glsl: Drop exec_list argument to lower_ubo_reference
[mesa.git] / src / mesa / state_tracker / st_glsl_to_tgsi.cpp
1 /*
2 * Copyright (C) 2005-2007 Brian Paul All Rights Reserved.
3 * Copyright (C) 2008 VMware, Inc. All Rights Reserved.
4 * Copyright © 2010 Intel Corporation
5 * Copyright © 2011 Bryan Cain
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the next
15 * paragraph) shall be included in all copies or substantial portions of the
16 * Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
23 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
24 * DEALINGS IN THE SOFTWARE.
25 */
26
27 /**
28 * \file glsl_to_tgsi.cpp
29 *
30 * Translate GLSL IR to TGSI.
31 */
32
33 #include "st_glsl_to_tgsi.h"
34
35 #include "glsl_parser_extras.h"
36 #include "ir_optimization.h"
37
38 #include "main/errors.h"
39 #include "main/shaderobj.h"
40 #include "main/uniforms.h"
41 #include "main/shaderapi.h"
42 #include "program/prog_instruction.h"
43 #include "program/sampler.h"
44
45 #include "pipe/p_context.h"
46 #include "pipe/p_screen.h"
47 #include "tgsi/tgsi_ureg.h"
48 #include "tgsi/tgsi_info.h"
49 #include "util/u_math.h"
50 #include "util/u_memory.h"
51 #include "st_program.h"
52 #include "st_mesa_to_tgsi.h"
53
54
55 #define PROGRAM_IMMEDIATE PROGRAM_FILE_MAX
56 #define PROGRAM_ANY_CONST ((1 << PROGRAM_STATE_VAR) | \
57 (1 << PROGRAM_CONSTANT) | \
58 (1 << PROGRAM_UNIFORM))
59
60 #define MAX_GLSL_TEXTURE_OFFSET 4
61
62 class st_src_reg;
63 class st_dst_reg;
64
65 static int swizzle_for_size(int size);
66
67 /**
68 * This struct is a corresponding struct to TGSI ureg_src.
69 */
70 class st_src_reg {
71 public:
72 st_src_reg(gl_register_file file, int index, const glsl_type *type)
73 {
74 this->file = file;
75 this->index = index;
76 if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
77 this->swizzle = swizzle_for_size(type->vector_elements);
78 else
79 this->swizzle = SWIZZLE_XYZW;
80 this->negate = 0;
81 this->index2D = 0;
82 this->type = type ? type->base_type : GLSL_TYPE_ERROR;
83 this->reladdr = NULL;
84 this->reladdr2 = NULL;
85 this->has_index2 = false;
86 this->double_reg2 = false;
87 this->array_id = 0;
88 }
89
90 st_src_reg(gl_register_file file, int index, int type)
91 {
92 this->type = type;
93 this->file = file;
94 this->index = index;
95 this->index2D = 0;
96 this->swizzle = SWIZZLE_XYZW;
97 this->negate = 0;
98 this->reladdr = NULL;
99 this->reladdr2 = NULL;
100 this->has_index2 = false;
101 this->double_reg2 = false;
102 this->array_id = 0;
103 }
104
105 st_src_reg(gl_register_file file, int index, int type, int index2D)
106 {
107 this->type = type;
108 this->file = file;
109 this->index = index;
110 this->index2D = index2D;
111 this->swizzle = SWIZZLE_XYZW;
112 this->negate = 0;
113 this->reladdr = NULL;
114 this->reladdr2 = NULL;
115 this->has_index2 = false;
116 this->double_reg2 = false;
117 this->array_id = 0;
118 }
119
120 st_src_reg()
121 {
122 this->type = GLSL_TYPE_ERROR;
123 this->file = PROGRAM_UNDEFINED;
124 this->index = 0;
125 this->index2D = 0;
126 this->swizzle = 0;
127 this->negate = 0;
128 this->reladdr = NULL;
129 this->reladdr2 = NULL;
130 this->has_index2 = false;
131 this->double_reg2 = false;
132 this->array_id = 0;
133 }
134
135 explicit st_src_reg(st_dst_reg reg);
136
137 gl_register_file file; /**< PROGRAM_* from Mesa */
138 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
139 int index2D;
140 GLuint swizzle; /**< SWIZZLE_XYZWONEZERO swizzles from Mesa. */
141 int negate; /**< NEGATE_XYZW mask from mesa */
142 int type; /** GLSL_TYPE_* from GLSL IR (enum glsl_base_type) */
143 /** Register index should be offset by the integer in this reg. */
144 st_src_reg *reladdr;
145 st_src_reg *reladdr2;
146 bool has_index2;
147 /*
148 * Is this the second half of a double register pair?
149 * currently used for input mapping only.
150 */
151 bool double_reg2;
152 unsigned array_id;
153 };
154
155 class st_dst_reg {
156 public:
157 st_dst_reg(gl_register_file file, int writemask, int type, int index)
158 {
159 this->file = file;
160 this->index = index;
161 this->index2D = 0;
162 this->writemask = writemask;
163 this->cond_mask = COND_TR;
164 this->reladdr = NULL;
165 this->reladdr2 = NULL;
166 this->has_index2 = false;
167 this->type = type;
168 this->array_id = 0;
169 }
170
171 st_dst_reg(gl_register_file file, int writemask, int type)
172 {
173 this->file = file;
174 this->index = 0;
175 this->index2D = 0;
176 this->writemask = writemask;
177 this->cond_mask = COND_TR;
178 this->reladdr = NULL;
179 this->reladdr2 = NULL;
180 this->has_index2 = false;
181 this->type = type;
182 this->array_id = 0;
183 }
184
185 st_dst_reg()
186 {
187 this->type = GLSL_TYPE_ERROR;
188 this->file = PROGRAM_UNDEFINED;
189 this->index = 0;
190 this->index2D = 0;
191 this->writemask = 0;
192 this->cond_mask = COND_TR;
193 this->reladdr = NULL;
194 this->reladdr2 = NULL;
195 this->has_index2 = false;
196 this->array_id = 0;
197 }
198
199 explicit st_dst_reg(st_src_reg reg);
200
201 gl_register_file file; /**< PROGRAM_* from Mesa */
202 int index; /**< temporary index, VERT_ATTRIB_*, VARYING_SLOT_*, etc. */
203 int index2D;
204 int writemask; /**< Bitfield of WRITEMASK_[XYZW] */
205 GLuint cond_mask:4;
206 int type; /** GLSL_TYPE_* from GLSL IR (enum glsl_base_type) */
207 /** Register index should be offset by the integer in this reg. */
208 st_src_reg *reladdr;
209 st_src_reg *reladdr2;
210 bool has_index2;
211 unsigned array_id;
212 };
213
214 st_src_reg::st_src_reg(st_dst_reg reg)
215 {
216 this->type = reg.type;
217 this->file = reg.file;
218 this->index = reg.index;
219 this->swizzle = SWIZZLE_XYZW;
220 this->negate = 0;
221 this->reladdr = reg.reladdr;
222 this->index2D = reg.index2D;
223 this->reladdr2 = reg.reladdr2;
224 this->has_index2 = reg.has_index2;
225 this->double_reg2 = false;
226 this->array_id = reg.array_id;
227 }
228
229 st_dst_reg::st_dst_reg(st_src_reg reg)
230 {
231 this->type = reg.type;
232 this->file = reg.file;
233 this->index = reg.index;
234 this->writemask = WRITEMASK_XYZW;
235 this->cond_mask = COND_TR;
236 this->reladdr = reg.reladdr;
237 this->index2D = reg.index2D;
238 this->reladdr2 = reg.reladdr2;
239 this->has_index2 = reg.has_index2;
240 this->array_id = reg.array_id;
241 }
242
243 class glsl_to_tgsi_instruction : public exec_node {
244 public:
245 DECLARE_RALLOC_CXX_OPERATORS(glsl_to_tgsi_instruction)
246
247 unsigned op;
248 st_dst_reg dst[2];
249 st_src_reg src[4];
250 /** Pointer to the ir source this tree came from for debugging */
251 ir_instruction *ir;
252 GLboolean cond_update;
253 bool saturate;
254 st_src_reg sampler; /**< sampler register */
255 int sampler_array_size; /**< 1-based size of sampler array, 1 if not array */
256 int tex_target; /**< One of TEXTURE_*_INDEX */
257 glsl_base_type tex_type;
258 GLboolean tex_shadow;
259
260 st_src_reg tex_offsets[MAX_GLSL_TEXTURE_OFFSET];
261 unsigned tex_offset_num_offset;
262 int dead_mask; /**< Used in dead code elimination */
263
264 class function_entry *function; /* Set on TGSI_OPCODE_CAL or TGSI_OPCODE_BGNSUB */
265 const struct tgsi_opcode_info *info;
266 };
267
268 class variable_storage : public exec_node {
269 public:
270 variable_storage(ir_variable *var, gl_register_file file, int index,
271 unsigned array_id = 0)
272 : file(file), index(index), var(var), array_id(array_id)
273 {
274 /* empty */
275 }
276
277 gl_register_file file;
278 int index;
279 ir_variable *var; /* variable that maps to this, if any */
280 unsigned array_id;
281 };
282
283 class immediate_storage : public exec_node {
284 public:
285 immediate_storage(gl_constant_value *values, int size32, int type)
286 {
287 memcpy(this->values, values, size32 * sizeof(gl_constant_value));
288 this->size32 = size32;
289 this->type = type;
290 }
291
292 /* doubles are stored across 2 gl_constant_values */
293 gl_constant_value values[4];
294 int size32; /**< Number of 32-bit components (1-4) */
295 int type; /**< GL_DOUBLE, GL_FLOAT, GL_INT, GL_BOOL, or GL_UNSIGNED_INT */
296 };
297
298 class function_entry : public exec_node {
299 public:
300 ir_function_signature *sig;
301
302 /**
303 * identifier of this function signature used by the program.
304 *
305 * At the point that TGSI instructions for function calls are
306 * generated, we don't know the address of the first instruction of
307 * the function body. So we make the BranchTarget that is called a
308 * small integer and rewrite them during set_branchtargets().
309 */
310 int sig_id;
311
312 /**
313 * Pointer to first instruction of the function body.
314 *
315 * Set during function body emits after main() is processed.
316 */
317 glsl_to_tgsi_instruction *bgn_inst;
318
319 /**
320 * Index of the first instruction of the function body in actual TGSI.
321 *
322 * Set after conversion from glsl_to_tgsi_instruction to TGSI.
323 */
324 int inst;
325
326 /** Storage for the return value. */
327 st_src_reg return_reg;
328 };
329
330 static st_src_reg undef_src = st_src_reg(PROGRAM_UNDEFINED, 0, GLSL_TYPE_ERROR);
331 static st_dst_reg undef_dst = st_dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP, GLSL_TYPE_ERROR);
332
333 struct array_decl {
334 unsigned mesa_index;
335 unsigned array_id;
336 unsigned array_size;
337 };
338
339 struct rename_reg_pair {
340 int old_reg;
341 int new_reg;
342 };
343
344 struct glsl_to_tgsi_visitor : public ir_visitor {
345 public:
346 glsl_to_tgsi_visitor();
347 ~glsl_to_tgsi_visitor();
348
349 function_entry *current_function;
350
351 struct gl_context *ctx;
352 struct gl_program *prog;
353 struct gl_shader_program *shader_program;
354 struct gl_shader *shader;
355 struct gl_shader_compiler_options *options;
356
357 int next_temp;
358
359 unsigned *array_sizes;
360 unsigned max_num_arrays;
361 unsigned next_array;
362
363 struct array_decl input_arrays[PIPE_MAX_SHADER_INPUTS];
364 unsigned num_input_arrays;
365 struct array_decl output_arrays[PIPE_MAX_SHADER_OUTPUTS];
366 unsigned num_output_arrays;
367
368 int num_address_regs;
369 int samplers_used;
370 glsl_base_type sampler_types[PIPE_MAX_SAMPLERS];
371 int sampler_targets[PIPE_MAX_SAMPLERS]; /**< One of TGSI_TEXTURE_* */
372 bool indirect_addr_consts;
373 int wpos_transform_const;
374
375 int glsl_version;
376 bool native_integers;
377 bool have_sqrt;
378 bool have_fma;
379
380 variable_storage *find_variable_storage(ir_variable *var);
381
382 int add_constant(gl_register_file file, gl_constant_value values[8],
383 int size, int datatype, GLuint *swizzle_out);
384
385 function_entry *get_function_signature(ir_function_signature *sig);
386
387 st_src_reg get_temp(const glsl_type *type);
388 void reladdr_to_temp(ir_instruction *ir, st_src_reg *reg, int *num_reladdr);
389
390 st_src_reg st_src_reg_for_double(double val);
391 st_src_reg st_src_reg_for_float(float val);
392 st_src_reg st_src_reg_for_int(int val);
393 st_src_reg st_src_reg_for_type(int type, int val);
394
395 /**
396 * \name Visit methods
397 *
398 * As typical for the visitor pattern, there must be one \c visit method for
399 * each concrete subclass of \c ir_instruction. Virtual base classes within
400 * the hierarchy should not have \c visit methods.
401 */
402 /*@{*/
403 virtual void visit(ir_variable *);
404 virtual void visit(ir_loop *);
405 virtual void visit(ir_loop_jump *);
406 virtual void visit(ir_function_signature *);
407 virtual void visit(ir_function *);
408 virtual void visit(ir_expression *);
409 virtual void visit(ir_swizzle *);
410 virtual void visit(ir_dereference_variable *);
411 virtual void visit(ir_dereference_array *);
412 virtual void visit(ir_dereference_record *);
413 virtual void visit(ir_assignment *);
414 virtual void visit(ir_constant *);
415 virtual void visit(ir_call *);
416 virtual void visit(ir_return *);
417 virtual void visit(ir_discard *);
418 virtual void visit(ir_texture *);
419 virtual void visit(ir_if *);
420 virtual void visit(ir_emit_vertex *);
421 virtual void visit(ir_end_primitive *);
422 virtual void visit(ir_barrier *);
423 /*@}*/
424
425 st_src_reg result;
426
427 /** List of variable_storage */
428 exec_list variables;
429
430 /** List of immediate_storage */
431 exec_list immediates;
432 unsigned num_immediates;
433
434 /** List of function_entry */
435 exec_list function_signatures;
436 int next_signature_id;
437
438 /** List of glsl_to_tgsi_instruction */
439 exec_list instructions;
440
441 glsl_to_tgsi_instruction *emit_asm(ir_instruction *ir, unsigned op,
442 st_dst_reg dst = undef_dst,
443 st_src_reg src0 = undef_src,
444 st_src_reg src1 = undef_src,
445 st_src_reg src2 = undef_src,
446 st_src_reg src3 = undef_src);
447
448 glsl_to_tgsi_instruction *emit_asm(ir_instruction *ir, unsigned op,
449 st_dst_reg dst, st_dst_reg dst1,
450 st_src_reg src0 = undef_src,
451 st_src_reg src1 = undef_src,
452 st_src_reg src2 = undef_src,
453 st_src_reg src3 = undef_src);
454
455 unsigned get_opcode(ir_instruction *ir, unsigned op,
456 st_dst_reg dst,
457 st_src_reg src0, st_src_reg src1);
458
459 /**
460 * Emit the correct dot-product instruction for the type of arguments
461 */
462 glsl_to_tgsi_instruction *emit_dp(ir_instruction *ir,
463 st_dst_reg dst,
464 st_src_reg src0,
465 st_src_reg src1,
466 unsigned elements);
467
468 void emit_scalar(ir_instruction *ir, unsigned op,
469 st_dst_reg dst, st_src_reg src0);
470
471 void emit_scalar(ir_instruction *ir, unsigned op,
472 st_dst_reg dst, st_src_reg src0, st_src_reg src1);
473
474 void emit_arl(ir_instruction *ir, st_dst_reg dst, st_src_reg src0);
475
476 bool try_emit_mad(ir_expression *ir,
477 int mul_operand);
478 bool try_emit_mad_for_and_not(ir_expression *ir,
479 int mul_operand);
480
481 void emit_swz(ir_expression *ir);
482
483 bool process_move_condition(ir_rvalue *ir);
484
485 void simplify_cmp(void);
486
487 void rename_temp_registers(int num_renames, struct rename_reg_pair *renames);
488 void get_first_temp_read(int *first_reads);
489 void get_last_temp_read_first_temp_write(int *last_reads, int *first_writes);
490 void get_last_temp_write(int *last_writes);
491
492 void copy_propagate(void);
493 int eliminate_dead_code(void);
494
495 void merge_two_dsts(void);
496 void merge_registers(void);
497 void renumber_registers(void);
498
499 void emit_block_mov(ir_assignment *ir, const struct glsl_type *type,
500 st_dst_reg *l, st_src_reg *r,
501 st_src_reg *cond, bool cond_swap);
502
503 void *mem_ctx;
504 };
505
506 static st_dst_reg address_reg = st_dst_reg(PROGRAM_ADDRESS, WRITEMASK_X, GLSL_TYPE_FLOAT, 0);
507 static st_dst_reg address_reg2 = st_dst_reg(PROGRAM_ADDRESS, WRITEMASK_X, GLSL_TYPE_FLOAT, 1);
508 static st_dst_reg sampler_reladdr = st_dst_reg(PROGRAM_ADDRESS, WRITEMASK_X, GLSL_TYPE_FLOAT, 2);
509
510 static void
511 fail_link(struct gl_shader_program *prog, const char *fmt, ...) PRINTFLIKE(2, 3);
512
513 static void
514 fail_link(struct gl_shader_program *prog, const char *fmt, ...)
515 {
516 va_list args;
517 va_start(args, fmt);
518 ralloc_vasprintf_append(&prog->InfoLog, fmt, args);
519 va_end(args);
520
521 prog->LinkStatus = GL_FALSE;
522 }
523
524 static int
525 swizzle_for_size(int size)
526 {
527 static const int size_swizzles[4] = {
528 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
529 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
530 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
531 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
532 };
533
534 assert((size >= 1) && (size <= 4));
535 return size_swizzles[size - 1];
536 }
537
538 static unsigned
539 num_inst_dst_regs(const glsl_to_tgsi_instruction *op)
540 {
541 return op->info->num_dst;
542 }
543
544 static unsigned
545 num_inst_src_regs(const glsl_to_tgsi_instruction *op)
546 {
547 return op->info->is_tex ? op->info->num_src - 1 : op->info->num_src;
548 }
549
550 glsl_to_tgsi_instruction *
551 glsl_to_tgsi_visitor::emit_asm(ir_instruction *ir, unsigned op,
552 st_dst_reg dst, st_dst_reg dst1,
553 st_src_reg src0, st_src_reg src1,
554 st_src_reg src2, st_src_reg src3)
555 {
556 glsl_to_tgsi_instruction *inst = new(mem_ctx) glsl_to_tgsi_instruction();
557 int num_reladdr = 0, i, j;
558
559 op = get_opcode(ir, op, dst, src0, src1);
560
561 /* If we have to do relative addressing, we want to load the ARL
562 * reg directly for one of the regs, and preload the other reladdr
563 * sources into temps.
564 */
565 num_reladdr += dst.reladdr != NULL || dst.reladdr2;
566 num_reladdr += dst1.reladdr != NULL || dst1.reladdr2;
567 num_reladdr += src0.reladdr != NULL || src0.reladdr2 != NULL;
568 num_reladdr += src1.reladdr != NULL || src1.reladdr2 != NULL;
569 num_reladdr += src2.reladdr != NULL || src2.reladdr2 != NULL;
570 num_reladdr += src3.reladdr != NULL || src3.reladdr2 != NULL;
571
572 reladdr_to_temp(ir, &src3, &num_reladdr);
573 reladdr_to_temp(ir, &src2, &num_reladdr);
574 reladdr_to_temp(ir, &src1, &num_reladdr);
575 reladdr_to_temp(ir, &src0, &num_reladdr);
576
577 if (dst.reladdr || dst.reladdr2) {
578 if (dst.reladdr)
579 emit_arl(ir, address_reg, *dst.reladdr);
580 if (dst.reladdr2)
581 emit_arl(ir, address_reg2, *dst.reladdr2);
582 num_reladdr--;
583 }
584 if (dst1.reladdr) {
585 emit_arl(ir, address_reg, *dst1.reladdr);
586 num_reladdr--;
587 }
588 assert(num_reladdr == 0);
589
590 inst->op = op;
591 inst->info = tgsi_get_opcode_info(op);
592 inst->dst[0] = dst;
593 inst->dst[1] = dst1;
594 inst->src[0] = src0;
595 inst->src[1] = src1;
596 inst->src[2] = src2;
597 inst->src[3] = src3;
598 inst->ir = ir;
599 inst->dead_mask = 0;
600 /* default to float, for paths where this is not initialized
601 * (since 0==UINT which is likely wrong):
602 */
603 inst->tex_type = GLSL_TYPE_FLOAT;
604
605 inst->function = NULL;
606
607 /* Update indirect addressing status used by TGSI */
608 if (dst.reladdr || dst.reladdr2) {
609 switch(dst.file) {
610 case PROGRAM_STATE_VAR:
611 case PROGRAM_CONSTANT:
612 case PROGRAM_UNIFORM:
613 this->indirect_addr_consts = true;
614 break;
615 case PROGRAM_IMMEDIATE:
616 assert(!"immediates should not have indirect addressing");
617 break;
618 default:
619 break;
620 }
621 }
622 else {
623 for (i = 0; i < 4; i++) {
624 if(inst->src[i].reladdr) {
625 switch(inst->src[i].file) {
626 case PROGRAM_STATE_VAR:
627 case PROGRAM_CONSTANT:
628 case PROGRAM_UNIFORM:
629 this->indirect_addr_consts = true;
630 break;
631 case PROGRAM_IMMEDIATE:
632 assert(!"immediates should not have indirect addressing");
633 break;
634 default:
635 break;
636 }
637 }
638 }
639 }
640
641 this->instructions.push_tail(inst);
642
643 /*
644 * This section contains the double processing.
645 * GLSL just represents doubles as single channel values,
646 * however most HW and TGSI represent doubles as pairs of register channels.
647 *
648 * so we have to fixup destination writemask/index and src swizzle/indexes.
649 * dest writemasks need to translate from single channel write mask
650 * to a dual-channel writemask, but also need to modify the index,
651 * if we are touching the Z,W fields in the pre-translated writemask.
652 *
653 * src channels have similiar index modifications along with swizzle
654 * changes to we pick the XY, ZW pairs from the correct index.
655 *
656 * GLSL [0].x -> TGSI [0].xy
657 * GLSL [0].y -> TGSI [0].zw
658 * GLSL [0].z -> TGSI [1].xy
659 * GLSL [0].w -> TGSI [1].zw
660 */
661 if (inst->dst[0].type == GLSL_TYPE_DOUBLE || inst->dst[1].type == GLSL_TYPE_DOUBLE ||
662 inst->src[0].type == GLSL_TYPE_DOUBLE) {
663 glsl_to_tgsi_instruction *dinst = NULL;
664 int initial_src_swz[4], initial_src_idx[4];
665 int initial_dst_idx[2], initial_dst_writemask[2];
666 /* select the writemask for dst0 or dst1 */
667 unsigned writemask = inst->dst[0].file == PROGRAM_UNDEFINED ? inst->dst[1].writemask : inst->dst[0].writemask;
668
669 /* copy out the writemask, index and swizzles for all src/dsts. */
670 for (j = 0; j < 2; j++) {
671 initial_dst_writemask[j] = inst->dst[j].writemask;
672 initial_dst_idx[j] = inst->dst[j].index;
673 }
674
675 for (j = 0; j < 4; j++) {
676 initial_src_swz[j] = inst->src[j].swizzle;
677 initial_src_idx[j] = inst->src[j].index;
678 }
679
680 /*
681 * scan all the components in the dst writemask
682 * generate an instruction for each of them if required.
683 */
684 while (writemask) {
685
686 int i = u_bit_scan(&writemask);
687
688 /* first time use previous instruction */
689 if (dinst == NULL) {
690 dinst = inst;
691 } else {
692 /* create a new instructions for subsequent attempts */
693 dinst = new(mem_ctx) glsl_to_tgsi_instruction();
694 *dinst = *inst;
695 dinst->next = NULL;
696 dinst->prev = NULL;
697 this->instructions.push_tail(dinst);
698 }
699
700 /* modify the destination if we are splitting */
701 for (j = 0; j < 2; j++) {
702 if (dinst->dst[j].type == GLSL_TYPE_DOUBLE) {
703 dinst->dst[j].writemask = (i & 1) ? WRITEMASK_ZW : WRITEMASK_XY;
704 dinst->dst[j].index = initial_dst_idx[j];
705 if (i > 1)
706 dinst->dst[j].index++;
707 } else {
708 /* if we aren't writing to a double, just get the bit of the initial writemask
709 for this channel */
710 dinst->dst[j].writemask = initial_dst_writemask[j] & (1 << i);
711 }
712 }
713
714 /* modify the src registers */
715 for (j = 0; j < 4; j++) {
716 int swz = GET_SWZ(initial_src_swz[j], i);
717
718 if (dinst->src[j].type == GLSL_TYPE_DOUBLE) {
719 dinst->src[j].index = initial_src_idx[j];
720 if (swz > 1) {
721 dinst->src[j].double_reg2 = true;
722 dinst->src[j].index++;
723 }
724
725 if (swz & 1)
726 dinst->src[j].swizzle = MAKE_SWIZZLE4(SWIZZLE_Z, SWIZZLE_W, SWIZZLE_Z, SWIZZLE_W);
727 else
728 dinst->src[j].swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_X, SWIZZLE_Y);
729
730 } else {
731 /* some opcodes are special case in what they use as sources
732 - F2D is a float src0, DLDEXP is integer src1 */
733 if (op == TGSI_OPCODE_F2D ||
734 op == TGSI_OPCODE_DLDEXP ||
735 (op == TGSI_OPCODE_UCMP && dinst->dst[0].type == GLSL_TYPE_DOUBLE)) {
736 dinst->src[j].swizzle = MAKE_SWIZZLE4(swz, swz, swz, swz);
737 }
738 }
739 }
740 }
741 inst = dinst;
742 }
743
744
745 return inst;
746 }
747
748 glsl_to_tgsi_instruction *
749 glsl_to_tgsi_visitor::emit_asm(ir_instruction *ir, unsigned op,
750 st_dst_reg dst,
751 st_src_reg src0, st_src_reg src1,
752 st_src_reg src2, st_src_reg src3)
753 {
754 return emit_asm(ir, op, dst, undef_dst, src0, src1, src2, src3);
755 }
756
757 /**
758 * Determines whether to use an integer, unsigned integer, or float opcode
759 * based on the operands and input opcode, then emits the result.
