))
1218 usage = PIPE_TRANSFER_READ_WRITE;
1219 else
1220 usage = PIPE_TRANSFER_WRITE;
1221
1222 if (st_fb_orientation(ctx->DrawBuffer) == Y_0_TOP) {
1223 dsty = rbDraw->Base.Height - dsty - height;
1224 }
1225
1226 assert(util_format_get_blockwidth(rbDraw->texture->format) == 1);
1227 assert(util_format_get_blockheight(rbDraw->texture->format) == 1);
1228
1229 /* map the stencil buffer */
1230 drawMap = pipe_transfer_map(pipe,
1231 rbDraw->texture,
1232 rbDraw->surface->u.tex.level,
1233 rbDraw->surface->u.tex.first_layer,
1234 usage, dstx, dsty,
1235 width, height, &ptDraw);
1236
1237 /* draw */
1238 /* XXX PixelZoom not handled yet */
1239 for (i = 0; i < height; i++) {
1240 ubyte *dst;
1241 const ubyte *src;
1242 int y;
1243
1244 y = i;
1245
1246 if (st_fb_orientation(ctx->DrawBuffer) == Y_0_TOP) {
1247 y = height - y - 1;
1248 }
1249
1250 dst = drawMap + y * ptDraw->stride;
1251 src = buffer + i * width;
1252
1253 _mesa_pack_ubyte_stencil_row(rbDraw->Base.Format, width, src, dst);
1254 }
1255
1256 free(buffer);
1257
1258 /* unmap the stencil buffer */
1259 pipe_transfer_unmap(pipe, ptDraw);
1260 }
1261
1262
1263 /**
1264 * Return renderbuffer to use for reading color pixels for glCopyPixels
1265 */
1266 static struct st_renderbuffer *
1267 st_get_color_read_renderbuffer(struct gl_context *ctx)
1268 {
1269 struct gl_framebuffer *fb = ctx->ReadBuffer;
1270 struct st_renderbuffer *strb =
1271 st_renderbuffer(fb->_ColorReadBuffer);
1272
1273 return strb;
1274 }
1275
1276
1277 /**
1278 * Try to do a glCopyPixels for simple cases with a blit by calling
1279 * pipe->blit().
1280 *
1281 * We can do this when we're copying color pixels (depth/stencil
1282 * eventually) with no pixel zoom, no pixel transfer ops, no
1283 * per-fragment ops, and the src/dest regions don't overlap.
1284 */
1285 static GLboolean
1286 blit_copy_pixels(struct gl_context *ctx, GLint srcx, GLint srcy,
1287 GLsizei width, GLsizei height,
1288 GLint dstx, GLint dsty, GLenum type)
1289 {
1290 struct st_context *st = st_context(ctx);
1291 struct pipe_context *pipe = st->pipe;
1292 struct pipe_screen *screen = pipe->screen;
1293 struct gl_pixelstore_attrib pack, unpack;
1294 GLint readX, readY, readW, readH, drawX, drawY, drawW, drawH;
1295
1296 if (type == GL_COLOR &&
1297 ctx->Pixel.ZoomX == 1.0 &&
1298 ctx->Pixel.ZoomY == 1.0 &&
1299 ctx->_ImageTransferState == 0x0 &&
1300 !ctx->Color.BlendEnabled &&
1301 !ctx->Color.AlphaEnabled &&
1302 !ctx->Depth.Test &&
1303 !ctx->Fog.Enabled &&
1304 !ctx->Stencil.Enabled &&
1305 !ctx->FragmentProgram.Enabled &&
1306 !ctx->VertexProgram.Enabled &&
1307 !ctx->_Shader->CurrentProgram[MESA_SHADER_FRAGMENT] &&
1308 ctx->DrawBuffer->_NumColorDrawBuffers == 1 &&
1309 !ctx->Query.CondRenderQuery &&
1310 !ctx->Query.CurrentOcclusionObject) {
1311 struct st_renderbuffer *rbRead, *rbDraw;
1312
1313 /*
1314 * Clip the read region against the src buffer bounds.
1315 * We'll still allocate a temporary buffer/texture for the original
1316 * src region size but we'll only read the region which is on-screen.
1317 * This may mean that we draw garbage pixels into the dest region, but
1318 * that's expected.
