glsl_to_tgsi: Use the GLSL compiler's new remove-output-reads pass.
[mesa.git] / src / mesa / state_tracker / st_glsl_to_tgsi.cpp
1 /*
2 * Copyright (C) 2005-2007 Brian Paul All Rights Reserved.
3 * Copyright (C) 2008 VMware, Inc. All Rights Reserved.
4 * Copyright © 2010 Intel Corporation
5 * Copyright © 2011 Bryan Cain
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the next
15 * paragraph) shall be included in all copies or substantial portions of the
16 * Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
23 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
24 * DEALINGS IN THE SOFTWARE.
25 */
26
27 /**
28 * \file glsl_to_tgsi.cpp
29 *
30 * Translate GLSL IR to TGSI.
31 */
32
33 #include <stdio.h>
34 #include "main/compiler.h"
35 #include "ir.h"
36 #include "ir_visitor.h"
37 #include "ir_print_visitor.h"
38 #include "ir_expression_flattening.h"
39 #include "glsl_types.h"
40 #include "glsl_parser_extras.h"
41 #include "../glsl/program.h"
42 #include "ir_optimization.h"
43 #include "ast.h"
44
45 #include "main/mtypes.h"
46 #include "main/shaderobj.h"
47 #include "program/hash_table.h"
48
49 extern "C" {
50 #include "main/shaderapi.h"
51 #include "main/uniforms.h"
52 #include "program/prog_instruction.h"
53 #include "program/prog_optimize.h"
54 #include "program/prog_print.h"
55 #include "program/program.h"
56 #include "program/prog_parameter.h"
57 #include "program/sampler.h"
58
59 #include "pipe/p_compiler.h"
60 #include "pipe/p_context.h"
61 #include "pipe/p_screen.h"
62 #include "pipe/p_shader_tokens.h"
63 #include "pipe/p_state.h"
64 #include "util/u_math.h"
65 #include "tgsi/tgsi_ureg.h"
66 #include "tgsi/tgsi_info.h"
67 #include "st_context.h"
68 #include "st_program.h"
69 #include "st_glsl_to_tgsi.h"
70 #include "st_mesa_to_tgsi.h"
71 }
72
73 #define PROGRAM_IMMEDIATE PROGRAM_FILE_MAX
74 #define PROGRAM_ANY_CONST ((1 << PROGRAM_LOCAL_PARAM) | \
75 (1 << PROGRAM_ENV_PARAM) | \
76 (1 << PROGRAM_STATE_VAR) | \
77 (1 << PROGRAM_NAMED_PARAM) | \
78 (1 << PROGRAM_CONSTANT) | \
79 (1 << PROGRAM_UNIFORM))
80
81 /**
82 * Maximum number of temporary registers.
83 *
84 * It is too big for stack allocated arrays -- it will cause stack overflow on
85 * Windows and likely Mac OS X.
86 */
87 #define MAX_TEMPS 4096
88
89 /* will be 4 for GLSL 4.00 */
90 #define MAX_GLSL_TEXTURE_OFFSET 1
91
92 class st_src_reg;
93 class st_dst_reg;
94
95 static int swizzle_for_size(int size);
96
97 /**
98 * This struct is a corresponding struct to TGSI ureg_src.
99 */
100 class st_src_reg {
101 public:
102 st_src_reg(gl_register_file file, int index, const glsl_type *type)
103 {
104 this->file = file;
105 this->index = index;
106 if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
107 this->swizzle = swizzle_for_size(type->vector_elements);
108 else
109 this->swizzle = SWIZZLE_XYZW;
110 this->negate = 0;
111 this->type = type ? type->base_type : GLSL_TYPE_ERROR;
112 this->reladdr = NULL;
113 }
114
115 st_src_reg(gl_register_file file, int index, int type)
116 {
117 this->type = type;
118 this->file = file;
119 this->index = index;
120 this->swizzle = SWIZZLE_XYZW;
121 this->negate = 0;
122 this->reladdr = NULL;
123 }
124
125 st_src_reg()
126 {
127 this->type = GLSL_TYPE_ERROR;
128 this->file = PROGRAM_UNDEFINED;
129 this->index = 0;
130 this->swizzle = 0;
131 this->negate = 0;
132 this->reladdr = NULL;
133 }
134
135 explicit st_src_reg(st_dst_reg reg);
136
137 gl_register_file file; /**< PROGRAM_* from Mesa */
138 int index; /**< temporary index, VERT_ATTRIB_*, FRAG_ATTRIB_*, etc. */
139 GLuint swizzle; /**< SWIZZLE_XYZWONEZERO swizzles from Mesa. */
140 int negate; /**< NEGATE_XYZW mask from mesa */
141 int type; /** GLSL_TYPE_* from GLSL IR (enum glsl_base_type) */
142 /** Register index should be offset by the integer in this reg. */
143 st_src_reg *reladdr;
144 };
145
146 class st_dst_reg {
147 public:
148 st_dst_reg(gl_register_file file, int writemask, int type)
149 {
150 this->file = file;
151 this->index = 0;
152 this->writemask = writemask;
153 this->cond_mask = COND_TR;
154 this->reladdr = NULL;
155 this->type = type;
156 }
157
158 st_dst_reg()
159 {
160 this->type = GLSL_TYPE_ERROR;
161 this->file = PROGRAM_UNDEFINED;
162 this->index = 0;
163 this->writemask = 0;
164 this->cond_mask = COND_TR;
165 this->reladdr = NULL;
166 }
167
168 explicit st_dst_reg(st_src_reg reg);
169
170 gl_register_file file; /**< PROGRAM_* from Mesa */
171 int index; /**< temporary index, VERT_ATTRIB_*, FRAG_ATTRIB_*, etc. */
172 int writemask; /**< Bitfield of WRITEMASK_[XYZW] */
173 GLuint cond_mask:4;
174 int type; /** GLSL_TYPE_* from GLSL IR (enum glsl_base_type) */
175 /** Register index should be offset by the integer in this reg. */
176 st_src_reg *reladdr;
177 };
178
179 st_src_reg::st_src_reg(st_dst_reg reg)
180 {
181 this->type = reg.type;
182 this->file = reg.file;
183 this->index = reg.index;
184 this->swizzle = SWIZZLE_XYZW;
185 this->negate = 0;
186 this->reladdr = reg.reladdr;
187 }
188
189 st_dst_reg::st_dst_reg(st_src_reg reg)
190 {
191 this->type = reg.type;
192 this->file = reg.file;
193 this->index = reg.index;
194 this->writemask = WRITEMASK_XYZW;
195 this->cond_mask = COND_TR;
196 this->reladdr = reg.reladdr;
197 }
198
199 class glsl_to_tgsi_instruction : public exec_node {
200 public:
201 /* Callers of this ralloc-based new need not call delete. It's
202 * easier to just ralloc_free 'ctx' (or any of its ancestors). */
203 static void* operator new(size_t size, void *ctx)
204 {
205 void *node;
206
207 node = rzalloc_size(ctx, size);
208 assert(node != NULL);
209
210 return node;
211 }
212
213 unsigned op;
214 st_dst_reg dst;
215 st_src_reg src[3];
216 /** Pointer to the ir source this tree came from for debugging */
217 ir_instruction *ir;
218 GLboolean cond_update;
219 bool saturate;
220 int sampler; /**< sampler index */
221 int tex_target; /**< One of TEXTURE_*_INDEX */
222 GLboolean tex_shadow;
223 struct tgsi_texture_offset tex_offsets[MAX_GLSL_TEXTURE_OFFSET];
224 unsigned tex_offset_num_offset;
225 int dead_mask; /**< Used in dead code elimination */
226
227 class function_entry *function; /* Set on TGSI_OPCODE_CAL or TGSI_OPCODE_BGNSUB */
228 };
229
230 class variable_storage : public exec_node {
231 public:
232 variable_storage(ir_variable *var, gl_register_file file, int index)
233 : file(file), index(index), var(var)
234 {
235 /* empty */
236 }
237
238 gl_register_file file;
239 int index;
240 ir_variable *var; /* variable that maps to this, if any */
241 };
242
243 class immediate_storage : public exec_node {
244 public:
245 immediate_storage(gl_constant_value *values, int size, int type)
246 {
247 memcpy(this->values, values, size * sizeof(gl_constant_value));
248 this->size = size;
249 this->type = type;
250 }
251
252 gl_constant_value values[4];
253 int size; /**< Number of components (1-4) */
254 int type; /**< GL_FLOAT, GL_INT, GL_BOOL, or GL_UNSIGNED_INT */
255 };
256
257 class function_entry : public exec_node {
258 public:
259 ir_function_signature *sig;
260
261 /**
262 * identifier of this function signature used by the program.