760 */
761 unsigned
762 glsl_to_tgsi_visitor::get_opcode(ir_instruction *ir, unsigned op,
763 st_dst_reg dst,
764 st_src_reg src0, st_src_reg src1)
765 {
766 int type = GLSL_TYPE_FLOAT;
767
768 if (op == TGSI_OPCODE_MOV)
769 return op;
770
771 assert(src0.type != GLSL_TYPE_ARRAY);
772 assert(src0.type != GLSL_TYPE_STRUCT);
773 assert(src1.type != GLSL_TYPE_ARRAY);
774 assert(src1.type != GLSL_TYPE_STRUCT);
775
776 if (src0.type == GLSL_TYPE_DOUBLE || src1.type == GLSL_TYPE_DOUBLE)
777 type = GLSL_TYPE_DOUBLE;
778 else if (src0.type == GLSL_TYPE_FLOAT || src1.type == GLSL_TYPE_FLOAT)
779 type = GLSL_TYPE_FLOAT;
780 else if (native_integers)
781 type = src0.type == GLSL_TYPE_BOOL ? GLSL_TYPE_INT : src0.type;
782
783 #define case5(c, f, i, u, d) \
784 case TGSI_OPCODE_##c: \
785 if (type == GLSL_TYPE_DOUBLE) \
786 op = TGSI_OPCODE_##d; \
787 else if (type == GLSL_TYPE_INT) \
788 op = TGSI_OPCODE_##i; \
789 else if (type == GLSL_TYPE_UINT) \
790 op = TGSI_OPCODE_##u; \
791 else \
792 op = TGSI_OPCODE_##f; \
793 break;
794
795 #define case4(c, f, i, u) \
796 case TGSI_OPCODE_##c: \
797 if (type == GLSL_TYPE_INT) \
798 op = TGSI_OPCODE_##i; \
799 else if (type == GLSL_TYPE_UINT) \
800 op = TGSI_OPCODE_##u; \
801 else \
802 op = TGSI_OPCODE_##f; \
803 break;
804
805 #define case3(f, i, u) case4(f, f, i, u)
806 #define case4d(f, i, u, d) case5(f, f, i, u, d)
807 #define case3fid(f, i, d) case5(f, f, i, i, d)
808 #define case2fi(f, i) case4(f, f, i, i)
809 #define case2iu(i, u) case4(i, LAST, i, u)
810
811 #define casecomp(c, f, i, u, d) \
812 case TGSI_OPCODE_##c: \
813 if (type == GLSL_TYPE_DOUBLE) \
814 op = TGSI_OPCODE_##d; \
815 else if (type == GLSL_TYPE_INT || type == GLSL_TYPE_SUBROUTINE) \
816 op = TGSI_OPCODE_##i; \
817 else if (type == GLSL_TYPE_UINT) \
818 op = TGSI_OPCODE_##u; \
819 else if (native_integers) \
820 op = TGSI_OPCODE_##f; \
821 else \
822 op = TGSI_OPCODE_##c; \
823 break;
824
825 switch(op) {
826 case3fid(ADD, UADD, DADD);
827 case3fid(MUL, UMUL, DMUL);
828 case3fid(MAD, UMAD, DMAD);
829 case3fid(FMA, UMAD, DFMA);
830 case3(DIV, IDIV, UDIV);
831 case4d(MAX, IMAX, UMAX, DMAX);
832 case4d(MIN, IMIN, UMIN, DMIN);
833 case2iu(MOD, UMOD);
834
835 casecomp(SEQ, FSEQ, USEQ, USEQ, DSEQ);
836 casecomp(SNE, FSNE, USNE, USNE, DSNE);
837 casecomp(SGE, FSGE, ISGE, USGE, DSGE);
838 casecomp(SLT, FSLT, ISLT, USLT, DSLT);
839
840 case2iu(ISHR, USHR);
841
842 case3fid(SSG, ISSG, DSSG);
843 case3fid(ABS, IABS, DABS);
844
845 case2iu(IBFE, UBFE);
846 case2iu(IMSB, UMSB);
847 case2iu(IMUL_HI, UMUL_HI);
848
849 case3fid(SQRT, SQRT, DSQRT);
850
851 case3fid(RCP, RCP, DRCP);
852 case3fid(RSQ, RSQ, DRSQ);
853
854 case3fid(FRC, FRC, DFRAC);
855 case3fid(TRUNC, TRUNC, DTRUNC);
856 case3fid(CEIL, CEIL, DCEIL);
857 case3fid(FLR, FLR, DFLR);
858 case3fid(ROUND, ROUND, DROUND);
859
860 default: break;
861 }
862
863 assert(op != TGSI_OPCODE_LAST);
864 return op;
865 }
866
867 glsl_to_tgsi_instruction *
868 glsl_to_tgsi_visitor::emit_dp(ir_instruction *ir,
869 st_dst_reg dst, st_src_reg src0, st_src_reg src1,
870 unsigned elements)
871 {
872 static const unsigned dot_opcodes[] = {
873 TGSI_OPCODE_DP2, TGSI_OPCODE_DP3, TGSI_OPCODE_DP4
874 };
875
876 return emit_asm(ir, dot_opcodes[elements - 2], dst, src0, src1);
877 }
878
879 /**
880 * Emits TGSI scalar opcodes to produce unique answers across channels.
881 *
882 * Some TGSI opcodes are scalar-only, like ARB_fp/vp. The src X
883 * channel determines the result across all channels. So to do a vec4
884 * of this operation, we want to emit a scalar per source channel used
885 * to produce dest channels.
886 */
887 void
888 glsl_to_tgsi_visitor::emit_scalar(ir_instruction *ir, unsigned op,
889 st_dst_reg dst,
890 st_src_reg orig_src0, st_src_reg orig_src1)
891 {
892 int i, j;
893 int done_mask = ~dst.writemask;
894
895 /* TGSI RCP is a scalar operation splatting results to all channels,
896 * like ARB_fp/vp. So emit as many RCPs as necessary to cover our
897 * dst channels.
898 */
899 for (i = 0; i < 4; i++) {
900 GLuint this_mask = (1 << i);
901 st_src_reg src0 = orig_src0;
902 st_src_reg src1 = orig_src1;
903
904 if (done_mask & this_mask)
905 continue;
906
907 GLuint src0_swiz = GET_SWZ(src0.swizzle, i);
908 GLuint src1_swiz = GET_SWZ(src1.swizzle, i);
909 for (j = i + 1; j < 4; j++) {
910 /* If there is another enabled component in the destination that is
911 * derived from the same inputs, generate its value on this pass as
912 * well.
913 */
914 if (!(done_mask & (1 << j)) &&
915 GET_SWZ(src0.swizzle, j) == src0_swiz &&
916 GET_SWZ(src1.swizzle, j) == src1_swiz) {
917 this_mask |= (1 << j);
918 }
919 }
920 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
921 src0_swiz, src0_swiz);
922 src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz,
923 src1_swiz, src1_swiz);
924
925 dst.writemask = this_mask;
926 emit_asm(ir, op, dst, src0, src1);
927 done_mask |= this_mask;
928 }
929 }
930
931 void
932 glsl_to_tgsi_visitor::emit_scalar(ir_instruction *ir, unsigned op,
933 st_dst_reg dst, st_src_reg src0)
934 {
935 st_src_reg undef = undef_src;
936
937 undef.swizzle = SWIZZLE_XXXX;
938
939 emit_scalar(ir, op, dst, src0, undef);
940 }
941
942 void
943 glsl_to_tgsi_visitor::emit_arl(ir_instruction *ir,
944 st_dst_reg dst, st_src_reg src0)
945 {
946 int op = TGSI_OPCODE_ARL;
947
948 if (src0.type == GLSL_TYPE_INT || src0.type == GLSL_TYPE_UINT)
949 op = TGSI_OPCODE_UARL;
950
951 assert(dst.file == PROGRAM_ADDRESS);
952 if (dst.index >= this->num_address_regs)
953 this->num_address_regs = dst.index + 1;
954
955 emit_asm(NULL, op, dst, src0);
956 }
957
958 int
959 glsl_to_tgsi_visitor::add_constant(gl_register_file file,
960 gl_constant_value values[8], int size, int datatype,
961 GLuint *swizzle_out)
962 {
963 if (file == PROGRAM_CONSTANT) {
964 return _mesa_add_typed_unnamed_constant(this->prog->Parameters, values,
965 size, datatype, swizzle_out);
966 }
967
968 assert(file == PROGRAM_IMMEDIATE);
969
970 int index = 0;
971 immediate_storage *entry;
972 int size32 = size * (datatype == GL_DOUBLE ? 2 : 1);
973 int i;
974
975 /* Search immediate storage to see if we already have an identical
976 * immediate that we can use instead of adding a duplicate entry.
977 */
978 foreach_in_list(immediate_storage, entry, &this->immediates) {
979 immediate_storage *tmp = entry;
980
981 for (i = 0; i * 4 < size32; i++) {
982 int slot_size = MIN2(size32 - (i * 4), 4);
983 if (tmp->type != datatype || tmp->size32 != slot_size)
984 break;
985 if (memcmp(tmp->values, &values[i * 4],
986 slot_size * sizeof(gl_constant_value)))
987 break;
988
989 /* Everything matches, keep going until the full size is matched */
990 tmp = (immediate_storage *)tmp->next;
991 }
992
993 /* The full value matched */
994 if (i * 4 >= size32)
995 return index;
996
997 index++;
998 }
999
1000 for (i = 0; i * 4 < size32; i++) {
1001 int slot_size = MIN2(size32 - (i * 4), 4);
1002 /* Add this immediate to the list. */
1003 entry = new(mem_ctx) immediate_storage(&values[i * 4], slot_size, datatype);
1004 this->immediates.push_tail(entry);
1005 this->num_immediates++;
1006 }
1007 return index;
1008 }
1009
1010 st_src_reg
1011 glsl_to_tgsi_visitor::st_src_reg_for_float(float val)
1012 {
1013 st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_FLOAT);
1014 union gl_constant_value uval;
1015
1016 uval.f = val;
1017 src.index = add_constant(src.file, &uval, 1, GL_FLOAT, &src.swizzle);
1018
1019 return src;
1020 }
1021
1022 st_src_reg
1023 glsl_to_tgsi_visitor::st_src_reg_for_double(double val)
1024 {
1025 st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_DOUBLE);
1026 union gl_constant_value uval[2];
1027
1028 uval[0].u = *(uint32_t *)&val;
1029 uval[1].u = *(((uint32_t *)&val) + 1);
1030 src.index = add_constant(src.file, uval, 1, GL_DOUBLE, &src.swizzle);
1031
1032 return src;
1033 }
1034
1035 st_src_reg
1036 glsl_to_tgsi_visitor::st_src_reg_for_int(int val)
1037 {
1038 st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_INT);
1039 union gl_constant_value uval;
1040
1041 assert(native_integers);
1042
1043 uval.i = val;
1044 src.index = add_constant(src.file, &uval, 1, GL_INT, &src.swizzle);
1045
1046 return src;
1047 }
1048
1049 st_src_reg
1050 glsl_to_tgsi_visitor::st_src_reg_for_type(int type, int val)
1051 {
1052 if (native_integers)
1053 return type == GLSL_TYPE_FLOAT ? st_src_reg_for_float(val) :
1054 st_src_reg_for_int(val);
1055 else
1056 return st_src_reg_for_float(val);
1057 }
1058
1059 static int
1060 type_size(const struct glsl_type *type)
1061 {
1062 unsigned int i;
1063 int size;
1064
1065 switch (type->base_type) {
1066 case GLSL_TYPE_UINT:
1067 case GLSL_TYPE_INT:
1068 case GLSL_TYPE_FLOAT:
1069 case GLSL_TYPE_BOOL:
1070 if (type->is_matrix()) {
1071 return type->matrix_columns;
1072 } else {
1073 /* Regardless of size of vector, it gets a vec4. This is bad
1074 * packing for things like floats, but otherwise arrays become a
1075 * mess. Hopefully a later pass over the code can pack scalars
1076 * down if appropriate.
1077 */
1078 return 1;
1079 }
1080 break;
1081 case GLSL_TYPE_DOUBLE:
1082 if (type->is_matrix()) {
1083 if (type->vector_elements <= 2)
1084 return type->matrix_columns;
1085 else
1086 return type->matrix_columns * 2;
1087 } else {
1088 /* For doubles if we have a double or dvec2 they fit in one
1089 * vec4, else they need 2 vec4s.
1090 */
1091 if (type->vector_elements <= 2)
1092 return 1;
1093 else
1094 return 2;
1095 }
1096 break;
1097 case GLSL_TYPE_ARRAY:
1098 assert(type->length > 0);
1099 return type_size(type->fields.array) * type->length;
1100 case GLSL_TYPE_STRUCT:
1101 size = 0;
1102 for (i = 0; i < type->length; i++) {
1103 size += type_size(type->fields.structure[i].type);
1104 }
1105 return size;
1106 case GLSL_TYPE_SAMPLER:
1107 case GLSL_TYPE_IMAGE:
1108 case GLSL_TYPE_SUBROUTINE:
1109 /* Samplers take up one slot in UNIFORMS[], but they're baked in
1110 * at link time.
1111 */
1112 return 1;
1113 case GLSL_TYPE_ATOMIC_UINT:
1114 case GLSL_TYPE_INTERFACE:
1115 case GLSL_TYPE_VOID:
1116 case GLSL_TYPE_ERROR:
1117 assert(!"Invalid type in type_size");
1118 break;
1119 }
1120 return 0;
1121 }
1122
1123
1124 /**
1125 * If the given GLSL type is an array or matrix or a structure containing
1126 * an array/matrix member, return true. Else return false.
1127 *
1128 * This is used to determine which kind of temp storage (PROGRAM_TEMPORARY
1129 * or PROGRAM_ARRAY) should be used for variables of this type. Anytime
1130 * we have an array that might be indexed with a variable, we need to use
1131 * the later storage type.
1132 */
1133 static bool
1134 type_has_array_or_matrix(const glsl_type *type)
1135 {
1136 if (type->is_array() || type->is_matrix())
1137 return true;
1138
1139 if (type->is_record()) {
1140 for (unsigned i = 0; i < type->length; i++) {
1141 if (type_has_array_or_matrix(type->fields.structure[i].type)) {
1142 return true;
1143 }
1144 }
1145 }
1146
1147 return false;
1148 }
1149
1150
1151 /**
1152 * In the initial pass of codegen, we assign temporary numbers to
1153 * intermediate results. (not SSA -- variable assignments will reuse
1154 * storage).
1155 */
1156 st_src_reg
1157 glsl_to_tgsi_visitor::get_temp(const glsl_type *type)
1158 {
1159 st_src_reg src;
1160
1161 src.type = native_integers ? type->base_type : GLSL_TYPE_FLOAT;
1162 src.reladdr = NULL;
1163 src.negate = 0;
1164
1165 if (!options->EmitNoIndirectTemp && type_has_array_or_matrix(type)) {
1166 if (next_array >= max_num_arrays) {
1167 max_num_arrays += 32;
1168 array_sizes = (unsigned*)
1169 realloc(array_sizes, sizeof(array_sizes[0]) * max_num_arrays);
1170 }
1171
1172 src.file = PROGRAM_ARRAY;
1173 src.index = next_array << 16 | 0x8000;
1174 array_sizes[next_array] = type_size(type);
1175 ++next_array;
1176
1177 } else {
1178 src.file = PROGRAM_TEMPORARY;
1179 src.index = next_temp;
1180 next_temp += type_size(type);
1181 }
1182
1183 if (type->is_array() || type->is_record()) {
1184 src.swizzle = SWIZZLE_NOOP;
1185 } else {
1186 src.swizzle = swizzle_for_size(type->vector_elements);
1187 }
1188
1189 return src;
1190 }
1191
1192 variable_storage *
1193 glsl_to_tgsi_visitor::find_variable_storage(ir_variable *var)
1194 {
1195
1196 foreach_in_list(variable_storage, entry, &this->variables) {
1197 if (entry->var == var)
1198 return entry;
1199 }
1200
1201 return NULL;
1202 }
1203
1204 void
1205 glsl_to_tgsi_visitor::visit(ir_variable *ir)
1206 {
1207 if (strcmp(ir->name, "gl_FragCoord") == 0) {
1208 struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog;
1209
1210 fp->OriginUpperLeft = ir->data.origin_upper_left;
1211 fp->PixelCenterInteger = ir->data.pixel_center_integer;
1212 }
1213
1214 if (ir->data.mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) {
1215 unsigned int i;
1216 const ir_state_slot *const slots = ir->get_state_slots();
1217 assert(slots != NULL);
1218
1219 /* Check if this statevar's setup in the STATE file exactly
1220 * matches how we'll want to reference it as a
1221 * struct/array/whatever. If not, then we need to move it into
1222 * temporary storage and hope that it'll get copy-propagated
1223 * out.
1224 */
1225 for (i = 0; i < ir->get_num_state_slots(); i++) {
1226 if (slots[i].swizzle != SWIZZLE_XYZW) {
1227 break;
1228 }
1229 }
1230
1231 variable_storage *storage;
1232 st_dst_reg dst;
1233 if (i == ir->get_num_state_slots()) {
1234 /* We'll set the index later. */
1235 storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1);
1236 this->variables.push_tail(storage);
1237
1238 dst = undef_dst;
1239 } else {
1240 /* The variable_storage constructor allocates slots based on the size
1241 * of the type. However, this had better match the number of state
1242 * elements that we're going to copy into the new temporary.
1243 */
1244 assert((int) ir->get_num_state_slots() == type_size(ir->type));
1245
1246 dst = st_dst_reg(get_temp(ir->type));
1247
1248 storage = new(mem_ctx) variable_storage(ir, dst.file, dst.index);
1249
1250 this->variables.push_tail(storage);
1251 }
1252
1253
1254 for (unsigned int i = 0; i < ir->get_num_state_slots(); i++) {
1255 int index = _mesa_add_state_reference(this->prog->Parameters,
1256 (gl_state_index *)slots[i].tokens);
1257
1258 if (storage->file == PROGRAM_STATE_VAR) {
1259 if (storage->index == -1) {
1260 storage->index = index;
1261 } else {
1262 assert(index == storage->index + (int)i);
1263 }
1264 } else {
1265 /* We use GLSL_TYPE_FLOAT here regardless of the actual type of
1266 * the data being moved since MOV does not care about the type of
1267 * data it is moving, and we don't want to declare registers with
1268 * array or struct types.
1269 */
1270 st_src_reg src(PROGRAM_STATE_VAR, index, GLSL_TYPE_FLOAT);
1271 src.swizzle = slots[i].swizzle;
1272 emit_asm(ir, TGSI_OPCODE_MOV, dst, src);
1273 /* even a float takes up a whole vec4 reg in a struct/array. */
1274 dst.index++;
1275 }
1276 }
1277
1278 if (storage->file == PROGRAM_TEMPORARY &&
1279 dst.index != storage->index + (int) ir->get_num_state_slots()) {
1280 fail_link(this->shader_program,
1281 "failed to load builtin uniform `%s' (%d/%d regs loaded)\n",
1282 ir->name, dst.index - storage->index,
1283 type_size(ir->type));
1284 }
1285 }
1286 }
1287
1288 void
1289 glsl_to_tgsi_visitor::visit(ir_loop *ir)
1290 {
1291 emit_asm(NULL, TGSI_OPCODE_BGNLOOP);
1292
1293 visit_exec_list(&ir->body_instructions, this);
1294
1295 emit_asm(NULL, TGSI_OPCODE_ENDLOOP);
1296 }
1297
1298 void
1299 glsl_to_tgsi_visitor::visit(ir_loop_jump *ir)
1300 {
1301 switch (ir->mode) {
1302 case ir_loop_jump::jump_break:
1303 emit_asm(NULL, TGSI_OPCODE_BRK);
1304 break;
1305 case ir_loop_jump::jump_continue:
1306 emit_asm(NULL, TGSI_OPCODE_CONT);
1307 break;
1308 }
1309 }
1310
1311
1312 void
1313 glsl_to_tgsi_visitor::visit(ir_function_signature *ir)
1314 {
1315 assert(0);
1316 (void)ir;
1317 }
1318
1319 void
1320 glsl_to_tgsi_visitor::visit(ir_function *ir)
1321 {
1322 /* Ignore function bodies other than main() -- we shouldn't see calls to
1323 * them since they should all be inlined before we get to glsl_to_tgsi.
1324 */
1325 if (strcmp(ir->name, "main") == 0) {
1326 const ir_function_signature *sig;
1327 exec_list empty;
1328
1329 sig = ir->matching_signature(NULL, &empty, false);
1330
1331 assert(sig);
1332
1333 foreach_in_list(ir_instruction, ir, &sig->body) {
1334 ir->accept(this);
1335 }
1336 }
1337 }
1338
1339 bool
1340 glsl_to_tgsi_visitor::try_emit_mad(ir_expression *ir, int mul_operand)
1341 {
1342 int nonmul_operand = 1 - mul_operand;
1343 st_src_reg a, b, c;
1344 st_dst_reg result_dst;
1345
1346 ir_expression *expr = ir->operands[mul_operand]->as_expression();
1347 if (!expr || expr->operation != ir_binop_mul)
1348 return false;
1349
1350 expr->operands[0]->accept(this);
1351 a = this->result;
1352 expr->operands[1]->accept(this);
1353 b = this->result;
1354 ir->operands[nonmul_operand]->accept(this);
1355 c = this->result;
1356
1357 this->result = get_temp(ir->type);
1358 result_dst = st_dst_reg(this->result);
1359 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1360 emit_asm(ir, TGSI_OPCODE_MAD, result_dst, a, b, c);
1361
1362 return true;
1363 }
1364
1365 /**
1366 * Emit MAD(a, -b, a) instead of AND(a, NOT(b))
1367 *
1368 * The logic values are 1.0 for true and 0.0 for false. Logical-and is
1369 * implemented using multiplication, and logical-or is implemented using
1370 * addition. Logical-not can be implemented as (true - x), or (1.0 - x).
1371 * As result, the logical expression (a & !b) can be rewritten as:
1372 *
1373 * - a * !b
1374 * - a * (1 - b)
1375 * - (a * 1) - (a * b)
1376 * - a + -(a * b)
1377 * - a + (a * -b)
1378 *
1379 * This final expression can be implemented as a single MAD(a, -b, a)
1380 * instruction.
1381 */
1382 bool
1383 glsl_to_tgsi_visitor::try_emit_mad_for_and_not(ir_expression *ir, int try_operand)
1384 {
1385 const int other_operand = 1 - try_operand;
1386 st_src_reg a, b;
1387
1388 ir_expression *expr = ir->operands[try_operand]->as_expression();
1389 if (!expr || expr->operation != ir_unop_logic_not)
1390 return false;
1391
1392 ir->operands[other_operand]->accept(this);
1393 a = this->result;
1394 expr->operands[0]->accept(this);
1395 b = this->result;
1396
1397 b.negate = ~b.negate;
1398
1399 this->result = get_temp(ir->type);
1400 emit_asm(ir, TGSI_OPCODE_MAD, st_dst_reg(this->result), a, b, a);
1401
1402 return true;
1403 }
1404
1405 void
1406 glsl_to_tgsi_visitor::reladdr_to_temp(ir_instruction *ir,
1407 st_src_reg *reg, int *num_reladdr)
1408 {
1409 if (!reg->reladdr && !reg->reladdr2)
1410 return;
1411
1412 if (reg->reladdr) emit_arl(ir, address_reg, *reg->reladdr);
1413 if (reg->reladdr2) emit_arl(ir, address_reg2, *reg->reladdr2);
1414
1415 if (*num_reladdr != 1) {
1416 st_src_reg temp = get_temp(glsl_type::vec4_type);
1417
1418 emit_asm(ir, TGSI_OPCODE_MOV, st_dst_reg(temp), *reg);
1419 *reg = temp;
1420 }
1421
1422 (*num_reladdr)--;
1423 }
1424
1425 void
1426 glsl_to_tgsi_visitor::visit(ir_expression *ir)
1427 {
1428 unsigned int operand;
1429 st_src_reg op[ARRAY_SIZE(ir->operands)];
1430 st_src_reg result_src;
1431 st_dst_reg result_dst;
1432
1433 /* Quick peephole: Emit MAD(a, b, c) instead of ADD(MUL(a, b), c)
1434 */
1435 if (ir->operation == ir_binop_add) {
1436 if (try_emit_mad(ir, 1))
1437 return;
1438 if (try_emit_mad(ir, 0))
1439 return;
1440 }
1441
1442 /* Quick peephole: Emit OPCODE_MAD(-a, -b, a) instead of AND(a, NOT(b))
1443 */
1444 if (!native_integers && ir->operation == ir_binop_logic_and) {
1445 if (try_emit_mad_for_and_not(ir, 1))
1446 return;
1447 if (try_emit_mad_for_and_not(ir, 0))
1448 return;
1449 }
1450
1451 if (ir->operation == ir_quadop_vector)
1452 assert(!"ir_quadop_vector should have been lowered");
1453
1454 for (operand = 0; operand < ir->get_num_operands(); operand++) {
1455 this->result.file = PROGRAM_UNDEFINED;
1456 ir->operands[operand]->accept(this);
1457 if (this->result.file == PROGRAM_UNDEFINED) {
1458 printf("Failed to get tree for expression operand:\n");
1459 ir->operands[operand]->print();
1460 printf("\n");
1461 exit(1);
1462 }
1463 op[operand] = this->result;
1464
1465 /* Matrix expression operands should have been broken down to vector
1466 * operations already.
1467 */
1468 assert(!ir->operands[operand]->type->is_matrix());
1469 }
1470
1471 int vector_elements = ir->operands[0]->type->vector_elements;
1472 if (ir->operands[1]) {
1473 vector_elements = MAX2(vector_elements,
1474 ir->operands[1]->type->vector_elements);
1475 }
1476
1477 this->result.file = PROGRAM_UNDEFINED;
1478
1479 /* Storage for our result. Ideally for an assignment we'd be using
1480 * the actual storage for the result here, instead.
1481 */
1482 result_src = get_temp(ir->type);
1483 /* convenience for the emit functions below. */
1484 result_dst = st_dst_reg(result_src);
1485 /* Limit writes to the channels that will be used by result_src later.
1486 * This does limit this temp's use as a temporary for multi-instruction
1487 * sequences.
1488 */
1489 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1490
1491 switch (ir->operation) {
1492 case ir_unop_logic_not:
1493 if (result_dst.type != GLSL_TYPE_FLOAT)
1494 emit_asm(ir, TGSI_OPCODE_NOT, result_dst, op[0]);
1495 else {
1496 /* Previously 'SEQ dst, src, 0.0' was used for this. However, many
1497 * older GPUs implement SEQ using multiple instructions (i915 uses two
1498 * SGE instructions and a MUL instruction). Since our logic values are
1499 * 0.0 and 1.0, 1-x also implements !x.
1500 */
1501 op[0].negate = ~op[0].negate;
1502 emit_asm(ir, TGSI_OPCODE_ADD, result_dst, op[0], st_src_reg_for_float(1.0));
1503 }
1504 break;
1505 case ir_unop_neg:
1506 if (result_dst.type == GLSL_TYPE_INT || result_dst.type == GLSL_TYPE_UINT)
1507 emit_asm(ir, TGSI_OPCODE_INEG, result_dst, op[0]);
1508 else if (result_dst.type == GLSL_TYPE_DOUBLE)
1509 emit_asm(ir, TGSI_OPCODE_DNEG, result_dst, op[0]);
1510 else {
1511 op[0].negate = ~op[0].negate;
1512 result_src = op[0];
1513 }
1514 break;
1515 case ir_unop_subroutine_to_int:
1516 emit_asm(ir, TGSI_OPCODE_MOV, result_dst, op[0]);
1517 break;
1518 case ir_unop_abs:
1519 emit_asm(ir, TGSI_OPCODE_ABS, result_dst, op[0]);
1520 break;
1521 case ir_unop_sign:
1522 emit_asm(ir, TGSI_OPCODE_SSG, result_dst, op[0]);
1523 break;
1524 case ir_unop_rcp:
1525 emit_scalar(ir, TGSI_OPCODE_RCP, result_dst, op[0]);
1526 break;
1527
1528 case ir_unop_exp2:
1529 emit_scalar(ir, TGSI_OPCODE_EX2, result_dst, op[0]);
1530 break;
1531 case ir_unop_exp:
1532 case ir_unop_log:
1533 assert(!"not reached: should be handled by ir_explog_to_explog2");
1534 break;
1535 case ir_unop_log2:
1536 emit_scalar(ir, TGSI_OPCODE_LG2, result_dst, op[0]);
1537 break;
1538 case ir_unop_sin:
1539 emit_scalar(ir, TGSI_OPCODE_SIN, result_dst, op[0]);
1540 break;
1541 case ir_unop_cos:
1542 emit_scalar(ir, TGSI_OPCODE_COS, result_dst, op[0]);
1543 break;
1544 case ir_unop_saturate: {
1545 glsl_to_tgsi_instruction *inst;
1546 inst = emit_asm(ir, TGSI_OPCODE_MOV, result_dst, op[0]);
1547 inst->saturate = true;
1548 break;
1549 }
1550
1551 case ir_unop_dFdx:
1552 case ir_unop_dFdx_coarse:
1553 emit_asm(ir, TGSI_OPCODE_DDX, result_dst, op[0]);
1554 break;
1555 case ir_unop_dFdx_fine:
1556 emit_asm(ir, TGSI_OPCODE_DDX_FINE, result_dst, op[0]);
1557 break;
1558 case ir_unop_dFdy:
1559 case ir_unop_dFdy_coarse:
1560 case ir_unop_dFdy_fine:
1561 {
1562 /* The X component contains 1 or -1 depending on whether the framebuffer
1563 * is a FBO or the window system buffer, respectively.
1564 * It is then multiplied with the source operand of DDY.
1565 */
1566 static const gl_state_index transform_y_state[STATE_LENGTH]
1567 = { STATE_INTERNAL, STATE_FB_WPOS_Y_TRANSFORM };
1568
1569 unsigned transform_y_index =
1570 _mesa_add_state_reference(this->prog->Parameters,
1571 transform_y_state);
1572
1573 st_src_reg transform_y = st_src_reg(PROGRAM_STATE_VAR,
1574 transform_y_index,
1575 glsl_type::vec4_type);
1576 transform_y.swizzle = SWIZZLE_XXXX;
1577
1578 st_src_reg temp = get_temp(glsl_type::vec4_type);
1579
1580 emit_asm(ir, TGSI_OPCODE_MUL, st_dst_reg(temp), transform_y, op[0]);
1581 emit_asm(ir, ir->operation == ir_unop_dFdy_fine ?