1319 */
1320 readX = srcx;
1321 readY = srcy;
1322 readW = width;
1323 readH = height;
1324 pack = ctx->DefaultPacking;
1325 if (!_mesa_clip_readpixels(ctx, &readX, &readY, &readW, &readH, &pack))
1326 return GL_TRUE; /* all done */
1327
1328 /* clip against dest buffer bounds and scissor box */
1329 drawX = dstx + pack.SkipPixels;
1330 drawY = dsty + pack.SkipRows;
1331 unpack = pack;
1332 if (!_mesa_clip_drawpixels(ctx, &drawX, &drawY, &readW, &readH, &unpack))
1333 return GL_TRUE; /* all done */
1334
1335 readX = readX - pack.SkipPixels + unpack.SkipPixels;
1336 readY = readY - pack.SkipRows + unpack.SkipRows;
1337
1338 drawW = readW;
1339 drawH = readH;
1340
1341 rbRead = st_get_color_read_renderbuffer(ctx);
1342 rbDraw = st_renderbuffer(ctx->DrawBuffer->_ColorDrawBuffers[0]);
1343
1344 /* Flip src/dst position depending on the orientation of buffers. */
1345 if (st_fb_orientation(ctx->ReadBuffer) == Y_0_TOP) {
1346 readY = rbRead->Base.Height - readY;
1347 readH = -readH;
1348 }
1349
1350 if (st_fb_orientation(ctx->DrawBuffer) == Y_0_TOP) {
1351 /* We can't flip the destination for pipe->blit, so we only adjust
1352 * its position and flip the source.
1353 */
1354 drawY = rbDraw->Base.Height - drawY - drawH;
1355 readY += readH;
1356 readH = -readH;
1357 }
1358
1359 if (rbRead != rbDraw ||
1360 !_mesa_regions_overlap(readX, readY, readX + readW, readY + readH,
1361 drawX, drawY, drawX + drawW, drawY + drawH)) {
1362 struct pipe_blit_info blit;
1363
1364 memset(&blit, 0, sizeof(blit));
1365 blit.src.resource = rbRead->texture;
1366 blit.src.level = rbRead->surface->u.tex.level;
1367 blit.src.format = rbRead->texture->format;
1368 blit.src.box.x = readX;
1369 blit.src.box.y = readY;
1370 blit.src.box.z = rbRead->surface->u.tex.first_layer;
1371 blit.src.box.width = readW;
1372 blit.src.box.height = readH;
1373 blit.src.box.depth = 1;
1374 blit.dst.resource = rbDraw->texture;
1375 blit.dst.level = rbDraw->surface->u.tex.level;
1376 blit.dst.format = rbDraw->texture->format;
1377 blit.dst.box.x = drawX;
1378 blit.dst.box.y = drawY;
1379 blit.dst.box.z = rbDraw->surface->u.tex.first_layer;
1380 blit.dst.box.width = drawW;
1381 blit.dst.box.height = drawH;
1382 blit.dst.box.depth = 1;
1383 blit.mask = PIPE_MASK_RGBA;
1384 blit.filter = PIPE_TEX_FILTER_NEAREST;
1385
1386 if (screen->is_format_supported(screen, blit.src.format,
1387 blit.src.resource->target,
1388 blit.src.resource->nr_samples,
1389 PIPE_BIND_SAMPLER_VIEW) &&
1390 screen->is_format_supported(screen, blit.dst.format,
1391 blit.dst.resource->target,
1392 blit.dst.resource->nr_samples,
1393 PIPE_BIND_RENDER_TARGET)) {
1394 pipe->blit(pipe, &blit);
1395 return GL_TRUE;
1396 }
1397 }
1398 }
1399
1400 return GL_FALSE;
1401 }
1402
1403
1404 static void
1405 st_CopyPixels(struct gl_context *ctx, GLint srcx, GLint srcy,
1406 GLsizei width, GLsizei height,
1407 GLint dstx, GLint dsty, GLenum type)
1408 {
1409 struct st_context *st = st_context(ctx);
1410 struct pipe_context *pipe = st->pipe;
1411 struct pipe_screen *screen = pipe->screen;
1412 struct st_renderbuffer *rbRead;
1413 void *driver_vp, *driver_fp;
1414 struct pipe_resource *pt;
1415 struct pipe_sampler_view *sv[2] = { NULL };
1416 struct st_fp_variant *fpv = NULL;
1417 int num_sampler_view = 1;
1418 GLfloat *color;
1419 enum pipe_format srcFormat;
1420 unsigned srcBind;
1421 GLboolean invertTex = GL_FALSE;
1422 GLint readX, readY, readW, readH;
1423 struct gl_pixelstore_attrib pack = ctx->DefaultPacking;
1424
1425 st_validate_state(st);
1426
1427 if (type == GL_DEPTH_STENCIL) {
1428 /* XXX make this more efficient */
1429 st_CopyPixels(ctx, srcx, srcy, width, height, dstx, dsty, GL_STENCIL);
1430 st_CopyPixels(ctx, srcx, srcy, width, height, dstx, dsty, GL_DEPTH);
1431 return;
1432 }
1433
1434 if (type == GL_STENCIL) {
1435 /* can't use texturing to do stencil */
1436 copy_stencil_pixels(ctx, srcx, srcy, width, height, dstx, dsty);
1437 return;
1438 }
1439
1440 if (blit_copy_pixels(ctx, srcx, srcy, width, height, dstx, dsty, type))
1441 return;
1442
1443 /*
1444 * The subsequent code implements glCopyPixels by copying the source
1445 * pixels into a temporary texture that's then applied to a textured quad.