263 *
264 * At the point that TGSI instructions for function calls are
265 * generated, we don't know the address of the first instruction of
266 * the function body. So we make the BranchTarget that is called a
267 * small integer and rewrite them during set_branchtargets().
268 */
269 int sig_id;
270
271 /**
272 * Pointer to first instruction of the function body.
273 *
274 * Set during function body emits after main() is processed.
275 */
276 glsl_to_tgsi_instruction *bgn_inst;
277
278 /**
279 * Index of the first instruction of the function body in actual TGSI.
280 *
281 * Set after conversion from glsl_to_tgsi_instruction to TGSI.
282 */
283 int inst;
284
285 /** Storage for the return value. */
286 st_src_reg return_reg;
287 };
288
289 class glsl_to_tgsi_visitor : public ir_visitor {
290 public:
291 glsl_to_tgsi_visitor();
292 ~glsl_to_tgsi_visitor();
293
294 function_entry *current_function;
295
296 struct gl_context *ctx;
297 struct gl_program *prog;
298 struct gl_shader_program *shader_program;
299 struct gl_shader_compiler_options *options;
300
301 int next_temp;
302
303 int num_address_regs;
304 int samplers_used;
305 bool indirect_addr_temps;
306 bool indirect_addr_consts;
307 int num_clip_distances;
308
309 int glsl_version;
310 bool native_integers;
311
312 variable_storage *find_variable_storage(ir_variable *var);
313
314 int add_constant(gl_register_file file, gl_constant_value values[4],
315 int size, int datatype, GLuint *swizzle_out);
316
317 function_entry *get_function_signature(ir_function_signature *sig);
318
319 st_src_reg get_temp(const glsl_type *type);
320 void reladdr_to_temp(ir_instruction *ir, st_src_reg *reg, int *num_reladdr);
321
322 st_src_reg st_src_reg_for_float(float val);
323 st_src_reg st_src_reg_for_int(int val);
324 st_src_reg st_src_reg_for_type(int type, int val);
325
326 /**
327 * \name Visit methods
328 *
329 * As typical for the visitor pattern, there must be one \c visit method for
330 * each concrete subclass of \c ir_instruction. Virtual base classes within
331 * the hierarchy should not have \c visit methods.
332 */
333 /*@{*/
334 virtual void visit(ir_variable *);
335 virtual void visit(ir_loop *);
336 virtual void visit(ir_loop_jump *);
337 virtual void visit(ir_function_signature *);
338 virtual void visit(ir_function *);
339 virtual void visit(ir_expression *);
340 virtual void visit(ir_swizzle *);
341 virtual void visit(ir_dereference_variable *);
342 virtual void visit(ir_dereference_array *);
343 virtual void visit(ir_dereference_record *);
344 virtual void visit(ir_assignment *);
345 virtual void visit(ir_constant *);
346 virtual void visit(ir_call *);
347 virtual void visit(ir_return *);
348 virtual void visit(ir_discard *);
349 virtual void visit(ir_texture *);
350 virtual void visit(ir_if *);
351 /*@}*/
352
353 st_src_reg result;
354
355 /** List of variable_storage */
356 exec_list variables;
357
358 /** List of immediate_storage */
359 exec_list immediates;
360 int num_immediates;
361
362 /** List of function_entry */
363 exec_list function_signatures;
364 int next_signature_id;
365
366 /** List of glsl_to_tgsi_instruction */
367 exec_list instructions;
368
369 glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op);
370
371 glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op,
372 st_dst_reg dst, st_src_reg src0);
373
374 glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op,
375 st_dst_reg dst, st_src_reg src0, st_src_reg src1);
376
377 glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op,
378 st_dst_reg dst,
379 st_src_reg src0, st_src_reg src1, st_src_reg src2);
380
381 unsigned get_opcode(ir_instruction *ir, unsigned op,
382 st_dst_reg dst,
383 st_src_reg src0, st_src_reg src1);
384
385 /**
386 * Emit the correct dot-product instruction for the type of arguments
387 */
388 glsl_to_tgsi_instruction *emit_dp(ir_instruction *ir,
389 st_dst_reg dst,
390 st_src_reg src0,
391 st_src_reg src1,
392 unsigned elements);
393
394 void emit_scalar(ir_instruction *ir, unsigned op,
395 st_dst_reg dst, st_src_reg src0);
396
397 void emit_scalar(ir_instruction *ir, unsigned op,
398 st_dst_reg dst, st_src_reg src0, st_src_reg src1);
399
400 void try_emit_float_set(ir_instruction *ir, unsigned op, st_dst_reg dst);
401
402 void emit_arl(ir_instruction *ir, st_dst_reg dst, st_src_reg src0);
403
404 void emit_scs(ir_instruction *ir, unsigned op,
405 st_dst_reg dst, const st_src_reg &src);
406
407 bool try_emit_mad(ir_expression *ir,
408 int mul_operand);
409 bool try_emit_mad_for_and_not(ir_expression *ir,
410 int mul_operand);
411 bool try_emit_sat(ir_expression *ir);
412
413 void emit_swz(ir_expression *ir);
414
415 bool process_move_condition(ir_rvalue *ir);
416
417 void remove_output_reads(gl_register_file type);
418 void simplify_cmp(void);
419
420 void rename_temp_register(int index, int new_index);
421 int get_first_temp_read(int index);
422 int get_first_temp_write(int index);
423 int get_last_temp_read(int index);
424 int get_last_temp_write(int index);
425
426 void copy_propagate(void);
427 void eliminate_dead_code(void);
428 int eliminate_dead_code_advanced(void);
429 void merge_registers(void);
430 void renumber_registers(void);
431
432 void *mem_ctx;
433 };
434
435 static st_src_reg undef_src = st_src_reg(PROGRAM_UNDEFINED, 0, GLSL_TYPE_ERROR);
436
437 static st_dst_reg undef_dst = st_dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP, GLSL_TYPE_ERROR);
438
439 static st_dst_reg address_reg = st_dst_reg(PROGRAM_ADDRESS, WRITEMASK_X, GLSL_TYPE_FLOAT);
440
441 static void
442 fail_link(struct gl_shader_program *prog, const char *fmt, ...) PRINTFLIKE(2, 3);
443
444 static void
445 fail_link(struct gl_shader_program *prog, const char *fmt, ...)