1582 TGSI_OPCODE_DDY_FINE : TGSI_OPCODE_DDY, result_dst, temp);
1583 break;
1584 }
1585
1586 case ir_unop_frexp_sig:
1587 emit_asm(ir, TGSI_OPCODE_DFRACEXP, result_dst, undef_dst, op[0]);
1588 break;
1589
1590 case ir_unop_frexp_exp:
1591 emit_asm(ir, TGSI_OPCODE_DFRACEXP, undef_dst, result_dst, op[0]);
1592 break;
1593
1594 case ir_unop_noise: {
1595 /* At some point, a motivated person could add a better
1596 * implementation of noise. Currently not even the nvidia
1597 * binary drivers do anything more than this. In any case, the
1598 * place to do this is in the GL state tracker, not the poor
1599 * driver.
1600 */
1601 emit_asm(ir, TGSI_OPCODE_MOV, result_dst, st_src_reg_for_float(0.5));
1602 break;
1603 }
1604
1605 case ir_binop_add:
1606 emit_asm(ir, TGSI_OPCODE_ADD, result_dst, op[0], op[1]);
1607 break;
1608 case ir_binop_sub:
1609 emit_asm(ir, TGSI_OPCODE_SUB, result_dst, op[0], op[1]);
1610 break;
1611
1612 case ir_binop_mul:
1613 emit_asm(ir, TGSI_OPCODE_MUL, result_dst, op[0], op[1]);
1614 break;
1615 case ir_binop_div:
1616 if (result_dst.type == GLSL_TYPE_FLOAT || result_dst.type == GLSL_TYPE_DOUBLE)
1617 assert(!"not reached: should be handled by ir_div_to_mul_rcp");
1618 else
1619 emit_asm(ir, TGSI_OPCODE_DIV, result_dst, op[0], op[1]);
1620 break;
1621 case ir_binop_mod:
1622 if (result_dst.type == GLSL_TYPE_FLOAT)
1623 assert(!"ir_binop_mod should have been converted to b * fract(a/b)");
1624 else
1625 emit_asm(ir, TGSI_OPCODE_MOD, result_dst, op[0], op[1]);
1626 break;
1627
1628 case ir_binop_less:
1629 emit_asm(ir, TGSI_OPCODE_SLT, result_dst, op[0], op[1]);
1630 break;
1631 case ir_binop_greater:
1632 emit_asm(ir, TGSI_OPCODE_SLT, result_dst, op[1], op[0]);
1633 break;
1634 case ir_binop_lequal:
1635 emit_asm(ir, TGSI_OPCODE_SGE, result_dst, op[1], op[0]);
1636 break;
1637 case ir_binop_gequal:
1638 emit_asm(ir, TGSI_OPCODE_SGE, result_dst, op[0], op[1]);
1639 break;
1640 case ir_binop_equal:
1641 emit_asm(ir, TGSI_OPCODE_SEQ, result_dst, op[0], op[1]);
1642 break;
1643 case ir_binop_nequal:
1644 emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1645 break;
1646 case ir_binop_all_equal:
1647 /* "==" operator producing a scalar boolean. */
1648 if (ir->operands[0]->type->is_vector() ||
1649 ir->operands[1]->type->is_vector()) {
1650 st_src_reg temp = get_temp(native_integers ?
1651 glsl_type::uvec4_type :
1652 glsl_type::vec4_type);
1653
1654 if (native_integers) {
1655 st_dst_reg temp_dst = st_dst_reg(temp);
1656 st_src_reg temp1 = st_src_reg(temp), temp2 = st_src_reg(temp);
1657
1658 emit_asm(ir, TGSI_OPCODE_SEQ, st_dst_reg(temp), op[0], op[1]);
1659
1660 /* Emit 1-3 AND operations to combine the SEQ results. */
1661 switch (ir->operands[0]->type->vector_elements) {
1662 case 2:
1663 break;
1664 case 3:
1665 temp_dst.writemask = WRITEMASK_Y;
1666 temp1.swizzle = SWIZZLE_YYYY;
1667 temp2.swizzle = SWIZZLE_ZZZZ;
1668 emit_asm(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
1669 break;
1670 case 4:
1671 temp_dst.writemask = WRITEMASK_X;
1672 temp1.swizzle = SWIZZLE_XXXX;
1673 temp2.swizzle = SWIZZLE_YYYY;
1674 emit_asm(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
1675 temp_dst.writemask = WRITEMASK_Y;
1676 temp1.swizzle = SWIZZLE_ZZZZ;
1677 temp2.swizzle = SWIZZLE_WWWW;
1678 emit_asm(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
1679 }
1680
1681 temp1.swizzle = SWIZZLE_XXXX;
1682 temp2.swizzle = SWIZZLE_YYYY;
1683 emit_asm(ir, TGSI_OPCODE_AND, result_dst, temp1, temp2);
1684 } else {
1685 emit_asm(ir, TGSI_OPCODE_SNE, st_dst_reg(temp), op[0], op[1]);
1686
1687 /* After the dot-product, the value will be an integer on the
1688 * range [0,4]. Zero becomes 1.0, and positive values become zero.
1689 */
1690 emit_dp(ir, result_dst, temp, temp, vector_elements);
1691
1692 /* Negating the result of the dot-product gives values on the range
1693 * [-4, 0]. Zero becomes 1.0, and negative values become zero.
1694 * This is achieved using SGE.
1695 */
1696 st_src_reg sge_src = result_src;
1697 sge_src.negate = ~sge_src.negate;
1698 emit_asm(ir, TGSI_OPCODE_SGE, result_dst, sge_src, st_src_reg_for_float(0.0));
1699 }
1700 } else {
1701 emit_asm(ir, TGSI_OPCODE_SEQ, result_dst, op[0], op[1]);
1702 }
1703 break;
1704 case ir_binop_any_nequal:
1705 /* "!=" operator producing a scalar boolean. */
1706 if (ir->operands[0]->type->is_vector() ||
1707 ir->operands[1]->type->is_vector()) {
1708 st_src_reg temp = get_temp(native_integers ?
1709 glsl_type::uvec4_type :
1710 glsl_type::vec4_type);
1711 emit_asm(ir, TGSI_OPCODE_SNE, st_dst_reg(temp), op[0], op[1]);
1712
1713 if (native_integers) {
1714 st_dst_reg temp_dst = st_dst_reg(temp);
1715 st_src_reg temp1 = st_src_reg(temp), temp2 = st_src_reg(temp);
1716
1717 /* Emit 1-3 OR operations to combine the SNE results. */
1718 switch (ir->operands[0]->type->vector_elements) {
1719 case 2:
1720 break;
1721 case 3:
1722 temp_dst.writemask = WRITEMASK_Y;
1723 temp1.swizzle = SWIZZLE_YYYY;
1724 temp2.swizzle = SWIZZLE_ZZZZ;
1725 emit_asm(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
1726 break;
1727 case 4:
1728 temp_dst.writemask = WRITEMASK_X;
1729 temp1.swizzle = SWIZZLE_XXXX;
1730 temp2.swizzle = SWIZZLE_YYYY;
1731 emit_asm(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
1732 temp_dst.writemask = WRITEMASK_Y;
1733 temp1.swizzle = SWIZZLE_ZZZZ;
1734 temp2.swizzle = SWIZZLE_WWWW;
1735 emit_asm(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
1736 }
1737
1738 temp1.swizzle = SWIZZLE_XXXX;
1739 temp2.swizzle = SWIZZLE_YYYY;
1740 emit_asm(ir, TGSI_OPCODE_OR, result_dst, temp1, temp2);
1741 } else {
1742 /* After the dot-product, the value will be an integer on the
1743 * range [0,4]. Zero stays zero, and positive values become 1.0.
1744 */
1745 glsl_to_tgsi_instruction *const dp =
1746 emit_dp(ir, result_dst, temp, temp, vector_elements);
1747 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1748 /* The clamping to [0,1] can be done for free in the fragment
1749 * shader with a saturate.
1750 */
1751 dp->saturate = true;
1752 } else {
1753 /* Negating the result of the dot-product gives values on the range
1754 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1755 * achieved using SLT.
1756 */
1757 st_src_reg slt_src = result_src;
1758 slt_src.negate = ~slt_src.negate;
1759 emit_asm(ir, TGSI_OPCODE_SLT, result_dst, slt_src, st_src_reg_for_float(0.0));
1760 }
1761 }
1762 } else {
1763 emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1764 }
1765 break;
1766
1767 case ir_unop_any: {
1768 assert(ir->operands[0]->type->is_vector());
1769
1770 if (native_integers) {
1771 int dst_swizzle = 0, op0_swizzle, i;
1772 st_src_reg accum = op[0];
1773
1774 op0_swizzle = op[0].swizzle;
1775 accum.swizzle = MAKE_SWIZZLE4(GET_SWZ(op0_swizzle, 0),
1776 GET_SWZ(op0_swizzle, 0),
1777 GET_SWZ(op0_swizzle, 0),
1778 GET_SWZ(op0_swizzle, 0));
1779 for (i = 0; i < 4; i++) {
1780 if (result_dst.writemask & (1 << i)) {
1781 dst_swizzle = MAKE_SWIZZLE4(i, i, i, i);
1782 break;
1783 }
1784 }
1785 assert(i != 4);
1786 assert(ir->operands[0]->type->is_boolean());
1787
1788 /* OR all the components together, since they should be either 0 or ~0
1789 */
1790 switch (ir->operands[0]->type->vector_elements) {
1791 case 4:
1792 op[0].swizzle = MAKE_SWIZZLE4(GET_SWZ(op0_swizzle, 3),
1793 GET_SWZ(op0_swizzle, 3),
1794 GET_SWZ(op0_swizzle, 3),
1795 GET_SWZ(op0_swizzle, 3));
1796 emit_asm(ir, TGSI_OPCODE_OR, result_dst, accum, op[0]);
1797 accum = st_src_reg(result_dst);
1798 accum.swizzle = dst_swizzle;
1799 /* fallthrough */
1800 case 3:
1801 op[0].swizzle = MAKE_SWIZZLE4(GET_SWZ(op0_swizzle, 2),
1802 GET_SWZ(op0_swizzle, 2),
1803 GET_SWZ(op0_swizzle, 2),
1804 GET_SWZ(op0_swizzle, 2));
1805 emit_asm(ir, TGSI_OPCODE_OR, result_dst, accum, op[0]);
1806 accum = st_src_reg(result_dst);
1807 accum.swizzle = dst_swizzle;
1808 /* fallthrough */
1809 case 2:
1810 op[0].swizzle = MAKE_SWIZZLE4(GET_SWZ(op0_swizzle, 1),
1811 GET_SWZ(op0_swizzle, 1),
1812 GET_SWZ(op0_swizzle, 1),
1813 GET_SWZ(op0_swizzle, 1));
1814 emit_asm(ir, TGSI_OPCODE_OR, result_dst, accum, op[0]);
1815 break;
1816 default:
1817 assert(!"Unexpected vector size");
1818 break;
1819 }
1820 } else {
1821 /* After the dot-product, the value will be an integer on the
1822 * range [0,4]. Zero stays zero, and positive values become 1.0.
1823 */
1824 glsl_to_tgsi_instruction *const dp =
1825 emit_dp(ir, result_dst, op[0], op[0],
1826 ir->operands[0]->type->vector_elements);
1827 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB &&
1828 result_dst.type == GLSL_TYPE_FLOAT) {
1829 /* The clamping to [0,1] can be done for free in the fragment
1830 * shader with a saturate.
1831 */
1832 dp->saturate = true;
1833 } else if (result_dst.type == GLSL_TYPE_FLOAT) {
1834 /* Negating the result of the dot-product gives values on the range
1835 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1836 * is achieved using SLT.
1837 */
1838 st_src_reg slt_src = result_src;
1839 slt_src.negate = ~slt_src.negate;
1840 emit_asm(ir, TGSI_OPCODE_SLT, result_dst, slt_src, st_src_reg_for_float(0.0));
1841 }
1842 else {
1843 /* Use SNE 0 if integers are being used as boolean values. */
1844 emit_asm(ir, TGSI_OPCODE_SNE, result_dst, result_src, st_src_reg_for_int(0));
1845 }
1846 }
1847 break;
1848 }
1849
1850 case ir_binop_logic_xor:
1851 if (native_integers)
1852 emit_asm(ir, TGSI_OPCODE_XOR, result_dst, op[0], op[1]);
1853 else
1854 emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1855 break;
1856
1857 case ir_binop_logic_or: {
1858 if (native_integers) {
1859 /* If integers are used as booleans, we can use an actual "or"
1860 * instruction.
1861 */
1862 assert(native_integers);
1863 emit_asm(ir, TGSI_OPCODE_OR, result_dst, op[0], op[1]);
1864 } else {
1865 /* After the addition, the value will be an integer on the
1866 * range [0,2]. Zero stays zero, and positive values become 1.0.
1867 */
1868 glsl_to_tgsi_instruction *add =
1869 emit_asm(ir, TGSI_OPCODE_ADD, result_dst, op[0], op[1]);
1870 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1871 /* The clamping to [0,1] can be done for free in the fragment
1872 * shader with a saturate if floats are being used as boolean values.
1873 */
1874 add->saturate = true;
1875 } else {
1876 /* Negating the result of the addition gives values on the range
1877 * [-2, 0]. Zero stays zero, and negative values become 1.0. This
1878 * is achieved using SLT.
1879 */
1880 st_src_reg slt_src = result_src;
1881 slt_src.negate = ~slt_src.negate;
1882 emit_asm(ir, TGSI_OPCODE_SLT, result_dst, slt_src, st_src_reg_for_float(0.0));
1883 }
1884 }
1885 break;
1886 }
1887
1888 case ir_binop_logic_and:
1889 /* If native integers are disabled, the bool args are stored as float 0.0
1890 * or 1.0, so "mul" gives us "and". If they're enabled, just use the
1891 * actual AND opcode.
1892 */
1893 if (native_integers)
1894 emit_asm(ir, TGSI_OPCODE_AND, result_dst, op[0], op[1]);
1895 else
1896 emit_asm(ir, TGSI_OPCODE_MUL, result_dst, op[0], op[1]);
1897 break;
1898
1899 case ir_binop_dot:
1900 assert(ir->operands[0]->type->is_vector());
1901 assert(ir->operands[0]->type == ir->operands[1]->type);
1902 emit_dp(ir, result_dst, op[0], op[1],
1903 ir->operands[0]->type->vector_elements);
1904 break;
1905
1906 case ir_unop_sqrt:
1907 if (have_sqrt) {
1908 emit_scalar(ir, TGSI_OPCODE_SQRT, result_dst, op[0]);
1909 } else {
1910 /* sqrt(x) = x * rsq(x). */
1911 emit_scalar(ir, TGSI_OPCODE_RSQ, result_dst, op[0]);
1912 emit_asm(ir, TGSI_OPCODE_MUL, result_dst, result_src, op[0]);
1913 /* For incoming channels <= 0, set the result to 0. */
1914 op[0].negate = ~op[0].negate;
1915 emit_asm(ir, TGSI_OPCODE_CMP, result_dst,
1916 op[0], result_src, st_src_reg_for_float(0.0));
1917 }
1918 break;
1919 case ir_unop_rsq:
1920 emit_scalar(ir, TGSI_OPCODE_RSQ, result_dst, op[0]);
1921 break;
1922 case ir_unop_i2f:
1923 if (native_integers) {
1924 emit_asm(ir, TGSI_OPCODE_I2F, result_dst, op[0]);
1925 break;
1926 }
1927 /* fallthrough to next case otherwise */
1928 case ir_unop_b2f:
1929 if (native_integers) {
1930 emit_asm(ir, TGSI_OPCODE_AND, result_dst, op[0], st_src_reg_for_float(1.0));
1931 break;
1932 }
1933 /* fallthrough to next case otherwise */
1934 case ir_unop_i2u:
1935 case ir_unop_u2i:
1936 /* Converting between signed and unsigned integers is a no-op. */
1937 result_src = op[0];
1938 break;
1939 case ir_unop_b2i:
1940 if (native_integers) {
1941 /* Booleans are stored as integers using ~0 for true and 0 for false.
1942 * GLSL requires that int(bool) return 1 for true and 0 for false.
1943 * This conversion is done with AND, but it could be done with NEG.
1944 */
1945 emit_asm(ir, TGSI_OPCODE_AND, result_dst, op[0], st_src_reg_for_int(1));
1946 } else {
1947 /* Booleans and integers are both stored as floats when native
1948 * integers are disabled.
1949 */
1950 result_src = op[0];
1951 }
1952 break;
1953 case ir_unop_f2i:
1954 if (native_integers)
1955 emit_asm(ir, TGSI_OPCODE_F2I, result_dst, op[0]);
1956 else
1957 emit_asm(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
1958 break;
1959 case ir_unop_f2u:
1960 if (native_integers)
1961 emit_asm(ir, TGSI_OPCODE_F2U, result_dst, op[0]);
1962 else
1963 emit_asm(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
1964 break;
1965 case ir_unop_bitcast_f2i:
1966 result_src = op[0];
1967 result_src.type = GLSL_TYPE_INT;
1968 break;
1969 case ir_unop_bitcast_f2u:
1970 result_src = op[0];
1971 result_src.type = GLSL_TYPE_UINT;
1972 break;
1973 case ir_unop_bitcast_i2f:
1974 case ir_unop_bitcast_u2f:
1975 result_src = op[0];
1976 result_src.type = GLSL_TYPE_FLOAT;
1977 break;
1978 case ir_unop_f2b:
1979 emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0], st_src_reg_for_float(0.0));
1980 break;
1981 case ir_unop_d2b:
1982 emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0], st_src_reg_for_double(0.0));
1983 break;
1984 case ir_unop_i2b:
1985 if (native_integers)
1986 emit_asm(ir, TGSI_OPCODE_USNE, result_dst, op[0], st_src_reg_for_int(0));
1987 else
1988 emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0], st_src_reg_for_float(0.0));
1989 break;
1990 case ir_unop_trunc:
1991 emit_asm(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
1992 break;
1993 case ir_unop_ceil:
1994 emit_asm(ir, TGSI_OPCODE_CEIL, result_dst, op[0]);
1995 break;
1996 case ir_unop_floor:
1997 emit_asm(ir, TGSI_OPCODE_FLR, result_dst, op[0]);
1998 break;
1999 case ir_unop_round_even:
2000 emit_asm(ir, TGSI_OPCODE_ROUND, result_dst, op[0]);
2001 break;
2002 case ir_unop_fract:
2003 emit_asm(ir, TGSI_OPCODE_FRC, result_dst, op[0]);
2004 break;
2005
2006 case ir_binop_min:
2007 emit_asm(ir, TGSI_OPCODE_MIN, result_dst, op[0], op[1]);
2008 break;
2009 case ir_binop_max:
2010 emit_asm(ir, TGSI_OPCODE_MAX, result_dst, op[0], op[1]);
2011 break;
2012 case ir_binop_pow:
2013 emit_scalar(ir, TGSI_OPCODE_POW, result_dst, op[0], op[1]);
2014 break;
2015
2016 case ir_unop_bit_not:
2017 if (native_integers) {
2018 emit_asm(ir, TGSI_OPCODE_NOT, result_dst, op[0]);
2019 break;
2020 }
2021 case ir_unop_u2f:
2022 if (native_integers) {
2023 emit_asm(ir, TGSI_OPCODE_U2F, result_dst, op[0]);
2024 break;
2025 }
2026 case ir_binop_lshift:
2027 if (native_integers) {
2028 emit_asm(ir, TGSI_OPCODE_SHL, result_dst, op[0], op[1]);
2029 break;
2030 }
2031 case ir_binop_rshift:
2032 if (native_integers) {
2033 emit_asm(ir, TGSI_OPCODE_ISHR, result_dst, op[0], op[1]);
2034 break;
2035 }
2036 case ir_binop_bit_and:
2037 if (native_integers) {
2038 emit_asm(ir, TGSI_OPCODE_AND, result_dst, op[0], op[1]);
2039 break;
2040 }
2041 case ir_binop_bit_xor:
2042 if (native_integers) {
2043 emit_asm(ir, TGSI_OPCODE_XOR, result_dst, op[0], op[1]);
2044 break;
2045 }
2046 case ir_binop_bit_or:
2047 if (native_integers) {
2048 emit_asm(ir, TGSI_OPCODE_OR, result_dst, op[0], op[1]);
2049 break;
2050 }
2051
2052 assert(!"GLSL 1.30 features unsupported");
2053 break;
2054
2055 case ir_binop_ubo_load: {
2056 ir_constant *const_uniform_block = ir->operands[0]->as_constant();
2057 ir_constant *const_offset_ir = ir->operands[1]->as_constant();
2058 unsigned const_offset = const_offset_ir ? const_offset_ir->value.u[0] : 0;
2059 unsigned const_block = const_uniform_block ? const_uniform_block->value.u[0] + 1 : 0;
2060 st_src_reg index_reg = get_temp(glsl_type::uint_type);
2061 st_src_reg cbuf;
2062
2063 cbuf.type = ir->type->base_type;
2064 cbuf.file = PROGRAM_CONSTANT;
2065 cbuf.index = 0;
2066 cbuf.reladdr = NULL;
2067 cbuf.negate = 0;
2068
2069 assert(ir->type->is_vector() || ir->type->is_scalar());
2070
2071 if (const_offset_ir) {
2072 /* Constant index into constant buffer */
2073 cbuf.reladdr = NULL;
2074 cbuf.index = const_offset / 16;
2075 }
2076 else {
2077 /* Relative/variable index into constant buffer */
2078 emit_asm(ir, TGSI_OPCODE_USHR, st_dst_reg(index_reg), op[1],
2079 st_src_reg_for_int(4));
2080 cbuf.reladdr = ralloc(mem_ctx, st_src_reg);
2081 memcpy(cbuf.reladdr, &index_reg, sizeof(index_reg));
2082 }
2083
2084 if (const_uniform_block) {
2085 /* Constant constant buffer */
2086 cbuf.reladdr2 = NULL;
2087 cbuf.index2D = const_block;
2088 cbuf.has_index2 = true;
2089 }
2090 else {
2091 /* Relative/variable constant buffer */
2092 cbuf.reladdr2 = ralloc(mem_ctx, st_src_reg);
2093 cbuf.index2D = 1;
2094 memcpy(cbuf.reladdr2, &op[0], sizeof(st_src_reg));
2095 cbuf.has_index2 = true;
2096 }
2097
2098 cbuf.swizzle = swizzle_for_size(ir->type->vector_elements);
2099 if (cbuf.type == GLSL_TYPE_DOUBLE)
2100 cbuf.swizzle += MAKE_SWIZZLE4(const_offset % 16 / 8,
2101 const_offset % 16 / 8,
2102 const_offset % 16 / 8,
2103 const_offset % 16 / 8);
2104 else
2105 cbuf.swizzle += MAKE_SWIZZLE4(const_offset % 16 / 4,
2106 const_offset % 16 / 4,
2107 const_offset % 16 / 4,
2108 const_offset % 16 / 4);
2109
2110 if (ir->type->base_type == GLSL_TYPE_BOOL) {
2111 emit_asm(ir, TGSI_OPCODE_USNE, result_dst, cbuf, st_src_reg_for_int(0));
2112 } else {
2113 emit_asm(ir, TGSI_OPCODE_MOV, result_dst, cbuf);
2114 }
2115 break;
2116 }
2117 case ir_triop_lrp:
2118 /* note: we have to reorder the three args here */
2119 emit_asm(ir, TGSI_OPCODE_LRP, result_dst, op[2], op[1], op[0]);
2120 break;
2121 case ir_triop_csel:
2122 if (this->ctx->Const.NativeIntegers)
2123 emit_asm(ir, TGSI_OPCODE_UCMP, result_dst, op[0], op[1], op[2]);
2124 else {
2125 op[0].negate = ~op[0].negate;
2126 emit_asm(ir, TGSI_OPCODE_CMP, result_dst, op[0], op[1], op[2]);
2127 }
2128 break;
2129 case ir_triop_bitfield_extract:
2130 emit_asm(ir, TGSI_OPCODE_IBFE, result_dst, op[0], op[1], op[2]);
2131 break;
2132 case ir_quadop_bitfield_insert:
2133 emit_asm(ir, TGSI_OPCODE_BFI, result_dst, op[0], op[1], op[2], op[3]);
2134 break;
2135 case ir_unop_bitfield_reverse:
2136 emit_asm(ir, TGSI_OPCODE_BREV, result_dst, op[0]);
2137 break;
2138 case ir_unop_bit_count:
2139 emit_asm(ir, TGSI_OPCODE_POPC, result_dst, op[0]);
2140 break;
2141 case ir_unop_find_msb:
2142 emit_asm(ir, TGSI_OPCODE_IMSB, result_dst, op[0]);
2143 break;
2144 case ir_unop_find_lsb:
2145 emit_asm(ir, TGSI_OPCODE_LSB, result_dst, op[0]);
2146 break;
2147 case ir_binop_imul_high:
2148 emit_asm(ir, TGSI_OPCODE_IMUL_HI, result_dst, op[0], op[1]);
2149 break;
2150 case ir_triop_fma:
2151 /* In theory, MAD is incorrect here. */
2152 if (have_fma)
2153 emit_asm(ir, TGSI_OPCODE_FMA, result_dst, op[0], op[1], op[2]);
2154 else
2155 emit_asm(ir, TGSI_OPCODE_MAD, result_dst, op[0], op[1], op[2]);
2156 break;
2157 case ir_unop_interpolate_at_centroid:
2158 emit_asm(ir, TGSI_OPCODE_INTERP_CENTROID, result_dst, op[0]);
2159 break;
2160 case ir_binop_interpolate_at_offset:
2161 emit_asm(ir, TGSI_OPCODE_INTERP_OFFSET, result_dst, op[0], op[1]);
2162 break;
2163 case ir_binop_interpolate_at_sample:
2164 emit_asm(ir, TGSI_OPCODE_INTERP_SAMPLE, result_dst, op[0], op[1]);
2165 break;
2166
2167 case ir_unop_d2f:
2168 emit_asm(ir, TGSI_OPCODE_D2F, result_dst, op[0]);
2169 break;
2170 case ir_unop_f2d:
2171 emit_asm(ir, TGSI_OPCODE_F2D, result_dst, op[0]);
2172 break;
2173 case ir_unop_d2i:
2174 emit_asm(ir, TGSI_OPCODE_D2I, result_dst, op[0]);
2175 break;
2176 case ir_unop_i2d:
2177 emit_asm(ir, TGSI_OPCODE_I2D, result_dst, op[0]);
2178 break;
2179 case ir_unop_d2u:
2180 emit_asm(ir, TGSI_OPCODE_D2U, result_dst, op[0]);
2181 break;
2182 case ir_unop_u2d:
2183 emit_asm(ir, TGSI_OPCODE_U2D, result_dst, op[0]);
2184 break;
2185 case ir_unop_unpack_double_2x32:
2186 case ir_unop_pack_double_2x32:
2187 emit_asm(ir, TGSI_OPCODE_MOV, result_dst, op[0]);
2188 break;
2189
2190 case ir_binop_ldexp:
2191 if (ir->operands[0]->type->base_type == GLSL_TYPE_DOUBLE) {
2192 emit_asm(ir, TGSI_OPCODE_DLDEXP, result_dst, op[0], op[1]);
2193 } else {
2194 assert(!"Invalid ldexp for non-double opcode in glsl_to_tgsi_visitor::visit()");
2195 }
2196 break;
2197
2198 case ir_unop_pack_snorm_2x16:
2199 case ir_unop_pack_unorm_2x16:
2200 case ir_unop_pack_half_2x16:
2201 case ir_unop_pack_snorm_4x8:
2202 case ir_unop_pack_unorm_4x8:
2203
2204 case ir_unop_unpack_snorm_2x16:
2205 case ir_unop_unpack_unorm_2x16:
2206 case ir_unop_unpack_half_2x16:
2207 case ir_unop_unpack_half_2x16_split_x:
2208 case ir_unop_unpack_half_2x16_split_y:
2209 case ir_unop_unpack_snorm_4x8:
2210 case ir_unop_unpack_unorm_4x8:
2211
2212 case ir_binop_pack_half_2x16_split:
2213 case ir_binop_bfm:
2214 case ir_triop_bfi:
2215 case ir_quadop_vector:
2216 case ir_binop_vector_extract:
2217 case ir_triop_vector_insert:
2218 case ir_binop_carry:
2219 case ir_binop_borrow:
2220 case ir_unop_ssbo_unsized_array_length:
2221 /* This operation is not supported, or should have already been handled.