1446 * When we draw the textured quad, all the usual per-fragment operations
1447 * are handled.
1448 */
1449
1450
1451 /*
1452 * Get vertex/fragment shaders
1453 */
1454 if (type == GL_COLOR) {
1455 fpv = get_color_fp_variant(st);
1456
1457 rbRead = st_get_color_read_renderbuffer(ctx);
1458 color = NULL;
1459
1460 driver_fp = fpv->driver_shader;
1461 driver_vp = make_passthrough_vertex_shader(st, GL_FALSE);
1462
1463 if (ctx->Pixel.MapColorFlag) {
1464 pipe_sampler_view_reference(&sv[1],
1465 st->pixel_xfer.pixelmap_sampler_view);
1466 num_sampler_view++;
1467 }
1468
1469 /* compiling a new fragment shader variant added new state constants
1470 * into the constant buffer, we need to update them
1471 */
1472 st_upload_constants(st, st->fp->Base.Base.Parameters,
1473 PIPE_SHADER_FRAGMENT);
1474 }
1475 else {
1476 assert(type == GL_DEPTH);
1477 rbRead = st_renderbuffer(ctx->ReadBuffer->
1478 Attachment[BUFFER_DEPTH].Renderbuffer);
1479 color = ctx->Current.Attrib[VERT_ATTRIB_COLOR0];
1480
1481 driver_fp = get_drawpix_z_stencil_program(st, GL_TRUE, GL_FALSE);
1482 driver_vp = make_passthrough_vertex_shader(st, GL_TRUE);
1483 }
1484
1485 /* Choose the format for the temporary texture. */
1486 srcFormat = rbRead->texture->format;
1487 srcBind = PIPE_BIND_SAMPLER_VIEW |
1488 (type == GL_COLOR ? PIPE_BIND_RENDER_TARGET : PIPE_BIND_DEPTH_STENCIL);
1489
1490 if (!screen->is_format_supported(screen, srcFormat, st->internal_target, 0,
1491 srcBind)) {
1492 /* srcFormat is non-renderable. Find a compatible renderable format. */
1493 if (type == GL_DEPTH) {
1494 srcFormat = st_choose_format(st, GL_DEPTH_COMPONENT, GL_NONE,
1495 GL_NONE, st->internal_target, 0,
1496 srcBind, FALSE);
1497 }
1498 else {
1499 assert(type == GL_COLOR);
1500
1501 if (util_format_is_float(srcFormat)) {
1502 srcFormat = st_choose_format(st, GL_RGBA32F, GL_NONE,
1503 GL_NONE, st->internal_target, 0,
1504 srcBind, FALSE);
1505 }
1506 else if (util_format_is_pure_sint(srcFormat)) {
1507 srcFormat = st_choose_format(st, GL_RGBA32I, GL_NONE,
1508 GL_NONE, st->internal_target, 0,
1509 srcBind, FALSE);
1510 }
1511 else if (util_format_is_pure_uint(srcFormat)) {
1512 srcFormat = st_choose_format(st, GL_RGBA32UI, GL_NONE,
1513 GL_NONE, st->internal_target, 0,
1514 srcBind, FALSE);
1515 }
1516 else if (util_format_is_snorm(srcFormat)) {
1517 srcFormat = st_choose_format(st, GL_RGBA16_SNORM, GL_NONE,
1518 GL_NONE, st->internal_target, 0,
1519 srcBind, FALSE);
1520 }
1521 else {
1522 srcFormat = st_choose_format(st, GL_RGBA, GL_NONE,
1523 GL_NONE, st->internal_target, 0,
1524 srcBind, FALSE);
1525 }
1526 }
1527
1528 if (srcFormat == PIPE_FORMAT_NONE) {
1529 assert(0 && "cannot choose a format for src of CopyPixels");
1530 return;
1531 }
1532 }
1533
1534 /* Invert src region if needed */
1535 if (st_fb_orientation(ctx->ReadBuffer) == Y_0_TOP) {
1536 srcy = ctx->ReadBuffer->Height - srcy - height;
1537 invertTex = !invertTex;
1538 }
1539
1540 /* Clip the read region against the src buffer bounds.