446 {
447 va_list args;
448 va_start(args, fmt);
449 ralloc_vasprintf_append(&prog->InfoLog, fmt, args);
450 va_end(args);
451
452 prog->LinkStatus = GL_FALSE;
453 }
454
455 static int
456 swizzle_for_size(int size)
457 {
458 int size_swizzles[4] = {
459 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
460 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
461 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
462 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
463 };
464
465 assert((size >= 1) && (size <= 4));
466 return size_swizzles[size - 1];
467 }
468
469 static bool
470 is_tex_instruction(unsigned opcode)
471 {
472 const tgsi_opcode_info* info = tgsi_get_opcode_info(opcode);
473 return info->is_tex;
474 }
475
476 static unsigned
477 num_inst_dst_regs(unsigned opcode)
478 {
479 const tgsi_opcode_info* info = tgsi_get_opcode_info(opcode);
480 return info->num_dst;
481 }
482
483 static unsigned
484 num_inst_src_regs(unsigned opcode)
485 {
486 const tgsi_opcode_info* info = tgsi_get_opcode_info(opcode);
487 return info->is_tex ? info->num_src - 1 : info->num_src;
488 }
489
490 glsl_to_tgsi_instruction *
491 glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op,
492 st_dst_reg dst,
493 st_src_reg src0, st_src_reg src1, st_src_reg src2)
494 {
495 glsl_to_tgsi_instruction *inst = new(mem_ctx) glsl_to_tgsi_instruction();
496 int num_reladdr = 0, i;
497
498 op = get_opcode(ir, op, dst, src0, src1);
499
500 /* If we have to do relative addressing, we want to load the ARL
501 * reg directly for one of the regs, and preload the other reladdr
502 * sources into temps.
503 */
504 num_reladdr += dst.reladdr != NULL;
505 num_reladdr += src0.reladdr != NULL;
506 num_reladdr += src1.reladdr != NULL;
507 num_reladdr += src2.reladdr != NULL;
508
509 reladdr_to_temp(ir, &src2, &num_reladdr);
510 reladdr_to_temp(ir, &src1, &num_reladdr);
511 reladdr_to_temp(ir, &src0, &num_reladdr);
512
513 if (dst.reladdr) {
514 emit_arl(ir, address_reg, *dst.reladdr);
515 num_reladdr--;
516 }
517 assert(num_reladdr == 0);
518
519 inst->op = op;
520 inst->dst = dst;
521 inst->src[0] = src0;
522 inst->src[1] = src1;
523 inst->src[2] = src2;
524 inst->ir = ir;
525 inst->dead_mask = 0;
526
527 inst->function = NULL;
528
529 if (op == TGSI_OPCODE_ARL || op == TGSI_OPCODE_UARL)
530 this->num_address_regs = 1;
531
532 /* Update indirect addressing status used by TGSI */
533 if (dst.reladdr) {
534 switch(dst.file) {
535 case PROGRAM_TEMPORARY:
536 this->indirect_addr_temps = true;
537 break;
538 case PROGRAM_LOCAL_PARAM:
539 case PROGRAM_ENV_PARAM:
540 case PROGRAM_STATE_VAR:
541 case PROGRAM_NAMED_PARAM:
542 case PROGRAM_CONSTANT:
543 case PROGRAM_UNIFORM:
544 this->indirect_addr_consts = true;
545 break;
546 case PROGRAM_IMMEDIATE:
547 assert(!"immediates should not have indirect addressing");
548 break;
549 default:
550 break;
551 }
552 }
553 else {
554 for (i=0; i<3; i++) {
555 if(inst->src[i].reladdr) {
556 switch(inst->src[i].file) {
557 case PROGRAM_TEMPORARY:
558 this->indirect_addr_temps = true;
559 break;
560 case PROGRAM_LOCAL_PARAM:
561 case PROGRAM_ENV_PARAM:
562 case PROGRAM_STATE_VAR:
563 case PROGRAM_NAMED_PARAM:
564 case PROGRAM_CONSTANT:
565 case PROGRAM_UNIFORM:
566 this->indirect_addr_consts = true;
567 break;
568 case PROGRAM_IMMEDIATE:
569 assert(!"immediates should not have indirect addressing");
570 break;
571 default:
572 break;
573 }
574 }
575 }
576 }
577
578 this->instructions.push_tail(inst);
579
580 if (native_integers)
581 try_emit_float_set(ir, op, dst);
582
583 return inst;
584 }
585
586
587 glsl_to_tgsi_instruction *
588 glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op,
589 st_dst_reg dst, st_src_reg src0, st_src_reg src1)
590 {
591 return emit(ir, op, dst, src0, src1, undef_src);
592 }
593
594 glsl_to_tgsi_instruction *
595 glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op,
596 st_dst_reg dst, st_src_reg src0)
597 {
598 assert(dst.writemask != 0);
599 return emit(ir, op, dst, src0, undef_src, undef_src);
600 }
601
602 glsl_to_tgsi_instruction *
603 glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op)
604 {
605 return emit(ir, op, undef_dst, undef_src, undef_src, undef_src);
606 }
607
608 /**
609 * Emits the code to convert the result of float SET instructions to integers.
610 */
611 void
612 glsl_to_tgsi_visitor::try_emit_float_set(ir_instruction *ir, unsigned op,
613 st_dst_reg dst)
614 {
615 if ((op == TGSI_OPCODE_SEQ ||
616 op == TGSI_OPCODE_SNE ||
617 op == TGSI_OPCODE_SGE ||
618 op == TGSI_OPCODE_SLT))
619 {
620 st_src_reg src = st_src_reg(dst);
621 src.negate = ~src.negate;
622 dst.type = GLSL_TYPE_FLOAT;
623 emit(ir, TGSI_OPCODE_F2I, dst, src);
624 }
625 }
626
627 /**
628 * Determines whether to use an integer, unsigned integer, or float opcode
629 * based on the operands and input opcode, then emits the result.