2222 */
2223 assert(!"Invalid ir opcode in glsl_to_tgsi_visitor::visit()");
2224 break;
2225
2226 case ir_unop_get_buffer_size:
2227 assert(!"Not implemented yet");
2228 break;
2229 }
2230
2231 this->result = result_src;
2232 }
2233
2234
2235 void
2236 glsl_to_tgsi_visitor::visit(ir_swizzle *ir)
2237 {
2238 st_src_reg src;
2239 int i;
2240 int swizzle[4];
2241
2242 /* Note that this is only swizzles in expressions, not those on the left
2243 * hand side of an assignment, which do write masking. See ir_assignment
2244 * for that.
2245 */
2246
2247 ir->val->accept(this);
2248 src = this->result;
2249 assert(src.file != PROGRAM_UNDEFINED);
2250 assert(ir->type->vector_elements > 0);
2251
2252 for (i = 0; i < 4; i++) {
2253 if (i < ir->type->vector_elements) {
2254 switch (i) {
2255 case 0:
2256 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x);
2257 break;
2258 case 1:
2259 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y);
2260 break;
2261 case 2:
2262 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z);
2263 break;
2264 case 3:
2265 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w);
2266 break;
2267 }
2268 } else {
2269 /* If the type is smaller than a vec4, replicate the last
2270 * channel out.
2271 */
2272 swizzle[i] = swizzle[ir->type->vector_elements - 1];
2273 }
2274 }
2275
2276 src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
2277
2278 this->result = src;
2279 }
2280
2281 /* Test if the variable is an array. Note that geometry and
2282 * tessellation shader inputs are outputs are always arrays (except
2283 * for patch inputs), so only the array element type is considered.
2284 */
2285 static bool
2286 is_inout_array(unsigned stage, ir_variable *var, bool *is_2d)
2287 {
2288 const glsl_type *type = var->type;
2289
2290 if ((stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_in) ||
2291 (stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_out))
2292 return false;
2293
2294 *is_2d = false;
2295
2296 if (((stage == MESA_SHADER_GEOMETRY && var->data.mode == ir_var_shader_in) ||
2297 (stage == MESA_SHADER_TESS_EVAL && var->data.mode == ir_var_shader_in) ||
2298 stage == MESA_SHADER_TESS_CTRL) &&
2299 !var->data.patch) {
2300 if (!var->type->is_array())
2301 return false; /* a system value probably */
2302
2303 type = var->type->fields.array;
2304 *is_2d = true;
2305 }
2306
2307 return type->is_array() || type->is_matrix();
2308 }
2309
2310 void
2311 glsl_to_tgsi_visitor::visit(ir_dereference_variable *ir)
2312 {
2313 variable_storage *entry = find_variable_storage(ir->var);
2314 ir_variable *var = ir->var;
2315 bool is_2d;
2316
2317 if (!entry) {
2318 switch (var->data.mode) {
2319 case ir_var_uniform:
2320 entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM,
2321 var->data.location);
2322 this->variables.push_tail(entry);
2323 break;
2324 case ir_var_shader_in:
2325 /* The linker assigns locations for varyings and attributes,
2326 * including deprecated builtins (like gl_Color), user-assign
2327 * generic attributes (glBindVertexLocation), and
2328 * user-defined varyings.
2329 */
2330 assert(var->data.location != -1);
2331
2332 if (is_inout_array(shader->Stage, var, &is_2d)) {
2333 struct array_decl *decl = &input_arrays[num_input_arrays];
2334
2335 decl->mesa_index = var->data.location;
2336 decl->array_id = num_input_arrays + 1;
2337 if (is_2d)
2338 decl->array_size = type_size(var->type->fields.array);
2339 else
2340 decl->array_size = type_size(var->type);
2341 num_input_arrays++;
2342
2343 entry = new(mem_ctx) variable_storage(var,
2344 PROGRAM_INPUT,
2345 var->data.location,
2346 decl->array_id);
2347 }
2348 else {
2349 entry = new(mem_ctx) variable_storage(var,
2350 PROGRAM_INPUT,
2351 var->data.location);
2352 }
2353 this->variables.push_tail(entry);
2354 break;
2355 case ir_var_shader_out:
2356 assert(var->data.location != -1);
2357
2358 if (is_inout_array(shader->Stage, var, &is_2d)) {
2359 struct array_decl *decl = &output_arrays[num_output_arrays];
2360
2361 decl->mesa_index = var->data.location;
2362 decl->array_id = num_output_arrays + 1;
2363 if (is_2d)
2364 decl->array_size = type_size(var->type->fields.array);
2365 else
2366 decl->array_size = type_size(var->type);
2367 num_output_arrays++;
2368
2369 entry = new(mem_ctx) variable_storage(var,
2370 PROGRAM_OUTPUT,
2371 var->data.location,
2372 decl->array_id);
2373 }
2374 else {
2375 entry = new(mem_ctx) variable_storage(var,
2376 PROGRAM_OUTPUT,
2377 var->data.location
2378 + var->data.index);
2379 }
2380 this->variables.push_tail(entry);
2381 break;
2382 case ir_var_system_value:
2383 entry = new(mem_ctx) variable_storage(var,
2384 PROGRAM_SYSTEM_VALUE,
2385 var->data.location);
2386 break;
2387 case ir_var_auto:
2388 case ir_var_temporary:
2389 st_src_reg src = get_temp(var->type);
2390
2391 entry = new(mem_ctx) variable_storage(var, src.file, src.index);
2392 this->variables.push_tail(entry);
2393
2394 break;
2395 }
2396
2397 if (!entry) {
2398 printf("Failed to make storage for %s\n", var->name);
2399 exit(1);
2400 }
2401 }
2402
2403 this->result = st_src_reg(entry->file, entry->index, var->type);
2404 this->result.array_id = entry->array_id;
2405 if (!native_integers)
2406 this->result.type = GLSL_TYPE_FLOAT;
2407 }
2408
2409 static void
2410 shrink_array_declarations(struct array_decl *arrays, unsigned count,
2411 GLbitfield64 usage_mask,
2412 GLbitfield patch_usage_mask)
2413 {
2414 unsigned i, j;
2415
2416 /* Fix array declarations by removing unused array elements at both ends
2417 * of the arrays. For example, mat4[3] where only mat[1] is used.
2418 */
2419 for (i = 0; i < count; i++) {
2420 struct array_decl *decl = &arrays[i];
2421
2422 /* Shrink the beginning. */
2423 for (j = 0; j < decl->array_size; j++) {
2424 if (decl->mesa_index >= VARYING_SLOT_PATCH0) {
2425 if (patch_usage_mask &
2426 BITFIELD64_BIT(decl->mesa_index - VARYING_SLOT_PATCH0 + j))
2427 break;
2428 }
2429 else {
2430 if (usage_mask & BITFIELD64_BIT(decl->mesa_index+j))
2431 break;
2432 }
2433
2434 decl->mesa_index++;
2435 decl->array_size--;
2436 j--;
2437 }
2438
2439 /* Shrink the end. */
2440 for (j = decl->array_size-1; j >= 0; j--) {
2441 if (decl->mesa_index >= VARYING_SLOT_PATCH0) {
2442 if (patch_usage_mask &
2443 BITFIELD64_BIT(decl->mesa_index - VARYING_SLOT_PATCH0 + j))
2444 break;
2445 }
2446 else {
2447 if (usage_mask & BITFIELD64_BIT(decl->mesa_index+j))
2448 break;
2449 }
2450
2451 decl->array_size--;
2452 }
2453 }
2454 }
2455
2456 void
2457 glsl_to_tgsi_visitor::visit(ir_dereference_array *ir)
2458 {
2459 ir_constant *index;
2460 st_src_reg src;
2461 int element_size = type_size(ir->type);
2462 bool is_2D = false;
2463
2464 index = ir->array_index->constant_expression_value();
2465
2466 ir->array->accept(this);
2467 src = this->result;
2468
2469 if (ir->array->ir_type != ir_type_dereference_array) {
2470 switch (this->prog->Target) {
2471 case GL_TESS_CONTROL_PROGRAM_NV:
2472 is_2D = (src.file == PROGRAM_INPUT || src.file == PROGRAM_OUTPUT) &&
2473 !ir->variable_referenced()->data.patch;
2474 break;
2475 case GL_TESS_EVALUATION_PROGRAM_NV:
2476 is_2D = src.file == PROGRAM_INPUT &&
2477 !ir->variable_referenced()->data.patch;
2478 break;
2479 case GL_GEOMETRY_PROGRAM_NV:
2480 is_2D = src.file == PROGRAM_INPUT;
2481 break;
2482 }
2483 }
2484
2485 if (is_2D)
2486 element_size = 1;
2487
2488 if (index) {
2489 if (is_2D) {
2490 src.index2D = index->value.i[0];
2491 src.has_index2 = true;
2492 } else
2493 src.index += index->value.i[0] * element_size;
2494 } else {
2495 /* Variable index array dereference. It eats the "vec4" of the
2496 * base of the array and an index that offsets the TGSI register
2497 * index.
2498 */
2499 ir->array_index->accept(this);
2500
2501 st_src_reg index_reg;
2502
2503 if (element_size == 1) {
2504 index_reg = this->result;
2505 } else {
2506 index_reg = get_temp(native_integers ?
2507 glsl_type::int_type : glsl_type::float_type);
2508
2509 emit_asm(ir, TGSI_OPCODE_MUL, st_dst_reg(index_reg),
2510 this->result, st_src_reg_for_type(index_reg.type, element_size));
2511 }
2512
2513 /* If there was already a relative address register involved, add the
2514 * new and the old together to get the new offset.
2515 */
2516 if (!is_2D && src.reladdr != NULL) {
2517 st_src_reg accum_reg = get_temp(native_integers ?
2518 glsl_type::int_type : glsl_type::float_type);
2519
2520 emit_asm(ir, TGSI_OPCODE_ADD, st_dst_reg(accum_reg),
2521 index_reg, *src.reladdr);
2522
2523 index_reg = accum_reg;
2524 }
2525
2526 if (is_2D) {
2527 src.reladdr2 = ralloc(mem_ctx, st_src_reg);
2528 memcpy(src.reladdr2, &index_reg, sizeof(index_reg));
2529 src.index2D = 0;
2530 src.has_index2 = true;
2531 } else {
2532 src.reladdr = ralloc(mem_ctx, st_src_reg);
2533 memcpy(src.reladdr, &index_reg, sizeof(index_reg));
2534 }
2535 }
2536
2537 /* If the type is smaller than a vec4, replicate the last channel out. */
2538 if (ir->type->is_scalar() || ir->type->is_vector())
2539 src.swizzle = swizzle_for_size(ir->type->vector_elements);
2540 else
2541 src.swizzle = SWIZZLE_NOOP;
2542
2543 /* Change the register type to the element type of the array. */
2544 src.type = ir->type->base_type;
2545
2546 this->result = src;
2547 }
2548
2549 void
2550 glsl_to_tgsi_visitor::visit(ir_dereference_record *ir)
2551 {
2552 unsigned int i;
2553 const glsl_type *struct_type = ir->record->type;
2554 int offset = 0;
2555
2556 ir->record->accept(this);
2557
2558 for (i = 0; i < struct_type->length; i++) {
2559 if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
2560 break;
2561 offset += type_size(struct_type->fields.structure[i].type);
2562 }
2563
2564 /* If the type is smaller than a vec4, replicate the last channel out. */
2565 if (ir->type->is_scalar() || ir->type->is_vector())
2566 this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
2567 else
2568 this->result.swizzle = SWIZZLE_NOOP;
2569
2570 this->result.index += offset;
2571 this->result.type = ir->type->base_type;
2572 }
2573
2574 /**
2575 * We want to be careful in assignment setup to hit the actual storage
2576 * instead of potentially using a temporary like we might with the
2577 * ir_dereference handler.
2578 */
2579 static st_dst_reg
2580 get_assignment_lhs(ir_dereference *ir, glsl_to_tgsi_visitor *v)
2581 {
2582 /* The LHS must be a dereference. If the LHS is a variable indexed array
2583 * access of a vector, it must be separated into a series conditional moves
2584 * before reaching this point (see ir_vec_index_to_cond_assign).
2585 */
2586 assert(ir->as_dereference());
2587 ir_dereference_array *deref_array = ir->as_dereference_array();
2588 if (deref_array) {
2589 assert(!deref_array->array->type->is_vector());
2590 }
2591
2592 /* Use the rvalue deref handler for the most part. We'll ignore
2593 * swizzles in it and write swizzles using writemask, though.
2594 */
2595 ir->accept(v);
2596 return st_dst_reg(v->result);
2597 }
2598
2599 /**
2600 * Process the condition of a conditional assignment
2601 *
2602 * Examines the condition of a conditional assignment to generate the optimal
2603 * first operand of a \c CMP instruction. If the condition is a relational
2604 * operator with 0 (e.g., \c ir_binop_less), the value being compared will be
2605 * used as the source for the \c CMP instruction. Otherwise the comparison
2606 * is processed to a boolean result, and the boolean result is used as the
2607 * operand to the CMP instruction.
2608 */
2609 bool
2610 glsl_to_tgsi_visitor::process_move_condition(ir_rvalue *ir)
2611 {
2612 ir_rvalue *src_ir = ir;
2613 bool negate = true;
2614 bool switch_order = false;
2615
2616 ir_expression *const expr = ir->as_expression();
2617
2618 if (native_integers) {
2619 if ((expr != NULL) && (expr->get_num_operands() == 2)) {
2620 enum glsl_base_type type = expr->operands[0]->type->base_type;
2621 if (type == GLSL_TYPE_INT || type == GLSL_TYPE_UINT ||
2622 type == GLSL_TYPE_BOOL) {
2623 if (expr->operation == ir_binop_equal) {
2624 if (expr->operands[0]->is_zero()) {
2625 src_ir = expr->operands[1];
2626 switch_order = true;
2627 }
2628 else if (expr->operands[1]->is_zero()) {
2629 src_ir = expr->operands[0];
2630 switch_order = true;
2631 }
2632 }
2633 else if (expr->operation == ir_binop_nequal) {
2634 if (expr->operands[0]->is_zero()) {
2635 src_ir = expr->operands[1];
2636 }
2637 else if (expr->operands[1]->is_zero()) {
2638 src_ir = expr->operands[0];
2639 }
2640 }
2641 }
2642 }
2643
2644 src_ir->accept(this);
2645 return switch_order;
2646 }
2647
2648 if ((expr != NULL) && (expr->get_num_operands() == 2)) {
2649 bool zero_on_left = false;
2650
2651 if (expr->operands[0]->is_zero()) {
2652 src_ir = expr->operands[1];
2653 zero_on_left = true;
2654 } else if (expr->operands[1]->is_zero()) {
2655 src_ir = expr->operands[0];
2656 zero_on_left = false;
2657 }
2658
2659 /* a is - 0 + - 0 +
2660 * (a < 0) T F F ( a < 0) T F F
2661 * (0 < a) F F T (-a < 0) F F T
2662 * (a <= 0) T T F (-a < 0) F F T (swap order of other operands)
2663 * (0 <= a) F T T ( a < 0) T F F (swap order of other operands)
2664 * (a > 0) F F T (-a < 0) F F T
2665 * (0 > a) T F F ( a < 0) T F F
2666 * (a >= 0) F T T ( a < 0) T F F (swap order of other operands)
2667 * (0 >= a) T T F (-a < 0) F F T (swap order of other operands)
2668 *
2669 * Note that exchanging the order of 0 and 'a' in the comparison simply
2670 * means that the value of 'a' should be negated.
2671 */
2672 if (src_ir != ir) {
2673 switch (expr->operation) {
2674 case ir_binop_less:
2675 switch_order = false;
2676 negate = zero_on_left;
2677 break;
2678
2679 case ir_binop_greater:
2680 switch_order = false;
2681 negate = !zero_on_left;
2682 break;
2683
2684 case ir_binop_lequal:
2685 switch_order = true;
2686 negate = !zero_on_left;
2687 break;
2688
2689 case ir_binop_gequal:
2690 switch_order = true;
2691 negate = zero_on_left;
2692 break;
2693
2694 default:
2695 /* This isn't the right kind of comparison afterall, so make sure
2696 * the whole condition is visited.
2697 */
2698 src_ir = ir;
2699 break;
2700 }
2701 }
2702 }
2703
2704 src_ir->accept(this);
2705
2706 /* We use the TGSI_OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the
2707 * condition we produced is 0.0 or 1.0. By flipping the sign, we can
2708 * choose which value TGSI_OPCODE_CMP produces without an extra instruction
2709 * computing the condition.
2710 */
2711 if (negate)
2712 this->result.negate = ~this->result.negate;
2713
2714 return switch_order;
2715 }
2716
2717 void
2718 glsl_to_tgsi_visitor::emit_block_mov(ir_assignment *ir, const struct glsl_type *type,
2719 st_dst_reg *l, st_src_reg *r,
2720 st_src_reg *cond, bool cond_swap)
2721 {
2722 if (type->base_type == GLSL_TYPE_STRUCT) {
2723 for (unsigned int i = 0; i < type->length; i++) {
2724 emit_block_mov(ir, type->fields.structure[i].type, l, r,
2725 cond, cond_swap);
2726 }
2727 return;
2728 }
2729
2730 if (type->is_array()) {
2731 for (unsigned int i = 0; i < type->length; i++) {
2732 emit_block_mov(ir, type->fields.array, l, r, cond, cond_swap);
2733 }
2734 return;
2735 }
2736
2737 if (type->is_matrix()) {
2738 const struct glsl_type *vec_type;
2739
2740 vec_type = glsl_type::get_instance(GLSL_TYPE_FLOAT,
2741 type->vector_elements, 1);
2742
2743 for (int i = 0; i < type->matrix_columns; i++) {
2744 emit_block_mov(ir, vec_type, l, r, cond, cond_swap);
2745 }
2746 return;
2747 }
2748
2749 assert(type->is_scalar() || type->is_vector());
2750
2751 r->type = type->base_type;
2752 if (cond) {
2753 st_src_reg l_src = st_src_reg(*l);
2754 l_src.swizzle = swizzle_for_size(type->vector_elements);
2755
2756 if (native_integers) {
2757 emit_asm(ir, TGSI_OPCODE_UCMP, *l, *cond,
2758 cond_swap ? l_src : *r,
2759 cond_swap ? *r : l_src);
2760 } else {
2761 emit_asm(ir, TGSI_OPCODE_CMP, *l, *cond,
2762 cond_swap ? l_src : *r,
2763 cond_swap ? *r : l_src);
2764 }
2765 } else {
2766 emit_asm(ir, TGSI_OPCODE_MOV, *l, *r);
2767 }
2768 l->index++;
2769 r->index++;
2770 }
2771
2772 void
2773 glsl_to_tgsi_visitor::visit(ir_assignment *ir)
2774 {
2775 st_dst_reg l;
2776 st_src_reg r;
2777
2778 ir->rhs->accept(this);
2779 r = this->result;
2780
2781 l = get_assignment_lhs(ir->lhs, this);
2782
2783 /* FINISHME: This should really set to the correct maximal writemask for each
2784 * FINISHME: component written (in the loops below). This case can only
2785 * FINISHME: occur for matrices, arrays, and structures.
2786 */
2787 if (ir->write_mask == 0) {
2788 assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
2789 l.writemask = WRITEMASK_XYZW;
2790 } else if (ir->lhs->type->is_scalar() &&
2791 !ir->lhs->type->is_double() &&
2792 ir->lhs->variable_referenced()->data.mode == ir_var_shader_out) {
2793 /* FINISHME: This hack makes writing to gl_FragDepth, which lives in the
2794 * FINISHME: W component of fragment shader output zero, work correctly.
2795 */
2796 l.writemask = WRITEMASK_XYZW;
2797 } else {
2798 int swizzles[4];
2799 int first_enabled_chan = 0;
2800 int rhs_chan = 0;
2801
2802 l.writemask = ir->write_mask;
2803
2804 for (int i = 0; i < 4; i++) {
2805 if (l.writemask & (1 << i)) {
2806 first_enabled_chan = GET_SWZ(r.swizzle, i);
2807 break;
2808 }
2809 }
2810
2811 /* Swizzle a small RHS vector into the channels being written.
2812 *
2813 * glsl ir treats write_mask as dictating how many channels are
2814 * present on the RHS while TGSI treats write_mask as just
2815 * showing which channels of the vec4 RHS get written.
2816 */
2817 for (int i = 0; i < 4; i++) {
2818 if (l.writemask & (1 << i))
2819 swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++);
2820 else
2821 swizzles[i] = first_enabled_chan;
2822 }
2823 r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1],
2824 swizzles[2], swizzles[3]);
2825 }
2826
2827 assert(l.file != PROGRAM_UNDEFINED);
2828 assert(r.file != PROGRAM_UNDEFINED);
2829
2830 if (ir->condition) {
2831 const bool switch_order = this->process_move_condition(ir->condition);
2832 st_src_reg condition = this->result;
2833
2834 emit_block_mov(ir, ir->lhs->type, &l, &r, &condition, switch_order);
2835 } else if (ir->rhs->as_expression() &&
2836 this->instructions.get_tail() &&
2837 ir->rhs == ((glsl_to_tgsi_instruction *)this->instructions.get_tail())->ir &&
2838 type_size(ir->lhs->type) == 1 &&
2839 l.writemask == ((glsl_to_tgsi_instruction *)this->instructions.get_tail())->dst[0].writemask) {
2840 /* To avoid emitting an extra MOV when assigning an expression to a
2841 * variable, emit the last instruction of the expression again, but
2842 * replace the destination register with the target of the assignment.
2843 * Dead code elimination will remove the original instruction.
2844 */
2845 glsl_to_tgsi_instruction *inst, *new_inst;
2846 inst = (glsl_to_tgsi_instruction *)this->instructions.get_tail();
2847 new_inst = emit_asm(ir, inst->op, l, inst->src[0], inst->src[1], inst->src[2], inst->src[3]);
2848 new_inst->saturate = inst->saturate;
2849 inst->dead_mask = inst->dst[0].writemask;
2850 } else {
2851 emit_block_mov(ir, ir->rhs->type, &l, &r, NULL, false);
2852 }
2853 }
2854
2855
2856 void
2857 glsl_to_tgsi_visitor::visit(ir_constant *ir)
2858 {
2859 st_src_reg src;
2860 GLdouble stack_vals[4] = { 0 };
2861 gl_constant_value *values = (gl_constant_value *) stack_vals;
2862 GLenum gl_type = GL_NONE;
2863 unsigned int i;
2864 static int in_array = 0;
2865 gl_register_file file = in_array ? PROGRAM_CONSTANT : PROGRAM_IMMEDIATE;
2866
2867 /* Unfortunately, 4 floats is all we can get into
2868 * _mesa_add_typed_unnamed_constant. So, make a temp to store an
2869 * aggregate constant and move each constant value into it. If we
2870 * get lucky, copy propagation will eliminate the extra moves.
2871 */
2872 if (ir->type->base_type == GLSL_TYPE_STRUCT) {
2873 st_src_reg temp_base = get_temp(ir->type);
2874 st_dst_reg temp = st_dst_reg(temp_base);
2875
2876 foreach_in_list(ir_constant, field_value, &ir->components) {
2877 int size = type_size(field_value->type);
2878
2879 assert(size > 0);
2880
2881 field_value->accept(this);
2882 src = this->result;
2883
2884 for (i = 0; i < (unsigned int)size; i++) {
2885 emit_asm(ir, TGSI_OPCODE_MOV, temp, src);
2886
2887 src.index++;
2888 temp.index++;
2889 }
2890 }
2891 this->result = temp_base;
2892 return;
2893 }
2894
2895 if (ir->type->is_array()) {
2896 st_src_reg temp_base = get_temp(ir->type);
2897 st_dst_reg temp = st_dst_reg(temp_base);
2898 int size = type_size(ir->type->fields.array);
2899
2900 assert(size > 0);
2901 in_array++;
2902
2903 for (i = 0; i < ir->type->length; i++) {
2904 ir->array_elements[i]->accept(this);
2905 src = this->result;
2906 for (int j = 0; j < size; j++) {
2907 emit_asm(ir, TGSI_OPCODE_MOV, temp, src);
2908
2909 src.index++;
2910 temp.index++;
2911 }
2912 }
2913 this->result = temp_base;
2914 in_array--;
2915 return;
2916 }
2917
2918 if (ir->type->is_matrix()) {
2919 st_src_reg mat = get_temp(ir->type);
2920 st_dst_reg mat_column = st_dst_reg(mat);
2921
2922 for (i = 0; i < ir->type->matrix_columns; i++) {
2923 assert(ir->type->base_type == GLSL_TYPE_FLOAT);
2924 values = (gl_constant_value *) &ir->value.f[i * ir->type->vector_elements];
2925
2926 src = st_src_reg(file, -1, ir->type->base_type);
2927 src.index = add_constant(file,
2928 values,
2929 ir->type->vector_elements,
2930 GL_FLOAT,
2931 &src.swizzle);
2932 emit_asm(ir, TGSI_OPCODE_MOV, mat_column, src);
2933
2934 mat_column.index++;
2935 }
2936
2937 this->result = mat;
2938 return;
2939 }
2940
2941 switch (ir->type->base_type) {
2942 case GLSL_TYPE_FLOAT:
2943 gl_type = GL_FLOAT;
2944 for (i = 0; i < ir->type->vector_elements; i++) {
2945 values[i].f = ir->value.f[i];
2946 }
2947 break;
2948 case GLSL_TYPE_DOUBLE:
2949 gl_type = GL_DOUBLE;
2950 for (i = 0; i < ir->type->vector_elements; i++) {
2951 values[i * 2].i = *(uint32_t *)&ir->value.d[i];
2952 values[i * 2 + 1].i = *(((uint32_t *)&ir->value.d[i]) + 1);
2953 }
2954 break;
2955 case GLSL_TYPE_UINT:
2956 gl_type = native_integers ? GL_UNSIGNED_INT : GL_FLOAT;
2957 for (i = 0; i < ir->type->vector_elements; i++) {
2958 if (native_integers)
2959 values[i].u = ir->value.u[i];
2960 else
2961 values[i].f = ir->value.u[i];
2962 }
2963 break;
2964 case GLSL_TYPE_INT:
2965 gl_type = native_integers ? GL_INT : GL_FLOAT;
2966 for (i = 0; i < ir->type->vector_elements; i++) {
2967 if (native_integers)
2968 values[i].i = ir->value.i[i];
2969 else
2970 values[i].f = ir->value.i[i];
2971 }
2972 break;
2973 case GLSL_TYPE_BOOL:
2974 gl_type = native_integers ? GL_BOOL : GL_FLOAT;
2975 for (i = 0; i < ir->type->vector_elements; i++) {
2976 values[i].u = ir->value.b[i] ? ctx->Const.UniformBooleanTrue : 0;
2977 }
2978 break;
2979 default:
2980 assert(!"Non-float/uint/int/bool constant");
2981 }
2982
2983 this->result = st_src_reg(file, -1, ir->type);
2984 this->result.index = add_constant(file,
2985 values,
2986 ir->type->vector_elements,
2987 gl_type,
2988 &this->result.swizzle);
2989 }
2990
2991 function_entry *
2992 glsl_to_tgsi_visitor::get_function_signature(ir_function_signature *sig)
2993 {
2994 foreach_in_list_use_after(function_entry, entry, &this->function_signatures) {
2995 if (entry->sig == sig)
2996 return entry;
2997 }
2998
2999 entry = ralloc(mem_ctx, function_entry);
3000 entry->sig = sig;
3001 entry->sig_id = this->next_signature_id++;
3002 entry->bgn_inst = NULL;
3003
3004 /* Allocate storage for all the parameters. */
3005 foreach_in_list(ir_variable, param, &sig->parameters) {
3006 variable_storage *storage;
3007
3008 storage = find_variable_storage(param);
3009 assert(!storage);
3010
3011 st_src_reg src = get_temp(param->type);
3012
3013 storage = new(mem_ctx) variable_storage(param, src.file, src.index);
3014 this->variables.push_tail(storage);
3015 }
3016
3017 if (!sig->return_type->is_void()) {
3018 entry->return_reg = get_temp(sig->return_type);
3019 } else {
3020 entry->return_reg = undef_src;
3021 }
3022
3023 this->function_signatures.push_tail(entry);
3024 return entry;
3025 }
3026
3027 void
3028 glsl_to_tgsi_visitor::visit(ir_call *ir)
3029 {
3030 glsl_to_tgsi_instruction *call_inst;
3031 ir_function_signature *sig = ir->callee;
3032 function_entry *entry = get_function_signature(sig);
3033 int i;
3034
3035 /* Process in parameters. */
3036 foreach_two_lists(formal_node, &sig->parameters,
3037 actual_node, &ir->actual_parameters) {
3038 ir_rvalue *param_rval = (ir_rvalue *) actual_node;
3039 ir_variable *param = (ir_variable *) formal_node;
3040
3041 if (param->data.mode == ir_var_function_in ||
3042 param->data.mode == ir_var_function_inout) {
3043 variable_storage *storage = find_variable_storage(param);
3044 assert(storage);
3045
3046 param_rval->accept(this);
3047 st_src_reg r = this->result;
3048
3049 st_dst_reg l;
3050 l.file = storage->file;
3051 l.index = storage->index;
3052 l.reladdr = NULL;
3053 l.writemask = WRITEMASK_XYZW;
3054 l.cond_mask = COND_TR;
3055
3056 for (i = 0; i < type_size(param->type); i++) {
3057 emit_asm(ir, TGSI_OPCODE_MOV, l, r);
3058 l.index++;
3059 r.index++;
3060 }
3061 }
3062 }
3063
3064 /* Emit call instruction */
3065 call_inst = emit_asm(ir, TGSI_OPCODE_CAL);
3066 call_inst->function = entry;
3067
3068 /* Process out parameters. */
3069 foreach_two_lists(formal_node, &sig->parameters,
3070 actual_node, &ir->actual_parameters) {
3071 ir_rvalue *param_rval = (ir_rvalue *) actual_node;
3072 ir_variable *param = (ir_variable *) formal_node;
3073
3074 if (param->data.mode == ir_var_function_out ||
3075 param->data.mode == ir_var_function_inout) {
3076 variable_storage *storage = find_variable_storage(param);
3077 assert(storage);
3078
3079 st_src_reg r;
3080 r.file = storage->file;
3081 r.index = storage->index;
3082 r.reladdr = NULL;
3083 r.swizzle = SWIZZLE_NOOP;
3084 r.negate = 0;
3085
3086 param_rval->accept(this);
3087 st_dst_reg l = st_dst_reg(this->result);
3088
3089 for (i = 0; i < type_size(param->type); i++) {
3090 emit_asm(ir, TGSI_OPCODE_MOV, l, r);
3091 l.index++;
3092 r.index++;
3093 }
3094 }
3095 }
3096
3097 /* Process return value. */
3098 this->result = entry->return_reg;
3099 }
3100
3101 void
3102 glsl_to_tgsi_visitor::visit(ir_texture *ir)
3103 {
3104 st_src_reg result_src, coord, cube_sc, lod_info, projector, dx, dy;
3105 st_src_reg offset[MAX_GLSL_TEXTURE_OFFSET], sample_index, component;
3106 st_src_reg levels_src;
3107 st_dst_reg result_dst, coord_dst, cube_sc_dst;
3108 glsl_to_tgsi_instruction *inst = NULL;
3109 unsigned opcode = TGSI_OPCODE_NOP;
3110 const glsl_type *sampler_type = ir->sampler->type;
3111 ir_rvalue *sampler_index =
3112 _mesa_get_sampler_array_nonconst_index(ir->sampler);
3113 bool is_cube_array = false;
3114 unsigned i;
3115
3116 /* if we are a cube array sampler */
3117 if ((sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE &&
3118 sampler_type->sampler_array)) {
3119 is_cube_array = true;
3120 }
3121
3122 if (ir->coordinate) {
3123 ir->coordinate->accept(this);
3124
3125 /* Put our coords in a temp. We'll need to modify them for shadow,
3126 * projection, or LOD, so the only case we'd use it as is is if
3127 * we're doing plain old texturing. The optimization passes on
3128 * glsl_to_tgsi_visitor should handle cleaning up our mess in that case.