1541 * We'll still allocate a temporary buffer/texture for the original
1542 * src region size but we'll only read the region which is on-screen.
1543 * This may mean that we draw garbage pixels into the dest region, but
1544 * that's expected.
1545 */
1546 readX = srcx;
1547 readY = srcy;
1548 readW = width;
1549 readH = height;
1550 if (!_mesa_clip_readpixels(ctx, &readX, &readY, &readW, &readH, &pack)) {
1551 /* The source region is completely out of bounds. Do nothing.
1552 * The GL spec says "Results of copies from outside the window,
1553 * or from regions of the window that are not exposed, are
1554 * hardware dependent and undefined."
1555 */
1556 return;
1557 }
1558
1559 readW = MAX2(0, readW);
1560 readH = MAX2(0, readH);
1561
1562 /* Allocate the temporary texture. */
1563 pt = alloc_texture(st, width, height, srcFormat, srcBind);
1564 if (!pt)
1565 return;
1566
1567 sv[0] = st_create_texture_sampler_view(st->pipe, pt);
1568 if (!sv[0]) {
1569 pipe_resource_reference(&pt, NULL);
1570 return;
1571 }
1572
1573 /* Copy the src region to the temporary texture. */
1574 {
1575 struct pipe_blit_info blit;
1576
1577 memset(&blit, 0, sizeof(blit));
1578 blit.src.resource = rbRead->texture;
1579 blit.src.level = rbRead->surface->u.tex.level;
1580 blit.src.format = rbRead->texture->format;
1581 blit.src.box.x = readX;
1582 blit.src.box.y = readY;
1583 blit.src.box.z = rbRead->surface->u.tex.first_layer;
1584 blit.src.box.width = readW;
1585 blit.src.box.height = readH;
1586 blit.src.box.depth = 1;
1587 blit.dst.resource = pt;
1588 blit.dst.level = 0;
1589 blit.dst.format = pt->format;
1590 blit.dst.box.x = pack.SkipPixels;
1591 blit.dst.box.y = pack.SkipRows;
1592 blit.dst.box.z = 0;
1593 blit.dst.box.width = readW;
1594 blit.dst.box.height = readH;
1595 blit.dst.box.depth = 1;
1596 blit.mask = util_format_get_mask(pt->format) & ~PIPE_MASK_S;
1597 blit.filter = PIPE_TEX_FILTER_NEAREST;
1598
1599 pipe->blit(pipe, &blit);
1600 }
1601
1602 /* OK, the texture 'pt' contains the src image/pixels. Now draw a
1603 * textured quad with that texture.
1604 */
1605 draw_textured_quad(ctx, dstx, dsty, ctx->Current.RasterPos[2],
1606 width, height, ctx->Pixel.ZoomX, ctx->Pixel.ZoomY,
1607 sv,
1608 num_sampler_view,
1609 driver_vp,
1610 driver_fp, fpv,
1611 color, invertTex, GL_FALSE, GL_FALSE);
1612
1613 pipe_resource_reference(&pt, NULL);
1614 pipe_sampler_view_reference(&sv[0], NULL);
1615 }
1616
1617
1618
1619 void st_init_drawpixels_functions(struct dd_function_table *functions)
1620 {
1621 functions->DrawPixels = st_DrawPixels;
1622 functions->CopyPixels = st_CopyPixels;
1623 }
1624
1625
1626 void
1627 st_destroy_drawpix(struct st_context *st)
1628 {
1629 GLuint i;
1630
1631 for (i = 0; i < ARRAY_SIZE(st->drawpix.zs_shaders); i++) {
1632 if (st->drawpix.zs_shaders[i])
1633 cso_delete_fragment_shader(st->cso_context,
1634 st->drawpix.zs_shaders[i]);
1635 }
1636
1637 if (st->drawpix.vert_shaders[0])
1638 cso_delete_vertex_shader(st->cso_context, st->drawpix.vert_shaders[0]);
1639 if (st->drawpix.vert_shaders[1])
1640 cso_delete_vertex_shader(st->cso_context, st->drawpix.vert_shaders[1]);
1641 }