630 */
631 unsigned
632 glsl_to_tgsi_visitor::get_opcode(ir_instruction *ir, unsigned op,
633 st_dst_reg dst,
634 st_src_reg src0, st_src_reg src1)
635 {
636 int type = GLSL_TYPE_FLOAT;
637
638 if (src0.type == GLSL_TYPE_FLOAT || src1.type == GLSL_TYPE_FLOAT)
639 type = GLSL_TYPE_FLOAT;
640 else if (native_integers)
641 type = src0.type == GLSL_TYPE_BOOL ? GLSL_TYPE_INT : src0.type;
642
643 #define case4(c, f, i, u) \
644 case TGSI_OPCODE_##c: \
645 if (type == GLSL_TYPE_INT) op = TGSI_OPCODE_##i; \
646 else if (type == GLSL_TYPE_UINT) op = TGSI_OPCODE_##u; \
647 else op = TGSI_OPCODE_##f; \
648 break;
649 #define case3(f, i, u) case4(f, f, i, u)
650 #define case2fi(f, i) case4(f, f, i, i)
651 #define case2iu(i, u) case4(i, LAST, i, u)
652
653 switch(op) {
654 case2fi(ADD, UADD);
655 case2fi(MUL, UMUL);
656 case2fi(MAD, UMAD);
657 case3(DIV, IDIV, UDIV);
658 case3(MAX, IMAX, UMAX);
659 case3(MIN, IMIN, UMIN);
660 case2iu(MOD, UMOD);
661
662 case2fi(SEQ, USEQ);
663 case2fi(SNE, USNE);
664 case3(SGE, ISGE, USGE);
665 case3(SLT, ISLT, USLT);
666
667 case2iu(ISHR, USHR);
668
669 default: break;
670 }
671
672 assert(op != TGSI_OPCODE_LAST);
673 return op;
674 }
675
676 glsl_to_tgsi_instruction *
677 glsl_to_tgsi_visitor::emit_dp(ir_instruction *ir,
678 st_dst_reg dst, st_src_reg src0, st_src_reg src1,
679 unsigned elements)
680 {
681 static const unsigned dot_opcodes[] = {
682 TGSI_OPCODE_DP2, TGSI_OPCODE_DP3, TGSI_OPCODE_DP4
683 };
684
685 return emit(ir, dot_opcodes[elements - 2], dst, src0, src1);
686 }
687
688 /**
689 * Emits TGSI scalar opcodes to produce unique answers across channels.
690 *
691 * Some TGSI opcodes are scalar-only, like ARB_fp/vp. The src X
692 * channel determines the result across all channels. So to do a vec4
693 * of this operation, we want to emit a scalar per source channel used
694 * to produce dest channels.
695 */
696 void
697 glsl_to_tgsi_visitor::emit_scalar(ir_instruction *ir, unsigned op,
698 st_dst_reg dst,
699 st_src_reg orig_src0, st_src_reg orig_src1)
700 {
701 int i, j;
702 int done_mask = ~dst.writemask;
703
704 /* TGSI RCP is a scalar operation splatting results to all channels,
705 * like ARB_fp/vp. So emit as many RCPs as necessary to cover our
706 * dst channels.
707 */
708 for (i = 0; i < 4; i++) {
709 GLuint this_mask = (1 << i);
710 glsl_to_tgsi_instruction *inst;
711 st_src_reg src0 = orig_src0;
712 st_src_reg src1 = orig_src1;
713
714 if (done_mask & this_mask)
715 continue;
716
717 GLuint src0_swiz = GET_SWZ(src0.swizzle, i);
718 GLuint src1_swiz = GET_SWZ(src1.swizzle, i);
719 for (j = i + 1; j < 4; j++) {
720 /* If there is another enabled component in the destination that is
721 * derived from the same inputs, generate its value on this pass as
722 * well.
723 */
724 if (!(done_mask & (1 << j)) &&
725 GET_SWZ(src0.swizzle, j) == src0_swiz &&
726 GET_SWZ(src1.swizzle, j) == src1_swiz) {
727 this_mask |= (1 << j);
728 }
729 }
730 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
731 src0_swiz, src0_swiz);
732 src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz,
733 src1_swiz, src1_swiz);
734
735 inst = emit(ir, op, dst, src0, src1);
736 inst->dst.writemask = this_mask;
737 done_mask |= this_mask;
738 }
739 }
740
741 void
742 glsl_to_tgsi_visitor::emit_scalar(ir_instruction *ir, unsigned op,
743 st_dst_reg dst, st_src_reg src0)
744 {
745 st_src_reg undef = undef_src;
746
747 undef.swizzle = SWIZZLE_XXXX;
748
749 emit_scalar(ir, op, dst, src0, undef);
750 }
751
752 void
753 glsl_to_tgsi_visitor::emit_arl(ir_instruction *ir,
754 st_dst_reg dst, st_src_reg src0)
755 {
756 int op = TGSI_OPCODE_ARL;
757
758 if (src0.type == GLSL_TYPE_INT || src0.type == GLSL_TYPE_UINT)
759 op = TGSI_OPCODE_UARL;
760
761 emit(NULL, op, dst, src0);
762 }
763
764 /**
765 * Emit an TGSI_OPCODE_SCS instruction
766 *
767 * The \c SCS opcode functions a bit differently than the other TGSI opcodes.
768 * Instead of splatting its result across all four components of the
769 * destination, it writes one value to the \c x component and another value to
770 * the \c y component.
771 *
772 * \param ir IR instruction being processed
773 * \param op Either \c TGSI_OPCODE_SIN or \c TGSI_OPCODE_COS depending
774 * on which value is desired.
775 * \param dst Destination register
776 * \param src Source register
777 */
778 void
779 glsl_to_tgsi_visitor::emit_scs(ir_instruction *ir, unsigned op,
780 st_dst_reg dst,
781 const st_src_reg &src)
782 {
783 /* Vertex programs cannot use the SCS opcode.
784 */
785 if (this->prog->Target == GL_VERTEX_PROGRAM_ARB) {
786 emit_scalar(ir, op, dst, src);
787 return;
788 }
789
790 const unsigned component = (op == TGSI_OPCODE_SIN) ? 0 : 1;
791 const unsigned scs_mask = (1U << component);
792 int done_mask = ~dst.writemask;
793 st_src_reg tmp;
794
795 assert(op == TGSI_OPCODE_SIN || op == TGSI_OPCODE_COS);
796
797 /* If there are compnents in the destination that differ from the component
798 * that will be written by the SCS instrution, we'll need a temporary.
799 */
800 if (scs_mask != unsigned(dst.writemask)) {
801 tmp = get_temp(glsl_type::vec4_type);
802 }
803
804 for (unsigned i = 0; i < 4; i++) {
805 unsigned this_mask = (1U << i);
806 st_src_reg src0 = src;
807
808 if ((done_mask & this_mask) != 0)
809 continue;
810
811 /* The source swizzle specified which component of the source generates
812 * sine / cosine for the current component in the destination. The SCS
813 * instruction requires that this value be swizzle to the X component.
814 * Replace the current swizzle with a swizzle that puts the source in
815 * the X component.
816 */
817 unsigned src0_swiz = GET_SWZ(src.swizzle, i);
818
819 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
820 src0_swiz, src0_swiz);
821 for (unsigned j = i + 1; j < 4; j++) {
822 /* If there is another enabled component in the destination that is
823 * derived from the same inputs, generate its value on this pass as
824 * well.
825 */
826 if (!(done_mask & (1 << j)) &&
827 GET_SWZ(src0.swizzle, j) == src0_swiz) {
828 this_mask |= (1 << j);
829 }
830 }
831
832 if (this_mask != scs_mask) {
833 glsl_to_tgsi_instruction *inst;
834 st_dst_reg tmp_dst = st_dst_reg(tmp);
835
836 /* Emit the SCS instruction.
837 */
838 inst = emit(ir, TGSI_OPCODE_SCS, tmp_dst, src0);
839 inst->dst.writemask = scs_mask;
840
841 /* Move the result of the SCS instruction to the desired location in
842 * the destination.
843 */
844 tmp.swizzle = MAKE_SWIZZLE4(component, component,
845 component, component);
846 inst = emit(ir, TGSI_OPCODE_SCS, dst, tmp);
847 inst->dst.writemask = this_mask;
848 } else {
849 /* Emit the SCS instruction to write directly to the destination.