3129 */
3130 coord = get_temp(glsl_type::vec4_type);
3131 coord_dst = st_dst_reg(coord);
3132 coord_dst.writemask = (1 << ir->coordinate->type->vector_elements) - 1;
3133 emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, this->result);
3134 }
3135
3136 if (ir->projector) {
3137 ir->projector->accept(this);
3138 projector = this->result;
3139 }
3140
3141 /* Storage for our result. Ideally for an assignment we'd be using
3142 * the actual storage for the result here, instead.
3143 */
3144 result_src = get_temp(ir->type);
3145 result_dst = st_dst_reg(result_src);
3146
3147 switch (ir->op) {
3148 case ir_tex:
3149 opcode = (is_cube_array && ir->shadow_comparitor) ? TGSI_OPCODE_TEX2 : TGSI_OPCODE_TEX;
3150 if (ir->offset) {
3151 ir->offset->accept(this);
3152 offset[0] = this->result;
3153 }
3154 break;
3155 case ir_txb:
3156 if (is_cube_array ||
3157 sampler_type == glsl_type::samplerCubeShadow_type) {
3158 opcode = TGSI_OPCODE_TXB2;
3159 }
3160 else {
3161 opcode = TGSI_OPCODE_TXB;
3162 }
3163 ir->lod_info.bias->accept(this);
3164 lod_info = this->result;
3165 if (ir->offset) {
3166 ir->offset->accept(this);
3167 offset[0] = this->result;
3168 }
3169 break;
3170 case ir_txl:
3171 opcode = is_cube_array ? TGSI_OPCODE_TXL2 : TGSI_OPCODE_TXL;
3172 ir->lod_info.lod->accept(this);
3173 lod_info = this->result;
3174 if (ir->offset) {
3175 ir->offset->accept(this);
3176 offset[0] = this->result;
3177 }
3178 break;
3179 case ir_txd:
3180 opcode = TGSI_OPCODE_TXD;
3181 ir->lod_info.grad.dPdx->accept(this);
3182 dx = this->result;
3183 ir->lod_info.grad.dPdy->accept(this);
3184 dy = this->result;
3185 if (ir->offset) {
3186 ir->offset->accept(this);
3187 offset[0] = this->result;
3188 }
3189 break;
3190 case ir_txs:
3191 opcode = TGSI_OPCODE_TXQ;
3192 ir->lod_info.lod->accept(this);
3193 lod_info = this->result;
3194 break;
3195 case ir_query_levels:
3196 opcode = TGSI_OPCODE_TXQ;
3197 lod_info = undef_src;
3198 levels_src = get_temp(ir->type);
3199 break;
3200 case ir_txf:
3201 opcode = TGSI_OPCODE_TXF;
3202 ir->lod_info.lod->accept(this);
3203 lod_info = this->result;
3204 if (ir->offset) {
3205 ir->offset->accept(this);
3206 offset[0] = this->result;
3207 }
3208 break;
3209 case ir_txf_ms:
3210 opcode = TGSI_OPCODE_TXF;
3211 ir->lod_info.sample_index->accept(this);
3212 sample_index = this->result;
3213 break;
3214 case ir_tg4:
3215 opcode = TGSI_OPCODE_TG4;
3216 ir->lod_info.component->accept(this);
3217 component = this->result;
3218 if (ir->offset) {
3219 ir->offset->accept(this);
3220 if (ir->offset->type->base_type == GLSL_TYPE_ARRAY) {
3221 const glsl_type *elt_type = ir->offset->type->fields.array;
3222 for (i = 0; i < ir->offset->type->length; i++) {
3223 offset[i] = this->result;
3224 offset[i].index += i * type_size(elt_type);
3225 offset[i].type = elt_type->base_type;
3226 offset[i].swizzle = swizzle_for_size(elt_type->vector_elements);
3227 }
3228 } else {
3229 offset[0] = this->result;
3230 }
3231 }
3232 break;
3233 case ir_lod:
3234 opcode = TGSI_OPCODE_LODQ;
3235 break;
3236 case ir_texture_samples:
3237 opcode = TGSI_OPCODE_TXQS;
3238 break;
3239 }
3240
3241 if (ir->projector) {
3242 if (opcode == TGSI_OPCODE_TEX) {
3243 /* Slot the projector in as the last component of the coord. */
3244 coord_dst.writemask = WRITEMASK_W;
3245 emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, projector);
3246 coord_dst.writemask = WRITEMASK_XYZW;
3247 opcode = TGSI_OPCODE_TXP;
3248 } else {
3249 st_src_reg coord_w = coord;
3250 coord_w.swizzle = SWIZZLE_WWWW;
3251
3252 /* For the other TEX opcodes there's no projective version
3253 * since the last slot is taken up by LOD info. Do the
3254 * projective divide now.
3255 */
3256 coord_dst.writemask = WRITEMASK_W;
3257 emit_asm(ir, TGSI_OPCODE_RCP, coord_dst, projector);
3258
3259 /* In the case where we have to project the coordinates "by hand,"
3260 * the shadow comparator value must also be projected.
3261 */
3262 st_src_reg tmp_src = coord;
3263 if (ir->shadow_comparitor) {
3264 /* Slot the shadow value in as the second to last component of the
3265 * coord.
3266 */
3267 ir->shadow_comparitor->accept(this);
3268
3269 tmp_src = get_temp(glsl_type::vec4_type);
3270 st_dst_reg tmp_dst = st_dst_reg(tmp_src);
3271
3272 /* Projective division not allowed for array samplers. */
3273 assert(!sampler_type->sampler_array);
3274
3275 tmp_dst.writemask = WRITEMASK_Z;
3276 emit_asm(ir, TGSI_OPCODE_MOV, tmp_dst, this->result);
3277
3278 tmp_dst.writemask = WRITEMASK_XY;
3279 emit_asm(ir, TGSI_OPCODE_MOV, tmp_dst, coord);
3280 }
3281
3282 coord_dst.writemask = WRITEMASK_XYZ;
3283 emit_asm(ir, TGSI_OPCODE_MUL, coord_dst, tmp_src, coord_w);
3284
3285 coord_dst.writemask = WRITEMASK_XYZW;
3286 coord.swizzle = SWIZZLE_XYZW;
3287 }
3288 }
3289
3290 /* If projection is done and the opcode is not TGSI_OPCODE_TXP, then the shadow
3291 * comparator was put in the correct place (and projected) by the code,
3292 * above, that handles by-hand projection.
3293 */
3294 if (ir->shadow_comparitor && (!ir->projector || opcode == TGSI_OPCODE_TXP)) {
3295 /* Slot the shadow value in as the second to last component of the
3296 * coord.
3297 */
3298 ir->shadow_comparitor->accept(this);
3299
3300 if (is_cube_array) {
3301 cube_sc = get_temp(glsl_type::float_type);
3302 cube_sc_dst = st_dst_reg(cube_sc);
3303 cube_sc_dst.writemask = WRITEMASK_X;
3304 emit_asm(ir, TGSI_OPCODE_MOV, cube_sc_dst, this->result);
3305 cube_sc_dst.writemask = WRITEMASK_X;
3306 }
3307 else {
3308 if ((sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_2D &&
3309 sampler_type->sampler_array) ||
3310 sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE) {
3311 coord_dst.writemask = WRITEMASK_W;
3312 } else {
3313 coord_dst.writemask = WRITEMASK_Z;
3314 }
3315 emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, this->result);
3316 coord_dst.writemask = WRITEMASK_XYZW;
3317 }
3318 }
3319
3320 if (ir->op == ir_txf_ms) {
3321 coord_dst.writemask = WRITEMASK_W;
3322 emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, sample_index);
3323 coord_dst.writemask = WRITEMASK_XYZW;
3324 } else if (opcode == TGSI_OPCODE_TXL || opcode == TGSI_OPCODE_TXB ||
3325 opcode == TGSI_OPCODE_TXF) {
3326 /* TGSI stores LOD or LOD bias in the last channel of the coords. */
3327 coord_dst.writemask = WRITEMASK_W;
3328 emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, lod_info);
3329 coord_dst.writemask = WRITEMASK_XYZW;
3330 }
3331
3332 if (sampler_index) {
3333 sampler_index->accept(this);
3334 emit_arl(ir, sampler_reladdr, this->result);
3335 }
3336
3337 if (opcode == TGSI_OPCODE_TXD)
3338 inst = emit_asm(ir, opcode, result_dst, coord, dx, dy);
3339 else if (opcode == TGSI_OPCODE_TXQ) {
3340 if (ir->op == ir_query_levels) {
3341 /* the level is stored in W */
3342 inst = emit_asm(ir, opcode, st_dst_reg(levels_src), lod_info);
3343 result_dst.writemask = WRITEMASK_X;
3344 levels_src.swizzle = SWIZZLE_WWWW;
3345 emit_asm(ir, TGSI_OPCODE_MOV, result_dst, levels_src);
3346 } else
3347 inst = emit_asm(ir, opcode, result_dst, lod_info);
3348 } else if (opcode == TGSI_OPCODE_TXQS) {
3349 inst = emit_asm(ir, opcode, result_dst);
3350 } else if (opcode == TGSI_OPCODE_TXF) {
3351 inst = emit_asm(ir, opcode, result_dst, coord);
3352 } else if (opcode == TGSI_OPCODE_TXL2 || opcode == TGSI_OPCODE_TXB2) {
3353 inst = emit_asm(ir, opcode, result_dst, coord, lod_info);
3354 } else if (opcode == TGSI_OPCODE_TEX2) {
3355 inst = emit_asm(ir, opcode, result_dst, coord, cube_sc);
3356 } else if (opcode == TGSI_OPCODE_TG4) {
3357 if (is_cube_array && ir->shadow_comparitor) {
3358 inst = emit_asm(ir, opcode, result_dst, coord, cube_sc);
3359 } else {
3360 inst = emit_asm(ir, opcode, result_dst, coord, component);
3361 }
3362 } else
3363 inst = emit_asm(ir, opcode, result_dst, coord);
3364
3365 if (ir->shadow_comparitor)
3366 inst->tex_shadow = GL_TRUE;
3367
3368 inst->sampler.index = _mesa_get_sampler_uniform_value(ir->sampler,
3369 this->shader_program,
3370 this->prog);
3371 if (sampler_index) {
3372 inst->sampler.reladdr = ralloc(mem_ctx, st_src_reg);
3373 memcpy(inst->sampler.reladdr, &sampler_reladdr, sizeof(sampler_reladdr));
3374 inst->sampler_array_size =
3375 ir->sampler->as_dereference_array()->array->type->array_size();
3376 } else {
3377 inst->sampler_array_size = 1;
3378 }
3379
3380 if (ir->offset) {
3381 for (i = 0; i < MAX_GLSL_TEXTURE_OFFSET && offset[i].file != PROGRAM_UNDEFINED; i++)
3382 inst->tex_offsets[i] = offset[i];
3383 inst->tex_offset_num_offset = i;
3384 }
3385
3386 switch (sampler_type->sampler_dimensionality) {
3387 case GLSL_SAMPLER_DIM_1D:
3388 inst->tex_target = (sampler_type->sampler_array)
3389 ? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX;
3390 break;
3391 case GLSL_SAMPLER_DIM_2D:
3392 inst->tex_target = (sampler_type->sampler_array)
3393 ? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX;
3394 break;
3395 case GLSL_SAMPLER_DIM_3D:
3396 inst->tex_target = TEXTURE_3D_INDEX;
3397 break;
3398 case GLSL_SAMPLER_DIM_CUBE:
3399 inst->tex_target = (sampler_type->sampler_array)
3400 ? TEXTURE_CUBE_ARRAY_INDEX : TEXTURE_CUBE_INDEX;
3401 break;
3402 case GLSL_SAMPLER_DIM_RECT:
3403 inst->tex_target = TEXTURE_RECT_INDEX;
3404 break;
3405 case GLSL_SAMPLER_DIM_BUF:
3406 inst->tex_target = TEXTURE_BUFFER_INDEX;
3407 break;
3408 case GLSL_SAMPLER_DIM_EXTERNAL:
3409 inst->tex_target = TEXTURE_EXTERNAL_INDEX;
3410 break;
3411 case GLSL_SAMPLER_DIM_MS:
3412 inst->tex_target = (sampler_type->sampler_array)
3413 ? TEXTURE_2D_MULTISAMPLE_ARRAY_INDEX : TEXTURE_2D_MULTISAMPLE_INDEX;
3414 break;
3415 default:
3416 assert(!"Should not get here.");
3417 }
3418
3419 inst->tex_type = ir->type->base_type;
3420
3421 this->result = result_src;
3422 }
3423
3424 void
3425 glsl_to_tgsi_visitor::visit(ir_return *ir)
3426 {
3427 if (ir->get_value()) {
3428 st_dst_reg l;
3429 int i;
3430
3431 assert(current_function);
3432
3433 ir->get_value()->accept(this);
3434 st_src_reg r = this->result;
3435
3436 l = st_dst_reg(current_function->return_reg);
3437
3438 for (i = 0; i < type_size(current_function->sig->return_type); i++) {
3439 emit_asm(ir, TGSI_OPCODE_MOV, l, r);
3440 l.index++;
3441 r.index++;
3442 }
3443 }
3444
3445 emit_asm(ir, TGSI_OPCODE_RET);
3446 }
3447
3448 void
3449 glsl_to_tgsi_visitor::visit(ir_discard *ir)
3450 {
3451 if (ir->condition) {
3452 ir->condition->accept(this);
3453 st_src_reg condition = this->result;
3454
3455 /* Convert the bool condition to a float so we can negate. */
3456 if (native_integers) {
3457 st_src_reg temp = get_temp(ir->condition->type);
3458 emit_asm(ir, TGSI_OPCODE_AND, st_dst_reg(temp),
3459 condition, st_src_reg_for_float(1.0));
3460 condition = temp;
3461 }
3462
3463 condition.negate = ~condition.negate;
3464 emit_asm(ir, TGSI_OPCODE_KILL_IF, undef_dst, condition);
3465 } else {
3466 /* unconditional kil */
3467 emit_asm(ir, TGSI_OPCODE_KILL);
3468 }
3469 }
3470
3471 void
3472 glsl_to_tgsi_visitor::visit(ir_if *ir)
3473 {
3474 unsigned if_opcode;
3475 glsl_to_tgsi_instruction *if_inst;
3476
3477 ir->condition->accept(this);
3478 assert(this->result.file != PROGRAM_UNDEFINED);
3479
3480 if_opcode = native_integers ? TGSI_OPCODE_UIF : TGSI_OPCODE_IF;
3481
3482 if_inst = emit_asm(ir->condition, if_opcode, undef_dst, this->result);
3483
3484 this->instructions.push_tail(if_inst);
3485
3486 visit_exec_list(&ir->then_instructions, this);
3487
3488 if (!ir->else_instructions.is_empty()) {
3489 emit_asm(ir->condition, TGSI_OPCODE_ELSE);
3490 visit_exec_list(&ir->else_instructions, this);
3491 }
3492
3493 if_inst = emit_asm(ir->condition, TGSI_OPCODE_ENDIF);
3494 }
3495
3496
3497 void
3498 glsl_to_tgsi_visitor::visit(ir_emit_vertex *ir)
3499 {
3500 assert(this->prog->Target == GL_GEOMETRY_PROGRAM_NV);
3501
3502 ir->stream->accept(this);
3503 emit_asm(ir, TGSI_OPCODE_EMIT, undef_dst, this->result);
3504 }
3505
3506 void
3507 glsl_to_tgsi_visitor::visit(ir_end_primitive *ir)
3508 {
3509 assert(this->prog->Target == GL_GEOMETRY_PROGRAM_NV);
3510
3511 ir->stream->accept(this);
3512 emit_asm(ir, TGSI_OPCODE_ENDPRIM, undef_dst, this->result);
3513 }
3514
3515 void
3516 glsl_to_tgsi_visitor::visit(ir_barrier *ir)
3517 {
3518 assert(this->prog->Target == GL_TESS_CONTROL_PROGRAM_NV ||
3519 this->prog->Target == GL_COMPUTE_PROGRAM_NV);
3520
3521 emit_asm(ir, TGSI_OPCODE_BARRIER);
3522 }
3523
3524 glsl_to_tgsi_visitor::glsl_to_tgsi_visitor()
3525 {
3526 result.file = PROGRAM_UNDEFINED;
3527 next_temp = 1;
3528 array_sizes = NULL;
3529 max_num_arrays = 0;
3530 next_array = 0;
3531 num_input_arrays = 0;
3532 num_output_arrays = 0;
3533 next_signature_id = 1;
3534 num_immediates = 0;
3535 current_function = NULL;
3536 num_address_regs = 0;
3537 samplers_used = 0;
3538 indirect_addr_consts = false;
3539 wpos_transform_const = -1;
3540 glsl_version = 0;
3541 native_integers = false;
3542 mem_ctx = ralloc_context(NULL);
3543 ctx = NULL;
3544 prog = NULL;
3545 shader_program = NULL;
3546 shader = NULL;
3547 options = NULL;
3548 have_sqrt = false;
3549 have_fma = false;
3550 }
3551
3552 glsl_to_tgsi_visitor::~glsl_to_tgsi_visitor()
3553 {
3554 free(array_sizes);
3555 ralloc_free(mem_ctx);
3556 }
3557
3558 extern "C" void free_glsl_to_tgsi_visitor(glsl_to_tgsi_visitor *v)
3559 {
3560 delete v;
3561 }
3562
3563
3564 /**
3565 * Count resources used by the given gpu program (number of texture
3566 * samplers, etc).
3567 */
3568 static void
3569 count_resources(glsl_to_tgsi_visitor *v, gl_program *prog)
3570 {
3571 v->samplers_used = 0;
3572
3573 foreach_in_list(glsl_to_tgsi_instruction, inst, &v->instructions) {
3574 if (inst->info->is_tex) {
3575 for (int i = 0; i < inst->sampler_array_size; i++) {
3576 unsigned idx = inst->sampler.index + i;
3577 v->samplers_used |= 1 << idx;
3578
3579 debug_assert(idx < (int)ARRAY_SIZE(v->sampler_types));
3580 v->sampler_types[idx] = inst->tex_type;
3581 v->sampler_targets[idx] =
3582 st_translate_texture_target(inst->tex_target, inst->tex_shadow);
3583
3584 if (inst->tex_shadow) {
3585 prog->ShadowSamplers |= 1 << (inst->sampler.index + i);
3586 }
3587 }
3588 }
3589 }
3590 prog->SamplersUsed = v->samplers_used;
3591
3592 if (v->shader_program != NULL)
3593 _mesa_update_shader_textures_used(v->shader_program, prog);
3594 }
3595
3596 /**
3597 * Returns the mask of channels (bitmask of WRITEMASK_X,Y,Z,W) which
3598 * are read from the given src in this instruction
3599 */
3600 static int
3601 get_src_arg_mask(st_dst_reg dst, st_src_reg src)
3602 {
3603 int read_mask = 0, comp;
3604
3605 /* Now, given the src swizzle and the written channels, find which
3606 * components are actually read
3607 */
3608 for (comp = 0; comp < 4; ++comp) {
3609 const unsigned coord = GET_SWZ(src.swizzle, comp);
3610 assert(coord < 4);
3611 if (dst.writemask & (1 << comp) && coord <= SWIZZLE_W)
3612 read_mask |= 1 << coord;
3613 }
3614
3615 return read_mask;
3616 }
3617
3618 /**
3619 * This pass replaces CMP T0, T1 T2 T0 with MOV T0, T2 when the CMP
3620 * instruction is the first instruction to write to register T0. There are
3621 * several lowering passes done in GLSL IR (e.g. branches and
3622 * relative addressing) that create a large number of conditional assignments
3623 * that ir_to_mesa converts to CMP instructions like the one mentioned above.
3624 *
3625 * Here is why this conversion is safe:
3626 * CMP T0, T1 T2 T0 can be expanded to:
3627 * if (T1 < 0.0)
3628 * MOV T0, T2;
3629 * else
3630 * MOV T0, T0;
3631 *
3632 * If (T1 < 0.0) evaluates to true then our replacement MOV T0, T2 is the same
3633 * as the original program. If (T1 < 0.0) evaluates to false, executing
3634 * MOV T0, T0 will store a garbage value in T0 since T0 is uninitialized.
3635 * Therefore, it doesn't matter that we are replacing MOV T0, T0 with MOV T0, T2
3636 * because any instruction that was going to read from T0 after this was going
3637 * to read a garbage value anyway.
3638 */
3639 void
3640 glsl_to_tgsi_visitor::simplify_cmp(void)
3641 {
3642 int tempWritesSize = 0;
3643 unsigned *tempWrites = NULL;
3644 unsigned outputWrites[VARYING_SLOT_TESS_MAX];
3645
3646 memset(outputWrites, 0, sizeof(outputWrites));
3647
3648 foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
3649 unsigned prevWriteMask = 0;
3650
3651 /* Give up if we encounter relative addressing or flow control. */
3652 if (inst->dst[0].reladdr || inst->dst[0].reladdr2 ||
3653 inst->dst[1].reladdr || inst->dst[1].reladdr2 ||
3654 tgsi_get_opcode_info(inst->op)->is_branch ||
3655 inst->op == TGSI_OPCODE_BGNSUB ||
3656 inst->op == TGSI_OPCODE_CONT ||
3657 inst->op == TGSI_OPCODE_END ||
3658 inst->op == TGSI_OPCODE_ENDSUB ||
3659 inst->op == TGSI_OPCODE_RET) {
3660 break;
3661 }
3662
3663 if (inst->dst[0].file == PROGRAM_OUTPUT) {
3664 assert(inst->dst[0].index < (signed)ARRAY_SIZE(outputWrites));
3665 prevWriteMask = outputWrites[inst->dst[0].index];
3666 outputWrites[inst->dst[0].index] |= inst->dst[0].writemask;
3667 } else if (inst->dst[0].file == PROGRAM_TEMPORARY) {
3668 if (inst->dst[0].index >= tempWritesSize) {
3669 const int inc = 4096;
3670
3671 tempWrites = (unsigned*)
3672 realloc(tempWrites,
3673 (tempWritesSize + inc) * sizeof(unsigned));
3674 if (!tempWrites)
3675 return;
3676
3677 memset(tempWrites + tempWritesSize, 0, inc * sizeof(unsigned));
3678 tempWritesSize += inc;
3679 }
3680
3681 prevWriteMask = tempWrites[inst->dst[0].index];
3682 tempWrites[inst->dst[0].index] |= inst->dst[0].writemask;
3683 } else
3684 continue;
3685
3686 /* For a CMP to be considered a conditional write, the destination
3687 * register and source register two must be the same. */
3688 if (inst->op == TGSI_OPCODE_CMP
3689 && !(inst->dst[0].writemask & prevWriteMask)
3690 && inst->src[2].file == inst->dst[0].file
3691 && inst->src[2].index == inst->dst[0].index
3692 && inst->dst[0].writemask == get_src_arg_mask(inst->dst[0], inst->src[2])) {
3693
3694 inst->op = TGSI_OPCODE_MOV;
3695 inst->src[0] = inst->src[1];
3696 }
3697 }
3698
3699 free(tempWrites);
3700 }
3701
3702 /* Replaces all references to a temporary register index with another index. */
3703 void
3704 glsl_to_tgsi_visitor::rename_temp_registers(int num_renames, struct rename_reg_pair *renames)
3705 {
3706 foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
3707 unsigned j;
3708 int k;
3709 for (j = 0; j < num_inst_src_regs(inst); j++) {
3710 if (inst->src[j].file == PROGRAM_TEMPORARY)
3711 for (k = 0; k < num_renames; k++)
3712 if (inst->src[j].index == renames[k].old_reg)
3713 inst->src[j].index = renames[k].new_reg;
3714 }
3715
3716 for (j = 0; j < inst->tex_offset_num_offset; j++) {
3717 if (inst->tex_offsets[j].file == PROGRAM_TEMPORARY)
3718 for (k = 0; k < num_renames; k++)
3719 if (inst->tex_offsets[j].index == renames[k].old_reg)
3720 inst->tex_offsets[j].index = renames[k].new_reg;
3721 }
3722
3723 for (j = 0; j < num_inst_dst_regs(inst); j++) {
3724 if (inst->dst[j].file == PROGRAM_TEMPORARY)
3725 for (k = 0; k < num_renames; k++)
3726 if (inst->dst[j].index == renames[k].old_reg)
3727 inst->dst[j].index = renames[k].new_reg;
3728 }
3729 }
3730 }
3731
3732 void
3733 glsl_to_tgsi_visitor::get_first_temp_read(int *first_reads)
3734 {
3735 int depth = 0; /* loop depth */
3736 int loop_start = -1; /* index of the first active BGNLOOP (if any) */
3737 unsigned i = 0, j;
3738
3739 foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
3740 for (j = 0; j < num_inst_src_regs(inst); j++) {
3741 if (inst->src[j].file == PROGRAM_TEMPORARY) {
3742 if (first_reads[inst->src[j].index] == -1)
3743 first_reads[inst->src[j].index] = (depth == 0) ? i : loop_start;
3744 }
3745 }
3746 for (j = 0; j < inst->tex_offset_num_offset; j++) {
3747 if (inst->tex_offsets[j].file == PROGRAM_TEMPORARY) {
3748 if (first_reads[inst->tex_offsets[j].index] == -1)
3749 first_reads[inst->tex_offsets[j].index] = (depth == 0) ? i : loop_start;
3750 }
3751 }
3752 if (inst->op == TGSI_OPCODE_BGNLOOP) {
3753 if(depth++ == 0)
3754 loop_start = i;
3755 } else if (inst->op == TGSI_OPCODE_ENDLOOP) {
3756 if (--depth == 0)
3757 loop_start = -1;
3758 }
3759 assert(depth >= 0);
3760 i++;
3761 }
3762 }
3763
3764 void
3765 glsl_to_tgsi_visitor::get_last_temp_read_first_temp_write(int *last_reads, int *first_writes)
3766 {
3767 int depth = 0; /* loop depth */
3768 int loop_start = -1; /* index of the first active BGNLOOP (if any) */
3769 unsigned i = 0, j;
3770 int k;
3771 foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
3772 for (j = 0; j < num_inst_src_regs(inst); j++) {
3773 if (inst->src[j].file == PROGRAM_TEMPORARY)
3774 last_reads[inst->src[j].index] = (depth == 0) ? i : -2;
3775 }
3776 for (j = 0; j < num_inst_dst_regs(inst); j++) {
3777 if (inst->dst[j].file == PROGRAM_TEMPORARY)
3778 if (first_writes[inst->dst[j].index] == -1)
3779 first_writes[inst->dst[j].index] = (depth == 0) ? i : loop_start;
3780 }
3781 for (j = 0; j < inst->tex_offset_num_offset; j++) {
3782 if (inst->tex_offsets[j].file == PROGRAM_TEMPORARY)
3783 last_reads[inst->tex_offsets[j].index] = (depth == 0) ? i : -2;
3784 }
3785 if (inst->op == TGSI_OPCODE_BGNLOOP) {
3786 if(depth++ == 0)
3787 loop_start = i;
3788 } else if (inst->op == TGSI_OPCODE_ENDLOOP) {
3789 if (--depth == 0) {
3790 loop_start = -1;
3791 for (k = 0; k < this->next_temp; k++) {
3792 if (last_reads[k] == -2) {
3793 last_reads[k] = i;
3794 }
3795 }
3796 }
3797 }
3798 assert(depth >= 0);
3799 i++;
3800 }
3801 }
3802
3803 void
3804 glsl_to_tgsi_visitor::get_last_temp_write(int *last_writes)
3805 {
3806 int depth = 0; /* loop depth */
3807 int i = 0, k;
3808 unsigned j;
3809
3810 foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
3811 for (j = 0; j < num_inst_dst_regs(inst); j++) {
3812 if (inst->dst[j].file == PROGRAM_TEMPORARY)
3813 last_writes[inst->dst[j].index] = (depth == 0) ? i : -2;
3814 }
3815
3816 if (inst->op == TGSI_OPCODE_BGNLOOP)
3817 depth++;
3818 else if (inst->op == TGSI_OPCODE_ENDLOOP)
3819 if (--depth == 0) {
3820 for (k = 0; k < this->next_temp; k++) {
3821 if (last_writes[k] == -2) {
3822 last_writes[k] = i;
3823 }
3824 }
3825 }
3826 assert(depth >= 0);
3827 i++;
3828 }
3829 }
3830
3831 /*
3832 * On a basic block basis, tracks available PROGRAM_TEMPORARY register
3833 * channels for copy propagation and updates following instructions to
3834 * use the original versions.
3835 *
3836 * The glsl_to_tgsi_visitor lazily produces code assuming that this pass
3837 * will occur. As an example, a TXP production before this pass:
3838 *
3839 * 0: MOV TEMP[1], INPUT[4].xyyy;
3840 * 1: MOV TEMP[1].w, INPUT[4].wwww;
3841 * 2: TXP TEMP[2], TEMP[1], texture[0], 2D;
3842 *
3843 * and after:
3844 *
3845 * 0: MOV TEMP[1], INPUT[4].xyyy;
3846 * 1: MOV TEMP[1].w, INPUT[4].wwww;
3847 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
3848 *
3849 * which allows for dead code elimination on TEMP[1]'s writes.
3850 */
3851 void
3852 glsl_to_tgsi_visitor::copy_propagate(void)
3853 {
3854 glsl_to_tgsi_instruction **acp = rzalloc_array(mem_ctx,
3855 glsl_to_tgsi_instruction *,
3856 this->next_temp * 4);
3857 int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
3858 int level = 0;
3859
3860 foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
3861 assert(inst->dst[0].file != PROGRAM_TEMPORARY
3862 || inst->dst[0].index < this->next_temp);
3863
3864 /* First, do any copy propagation possible into the src regs. */
3865 for (int r = 0; r < 3; r++) {
3866 glsl_to_tgsi_instruction *first = NULL;
3867 bool good = true;
3868 int acp_base = inst->src[r].index * 4;
3869
3870 if (inst->src[r].file != PROGRAM_TEMPORARY ||
3871 inst->src[r].reladdr ||
3872 inst->src[r].reladdr2)
3873 continue;
3874
3875 /* See if we can find entries in the ACP consisting of MOVs
3876 * from the same src register for all the swizzled channels
3877 * of this src register reference.
3878 */
3879 for (int i = 0; i < 4; i++) {
3880 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
3881 glsl_to_tgsi_instruction *copy_chan = acp[acp_base + src_chan];
3882
3883 if (!copy_chan) {
3884 good = false;
3885 break;
3886 }
3887
3888 assert(acp_level[acp_base + src_chan] <= level);
3889
3890 if (!first) {
3891 first = copy_chan;
3892 } else {
3893 if (first->src[0].file != copy_chan->src[0].file ||
3894 first->src[0].index != copy_chan->src[0].index ||
3895 first->src[0].double_reg2 != copy_chan->src[0].double_reg2 ||
3896 first->src[0].index2D != copy_chan->src[0].index2D) {
3897 good = false;
3898 break;
3899 }
3900 }
3901 }
3902
3903 if (good) {
3904 /* We've now validated that we can copy-propagate to
3905 * replace this src register reference. Do it.
3906 */
3907 inst->src[r].file = first->src[0].file;
3908 inst->src[r].index = first->src[0].index;
3909 inst->src[r].index2D = first->src[0].index2D;
3910 inst->src[r].has_index2 = first->src[0].has_index2;
3911 inst->src[r].double_reg2 = first->src[0].double_reg2;
3912 inst->src[r].array_id = first->src[0].array_id;
3913
3914 int swizzle = 0;
3915 for (int i = 0; i < 4; i++) {
3916 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
3917 glsl_to_tgsi_instruction *copy_inst = acp[acp_base + src_chan];
3918 swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) << (3 * i));
3919 }
3920 inst->src[r].swizzle = swizzle;
3921 }
3922 }
3923
3924 switch (inst->op) {
3925 case TGSI_OPCODE_BGNLOOP:
3926 case TGSI_OPCODE_ENDLOOP:
3927 /* End of a basic block, clear the ACP entirely. */
3928 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
3929 break;
3930
3931 case TGSI_OPCODE_IF:
3932 case TGSI_OPCODE_UIF:
3933 ++level;
3934 break;
3935
3936 case TGSI_OPCODE_ENDIF:
3937 case TGSI_OPCODE_ELSE:
3938 /* Clear all channels written inside the block from the ACP, but
3939 * leaving those that were not touched.
3940 */
3941 for (int r = 0; r < this->next_temp; r++) {
3942 for (int c = 0; c < 4; c++) {
3943 if (!acp[4 * r + c])
3944 continue;
3945
3946 if (acp_level[4 * r + c] >= level)
3947 acp[4 * r + c] = NULL;
3948 }
3949 }
3950 if (inst->op == TGSI_OPCODE_ENDIF)
3951 --level;
3952 break;
3953
3954 default:
3955 /* Continuing the block, clear any written channels from
3956 * the ACP.
3957 */
3958 for (int d = 0; d < 2; d++) {
3959 if (inst->dst[d].file == PROGRAM_TEMPORARY && inst->dst[d].reladdr) {
3960 /* Any temporary might be written, so no copy propagation
3961 * across this instruction.
3962 */
3963 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
3964 } else if (inst->dst[d].file == PROGRAM_OUTPUT &&
3965 inst->dst[d].reladdr) {
3966 /* Any output might be written, so no copy propagation
3967 * from outputs across this instruction.
3968 */
3969 for (int r = 0; r < this->next_temp; r++) {
3970 for (int c = 0; c < 4; c++) {
3971 if (!acp[4 * r + c])
3972 continue;
3973
3974 if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT)
3975 acp[4 * r + c] = NULL;
3976 }
3977 }
3978 } else if (inst->dst[d].file == PROGRAM_TEMPORARY ||
3979 inst->dst[d].file == PROGRAM_OUTPUT) {
3980 /* Clear where it's used as dst. */
3981 if (inst->dst[d].file == PROGRAM_TEMPORARY) {
3982 for (int c = 0; c < 4; c++) {
3983 if (inst->dst[d].writemask & (1 << c))
3984 acp[4 * inst->dst[d].index + c] = NULL;
3985 }
3986 }
3987
3988 /* Clear where it's used as src. */
3989 for (int r = 0; r < this->next_temp; r++) {
3990 for (int c = 0; c < 4; c++) {
3991 if (!acp[4 * r + c])
3992 continue;
3993
3994 int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c);
3995
3996 if (acp[4 * r + c]->src[0].file == inst->dst[d].file &&
3997 acp[4 * r + c]->src[0].index == inst->dst[d].index &&
3998 inst->dst[d].writemask & (1 << src_chan)) {
3999 acp[4 * r + c] = NULL;
4000 }
4001 }
4002 }
4003 }
4004 }
4005 break;
4006 }
4007
4008 /* If this is a copy, add it to the ACP. */
4009 if (inst->op == TGSI_OPCODE_MOV &&
4010 inst->dst[0].file == PROGRAM_TEMPORARY &&
4011 !(inst->dst[0].file == inst->src[0].file &&
4012 inst->dst[0].index == inst->src[0].index) &&
4013 !inst->dst[0].reladdr &&
4014 !inst->dst[0].reladdr2 &&
4015 !inst->saturate &&
4016 inst->src[0].file != PROGRAM_ARRAY &&
4017 !inst->src[0].reladdr &&
4018 !inst->src[0].reladdr2 &&
4019 !inst->src[0].negate) {
4020 for (int i = 0; i < 4; i++) {
4021 if (inst->dst[0].writemask & (1 << i)) {
4022 acp[4 * inst->dst[0].index + i] = inst;
4023 acp_level[4 * inst->dst[0].index + i] = level;
4024 }
4025 }
4026 }
4027 }
4028
4029 ralloc_free(acp_level);
4030 ralloc_free(acp);
4031 }
4032
4033 /*
4034 * On a basic block basis, tracks available PROGRAM_TEMPORARY registers for dead
4035 * code elimination.
4036 *
4037 * The glsl_to_tgsi_visitor lazily produces code assuming that this pass
4038 * will occur. As an example, a TXP production after copy propagation but
4039 * before this pass:
4040 *
4041 * 0: MOV TEMP[1], INPUT[4].xyyy;
4042 * 1: MOV TEMP[1].w, INPUT[4].wwww;
4043 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
4044 *
4045 * and after this pass:
4046 *
4047 * 0: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
4048 */
4049 int
4050 glsl_to_tgsi_visitor::eliminate_dead_code(void)
4051 {
4052 glsl_to_tgsi_instruction **writes = rzalloc_array(mem_ctx,
4053 glsl_to_tgsi_instruction *,
4054 this->next_temp * 4);
4055 int *write_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
4056 int level = 0;
4057 int removed = 0;
4058
4059 foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
4060 assert(inst->dst[0].file != PROGRAM_TEMPORARY
4061 || inst->dst[0].index < this->next_temp);
4062
4063 switch (inst->op) {
4064 case TGSI_OPCODE_BGNLOOP:
4065 case TGSI_OPCODE_ENDLOOP:
4066 case TGSI_OPCODE_CONT:
4067 case TGSI_OPCODE_BRK:
4068 /* End of a basic block, clear the write array entirely.
4069 *
4070 * This keeps us from killing dead code when the writes are
4071 * on either side of a loop, even when the register isn't touched
4072 * inside the loop. However, glsl_to_tgsi_visitor doesn't seem to emit
4073 * dead code of this type, so it shouldn't make a difference as long as
4074 * the dead code elimination pass in the GLSL compiler does its job.
4075 */
4076 memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
4077 break;
4078
4079 case TGSI_OPCODE_ENDIF:
4080 case TGSI_OPCODE_ELSE:
4081 /* Promote the recorded level of all channels written inside the
4082 * preceding if or else block to the level above the if/else block.
4083 */
4084 for (int r = 0; r < this->next_temp; r++) {
4085 for (int c = 0; c < 4; c++) {
4086 if (!writes[4 * r + c])
4087 continue;
4088
4089 if (write_level[4 * r + c] == level)
4090 write_level[4 * r + c] = level-1;
4091 }
4092 }
4093 if(inst->op == TGSI_OPCODE_ENDIF)
4094 --level;
4095 break;
4096
4097 case TGSI_OPCODE_IF:
4098 case TGSI_OPCODE_UIF:
4099 ++level;
4100 /* fallthrough to default case to mark the condition as read */
4101 default:
4102 /* Continuing the block, clear any channels from the write array that
4103 * are read by this instruction.
4104 */
4105 for (unsigned i = 0; i < ARRAY_SIZE(inst->src); i++) {
4106 if (inst->src[i].file == PROGRAM_TEMPORARY && inst->src[i].reladdr){
4107 /* Any temporary might be read, so no dead code elimination
4108 * across this instruction.
4109 */
4110 memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
4111 } else if (inst->src[i].file == PROGRAM_TEMPORARY) {
4112 /* Clear where it's used as src. */
4113 int src_chans = 1 << GET_SWZ(inst->src[i].swizzle, 0);
4114 src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 1);
4115 src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 2);
4116 src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 3);
4117
4118 for (int c = 0; c < 4; c++) {
4119 if (src_chans & (1 << c))
4120 writes[4 * inst->src[i].index + c] = NULL;
4121 }
4122 }
4123 }
4124 for (unsigned i = 0; i < inst->tex_offset_num_offset; i++) {
4125 if (inst->tex_offsets[i].file == PROGRAM_TEMPORARY && inst->tex_offsets[i].reladdr){
4126 /* Any temporary might be read, so no dead code elimination
4127 * across this instruction.
4128 */
4129 memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
4130 } else if (inst->tex_offsets[i].file == PROGRAM_TEMPORARY) {
4131 /* Clear where it's used as src. */
4132 int src_chans = 1 << GET_SWZ(inst->tex_offsets[i].swizzle, 0);
4133 src_chans |= 1 << GET_SWZ(inst->tex_offsets[i].swizzle, 1);
4134 src_chans |= 1 << GET_SWZ(inst->tex_offsets[i].swizzle, 2);
4135 src_chans |= 1 << GET_SWZ(inst->tex_offsets[i].swizzle, 3);
4136
4137 for (int c = 0; c < 4; c++) {
4138 if (src_chans & (1 << c))
4139 writes[4 * inst->tex_offsets[i].index + c] = NULL;
4140 }
4141 }
4142 }
4143 break;
4144 }
4145
4146 /* If this instruction writes to a temporary, add it to the write array.
4147 * If there is already an instruction in the write array for one or more
4148 * of the channels, flag that channel write as dead.
4149 */
4150 for (unsigned i = 0; i < ARRAY_SIZE(inst->dst); i++) {
4151 if (inst->dst[i].file == PROGRAM_TEMPORARY &&
4152 !inst->dst[i].reladdr) {
4153 for (int c = 0; c < 4; c++) {
4154 if (inst->dst[i].writemask & (1 << c)) {
4155 if (writes[4 * inst->dst[i].index + c]) {
4156 if (write_level[4 * inst->dst[i].index + c] < level)
4157 continue;
4158 else
4159 writes[4 * inst->dst[i].index + c]->dead_mask |= (1 << c);
4160 }
4161 writes[4 * inst->dst[i].index + c] = inst;
4162 write_level[4 * inst->dst[i].index + c] = level;
4163 }
4164 }
4165 }
4166 }
4167 }
4168
4169 /* Anything still in the write array at this point is dead code. */
4170 for (int r = 0; r < this->next_temp; r++) {
4171 for (int c = 0; c < 4; c++) {
4172 glsl_to_tgsi_instruction *inst = writes[4 * r + c];
4173 if (inst)
4174 inst->dead_mask |= (1 << c);
4175 }
4176 }
4177
4178 /* Now actually remove the instructions that are completely dead and update
4179 * the writemask of other instructions with dead channels.
4180 */
4181 foreach_in_list_safe(glsl_to_tgsi_instruction, inst, &this->instructions) {
4182 if (!inst->dead_mask || !inst->dst[0].writemask)
4183 continue;
4184 else if ((inst->dst[0].writemask & ~inst->dead_mask) == 0) {
4185 inst->remove();
4186 delete inst;
4187 removed++;
4188 } else {
4189 if (inst->dst[0].type == GLSL_TYPE_DOUBLE) {
4190 if (inst->dead_mask == WRITEMASK_XY ||
4191 inst->dead_mask == WRITEMASK_ZW)
4192 inst->dst[0].writemask &= ~(inst->dead_mask);
4193 } else
4194 inst->dst[0].writemask &= ~(inst->dead_mask);
4195 }
4196 }
4197
4198 ralloc_free(write_level);
4199 ralloc_free(writes);
4200
4201 return removed;
4202 }
4203
4204 /* merge DFRACEXP instructions into one. */
4205 void
4206 glsl_to_tgsi_visitor::merge_two_dsts(void)
4207 {
4208 foreach_in_list_safe(glsl_to_tgsi_instruction, inst, &this->instructions) {
4209 glsl_to_tgsi_instruction *inst2;
4210 bool merged;
4211 if (num_inst_dst_regs(inst) != 2)
4212 continue;
4213
4214 if (inst->dst[0].file != PROGRAM_UNDEFINED &&
4215 inst->dst[1].file != PROGRAM_UNDEFINED)
4216 continue;
4217
4218 inst2 = (glsl_to_tgsi_instruction *) inst->next;
4219 do {
4220
4221 if (inst->src[0].file == inst2->src[0].file &&
4222 inst->src[0].index == inst2->src[0].index &&
4223 inst->src[0].type == inst2->src[0].type &&
4224 inst->src[0].swizzle == inst2->src[0].swizzle)
4225 break;
4226 inst2 = (glsl_to_tgsi_instruction *) inst2->next;
4227 } while (inst2);
4228
4229 if (!inst2)
4230 continue;
4231 merged = false;
4232 if (inst->dst[0].file == PROGRAM_UNDEFINED) {
4233 merged = true;
4234 inst->dst[0] = inst2->dst[0];
4235 } else if (inst->dst[1].file == PROGRAM_UNDEFINED) {
4236 inst->dst[1] = inst2->dst[1];
4237 merged = true;
4238 }
4239
4240 if (merged) {
4241 inst2->remove();
4242 delete inst2;
4243 }
4244 }
4245 }
4246
4247 /* Merges temporary registers together where possible to reduce the number of
4248 * registers needed to run a program.
4249 *
4250 * Produces optimal code only after copy propagation and dead code elimination
4251 * have been run. */
4252 void
4253 glsl_to_tgsi_visitor::merge_registers(void)
4254 {
4255 int *last_reads = rzalloc_array(mem_ctx, int, this->next_temp);
4256 int *first_writes = rzalloc_array(mem_ctx, int, this->next_temp);
4257 struct rename_reg_pair *renames = rzalloc_array(mem_ctx, struct rename_reg_pair, this->next_temp);
4258 int i, j;
4259 int num_renames = 0;
4260
4261 /* Read the indices of the last read and first write to each temp register
4262 * into an array so that we don't have to traverse the instruction list as
4263 * much. */
4264 for (i = 0; i < this->next_temp; i++) {
4265 last_reads[i] = -1;
4266 first_writes[i] = -1;
4267 }
4268 get_last_temp_read_first_temp_write(last_reads, first_writes);
4269
4270 /* Start looking for registers with non-overlapping usages that can be
4271 * merged together. */
4272 for (i = 0; i < this->next_temp; i++) {
4273 /* Don't touch unused registers. */
4274 if (last_reads[i] < 0 || first_writes[i] < 0) continue;
4275
4276 for (j = 0; j < this->next_temp; j++) {
4277 /* Don't touch unused registers. */
4278 if (last_reads[j] < 0 || first_writes[j] < 0) continue;
4279
4280 /* We can merge the two registers if the first write to j is after or
4281 * in the same instruction as the last read from i. Note that the
4282 * register at index i will always be used earlier or at the same time
4283 * as the register at index j. */
4284 if (first_writes[i] <= first_writes[j] &&
4285 last_reads[i] <= first_writes[j]) {
4286 renames[num_renames].old_reg = j;
4287 renames[num_renames].new_reg = i;
4288 num_renames++;
4289
4290 /* Update the first_writes and last_reads arrays with the new
4291 * values for the merged register index, and mark the newly unused
4292 * register index as such. */
4293 last_reads[i] = last_reads[j];
4294 first_writes[j] = -1;
4295 last_reads[j] = -1;
4296 }
4297 }
4298 }
4299
4300 rename_temp_registers(num_renames, renames);
4301 ralloc_free(renames);
4302 ralloc_free(last_reads);
4303 ralloc_free(first_writes);
4304 }
4305
4306 /* Reassign indices to temporary registers by reusing unused indices created
4307 * by optimization passes. */
4308 void
4309 glsl_to_tgsi_visitor::renumber_registers(void)
4310 {
4311 int i = 0;
4312 int new_index = 0;
4313 int *first_reads = rzalloc_array(mem_ctx, int, this->next_temp);
4314 struct rename_reg_pair *renames = rzalloc_array(mem_ctx, struct rename_reg_pair, this->next_temp);
4315 int num_renames = 0;
4316 for (i = 0; i < this->next_temp; i++) {
4317 first_reads[i] = -1;
4318 }
4319 get_first_temp_read(first_reads);
4320
4321 for (i = 0; i < this->next_temp; i++) {
4322 if (first_reads[i] < 0) continue;
4323 if (i != new_index) {
4324 renames[num_renames].old_reg = i;
4325 renames[num_renames].new_reg = new_index;
4326 num_renames++;
4327 }
4328 new_index++;
4329 }
4330
4331 rename_temp_registers(num_renames, renames);
4332 this->next_temp = new_index;
4333 ralloc_free(renames);
4334 ralloc_free(first_reads);
4335 }
4336
4337 /* ------------------------- TGSI conversion stuff -------------------------- */
4338 struct label {
4339 unsigned branch_target;
4340 unsigned token;
4341 };
4342
4343 /**
4344 * Intermediate state used during shader translation.
4345 */
4346 struct st_translate {
4347 struct ureg_program *ureg;
4348
4349 unsigned temps_size;
4350 struct ureg_dst *temps;
4351
4352 struct ureg_dst *arrays;
4353 unsigned num_temp_arrays;
4354 struct ureg_src *constants;
4355 int num_constants;
4356 struct ureg_src *immediates;
4357 int num_immediates;
4358 struct ureg_dst outputs[PIPE_MAX_SHADER_OUTPUTS];
4359 struct ureg_src inputs[PIPE_MAX_SHADER_INPUTS];
4360 struct ureg_dst address[3];
4361 struct ureg_src samplers[PIPE_MAX_SAMPLERS];
4362 struct ureg_src systemValues[SYSTEM_VALUE_MAX];
4363 struct tgsi_texture_offset tex_offsets[MAX_GLSL_TEXTURE_OFFSET];
4364 unsigned *array_sizes;
4365 struct array_decl *input_arrays;
4366 struct array_decl *output_arrays;
4367
4368 const GLuint *inputMapping;
4369 const GLuint *outputMapping;
4370
4371 /* For every instruction that contains a label (eg CALL), keep
4372 * details so that we can go back afterwards and emit the correct
4373 * tgsi instruction number for each label.
4374 */
4375 struct label *labels;
4376 unsigned labels_size;
4377 unsigned labels_count;
4378
4379 /* Keep a record of the tgsi instruction number that each mesa
4380 * instruction starts at, will be used to fix up labels after
4381 * translation.
4382 */
4383 unsigned *insn;
4384 unsigned insn_size;
4385 unsigned insn_count;
4386
4387 unsigned procType; /**< TGSI_PROCESSOR_VERTEX/FRAGMENT */
4388
4389 boolean error;
4390 };
4391
4392 /** Map Mesa's SYSTEM_VALUE_x to TGSI_SEMANTIC_x */
4393 const unsigned _mesa_sysval_to_semantic[SYSTEM_VALUE_MAX] = {
4394 /* Vertex shader
4395 */
4396 TGSI_SEMANTIC_VERTEXID,
4397 TGSI_SEMANTIC_INSTANCEID,
4398 TGSI_SEMANTIC_VERTEXID_NOBASE,
4399 TGSI_SEMANTIC_BASEVERTEX,
4400
4401 /* Geometry shader
4402 */
4403 TGSI_SEMANTIC_INVOCATIONID,
4404
4405 /* Fragment shader
4406 */
4407 TGSI_SEMANTIC_FACE,
4408 TGSI_SEMANTIC_SAMPLEID,
4409 TGSI_SEMANTIC_SAMPLEPOS,
4410 TGSI_SEMANTIC_SAMPLEMASK,
4411
4412 /* Tessellation shaders
4413 */
4414 TGSI_SEMANTIC_TESSCOORD,
4415 TGSI_SEMANTIC_VERTICESIN,
4416 TGSI_SEMANTIC_PRIMID,
4417 TGSI_SEMANTIC_TESSOUTER,
4418 TGSI_SEMANTIC_TESSINNER,
4419 };
4420
4421 /**
4422 * Make note of a branch to a label in the TGSI code.
4423 * After we've emitted all instructions, we'll go over the list
4424 * of labels built here and patch the TGSI code with the actual
4425 * location of each label.
4426 */
4427 static unsigned *get_label(struct st_translate *t, unsigned branch_target)
4428 {
4429 unsigned i;
4430
4431 if (t->labels_count + 1 >= t->labels_size) {
4432 t->labels_size = 1 << (util_logbase2(t->labels_size) + 1);
4433 t->labels = (struct label *)realloc(t->labels,
4434 t->labels_size * sizeof(struct label));
4435 if (t->labels == NULL) {
4436 static unsigned dummy;
4437 t->error = TRUE;
4438 return &dummy;
4439 }
4440 }
4441
4442 i = t->labels_count++;
4443 t->labels[i].branch_target = branch_target;
4444 return &t->labels[i].token;
4445 }
4446
4447 /**
4448 * Called prior to emitting the TGSI code for each instruction.
4449 * Allocate additional space for instructions if needed.
4450 * Update the insn[] array so the next glsl_to_tgsi_instruction points to
4451 * the next TGSI instruction.
4452 */
4453 static void set_insn_start(struct st_translate *t, unsigned start)
4454 {
4455 if (t->insn_count + 1 >= t->insn_size) {
4456 t->insn_size = 1 << (util_logbase2(t->insn_size) + 1);
4457 t->insn = (unsigned *)realloc(t->insn, t->insn_size * sizeof(t->insn[0]));
4458 if (t->insn == NULL) {
4459 t->error = TRUE;
4460 return;
4461 }
4462 }
4463
4464 t->insn[t->insn_count++] = start;
4465 }
4466
4467 /**
4468 * Map a glsl_to_tgsi constant/immediate to a TGSI immediate.
4469 */
4470 static struct ureg_src
4471 emit_immediate(struct st_translate *t,
4472 gl_constant_value values[4],
4473 int type, int size)
4474 {
4475 struct ureg_program *ureg = t->ureg;
4476
4477 switch(type)
4478 {
4479 case GL_FLOAT:
4480 return ureg_DECL_immediate(ureg, &values[0].f, size);
4481 case GL_DOUBLE:
4482 return ureg_DECL_immediate_f64(ureg, (double *)&values[0].f, size);
4483 case GL_INT:
4484 return ureg_DECL_immediate_int(ureg, &values[0].i, size);
4485 case GL_UNSIGNED_INT:
4486 case GL_BOOL:
4487 return ureg_DECL_immediate_uint(ureg, &values[0].u, size);
4488 default:
4489 assert(!"should not get here - type must be float, int, uint, or bool");
4490 return ureg_src_undef();
4491 }
4492 }
4493
4494 /**
4495 * Map a glsl_to_tgsi dst register to a TGSI ureg_dst register.