850 */
851 glsl_to_tgsi_instruction *inst = emit(ir, TGSI_OPCODE_SCS, dst, src0);
852 inst->dst.writemask = scs_mask;
853 }
854
855 done_mask |= this_mask;
856 }
857 }
858
859 int
860 glsl_to_tgsi_visitor::add_constant(gl_register_file file,
861 gl_constant_value values[4], int size, int datatype,
862 GLuint *swizzle_out)
863 {
864 if (file == PROGRAM_CONSTANT) {
865 return _mesa_add_typed_unnamed_constant(this->prog->Parameters, values,
866 size, datatype, swizzle_out);
867 } else {
868 int index = 0;
869 immediate_storage *entry;
870 assert(file == PROGRAM_IMMEDIATE);
871
872 /* Search immediate storage to see if we already have an identical
873 * immediate that we can use instead of adding a duplicate entry.
874 */
875 foreach_iter(exec_list_iterator, iter, this->immediates) {
876 entry = (immediate_storage *)iter.get();
877
878 if (entry->size == size &&
879 entry->type == datatype &&
880 !memcmp(entry->values, values, size * sizeof(gl_constant_value))) {
881 return index;
882 }
883 index++;
884 }
885
886 /* Add this immediate to the list. */
887 entry = new(mem_ctx) immediate_storage(values, size, datatype);
888 this->immediates.push_tail(entry);
889 this->num_immediates++;
890 return index;
891 }
892 }
893
894 st_src_reg
895 glsl_to_tgsi_visitor::st_src_reg_for_float(float val)
896 {
897 st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_FLOAT);
898 union gl_constant_value uval;
899
900 uval.f = val;
901 src.index = add_constant(src.file, &uval, 1, GL_FLOAT, &src.swizzle);
902
903 return src;
904 }
905
906 st_src_reg
907 glsl_to_tgsi_visitor::st_src_reg_for_int(int val)
908 {
909 st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_INT);
910 union gl_constant_value uval;
911
912 assert(native_integers);
913
914 uval.i = val;
915 src.index = add_constant(src.file, &uval, 1, GL_INT, &src.swizzle);
916
917 return src;
918 }
919
920 st_src_reg
921 glsl_to_tgsi_visitor::st_src_reg_for_type(int type, int val)
922 {
923 if (native_integers)
924 return type == GLSL_TYPE_FLOAT ? st_src_reg_for_float(val) :
925 st_src_reg_for_int(val);
926 else
927 return st_src_reg_for_float(val);
928 }
929
930 static int
931 type_size(const struct glsl_type *type)
932 {
933 unsigned int i;
934 int size;
935
936 switch (type->base_type) {
937 case GLSL_TYPE_UINT:
938 case GLSL_TYPE_INT:
939 case GLSL_TYPE_FLOAT:
940 case GLSL_TYPE_BOOL:
941 if (type->is_matrix()) {
942 return type->matrix_columns;
943 } else {
944 /* Regardless of size of vector, it gets a vec4. This is bad
945 * packing for things like floats, but otherwise arrays become a
946 * mess. Hopefully a later pass over the code can pack scalars
947 * down if appropriate.
948 */
949 return 1;
950 }
951 case GLSL_TYPE_ARRAY:
952 assert(type->length > 0);
953 return type_size(type->fields.array) * type->length;
954 case GLSL_TYPE_STRUCT:
955 size = 0;
956 for (i = 0; i < type->length; i++) {
957 size += type_size(type->fields.structure[i].type);
958 }
959 return size;
960 case GLSL_TYPE_SAMPLER:
961 /* Samplers take up one slot in UNIFORMS[], but they're baked in
962 * at link time.
963 */
964 return 1;
965 default:
966 assert(0);
967 return 0;
968 }
969 }
970
971 /**
972 * In the initial pass of codegen, we assign temporary numbers to
973 * intermediate results. (not SSA -- variable assignments will reuse
974 * storage).
975 */
976 st_src_reg
977 glsl_to_tgsi_visitor::get_temp(const glsl_type *type)
978 {
979 st_src_reg src;
980
981 src.type = native_integers ? type->base_type : GLSL_TYPE_FLOAT;
982 src.file = PROGRAM_TEMPORARY;
983 src.index = next_temp;
984 src.reladdr = NULL;
985 next_temp += type_size(type);
986
987 if (type->is_array() || type->is_record()) {
988 src.swizzle = SWIZZLE_NOOP;
989 } else {
990 src.swizzle = swizzle_for_size(type->vector_elements);
991 }
992 src.negate = 0;
993
994 return src;
995 }
996
997 variable_storage *
998 glsl_to_tgsi_visitor::find_variable_storage(ir_variable *var)
999 {
1000
1001 variable_storage *entry;
1002
1003 foreach_iter(exec_list_iterator, iter, this->variables) {
1004 entry = (variable_storage *)iter.get();
1005
1006 if (entry->var == var)
1007 return entry;
1008 }
1009
1010 return NULL;
1011 }
1012
1013 void
1014 glsl_to_tgsi_visitor::visit(ir_variable *ir)
1015 {
1016 if (strcmp(ir->name, "gl_FragCoord") == 0) {
1017 struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog;
1018
1019 fp->OriginUpperLeft = ir->origin_upper_left;
1020 fp->PixelCenterInteger = ir->pixel_center_integer;
1021 }
1022
1023 if (ir->mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) {
1024 unsigned int i;
1025 const ir_state_slot *const slots = ir->state_slots;
1026 assert(ir->state_slots != NULL);
1027
1028 /* Check if this statevar's setup in the STATE file exactly
1029 * matches how we'll want to reference it as a
1030 * struct/array/whatever. If not, then we need to move it into
1031 * temporary storage and hope that it'll get copy-propagated
1032 * out.
1033 */
1034 for (i = 0; i < ir->num_state_slots; i++) {
1035 if (slots[i].swizzle != SWIZZLE_XYZW) {
1036 break;
1037 }
1038 }
1039
1040 variable_storage *storage;
1041 st_dst_reg dst;
1042 if (i == ir->num_state_slots) {
1043 /* We'll set the index later. */
1044 storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1);
1045 this->variables.push_tail(storage);
1046
1047 dst = undef_dst;
1048 } else {
1049 /* The variable_storage constructor allocates slots based on the size
1050 * of the type. However, this had better match the number of state
1051 * elements that we're going to copy into the new temporary.