4496 */
4497 static struct ureg_dst
4498 dst_register(struct st_translate *t, gl_register_file file, unsigned index,
4499 unsigned array_id)
4500 {
4501 unsigned array;
4502
4503 switch(file) {
4504 case PROGRAM_UNDEFINED:
4505 return ureg_dst_undef();
4506
4507 case PROGRAM_TEMPORARY:
4508 /* Allocate space for temporaries on demand. */
4509 if (index >= t->temps_size) {
4510 const int inc = 4096;
4511
4512 t->temps = (struct ureg_dst*)
4513 realloc(t->temps,
4514 (t->temps_size + inc) * sizeof(struct ureg_dst));
4515 if (!t->temps)
4516 return ureg_dst_undef();
4517
4518 memset(t->temps + t->temps_size, 0, inc * sizeof(struct ureg_dst));
4519 t->temps_size += inc;
4520 }
4521
4522 if (ureg_dst_is_undef(t->temps[index]))
4523 t->temps[index] = ureg_DECL_local_temporary(t->ureg);
4524
4525 return t->temps[index];
4526
4527 case PROGRAM_ARRAY:
4528 array = index >> 16;
4529
4530 assert(array < t->num_temp_arrays);
4531
4532 if (ureg_dst_is_undef(t->arrays[array]))
4533 t->arrays[array] = ureg_DECL_array_temporary(
4534 t->ureg, t->array_sizes[array], TRUE);
4535
4536 return ureg_dst_array_offset(t->arrays[array],
4537 (int)(index & 0xFFFF) - 0x8000);
4538
4539 case PROGRAM_OUTPUT:
4540 if (!array_id) {
4541 if (t->procType == TGSI_PROCESSOR_FRAGMENT)
4542 assert(index < FRAG_RESULT_MAX);
4543 else if (t->procType == TGSI_PROCESSOR_TESS_CTRL ||
4544 t->procType == TGSI_PROCESSOR_TESS_EVAL)
4545 assert(index < VARYING_SLOT_TESS_MAX);
4546 else
4547 assert(index < VARYING_SLOT_MAX);
4548
4549 assert(t->outputMapping[index] < ARRAY_SIZE(t->outputs));
4550 assert(t->outputs[t->outputMapping[index]].File != TGSI_FILE_NULL);
4551 return t->outputs[t->outputMapping[index]];
4552 }
4553 else {
4554 struct array_decl *decl = &t->output_arrays[array_id-1];
4555 unsigned mesa_index = decl->mesa_index;
4556 int slot = t->outputMapping[mesa_index];
4557
4558 assert(slot != -1 && t->outputs[slot].File == TGSI_FILE_OUTPUT);
4559 assert(t->outputs[slot].ArrayID == array_id);
4560 return ureg_dst_array_offset(t->outputs[slot], index - mesa_index);
4561 }
4562
4563 case PROGRAM_ADDRESS:
4564 return t->address[index];
4565
4566 default:
4567 assert(!"unknown dst register file");
4568 return ureg_dst_undef();
4569 }
4570 }
4571
4572 /**
4573 * Map a glsl_to_tgsi src register to a TGSI ureg_src register.
4574 */
4575 static struct ureg_src
4576 src_register(struct st_translate *t, const st_src_reg *reg)
4577 {
4578 int index = reg->index;
4579 int double_reg2 = reg->double_reg2 ? 1 : 0;
4580
4581 switch(reg->file) {
4582 case PROGRAM_UNDEFINED:
4583 return ureg_imm4f(t->ureg, 0, 0, 0, 0);
4584
4585 case PROGRAM_TEMPORARY:
4586 case PROGRAM_ARRAY:
4587 case PROGRAM_OUTPUT:
4588 return ureg_src(dst_register(t, reg->file, reg->index, reg->array_id));
4589
4590 case PROGRAM_UNIFORM:
4591 assert(reg->index >= 0);
4592 return reg->index < t->num_constants ?
4593 t->constants[reg->index] : ureg_imm4f(t->ureg, 0, 0, 0, 0);
4594 case PROGRAM_STATE_VAR:
4595 case PROGRAM_CONSTANT: /* ie, immediate */
4596 if (reg->has_index2)
4597 return ureg_src_register(TGSI_FILE_CONSTANT, reg->index);
4598 else
4599 return reg->index >= 0 && reg->index < t->num_constants ?
4600 t->constants[reg->index] : ureg_imm4f(t->ureg, 0, 0, 0, 0);
4601
4602 case PROGRAM_IMMEDIATE:
4603 assert(reg->index >= 0 && reg->index < t->num_immediates);
4604 return t->immediates[reg->index];
4605
4606 case PROGRAM_INPUT:
4607 /* GLSL inputs are 64-bit containers, so we have to
4608 * map back to the original index and add the offset after
4609 * mapping. */
4610 index -= double_reg2;
4611 if (!reg->array_id) {
4612 assert(t->inputMapping[index] < ARRAY_SIZE(t->inputs));
4613 assert(t->inputs[t->inputMapping[index]].File != TGSI_FILE_NULL);
4614 return t->inputs[t->inputMapping[index]];
4615 }
4616 else {
4617 struct array_decl *decl = &t->input_arrays[reg->array_id-1];
4618 unsigned mesa_index = decl->mesa_index;
4619 int slot = t->inputMapping[mesa_index];
4620
4621 assert(slot != -1 && t->inputs[slot].File == TGSI_FILE_INPUT);
4622 assert(t->inputs[slot].ArrayID == reg->array_id);
4623 return ureg_src_array_offset(t->inputs[slot], index - mesa_index);
4624 }
4625
4626 case PROGRAM_ADDRESS:
4627 return ureg_src(t->address[reg->index]);
4628
4629 case PROGRAM_SYSTEM_VALUE:
4630 assert(reg->index < (int) ARRAY_SIZE(t->systemValues));
4631 return t->systemValues[reg->index];
4632
4633 default:
4634 assert(!"unknown src register file");
4635 return ureg_src_undef();
4636 }
4637 }
4638
4639 /**
4640 * Create a TGSI ureg_dst register from an st_dst_reg.
4641 */
4642 static struct ureg_dst
4643 translate_dst(struct st_translate *t,
4644 const st_dst_reg *dst_reg,
4645 bool saturate)
4646 {
4647 struct ureg_dst dst = dst_register(t, dst_reg->file, dst_reg->index,
4648 dst_reg->array_id);
4649
4650 if (dst.File == TGSI_FILE_NULL)
4651 return dst;
4652
4653 dst = ureg_writemask(dst, dst_reg->writemask);
4654
4655 if (saturate)
4656 dst = ureg_saturate(dst);
4657
4658 if (dst_reg->reladdr != NULL) {
4659 assert(dst_reg->file != PROGRAM_TEMPORARY);
4660 dst = ureg_dst_indirect(dst, ureg_src(t->address[0]));
4661 }
4662
4663 if (dst_reg->has_index2) {
4664 if (dst_reg->reladdr2)
4665 dst = ureg_dst_dimension_indirect(dst, ureg_src(t->address[1]),
4666 dst_reg->index2D);
4667 else
4668 dst = ureg_dst_dimension(dst, dst_reg->index2D);
4669 }
4670
4671 return dst;
4672 }
4673
4674 /**
4675 * Create a TGSI ureg_src register from an st_src_reg.
4676 */
4677 static struct ureg_src
4678 translate_src(struct st_translate *t, const st_src_reg *src_reg)
4679 {
4680 struct ureg_src src = src_register(t, src_reg);
4681
4682 if (src_reg->has_index2) {
4683 /* 2D indexes occur with geometry shader inputs (attrib, vertex)
4684 * and UBO constant buffers (buffer, position).
4685 */
4686 if (src_reg->reladdr2)
4687 src = ureg_src_dimension_indirect(src, ureg_src(t->address[1]),
4688 src_reg->index2D);
4689 else
4690 src = ureg_src_dimension(src, src_reg->index2D);
4691 }
4692
4693 src = ureg_swizzle(src,
4694 GET_SWZ(src_reg->swizzle, 0) & 0x3,
4695 GET_SWZ(src_reg->swizzle, 1) & 0x3,
4696 GET_SWZ(src_reg->swizzle, 2) & 0x3,
4697 GET_SWZ(src_reg->swizzle, 3) & 0x3);
4698
4699 if ((src_reg->negate & 0xf) == NEGATE_XYZW)
4700 src = ureg_negate(src);
4701
4702 if (src_reg->reladdr != NULL) {
4703 assert(src_reg->file != PROGRAM_TEMPORARY);
4704 src = ureg_src_indirect(src, ureg_src(t->address[0]));
4705 }
4706
4707 return src;
4708 }
4709
4710 static struct tgsi_texture_offset
4711 translate_tex_offset(struct st_translate *t,
4712 const st_src_reg *in_offset, int idx)
4713 {
4714 struct tgsi_texture_offset offset;
4715 struct ureg_src imm_src;
4716 struct ureg_dst dst;
4717 int array;
4718
4719 switch (in_offset->file) {
4720 case PROGRAM_IMMEDIATE:
4721 assert(in_offset->index >= 0 && in_offset->index < t->num_immediates);
4722 imm_src = t->immediates[in_offset->index];
4723
4724 offset.File = imm_src.File;
4725 offset.Index = imm_src.Index;
4726 offset.SwizzleX = imm_src.SwizzleX;
4727 offset.SwizzleY = imm_src.SwizzleY;
4728 offset.SwizzleZ = imm_src.SwizzleZ;
4729 offset.Padding = 0;
4730 break;
4731 case PROGRAM_TEMPORARY:
4732 imm_src = ureg_src(t->temps[in_offset->index]);
4733 offset.File = imm_src.File;
4734 offset.Index = imm_src.Index;
4735 offset.SwizzleX = GET_SWZ(in_offset->swizzle, 0);
4736 offset.SwizzleY = GET_SWZ(in_offset->swizzle, 1);
4737 offset.SwizzleZ = GET_SWZ(in_offset->swizzle, 2);
4738 offset.Padding = 0;
4739 break;
4740 case PROGRAM_ARRAY:
4741 array = in_offset->index >> 16;
4742
4743 assert(array >= 0);
4744 assert(array < (int)t->num_temp_arrays);
4745
4746 dst = t->arrays[array];
4747 offset.File = dst.File;
4748 offset.Index = dst.Index + (in_offset->index & 0xFFFF) - 0x8000;
4749 offset.SwizzleX = GET_SWZ(in_offset->swizzle, 0);
4750 offset.SwizzleY = GET_SWZ(in_offset->swizzle, 1);
4751 offset.SwizzleZ = GET_SWZ(in_offset->swizzle, 2);
4752 offset.Padding = 0;
4753 break;
4754 default:
4755 break;
4756 }
4757 return offset;
4758 }
4759
4760 static void
4761 compile_tgsi_instruction(struct st_translate *t,
4762 const glsl_to_tgsi_instruction *inst)
4763 {
4764 struct ureg_program *ureg = t->ureg;
4765 GLuint i;
4766 struct ureg_dst dst[2];
4767 struct ureg_src src[4];
4768 struct tgsi_texture_offset texoffsets[MAX_GLSL_TEXTURE_OFFSET];
4769
4770 unsigned num_dst;
4771 unsigned num_src;
4772 unsigned tex_target;
4773
4774 num_dst = num_inst_dst_regs(inst);
4775 num_src = num_inst_src_regs(inst);
4776
4777 for (i = 0; i < num_dst; i++)
4778 dst[i] = translate_dst(t,
4779 &inst->dst[i],
4780 inst->saturate);
4781
4782 for (i = 0; i < num_src; i++)
4783 src[i] = translate_src(t, &inst->src[i]);
4784
4785 switch(inst->op) {
4786 case TGSI_OPCODE_BGNLOOP:
4787 case TGSI_OPCODE_CAL:
4788 case TGSI_OPCODE_ELSE:
4789 case TGSI_OPCODE_ENDLOOP:
4790 case TGSI_OPCODE_IF:
4791 case TGSI_OPCODE_UIF:
4792 assert(num_dst == 0);
4793 ureg_label_insn(ureg,
4794 inst->op,
4795 src, num_src,
4796 get_label(t,
4797 inst->op == TGSI_OPCODE_CAL ? inst->function->sig_id : 0));
4798 return;
4799
4800 case TGSI_OPCODE_TEX:
4801 case TGSI_OPCODE_TXB:
4802 case TGSI_OPCODE_TXD:
4803 case TGSI_OPCODE_TXL:
4804 case TGSI_OPCODE_TXP:
4805 case TGSI_OPCODE_TXQ:
4806 case TGSI_OPCODE_TXQS:
4807 case TGSI_OPCODE_TXF:
4808 case TGSI_OPCODE_TEX2:
4809 case TGSI_OPCODE_TXB2:
4810 case TGSI_OPCODE_TXL2:
4811 case TGSI_OPCODE_TG4:
4812 case TGSI_OPCODE_LODQ:
4813 src[num_src] = t->samplers[inst->sampler.index];
4814 assert(src[num_src].File != TGSI_FILE_NULL);
4815 if (inst->sampler.reladdr)
4816 src[num_src] =
4817 ureg_src_indirect(src[num_src], ureg_src(t->address[2]));
4818 num_src++;
4819 for (i = 0; i < inst->tex_offset_num_offset; i++) {
4820 texoffsets[i] = translate_tex_offset(t, &inst->tex_offsets[i], i);
4821 }
4822 tex_target = st_translate_texture_target(inst->tex_target, inst->tex_shadow);
4823
4824 ureg_tex_insn(ureg,
4825 inst->op,
4826 dst, num_dst,
4827 tex_target,
4828 texoffsets, inst->tex_offset_num_offset,
4829 src, num_src);
4830 return;
4831
4832 case TGSI_OPCODE_SCS:
4833 dst[0] = ureg_writemask(dst[0], TGSI_WRITEMASK_XY);
4834 ureg_insn(ureg, inst->op, dst, num_dst, src, num_src);
4835 break;
4836
4837 default:
4838 ureg_insn(ureg,
4839 inst->op,
4840 dst, num_dst,
4841 src, num_src);
4842 break;
4843 }
4844 }
4845
4846 /**
4847 * Emit the TGSI instructions for inverting and adjusting WPOS.
4848 * This code is unavoidable because it also depends on whether
4849 * a FBO is bound (STATE_FB_WPOS_Y_TRANSFORM).
4850 */
4851 static void
4852 emit_wpos_adjustment( struct st_translate *t,
4853 int wpos_transform_const,
4854 boolean invert,
4855 GLfloat adjX, GLfloat adjY[2])
4856 {
4857 struct ureg_program *ureg = t->ureg;
4858
4859 assert(wpos_transform_const >= 0);
4860
4861 /* Fragment program uses fragment position input.
4862 * Need to replace instances of INPUT[WPOS] with temp T
4863 * where T = INPUT[WPOS] is inverted by Y.
4864 */
4865 struct ureg_src wpostrans = ureg_DECL_constant(ureg, wpos_transform_const);
4866 struct ureg_dst wpos_temp = ureg_DECL_temporary( ureg );
4867 struct ureg_src wpos_input = t->inputs[t->inputMapping[VARYING_SLOT_POS]];
4868
4869 /* First, apply the coordinate shift: */
4870 if (adjX || adjY[0] || adjY[1]) {
4871 if (adjY[0] != adjY[1]) {
4872 /* Adjust the y coordinate by adjY[1] or adjY[0] respectively
4873 * depending on whether inversion is actually going to be applied
4874 * or not, which is determined by testing against the inversion
4875 * state variable used below, which will be either +1 or -1.
4876 */
4877 struct ureg_dst adj_temp = ureg_DECL_local_temporary(ureg);
4878
4879 ureg_CMP(ureg, adj_temp,
4880 ureg_scalar(wpostrans, invert ? 2 : 0),
4881 ureg_imm4f(ureg, adjX, adjY[0], 0.0f, 0.0f),
4882 ureg_imm4f(ureg, adjX, adjY[1], 0.0f, 0.0f));
4883 ureg_ADD(ureg, wpos_temp, wpos_input, ureg_src(adj_temp));
4884 } else {
4885 ureg_ADD(ureg, wpos_temp, wpos_input,
4886 ureg_imm4f(ureg, adjX, adjY[0], 0.0f, 0.0f));
4887 }
4888 wpos_input = ureg_src(wpos_temp);
4889 } else {
4890 /* MOV wpos_temp, input[wpos]
4891 */
4892 ureg_MOV( ureg, wpos_temp, wpos_input );
4893 }
4894
4895 /* Now the conditional y flip: STATE_FB_WPOS_Y_TRANSFORM.xy/zw will be
4896 * inversion/identity, or the other way around if we're drawing to an FBO.
4897 */
4898 if (invert) {
4899 /* MAD wpos_temp.y, wpos_input, wpostrans.xxxx, wpostrans.yyyy
4900 */
4901 ureg_MAD( ureg,
4902 ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y ),
4903 wpos_input,
4904 ureg_scalar(wpostrans, 0),
4905 ureg_scalar(wpostrans, 1));
4906 } else {
4907 /* MAD wpos_temp.y, wpos_input, wpostrans.zzzz, wpostrans.wwww
4908 */
4909 ureg_MAD( ureg,
4910 ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y ),
4911 wpos_input,
4912 ureg_scalar(wpostrans, 2),
4913 ureg_scalar(wpostrans, 3));
4914 }
4915
4916 /* Use wpos_temp as position input from here on:
4917 */
4918 t->inputs[t->inputMapping[VARYING_SLOT_POS]] = ureg_src(wpos_temp);
4919 }
4920
4921
4922 /**
4923 * Emit fragment position/ooordinate code.
4924 */
4925 static void
4926 emit_wpos(struct st_context *st,
4927 struct st_translate *t,
4928 const struct gl_program *program,
4929 struct ureg_program *ureg,
4930 int wpos_transform_const)
4931 {
4932 const struct gl_fragment_program *fp =
4933 (const struct gl_fragment_program *) program;
4934 struct pipe_screen *pscreen = st->pipe->screen;
4935 GLfloat adjX = 0.0f;
4936 GLfloat adjY[2] = { 0.0f, 0.0f };
4937 boolean invert = FALSE;
4938
4939 /* Query the pixel center conventions supported by the pipe driver and set
4940 * adjX, adjY to help out if it cannot handle the requested one internally.
4941 *
4942 * The bias of the y-coordinate depends on whether y-inversion takes place
4943 * (adjY[1]) or not (adjY[0]), which is in turn dependent on whether we are
4944 * drawing to an FBO (causes additional inversion), and whether the the pipe
4945 * driver origin and the requested origin differ (the latter condition is
4946 * stored in the 'invert' variable).
4947 *
4948 * For height = 100 (i = integer, h = half-integer, l = lower, u = upper):
4949 *
4950 * center shift only:
4951 * i -> h: +0.5
4952 * h -> i: -0.5
4953 *
4954 * inversion only:
4955 * l,i -> u,i: ( 0.0 + 1.0) * -1 + 100 = 99
4956 * l,h -> u,h: ( 0.5 + 0.0) * -1 + 100 = 99.5
4957 * u,i -> l,i: (99.0 + 1.0) * -1 + 100 = 0
4958 * u,h -> l,h: (99.5 + 0.0) * -1 + 100 = 0.5
4959 *
4960 * inversion and center shift:
4961 * l,i -> u,h: ( 0.0 + 0.5) * -1 + 100 = 99.5
4962 * l,h -> u,i: ( 0.5 + 0.5) * -1 + 100 = 99
4963 * u,i -> l,h: (99.0 + 0.5) * -1 + 100 = 0.5
4964 * u,h -> l,i: (99.5 + 0.5) * -1 + 100 = 0
4965 */
4966 if (fp->OriginUpperLeft) {
4967 /* Fragment shader wants origin in upper-left */
4968 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT)) {
4969 /* the driver supports upper-left origin */
4970 }
4971 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT)) {
4972 /* the driver supports lower-left origin, need to invert Y */
4973 ureg_property(ureg, TGSI_PROPERTY_FS_COORD_ORIGIN,
4974 TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
4975 invert = TRUE;
4976 }
4977 else
4978 assert(0);
4979 }
4980 else {
4981 /* Fragment shader wants origin in lower-left */
4982 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT))
4983 /* the driver supports lower-left origin */
4984 ureg_property(ureg, TGSI_PROPERTY_FS_COORD_ORIGIN,
4985 TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
4986 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT))
4987 /* the driver supports upper-left origin, need to invert Y */
4988 invert = TRUE;
4989 else
4990 assert(0);
4991 }
4992
4993 if (fp->PixelCenterInteger) {
4994 /* Fragment shader wants pixel center integer */
4995 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
4996 /* the driver supports pixel center integer */
4997 adjY[1] = 1.0f;
4998 ureg_property(ureg, TGSI_PROPERTY_FS_COORD_PIXEL_CENTER,
4999 TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
5000 }
5001 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
5002 /* the driver supports pixel center half integer, need to bias X,Y */
5003 adjX = -0.5f;
5004 adjY[0] = -0.5f;
5005 adjY[1] = 0.5f;
5006 }
5007 else
5008 assert(0);
5009 }
5010 else {
5011 /* Fragment shader wants pixel center half integer */
5012 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
5013 /* the driver supports pixel center half integer */
5014 }
5015 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
5016 /* the driver supports pixel center integer, need to bias X,Y */
5017 adjX = adjY[0] = adjY[1] = 0.5f;
5018 ureg_property(ureg, TGSI_PROPERTY_FS_COORD_PIXEL_CENTER,
5019 TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
5020 }
5021 else
5022 assert(0);
5023 }
5024
5025 /* we invert after adjustment so that we avoid the MOV to temporary,
5026 * and reuse the adjustment ADD instead */
5027 emit_wpos_adjustment(t, wpos_transform_const, invert, adjX, adjY);
5028 }
5029
5030 /**
5031 * OpenGL's fragment gl_FrontFace input is 1 for front-facing, 0 for back.
5032 * TGSI uses +1 for front, -1 for back.
5033 * This function converts the TGSI value to the GL value. Simply clamping/
5034 * saturating the value to [0,1] does the job.
5035 */
5036 static void
5037 emit_face_var(struct gl_context *ctx, struct st_translate *t)
5038 {
5039 struct ureg_program *ureg = t->ureg;
5040 struct ureg_dst face_temp = ureg_DECL_temporary(ureg);
5041 struct ureg_src face_input = t->inputs[t->inputMapping[VARYING_SLOT_FACE]];
5042
5043 if (ctx->Const.NativeIntegers) {
5044 ureg_FSGE(ureg, face_temp, face_input, ureg_imm1f(ureg, 0));
5045 }
5046 else {
5047 /* MOV_SAT face_temp, input[face] */
5048 ureg_MOV(ureg, ureg_saturate(face_temp), face_input);
5049 }
5050
5051 /* Use face_temp as face input from here on: */
5052 t->inputs[t->inputMapping[VARYING_SLOT_FACE]] = ureg_src(face_temp);
5053 }
5054
5055 static bool
5056 find_array(unsigned attr, struct array_decl *arrays, unsigned count,
5057 unsigned *array_id, unsigned *array_size)
5058 {
5059 unsigned i;
5060
5061 for (i = 0; i < count; i++) {
5062 struct array_decl *decl = &arrays[i];
5063
5064 if (attr == decl->mesa_index) {
5065 *array_id = decl->array_id;
5066 *array_size = decl->array_size;
5067 assert(*array_size);
5068 return true;
5069 }
5070 }
5071 return false;
5072 }
5073
5074 /**
5075 * Translate intermediate IR (glsl_to_tgsi_instruction) to TGSI format.
5076 * \param program the program to translate
5077 * \param numInputs number of input registers used
5078 * \param inputMapping maps Mesa fragment program inputs to TGSI generic
5079 * input indexes
5080 * \param inputSemanticName the TGSI_SEMANTIC flag for each input
5081 * \param inputSemanticIndex the semantic index (ex: which texcoord) for
5082 * each input
5083 * \param interpMode the TGSI_INTERPOLATE_LINEAR/PERSP mode for each input
5084 * \param interpLocation the TGSI_INTERPOLATE_LOC_* location for each input
5085 * \param numOutputs number of output registers used
5086 * \param outputMapping maps Mesa fragment program outputs to TGSI
5087 * generic outputs
5088 * \param outputSemanticName the TGSI_SEMANTIC flag for each output
5089 * \param outputSemanticIndex the semantic index (ex: which texcoord) for
5090 * each output
5091 *
5092 * \return PIPE_OK or PIPE_ERROR_OUT_OF_MEMORY
5093 */
5094 extern "C" enum pipe_error
5095 st_translate_program(
5096 struct gl_context *ctx,
5097 uint procType,
5098 struct ureg_program *ureg,
5099 glsl_to_tgsi_visitor *program,
5100 const struct gl_program *proginfo,
5101 GLuint numInputs,
5102 const GLuint inputMapping[],
5103 const GLuint inputSlotToAttr[],
5104 const ubyte inputSemanticName[],
5105 const ubyte inputSemanticIndex[],
5106 const GLuint interpMode[],
5107 const GLuint interpLocation[],
5108 GLuint numOutputs,
5109 const GLuint outputMapping[],
5110 const GLuint outputSlotToAttr[],
5111 const ubyte outputSemanticName[],
5112 const ubyte outputSemanticIndex[])
5113 {
5114 struct st_translate *t;
5115 unsigned i;
5116 enum pipe_error ret = PIPE_OK;
5117
5118 assert(numInputs <= ARRAY_SIZE(t->inputs));
5119 assert(numOutputs <= ARRAY_SIZE(t->outputs));
5120
5121 assert(_mesa_sysval_to_semantic[SYSTEM_VALUE_FRONT_FACE] ==
5122 TGSI_SEMANTIC_FACE);
5123 assert(_mesa_sysval_to_semantic[SYSTEM_VALUE_VERTEX_ID] ==
5124 TGSI_SEMANTIC_VERTEXID);
5125 assert(_mesa_sysval_to_semantic[SYSTEM_VALUE_INSTANCE_ID] ==
5126 TGSI_SEMANTIC_INSTANCEID);
5127 assert(_mesa_sysval_to_semantic[SYSTEM_VALUE_SAMPLE_ID] ==
5128 TGSI_SEMANTIC_SAMPLEID);
5129 assert(_mesa_sysval_to_semantic[SYSTEM_VALUE_SAMPLE_POS] ==
5130 TGSI_SEMANTIC_SAMPLEPOS);
5131 assert(_mesa_sysval_to_semantic[SYSTEM_VALUE_SAMPLE_MASK_IN] ==
5132 TGSI_SEMANTIC_SAMPLEMASK);
5133 assert(_mesa_sysval_to_semantic[SYSTEM_VALUE_INVOCATION_ID] ==
5134 TGSI_SEMANTIC_INVOCATIONID);
5135 assert(_mesa_sysval_to_semantic[SYSTEM_VALUE_VERTEX_ID_ZERO_BASE] ==
5136 TGSI_SEMANTIC_VERTEXID_NOBASE);
5137 assert(_mesa_sysval_to_semantic[SYSTEM_VALUE_BASE_VERTEX] ==
5138 TGSI_SEMANTIC_BASEVERTEX);
5139 assert(_mesa_sysval_to_semantic[SYSTEM_VALUE_TESS_COORD] ==
5140 TGSI_SEMANTIC_TESSCOORD);
5141
5142 t = CALLOC_STRUCT(st_translate);
5143 if (!t) {
5144 ret = PIPE_ERROR_OUT_OF_MEMORY;
5145 goto out;
5146 }
5147
5148 t->procType = procType;
5149 t->inputMapping = inputMapping;
5150 t->outputMapping = outputMapping;
5151 t->ureg = ureg;
5152 t->num_temp_arrays = program->next_array;
5153 if (t->num_temp_arrays)
5154 t->arrays = (struct ureg_dst*)
5155 calloc(1, sizeof(t->arrays[0]) * t->num_temp_arrays);
5156
5157 /*
5158 * Declare input attributes.
5159 */
5160 switch (procType) {
5161 case TGSI_PROCESSOR_FRAGMENT:
5162 for (i = 0; i < numInputs; i++) {
5163 unsigned array_id = 0;
5164 unsigned array_size;
5165
5166 if (find_array(inputSlotToAttr[i], program->input_arrays,
5167 program->num_input_arrays, &array_id, &array_size)) {
5168 /* We've found an array. Declare it so. */
5169 t->inputs[i] = ureg_DECL_fs_input_cyl_centroid(ureg,
5170 inputSemanticName[i], inputSemanticIndex[i],
5171 interpMode[i], 0, interpLocation[i],
5172 array_id, array_size);
5173 i += array_size - 1;
5174 }
5175 else {
5176 t->inputs[i] = ureg_DECL_fs_input_cyl_centroid(ureg,
5177 inputSemanticName[i], inputSemanticIndex[i],
5178 interpMode[i], 0, interpLocation[i], 0, 1);
5179 }
5180 }
5181 break;
5182 case TGSI_PROCESSOR_GEOMETRY:
5183 case TGSI_PROCESSOR_TESS_EVAL:
5184 case TGSI_PROCESSOR_TESS_CTRL:
5185 for (i = 0; i < numInputs; i++) {
5186 unsigned array_id = 0;
5187 unsigned array_size;
5188
5189 if (find_array(inputSlotToAttr[i], program->input_arrays,
5190 program->num_input_arrays, &array_id, &array_size)) {
5191 /* We've found an array. Declare it so. */
5192 t->inputs[i] = ureg_DECL_input(ureg, inputSemanticName[i],
5193 inputSemanticIndex[i],
5194 array_id, array_size);
5195 i += array_size - 1;
5196 }
5197 else {
5198 t->inputs[i] = ureg_DECL_input(ureg, inputSemanticName[i],
5199 inputSemanticIndex[i], 0, 1);
5200 }
5201 }
5202 break;
5203 case TGSI_PROCESSOR_VERTEX:
5204 for (i = 0; i < numInputs; i++) {
5205 t->inputs[i] = ureg_DECL_vs_input(ureg, i);
5206 }
5207 break;
5208 default:
5209 assert(0);
5210 }
5211
5212 /*
5213 * Declare output attributes.
5214 */
5215 switch (procType) {
5216 case TGSI_PROCESSOR_FRAGMENT:
5217 break;
5218 case TGSI_PROCESSOR_GEOMETRY:
5219 case TGSI_PROCESSOR_TESS_EVAL:
5220 case TGSI_PROCESSOR_TESS_CTRL:
5221 case TGSI_PROCESSOR_VERTEX:
5222 for (i = 0; i < numOutputs; i++) {
5223 unsigned array_id = 0;
5224 unsigned array_size;
5225
5226 if (find_array(outputSlotToAttr[i], program->output_arrays,
5227 program->num_output_arrays, &array_id, &array_size)) {
5228 /* We've found an array. Declare it so. */
5229 t->outputs[i] = ureg_DECL_output_array(ureg,
5230 outputSemanticName[i],
5231 outputSemanticIndex[i],
5232 array_id, array_size);
5233 i += array_size - 1;
5234 }
5235 else {
5236 t->outputs[i] = ureg_DECL_output(ureg,
5237 outputSemanticName[i],
5238 outputSemanticIndex[i]);
5239 }
5240 }
5241 break;
5242 default:
5243 assert(0);
5244 }
5245
5246 if (procType == TGSI_PROCESSOR_FRAGMENT) {
5247 if (proginfo->InputsRead & VARYING_BIT_POS) {
5248 /* Must do this after setting up t->inputs. */
5249 emit_wpos(st_context(ctx), t, proginfo, ureg,
5250 program->wpos_transform_const);
5251 }
5252
5253 if (proginfo->InputsRead & VARYING_BIT_FACE)
5254 emit_face_var(ctx, t);
5255
5256 for (i = 0; i < numOutputs; i++) {
5257 switch (outputSemanticName[i]) {
5258 case TGSI_SEMANTIC_POSITION:
5259 t->outputs[i] = ureg_DECL_output(ureg,
5260 TGSI_SEMANTIC_POSITION, /* Z/Depth */
5261 outputSemanticIndex[i]);
5262 t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_Z);
5263 break;
5264 case TGSI_SEMANTIC_STENCIL:
5265 t->outputs[i] = ureg_DECL_output(ureg,
5266 TGSI_SEMANTIC_STENCIL, /* Stencil */
5267 outputSemanticIndex[i]);
5268 t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_Y);
5269 break;
5270 case TGSI_SEMANTIC_COLOR:
5271 t->outputs[i] = ureg_DECL_output(ureg,
5272 TGSI_SEMANTIC_COLOR,
5273 outputSemanticIndex[i]);
5274 break;
5275 case TGSI_SEMANTIC_SAMPLEMASK:
5276 t->outputs[i] = ureg_DECL_output(ureg,
5277 TGSI_SEMANTIC_SAMPLEMASK,
5278 outputSemanticIndex[i]);
5279 /* TODO: If we ever support more than 32 samples, this will have
5280 * to become an array.
5281 */
5282 t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_X);
5283 break;
5284 default:
5285 assert(!"fragment shader outputs must be POSITION/STENCIL/COLOR");
5286 ret = PIPE_ERROR_BAD_INPUT;
5287 goto out;
5288 }
5289 }
5290 }
5291 else if (procType == TGSI_PROCESSOR_VERTEX) {
5292 for (i = 0; i < numOutputs; i++) {
5293 if (outputSemanticName[i] == TGSI_SEMANTIC_FOG) {
5294 /* force register to contain a fog coordinate in the form (F, 0, 0, 1). */
5295 ureg_MOV(ureg,
5296 ureg_writemask(t->outputs[i], TGSI_WRITEMASK_YZW),
5297 ureg_imm4f(ureg, 0.0f, 0.0f, 0.0f, 1.0f));
5298 t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_X);
5299 }
5300 }
5301 }
5302
5303 /* Declare address register.
5304 */
5305 if (program->num_address_regs > 0) {
5306 assert(program->num_address_regs <= 3);
5307 for (int i = 0; i < program->num_address_regs; i++)
5308 t->address[i] = ureg_DECL_address(ureg);
5309 }
5310
5311 /* Declare misc input registers
5312 */
5313 {
5314 GLbitfield sysInputs = proginfo->SystemValuesRead;
5315 unsigned numSys = 0;
5316 for (i = 0; sysInputs; i++) {
5317 if (sysInputs & (1 << i)) {
5318 unsigned semName = _mesa_sysval_to_semantic[i];
5319 t->systemValues[i] = ureg_DECL_system_value(ureg, numSys, semName, 0);
5320 if (semName == TGSI_SEMANTIC_INSTANCEID ||
5321 semName == TGSI_SEMANTIC_VERTEXID) {
5322 /* From Gallium perspective, these system values are always
5323 * integer, and require native integer support. However, if
5324 * native integer is supported on the vertex stage but not the
5325 * pixel stage (e.g, i915g + draw), Mesa will generate IR that
5326 * assumes these system values are floats. To resolve the
5327 * inconsistency, we insert a U2F.
5328 */
5329 struct st_context *st = st_context(ctx);
5330 struct pipe_screen *pscreen = st->pipe->screen;
5331 assert(procType == TGSI_PROCESSOR_VERTEX);
5332 assert(pscreen->get_shader_param(pscreen, PIPE_SHADER_VERTEX, PIPE_SHADER_CAP_INTEGERS));
5333 (void) pscreen;
5334 if (!ctx->Const.NativeIntegers) {
5335 struct ureg_dst temp = ureg_DECL_local_temporary(t->ureg);
5336 ureg_U2F( t->ureg, ureg_writemask(temp, TGSI_WRITEMASK_X), t->systemValues[i]);
5337 t->systemValues[i] = ureg_scalar(ureg_src(temp), 0);
5338 }
5339 }
5340 numSys++;
5341 sysInputs &= ~(1 << i);
5342 }
5343 }
5344 }
5345
5346 t->array_sizes = program->array_sizes;
5347 t->input_arrays = program->input_arrays;
5348 t->output_arrays = program->output_arrays;
5349
5350 /* Emit constants and uniforms. TGSI uses a single index space for these,
5351 * so we put all the translated regs in t->constants.
5352 */
5353 if (proginfo->Parameters) {
5354 t->constants = (struct ureg_src *)
5355 calloc(proginfo->Parameters->NumParameters, sizeof(t->constants[0]));
5356 if (t->constants == NULL) {
5357 ret = PIPE_ERROR_OUT_OF_MEMORY;
5358 goto out;
5359 }
5360 t->num_constants = proginfo->Parameters->NumParameters;
5361
5362 for (i = 0; i < proginfo->Parameters->NumParameters; i++) {
5363 switch (proginfo->Parameters->Parameters[i].Type) {
5364 case PROGRAM_STATE_VAR:
5365 case PROGRAM_UNIFORM:
5366 t->constants[i] = ureg_DECL_constant(ureg, i);
5367 break;
5368
5369 /* Emit immediates for PROGRAM_CONSTANT only when there's no indirect
5370 * addressing of the const buffer.
5371 * FIXME: Be smarter and recognize param arrays:
5372 * indirect addressing is only valid within the referenced
5373 * array.
5374 */
5375 case PROGRAM_CONSTANT:
5376 if (program->indirect_addr_consts)
5377 t->constants[i] = ureg_DECL_constant(ureg, i);
5378 else
5379 t->constants[i] = emit_immediate(t,
5380 proginfo->Parameters->ParameterValues[i],
5381 proginfo->Parameters->Parameters[i].DataType,
5382 4);
5383 break;
5384 default:
5385 break;
5386 }
5387 }
5388 }
5389
5390 if (program->shader) {
5391 unsigned num_ubos = program->shader->NumUniformBlocks;
5392
5393 for (i = 0; i < num_ubos; i++) {
5394 unsigned size = program->shader->UniformBlocks[i]->UniformBufferSize;
5395 unsigned num_const_vecs = (size + 15) / 16;
5396 unsigned first, last;
5397 assert(num_const_vecs > 0);
5398 first = 0;
5399 last = num_const_vecs > 0 ? num_const_vecs - 1 : 0;
5400 ureg_DECL_constant2D(t->ureg, first, last, i + 1);
5401 }
5402 }
5403
5404 /* Emit immediate values.
5405 */
5406 t->immediates = (struct ureg_src *)
5407 calloc(program->num_immediates, sizeof(struct ureg_src));
5408 if (t->immediates == NULL) {
5409 ret = PIPE_ERROR_OUT_OF_MEMORY;
5410 goto out;
5411 }
5412 t->num_immediates = program->num_immediates;
5413
5414 i = 0;
5415 foreach_in_list(immediate_storage, imm, &program->immediates) {
5416 assert(i < program->num_immediates);
5417 t->immediates[i++] = emit_immediate(t, imm->values, imm->type, imm->size32);
5418 }
5419 assert(i == program->num_immediates);
5420
5421 /* texture samplers */
5422 for (i = 0; i < ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxTextureImageUnits; i++) {
5423 if (program->samplers_used & (1 << i)) {
5424 unsigned type;
5425
5426 t->samplers[i] = ureg_DECL_sampler(ureg, i);
5427
5428 switch (program->sampler_types[i]) {
5429 case GLSL_TYPE_INT:
5430 type = TGSI_RETURN_TYPE_SINT;
5431 break;
5432 case GLSL_TYPE_UINT:
5433 type = TGSI_RETURN_TYPE_UINT;
5434 break;
5435 case GLSL_TYPE_FLOAT:
5436 type = TGSI_RETURN_TYPE_FLOAT;
5437 break;
5438 default:
5439 unreachable("not reached");
5440 }
5441
5442 ureg_DECL_sampler_view( ureg, i, program->sampler_targets[i],
5443 type, type, type, type );
5444 }
5445 }
5446
5447 /* Emit each instruction in turn:
5448 */
5449 foreach_in_list(glsl_to_tgsi_instruction, inst, &program->instructions) {
5450 set_insn_start(t, ureg_get_instruction_number(ureg));
5451 compile_tgsi_instruction(t, inst);
5452 }
5453
5454 /* Fix up all emitted labels:
5455 */
5456 for (i = 0; i < t->labels_count; i++) {
5457 ureg_fixup_label(ureg, t->labels[i].token,
5458 t->insn[t->labels[i].branch_target]);
5459 }
5460
5461 out:
5462 if (t) {
5463 free(t->arrays);
5464 free(t->temps);
5465 free(t->insn);
5466 free(t->labels);
5467 free(t->constants);
5468 t->num_constants = 0;
5469 free(t->immediates);
5470 t->num_immediates = 0;
5471
5472 if (t->error) {
5473 debug_printf("%s: translate error flag set\n", __func__);
5474 }
5475
5476 FREE(t);
5477 }
5478
5479 return ret;
5480 }
5481 /* ----------------------------- End TGSI code ------------------------------ */
5482
5483
5484 /**
5485 * Convert a shader's GLSL IR into a Mesa gl_program, although without
5486 * generating Mesa IR.
5487 */
5488 static struct gl_program *
5489 get_mesa_program(struct gl_context *ctx,
5490 struct gl_shader_program *shader_program,
5491 struct gl_shader *shader)
5492 {
5493 glsl_to_tgsi_visitor* v;
5494 struct gl_program *prog;
5495 GLenum target = _mesa_shader_stage_to_program(shader->Stage);
5496 bool progress;
5497 struct gl_shader_compiler_options *options =
5498 &ctx->Const.ShaderCompilerOptions[_mesa_shader_enum_to_shader_stage(shader->Type)];
5499 struct pipe_screen *pscreen = ctx->st->pipe->screen;
5500 unsigned ptarget = st_shader_stage_to_ptarget(shader->Stage);
5501
5502 validate_ir_tree(shader->ir);
5503
5504 prog = ctx->Driver.NewProgram(ctx, target, shader_program->Name);
5505 if (!prog)
5506 return NULL;
5507 prog->Parameters = _mesa_new_parameter_list();
5508 v = new glsl_to_tgsi_visitor();
5509 v->ctx = ctx;
5510 v->prog = prog;
5511 v->shader_program = shader_program;
5512 v->shader = shader;
5513 v->options = options;
5514 v->glsl_version = ctx->Const.GLSLVersion;
5515 v->native_integers = ctx->Const.NativeIntegers;
5516
5517 v->have_sqrt = pscreen->get_shader_param(pscreen, ptarget,
5518 PIPE_SHADER_CAP_TGSI_SQRT_SUPPORTED);
5519 v->have_fma = pscreen->get_shader_param(pscreen, ptarget,
5520 PIPE_SHADER_CAP_TGSI_FMA_SUPPORTED);
5521
5522 _mesa_copy_linked_program_data(shader->Stage, shader_program, prog);
5523 _mesa_generate_parameters_list_for_uniforms(shader_program, shader,
5524 prog->Parameters);
5525
5526 /* Remove reads from output registers. */
5527 lower_output_reads(shader->Stage, shader->ir);
5528
5529 /* Emit intermediate IR for main(). */
5530 visit_exec_list(shader->ir, v);
5531
5532 /* Now emit bodies for any functions that were used. */
5533 do {
5534 progress = GL_FALSE;
5535
5536 foreach_in_list(function_entry, entry, &v->function_signatures) {
5537 if (!entry->bgn_inst) {
5538 v->current_function = entry;
5539
5540 entry->bgn_inst = v->emit_asm(NULL, TGSI_OPCODE_BGNSUB);
5541 entry->bgn_inst->function = entry;
5542
5543 visit_exec_list(&entry->sig->body, v);
5544
5545 glsl_to_tgsi_instruction *last;
5546 last = (glsl_to_tgsi_instruction *)v->instructions.get_tail();
5547 if (last->op != TGSI_OPCODE_RET)
5548 v->emit_asm(NULL, TGSI_OPCODE_RET);
5549
5550 glsl_to_tgsi_instruction *end;
5551 end = v->emit_asm(NULL, TGSI_OPCODE_ENDSUB);
5552 end->function = entry;
5553
5554 progress = GL_TRUE;
5555 }
5556 }
5557 } while (progress);
5558
5559 #if 0
5560 /* Print out some information (for debugging purposes) used by the
5561 * optimization passes. */
5562 {
5563 int i;
5564 int *first_writes = rzalloc_array(v->mem_ctx, int, v->next_temp);
5565 int *first_reads = rzalloc_array(v->mem_ctx, int, v->next_temp);
5566 int *last_writes = rzalloc_array(v->mem_ctx, int, v->next_temp);
5567 int *last_reads = rzalloc_array(v->mem_ctx, int, v->next_temp);
5568
5569 for (i = 0; i < v->next_temp; i++) {
5570 first_writes[i] = -1;
5571 first_reads[i] = -1;
5572 last_writes[i] = -1;
5573 last_reads[i] = -1;
5574 }
5575 v->get_first_temp_read(first_reads);
5576 v->get_last_temp_read_first_temp_write(last_reads, first_writes);
5577 v->get_last_temp_write(last_writes);
5578 for (i = 0; i < v->next_temp; i++)
5579 printf("Temp %d: FR=%3d FW=%3d LR=%3d LW=%3d\n", i, first_reads[i],
5580 first_writes[i],
5581 last_reads[i],
5582 last_writes[i]);
5583 ralloc_free(first_writes);
5584 ralloc_free(first_reads);
5585 ralloc_free(last_writes);
5586 ralloc_free(last_reads);
5587 }
5588 #endif
5589
5590 /* Perform optimizations on the instructions in the glsl_to_tgsi_visitor. */
5591 v->simplify_cmp();
5592
5593 if (shader->Type != GL_TESS_CONTROL_SHADER &&
5594 shader->Type != GL_TESS_EVALUATION_SHADER)
5595 v->copy_propagate();
5596
5597 while (v->eliminate_dead_code());
5598
5599 v->merge_two_dsts();
5600 v->merge_registers();
5601 v->renumber_registers();
5602
5603 /* Write the END instruction. */
5604 v->emit_asm(NULL, TGSI_OPCODE_END);
5605
5606 if (ctx->_Shader->Flags & GLSL_DUMP) {
5607 _mesa_log("\n");
5608 _mesa_log("GLSL IR for linked %s program %d:\n",
5609 _mesa_shader_stage_to_string(shader->Stage),
5610 shader_program->Name);
5611 _mesa_print_ir(_mesa_get_log_file(), shader->ir, NULL);
5612 _mesa_log("\n\n");
5613 }
5614
5615 prog->Instructions = NULL;
5616 prog->NumInstructions = 0;
5617
5618 do_set_program_inouts(shader->ir, prog, shader->Stage);
5619 shrink_array_declarations(v->input_arrays, v->num_input_arrays,
5620 prog->InputsRead, prog->PatchInputsRead);
5621 shrink_array_declarations(v->output_arrays, v->num_output_arrays,
5622 prog->OutputsWritten, prog->PatchOutputsWritten);
5623 count_resources(v, prog);
5624
5625 /* This must be done before the uniform storage is associated. */
5626 if (shader->Type == GL_FRAGMENT_SHADER &&
5627 prog->InputsRead & VARYING_BIT_POS){
5628 static const gl_state_index wposTransformState[STATE_LENGTH] = {
5629 STATE_INTERNAL, STATE_FB_WPOS_Y_TRANSFORM
5630 };
5631
5632 v->wpos_transform_const = _mesa_add_state_reference(prog->Parameters,
5633 wposTransformState);
5634 }
5635
5636 _mesa_reference_program(ctx, &shader->Program, prog);
5637
5638 /* This has to be done last. Any operation the can cause
5639 * prog->ParameterValues to get reallocated (e.g., anything that adds a
5640 * program constant) has to happen before creating this linkage.
5641 */
5642 _mesa_associate_uniform_storage(ctx, shader_program, prog->Parameters);
5643 if (!shader_program->LinkStatus) {
5644 free_glsl_to_tgsi_visitor(v);
5645 return NULL;
5646 }
5647
5648 struct st_vertex_program *stvp;
5649 struct st_fragment_program *stfp;
5650 struct st_geometry_program *stgp;
5651 struct st_tessctrl_program *sttcp;
5652 struct st_tesseval_program *sttep;
5653
5654 switch (shader->Type) {
5655 case GL_VERTEX_SHADER:
5656 stvp = (struct st_vertex_program *)prog;
5657 stvp->glsl_to_tgsi = v;
5658 break;
5659 case GL_FRAGMENT_SHADER:
5660 stfp = (struct st_fragment_program *)prog;
5661 stfp->glsl_to_tgsi = v;
5662 break;
5663 case GL_GEOMETRY_SHADER:
5664 stgp = (struct st_geometry_program *)prog;
5665 stgp->glsl_to_tgsi = v;
5666 break;
5667 case GL_TESS_CONTROL_SHADER:
5668 sttcp = (struct st_tessctrl_program *)prog;
5669 sttcp->glsl_to_tgsi = v;
5670 break;
5671 case GL_TESS_EVALUATION_SHADER:
5672 sttep = (struct st_tesseval_program *)prog;
5673 sttep->glsl_to_tgsi = v;
5674 break;
5675 default:
5676 assert(!"should not be reached");
5677 return NULL;
5678 }
5679
5680 return prog;
5681 }
5682
5683 extern "C" {
5684
5685 static void
5686 st_dump_program_for_shader_db(struct gl_context *ctx,
5687 struct gl_shader_program *prog)
5688 {
5689 /* Dump only successfully compiled and linked shaders to the specified
5690 * file. This is for shader-db.
5691 *
5692 * These options allow some pre-processing of shaders while dumping,
5693 * because some apps have ill-formed shaders.
5694 */
5695 const char *dump_filename = os_get_option("ST_DUMP_SHADERS");
5696 const char *insert_directives = os_get_option("ST_DUMP_INSERT");
5697
5698 if (dump_filename && prog->Name != 0) {
5699 FILE *f = fopen(dump_filename, "a");
5700
5701 if (f) {
5702 for (unsigned i = 0; i < prog->NumShaders; i++) {
5703 const struct gl_shader *sh = prog->Shaders[i];
5704 const char *source;
5705 bool skip_version = false;
5706
5707 if (!sh)
5708 continue;
5709
5710 source = sh->Source;
5711
5712 /* This string mustn't be changed. shader-db uses it to find
5713 * where the shader begins.
5714 */
5715 fprintf(f, "GLSL %s shader %d source for linked program %d:\n",
5716 _mesa_shader_stage_to_string(sh->Stage),
5717 i, prog->Name);
5718
5719 /* Dump the forced version if set. */
5720 if (ctx->Const.ForceGLSLVersion) {
5721 fprintf(f, "#version %i\n", ctx->Const.ForceGLSLVersion);
5722 skip_version = true;
5723 }
5724
5725 /* Insert directives (optional). */
5726 if (insert_directives) {
5727 if (!ctx->Const.ForceGLSLVersion && prog->Version)
5728 fprintf(f, "#version %i\n", prog->Version);
5729 fprintf(f, "%s\n", insert_directives);
5730 skip_version = true;
5731 }
5732
5733 if (skip_version && strncmp(source, "#version ", 9) == 0) {
5734 const char *next_line = strstr(source, "\n");
5735
5736 if (next_line)
5737 source = next_line + 1;
5738 else
5739 continue;
5740 }
5741
5742 fprintf(f, "%s", source);
5743 fprintf(f, "\n");
5744 }
5745 fclose(f);
5746 }
5747 }
5748 }
5749
5750 /**
5751 * Link a shader.
5752 * Called via ctx->Driver.LinkShader()
5753 * This actually involves converting GLSL IR into an intermediate TGSI-like IR
5754 * with code lowering and other optimizations.
5755 */
5756 GLboolean
5757 st_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
5758 {
5759 struct pipe_screen *pscreen = ctx->st->pipe->screen;
5760 assert(prog->LinkStatus);
5761
5762 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
5763 if (prog->_LinkedShaders[i] == NULL)
5764 continue;
5765
5766 bool progress;
5767 exec_list *ir = prog->_LinkedShaders[i]->ir;
5768 gl_shader_stage stage = _mesa_shader_enum_to_shader_stage(prog->_LinkedShaders[i]->Type);
5769 const struct gl_shader_compiler_options *options =
5770 &ctx->Const.ShaderCompilerOptions[stage];
5771 unsigned ptarget = st_shader_stage_to_ptarget(stage);
5772 bool have_dround = pscreen->get_shader_param(pscreen, ptarget,
5773 PIPE_SHADER_CAP_TGSI_DROUND_SUPPORTED);
5774 bool have_dfrexp = pscreen->get_shader_param(pscreen, ptarget,
5775 PIPE_SHADER_CAP_TGSI_DFRACEXP_DLDEXP_SUPPORTED);
5776
5777 /* If there are forms of indirect addressing that the driver
5778 * cannot handle, perform the lowering pass.
5779 */
5780 if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput ||
5781 options->EmitNoIndirectTemp || options->EmitNoIndirectUniform) {
5782 lower_variable_index_to_cond_assign(prog->_LinkedShaders[i]->Stage, ir,
5783 options->EmitNoIndirectInput,
5784 options->EmitNoIndirectOutput,
5785 options->EmitNoIndirectTemp,
5786 options->EmitNoIndirectUniform);
5787 }
5788
5789 if (ctx->Extensions.ARB_shading_language_packing) {
5790 unsigned lower_inst = LOWER_PACK_SNORM_2x16 |
5791 LOWER_UNPACK_SNORM_2x16 |
5792 LOWER_PACK_UNORM_2x16 |
5793 LOWER_UNPACK_UNORM_2x16 |
5794 LOWER_PACK_SNORM_4x8 |
5795 LOWER_UNPACK_SNORM_4x8 |
5796 LOWER_UNPACK_UNORM_4x8 |
5797 LOWER_PACK_UNORM_4x8 |
5798 LOWER_PACK_HALF_2x16 |
5799 LOWER_UNPACK_HALF_2x16;
5800
5801 if (ctx->Extensions.ARB_gpu_shader5)
5802 lower_inst |= LOWER_PACK_USE_BFI |
5803 LOWER_PACK_USE_BFE;
5804
5805 lower_packing_builtins(ir, lower_inst);
5806 }
5807
5808 if (!pscreen->get_param(pscreen, PIPE_CAP_TEXTURE_GATHER_OFFSETS))
5809 lower_offset_arrays(ir);
5810 do_mat_op_to_vec(ir);
5811 lower_instructions(ir,
5812 MOD_TO_FLOOR |
5813 DIV_TO_MUL_RCP |
5814 EXP_TO_EXP2 |
5815 LOG_TO_LOG2 |
5816 LDEXP_TO_ARITH |
5817 (have_dfrexp ? 0 : DFREXP_DLDEXP_TO_ARITH) |
5818 CARRY_TO_ARITH |
5819 BORROW_TO_ARITH |
5820 (have_dround ? 0 : DOPS_TO_DFRAC) |
5821 (options->EmitNoPow ? POW_TO_EXP2 : 0) |
5822 (!ctx->Const.NativeIntegers ? INT_DIV_TO_MUL_RCP : 0) |
5823 (options->EmitNoSat ? SAT_TO_CLAMP : 0));
5824
5825 lower_ubo_reference(prog->_LinkedShaders[i]);
5826 do_vec_index_to_cond_assign(ir);
5827 lower_vector_insert(ir, true);
5828 lower_quadop_vector(ir, false);
5829 lower_noise(ir);
5830 if (options->MaxIfDepth == 0) {
5831 lower_discard(ir);
5832 }
5833
5834 do {
5835 progress = false;
5836
5837 progress = do_lower_jumps(ir, true, true, options->EmitNoMainReturn, options->EmitNoCont, options->EmitNoLoops) || progress;
5838
5839 progress = do_common_optimization(ir, true, true, options,
5840 ctx->Const.NativeIntegers)
5841 || progress;
5842
5843 progress = lower_if_to_cond_assign(ir, options->MaxIfDepth) || progress;
5844
5845 } while (progress);
5846
5847 validate_ir_tree(ir);
5848 }
5849
5850 for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
5851 struct gl_program *linked_prog;
5852
5853 if (prog->_LinkedShaders[i] == NULL)
5854 continue;
5855
5856 linked_prog = get_mesa_program(ctx, prog, prog->_LinkedShaders[i]);
5857
5858 if (linked_prog) {
5859 _mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program,
5860 linked_prog);
5861 if (!ctx->Driver.ProgramStringNotify(ctx,
5862 _mesa_shader_stage_to_program(i),
5863 linked_prog)) {
5864 _mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program,
5865 NULL);
5866 _mesa_reference_program(ctx, &linked_prog, NULL);
5867 return GL_FALSE;
5868 }
5869 }
5870
5871 _mesa_reference_program(ctx, &linked_prog, NULL);
5872 }
5873
5874 st_dump_program_for_shader_db(ctx, prog);
5875 return GL_TRUE;
5876 }
5877
5878 void
5879 st_translate_stream_output_info(glsl_to_tgsi_visitor *glsl_to_tgsi,
5880 const GLuint outputMapping[],
5881 struct pipe_stream_output_info *so)
5882 {
5883 unsigned i;
5884 struct gl_transform_feedback_info *info =
5885 &glsl_to_tgsi->shader_program->LinkedTransformFeedback;
5886
5887 for (i = 0; i < info->NumOutputs; i++) {
5888 so->output[i].register_index =
5889 outputMapping[info->Outputs[i].OutputRegister];
5890 so->output[i].start_component = info->Outputs[i].ComponentOffset;
5891 so->output[i].num_components = info->Outputs[i].NumComponents;
5892 so->output[i].output_buffer = info->Outputs[i].OutputBuffer;
5893 so->output[i].dst_offset = info->Outputs[i].DstOffset;
5894 so->output[i].stream = info->Outputs[i].StreamId;
5895 }
5896
5897 for (i = 0; i < PIPE_MAX_SO_BUFFERS; i++) {
5898 so->stride[i] = info->BufferStride[i];
5899 }
5900 so->num_outputs = info->NumOutputs;
5901 }
5902
5903 } /* extern "C" */