1052 */
1053 assert((int) ir->num_state_slots == type_size(ir->type));
1054
1055 storage = new(mem_ctx) variable_storage(ir, PROGRAM_TEMPORARY,
1056 this->next_temp);
1057 this->variables.push_tail(storage);
1058 this->next_temp += type_size(ir->type);
1059
1060 dst = st_dst_reg(st_src_reg(PROGRAM_TEMPORARY, storage->index,
1061 native_integers ? ir->type->base_type : GLSL_TYPE_FLOAT));
1062 }
1063
1064
1065 for (unsigned int i = 0; i < ir->num_state_slots; i++) {
1066 int index = _mesa_add_state_reference(this->prog->Parameters,
1067 (gl_state_index *)slots[i].tokens);
1068
1069 if (storage->file == PROGRAM_STATE_VAR) {
1070 if (storage->index == -1) {
1071 storage->index = index;
1072 } else {
1073 assert(index == storage->index + (int)i);
1074 }
1075 } else {
1076 st_src_reg src(PROGRAM_STATE_VAR, index,
1077 native_integers ? ir->type->base_type : GLSL_TYPE_FLOAT);
1078 src.swizzle = slots[i].swizzle;
1079 emit(ir, TGSI_OPCODE_MOV, dst, src);
1080 /* even a float takes up a whole vec4 reg in a struct/array. */
1081 dst.index++;
1082 }
1083 }
1084
1085 if (storage->file == PROGRAM_TEMPORARY &&
1086 dst.index != storage->index + (int) ir->num_state_slots) {
1087 fail_link(this->shader_program,
1088 "failed to load builtin uniform `%s' (%d/%d regs loaded)\n",
1089 ir->name, dst.index - storage->index,
1090 type_size(ir->type));
1091 }
1092 }
1093 }
1094
1095 void
1096 glsl_to_tgsi_visitor::visit(ir_loop *ir)
1097 {
1098 ir_dereference_variable *counter = NULL;
1099
1100 if (ir->counter != NULL)
1101 counter = new(ir) ir_dereference_variable(ir->counter);
1102
1103 if (ir->from != NULL) {
1104 assert(ir->counter != NULL);
1105
1106 ir_assignment *a = new(ir) ir_assignment(counter, ir->from, NULL);
1107
1108 a->accept(this);
1109 delete a;
1110 }
1111
1112 emit(NULL, TGSI_OPCODE_BGNLOOP);
1113
1114 if (ir->to) {
1115 ir_expression *e =
1116 new(ir) ir_expression(ir->cmp, glsl_type::bool_type,
1117 counter, ir->to);
1118 ir_if *if_stmt = new(ir) ir_if(e);
1119
1120 ir_loop_jump *brk = new(ir) ir_loop_jump(ir_loop_jump::jump_break);
1121
1122 if_stmt->then_instructions.push_tail(brk);
1123
1124 if_stmt->accept(this);
1125
1126 delete if_stmt;
1127 delete e;
1128 delete brk;
1129 }
1130
1131 visit_exec_list(&ir->body_instructions, this);
1132
1133 if (ir->increment) {
1134 ir_expression *e =
1135 new(ir) ir_expression(ir_binop_add, counter->type,
1136 counter, ir->increment);
1137
1138 ir_assignment *a = new(ir) ir_assignment(counter, e, NULL);
1139
1140 a->accept(this);
1141 delete a;
1142 delete e;
1143 }
1144
1145 emit(NULL, TGSI_OPCODE_ENDLOOP);
1146 }
1147
1148 void
1149 glsl_to_tgsi_visitor::visit(ir_loop_jump *ir)
1150 {
1151 switch (ir->mode) {
1152 case ir_loop_jump::jump_break:
1153 emit(NULL, TGSI_OPCODE_BRK);
1154 break;
1155 case ir_loop_jump::jump_continue:
1156 emit(NULL, TGSI_OPCODE_CONT);
1157 break;
1158 }
1159 }
1160
1161
1162 void
1163 glsl_to_tgsi_visitor::visit(ir_function_signature *ir)
1164 {
1165 assert(0);
1166 (void)ir;
1167 }
1168
1169 void
1170 glsl_to_tgsi_visitor::visit(ir_function *ir)
1171 {
1172 /* Ignore function bodies other than main() -- we shouldn't see calls to
1173 * them since they should all be inlined before we get to glsl_to_tgsi.
1174 */
1175 if (strcmp(ir->name, "main") == 0) {
1176 const ir_function_signature *sig;
1177 exec_list empty;
1178
1179 sig = ir->matching_signature(&empty);
1180
1181 assert(sig);
1182
1183 foreach_iter(exec_list_iterator, iter, sig->body) {
1184 ir_instruction *ir = (ir_instruction *)iter.get();
1185
1186 ir->accept(this);
1187 }
1188 }
1189 }
1190
1191 bool
1192 glsl_to_tgsi_visitor::try_emit_mad(ir_expression *ir, int mul_operand)
1193 {
1194 int nonmul_operand = 1 - mul_operand;
1195 st_src_reg a, b, c;
1196 st_dst_reg result_dst;
1197
1198 ir_expression *expr = ir->operands[mul_operand]->as_expression();
1199 if (!expr || expr->operation != ir_binop_mul)
1200 return false;
1201
1202 expr->operands[0]->accept(this);
1203 a = this->result;
1204 expr->operands[1]->accept(this);
1205 b = this->result;
1206 ir->operands[nonmul_operand]->accept(this);
1207 c = this->result;
1208
1209 this->result = get_temp(ir->type);
1210 result_dst = st_dst_reg(this->result);
1211 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1212 emit(ir, TGSI_OPCODE_MAD, result_dst, a, b, c);
1213
1214 return true;
1215 }
1216
1217 /**
1218 * Emit MAD(a, -b, a) instead of AND(a, NOT(b))
1219 *
1220 * The logic values are 1.0 for true and 0.0 for false. Logical-and is
1221 * implemented using multiplication, and logical-or is implemented using
1222 * addition. Logical-not can be implemented as (true - x), or (1.0 - x).
1223 * As result, the logical expression (a & !b) can be rewritten as:
1224 *
1225 * - a * !b
1226 * - a * (1 - b)
1227 * - (a * 1) - (a * b)
1228 * - a + -(a * b)
1229 * - a + (a * -b)
1230 *
1231 * This final expression can be implemented as a single MAD(a, -b, a)
1232 * instruction.
1233 */
1234 bool
1235 glsl_to_tgsi_visitor::try_emit_mad_for_and_not(ir_expression *ir, int try_operand)
1236 {
1237 const int other_operand = 1 - try_operand;
1238 st_src_reg a, b;
1239
1240 ir_expression *expr = ir->operands[try_operand]->as_expression();
1241 if (!expr || expr->operation != ir_unop_logic_not)
1242 return false;
1243
1244 ir->operands[other_operand]->accept(this);
1245 a = this->result;
1246 expr->operands[0]->accept(this);
1247 b = this->result;
1248
1249 b.negate = ~b.negate;
1250
1251 this->result = get_temp(ir->type);
1252 emit(ir, TGSI_OPCODE_MAD, st_dst_reg(this->result), a, b, a);
1253
1254 return true;
1255 }
1256
1257 bool
1258 glsl_to_tgsi_visitor::try_emit_sat(ir_expression *ir)
1259 {
1260 /* Saturates were only introduced to vertex programs in
1261 * NV_vertex_program3, so don't give them to drivers in the VP.
1262 */
1263 if (this->prog->Target == GL_VERTEX_PROGRAM_ARB)
1264 return false;
1265
1266 ir_rvalue *sat_src = ir->as_rvalue_to_saturate();
1267 if (!sat_src)
1268 return false;
1269
1270 sat_src->accept(this);
1271 st_src_reg src = this->result;
1272
1273 /* If we generated an expression instruction into a temporary in
1274 * processing the saturate's operand, apply the saturate to that
1275 * instruction. Otherwise, generate a MOV to do the saturate.
1276 *
1277 * Note that we have to be careful to only do this optimization if
1278 * the instruction in question was what generated src->result. For
1279 * example, ir_dereference_array might generate a MUL instruction
1280 * to create the reladdr, and return us a src reg using that
1281 * reladdr. That MUL result is not the value we're trying to
1282 * saturate.
1283 */
1284 ir_expression *sat_src_expr = sat_src->as_expression();
1285 if (sat_src_expr && (sat_src_expr->operation == ir_binop_mul ||
1286 sat_src_expr->operation == ir_binop_add ||
1287 sat_src_expr->operation == ir_binop_dot)) {
1288 glsl_to_tgsi_instruction *new_inst;
1289 new_inst = (glsl_to_tgsi_instruction *)this->instructions.get_tail();
1290 new_inst->saturate = true;
1291 } else {
1292 this->result = get_temp(ir->type);
1293 st_dst_reg result_dst = st_dst_reg(this->result);
1294 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1295 glsl_to_tgsi_instruction *inst;
1296 inst = emit(ir, TGSI_OPCODE_MOV, result_dst, src);
1297 inst->saturate = true;
1298 }
1299
1300 return true;
1301 }
1302
1303 void
1304 glsl_to_tgsi_visitor::reladdr_to_temp(ir_instruction *ir,
1305 st_src_reg *reg, int *num_reladdr)
1306 {
1307 if (!reg->reladdr)
1308 return;
1309
1310 emit_arl(ir, address_reg, *reg->reladdr);
1311
1312 if (*num_reladdr != 1) {
1313 st_src_reg temp = get_temp(glsl_type::vec4_type);
1314
1315 emit(ir, TGSI_OPCODE_MOV, st_dst_reg(temp), *reg);
1316 *reg = temp;
1317 }
1318
1319 (*num_reladdr)--;
1320 }
1321
1322 void
1323 glsl_to_tgsi_visitor::visit(ir_expression *ir)
1324 {
1325 unsigned int operand;
1326 st_src_reg op[Elements(ir->operands)];
1327 st_src_reg result_src;
1328 st_dst_reg result_dst;
1329
1330 /* Quick peephole: Emit MAD(a, b, c) instead of ADD(MUL(a, b), c)
1331 */
1332 if (ir->operation == ir_binop_add) {
1333 if (try_emit_mad(ir, 1))
1334 return;
1335 if (try_emit_mad(ir, 0))
1336 return;
1337 }
1338
1339 /* Quick peephole: Emit OPCODE_MAD(-a, -b, a) instead of AND(a, NOT(b))
1340 */
1341 if (ir->operation == ir_binop_logic_and) {
1342 if (try_emit_mad_for_and_not(ir, 1))
1343 return;
1344 if (try_emit_mad_for_and_not(ir, 0))
1345 return;
1346 }
1347
1348 if (try_emit_sat(ir))
1349 return;
1350
1351 if (ir->operation == ir_quadop_vector)
1352 assert(!"ir_quadop_vector should have been lowered");
1353
1354 for (operand = 0; operand < ir->get_num_operands(); operand++) {
1355 this->result.file = PROGRAM_UNDEFINED;
1356 ir->operands[operand]->accept(this);
1357 if (this->result.file == PROGRAM_UNDEFINED) {
1358 ir_print_visitor v;
1359 printf("Failed to get tree for expression operand:\n");
1360 ir->operands[operand]->accept(&v);
1361 exit(1);
1362 }
1363 op[operand] = this->result;
1364
1365 /* Matrix expression operands should have been broken down to vector
1366 * operations already.
1367 */
1368 assert(!ir->operands[operand]->type->is_matrix());
1369 }
1370
1371 int vector_elements = ir->operands[0]->type->vector_elements;
1372 if (ir->operands[1]) {
1373 vector_elements = MAX2(vector_elements,
1374 ir->operands[1]->type->vector_elements);
1375 }
1376
1377 this->result.file = PROGRAM_UNDEFINED;
1378
1379 /* Storage for our result. Ideally for an assignment we'd be using
1380 * the actual storage for the result here, instead.
1381 */
1382 result_src = get_temp(ir->type);
1383 /* convenience for the emit functions below. */
1384 result_dst = st_dst_reg(result_src);
1385 /* Limit writes to the channels that will be used by result_src later.
1386 * This does limit this temp's use as a temporary for multi-instruction
1387 * sequences.
1388 */
1389 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1390
1391 switch (ir->operation) {
1392 case ir_unop_logic_not:
1393 if (result_dst.type != GLSL_TYPE_FLOAT)
1394 emit(ir, TGSI_OPCODE_NOT, result_dst, op[0]);
1395 else {
1396 /* Previously 'SEQ dst, src, 0.0' was used for this. However, many
1397 * older GPUs implement SEQ using multiple instructions (i915 uses two
1398 * SGE instructions and a MUL instruction). Since our logic values are
1399 * 0.0 and 1.0, 1-x also implements !x.
1400 */
1401 op[0].negate = ~op[0].negate;
1402 emit(ir, TGSI_OPCODE_ADD, result_dst, op[0], st_src_reg_for_float(1.0));
1403 }
1404 break;
1405 case ir_unop_neg:
1406 assert(result_dst.type == GLSL_TYPE_FLOAT || result_dst.type == GLSL_TYPE_INT);
1407 if (result_dst.type == GLSL_TYPE_INT)
1408 emit(ir, TGSI_OPCODE_INEG, result_dst, op[0]);
1409 else {
1410 op[0].negate = ~op[0].negate;
1411 result_src = op[0];
1412 }
1413 break;
1414 case ir_unop_abs:
1415 assert(result_dst.type == GLSL_TYPE_FLOAT);
1416 emit(ir, TGSI_OPCODE_ABS, result_dst, op[0]);
1417 break;
1418 case ir_unop_sign:
1419 emit(ir, TGSI_OPCODE_SSG, result_dst, op[0]);
1420 break;
1421 case ir_unop_rcp:
1422 emit_scalar(ir, TGSI_OPCODE_RCP, result_dst, op[0]);
1423 break;
1424
1425 case ir_unop_exp2:
1426 emit_scalar(ir, TGSI_OPCODE_EX2, result_dst, op[0]);
1427 break;
1428 case ir_unop_exp:
1429 case ir_unop_log:
1430 assert(!"not reached: should be handled by ir_explog_to_explog2");
1431 break;
1432 case ir_unop_log2:
1433 emit_scalar(ir, TGSI_OPCODE_LG2, result_dst, op[0]);
1434 break;
1435 case ir_unop_sin:
1436 emit_scalar(ir, TGSI_OPCODE_SIN, result_dst, op[0]);
1437 break;
1438 case ir_unop_cos:
1439 emit_scalar(ir, TGSI_OPCODE_COS, result_dst, op[0]);
1440 break;
1441 case ir_unop_sin_reduced:
1442 emit_scs(ir, TGSI_OPCODE_SIN, result_dst, op[0]);
1443 break;
1444 case ir_unop_cos_reduced:
1445 emit_scs(ir, TGSI_OPCODE_COS, result_dst, op[0]);
1446 break;
1447
1448 case ir_unop_dFdx:
1449 emit(ir, TGSI_OPCODE_DDX, result_dst, op[0]);
1450 break;
1451 case ir_unop_dFdy:
1452 op[0].negate = ~op[0].negate;
1453 emit(ir, TGSI_OPCODE_DDY, result_dst, op[0]);
1454 break;
1455
1456 case ir_unop_noise: {
1457 /* At some point, a motivated person could add a better
1458 * implementation of noise. Currently not even the nvidia
1459 * binary drivers do anything more than this. In any case, the
1460 * place to do this is in the GL state tracker, not the poor
1461 * driver.
1462 */
1463 emit(ir, TGSI_OPCODE_MOV, result_dst, st_src_reg_for_float(0.5));
1464 break;
1465 }
1466
1467 case ir_binop_add:
1468 emit(ir, TGSI_OPCODE_ADD, result_dst, op[0], op[1]);
1469 break;
1470 case ir_binop_sub:
1471 emit(ir, TGSI_OPCODE_SUB, result_dst, op[0], op[1]);
1472 break;
1473
1474 case ir_binop_mul:
1475 emit(ir, TGSI_OPCODE_MUL, result_dst, op[0], op[1]);
1476 break;
1477 case ir_binop_div:
1478 if (result_dst.type == GLSL_TYPE_FLOAT)
1479 assert(!"not reached: should be handled by ir_div_to_mul_rcp");
1480 else
1481 emit(ir, TGSI_OPCODE_DIV, result_dst, op[0], op[1]);
1482 break;
1483 case ir_binop_mod:
1484 if (result_dst.type == GLSL_TYPE_FLOAT)
1485 assert(!"ir_binop_mod should have been converted to b * fract(a/b)");
1486 else
1487 emit(ir, TGSI_OPCODE_MOD, result_dst, op[0], op[1]);
1488 break;
1489
1490 case ir_binop_less:
1491 emit(ir, TGSI_OPCODE_SLT, result_dst, op[0], op[1]);
1492 break;
1493 case ir_binop_greater:
1494 emit(ir, TGSI_OPCODE_SLT, result_dst, op[1], op[0]);
1495 break;
1496 case ir_binop_lequal:
1497 emit(ir, TGSI_OPCODE_SGE, result_dst, op[1], op[0]);
1498 break;
1499 case ir_binop_gequal:
1500 emit(ir, TGSI_OPCODE_SGE, result_dst, op[0], op[1]);
1501 break;
1502 case ir_binop_equal:
1503 emit(ir, TGSI_OPCODE_SEQ, result_dst, op[0], op[1]);
1504 break;
1505 case ir_binop_nequal:
1506 emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1507 break;
1508 case ir_binop_all_equal:
1509 /* "==" operator producing a scalar boolean. */
1510 if (ir->operands[0]->type->is_vector() ||
1511 ir->operands[1]->type->is_vector()) {
1512 st_src_reg temp = get_temp(native_integers ?
1513 glsl_type::get_instance(ir->operands[0]->type->base_type, 4, 1) :
1514 glsl_type::vec4_type);
1515
1516 if (native_integers) {
1517 st_dst_reg temp_dst = st_dst_reg(temp);
1518 st_src_reg temp1 = st_src_reg(temp), temp2 = st_src_reg(temp);
1519
1520 emit(ir, TGSI_OPCODE_SEQ, st_dst_reg(temp), op[0], op[1]);
1521
1522 /* Emit 1-3 AND operations to combine the SEQ results. */
1523 switch (ir->operands[0]->type->vector_elements) {
1524 case 2:
1525 break;
1526 case 3:
1527 temp_dst.writemask = WRITEMASK_Y;
1528 temp1.swizzle = SWIZZLE_YYYY;
1529 temp2.swizzle = SWIZZLE_ZZZZ;
1530 emit(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
1531 break;
1532 case 4:
1533 temp_dst.writemask = WRITEMASK_X;
1534 temp1.swizzle = SWIZZLE_XXXX;
1535 temp2.swizzle = SWIZZLE_YYYY;
1536 emit(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
1537 temp_dst.writemask = WRITEMASK_Y;
1538 temp1.swizzle = SWIZZLE_ZZZZ;
1539 temp2.swizzle = SWIZZLE_WWWW;
1540 emit(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
1541 }
1542
1543 temp1.swizzle = SWIZZLE_XXXX;
1544 temp2.swizzle = SWIZZLE_YYYY;
1545 emit(ir, TGSI_OPCODE_AND, result_dst, temp1, temp2);
1546 } else {
1547 emit(ir, TGSI_OPCODE_SNE, st_dst_reg(temp), op[0], op[1]);
1548
1549 /* After the dot-product, the value will be an integer on the
1550 * range [0,4]. Zero becomes 1.0, and positive values become zero.
1551 */
1552 emit_dp(ir, result_dst, temp, temp, vector_elements);
1553
1554 /* Negating the result of the dot-product gives values on the range
1555 * [-4, 0]. Zero becomes 1.0, and negative values become zero.
1556 * This is achieved using SGE.
1557 */
1558 st_src_reg sge_src = result_src;
1559 sge_src.negate = ~sge_src.negate;
1560 emit(ir, TGSI_OPCODE_SGE, result_dst, sge_src, st_src_reg_for_float(0.0));
1561 }
1562 } else {
1563 emit(ir, TGSI_OPCODE_SEQ, result_dst, op[0], op[1]);
1564 }
1565 break;
1566 case ir_binop_any_nequal:
1567 /* "!=" operator producing a scalar boolean. */
1568 if (ir->operands[0]->type->is_vector() ||
1569 ir->operands[1]->type->is_vector()) {
1570 st_src_reg temp = get_temp(native_integers ?
1571 glsl_type::get_instance(ir->operands[0]->type->base_type, 4, 1) :
1572 glsl_type::vec4_type);
1573 emit(ir, TGSI_OPCODE_SNE, st_dst_reg(temp), op[0], op[1]);
1574
1575 if (native_integers) {
1576 st_dst_reg temp_dst = st_dst_reg(temp);
1577 st_src_reg temp1 = st_src_reg(temp), temp2 = st_src_reg(temp);
1578
1579 /* Emit 1-3 OR operations to combine the SNE results. */
1580 switch (ir->operands[0]->type->vector_elements) {
1581 case 2:
1582 break;
1583 case 3:
1584 temp_dst.writemask = WRITEMASK_Y;
1585 temp1.swizzle = SWIZZLE_YYYY;
1586 temp2.swizzle = SWIZZLE_ZZZZ;
1587 emit(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
1588 break;
1589 case 4:
1590 temp_dst.writemask = WRITEMASK_X;
1591 temp1.swizzle = SWIZZLE_XXXX;
1592 temp2.swizzle = SWIZZLE_YYYY;
1593 emit(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
1594 temp_dst.writemask = WRITEMASK_Y;
1595 temp1.swizzle = SWIZZLE_ZZZZ;
1596 temp2.swizzle = SWIZZLE_WWWW;
1597 emit(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
1598 }
1599
1600 temp1.swizzle = SWIZZLE_XXXX;
1601 temp2.swizzle = SWIZZLE_YYYY;
1602 emit(ir, TGSI_OPCODE_OR, result_dst, temp1, temp2);
1603 } else {
1604 /* After the dot-product, the value will be an integer on the
1605 * range [0,4]. Zero stays zero, and positive values become 1.0.
1606 */
1607 glsl_to_tgsi_instruction *const dp =
1608 emit_dp(ir, result_dst, temp, temp, vector_elements);
1609 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1610 /* The clamping to [0,1] can be done for free in the fragment
1611 * shader with a saturate.
1612 */
1613 dp->saturate = true;
1614 } else {
1615 /* Negating the result of the dot-product gives values on the range
1616 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1617 * achieved using SLT.
1618 */
1619 st_src_reg slt_src = result_src;
1620 slt_src.negate = ~slt_src.negate;
1621 emit(ir, TGSI_OPCODE_SLT, result_dst, slt_src, st_src_reg_for_float(0.0));
1622 }
1623 }
1624 } else {
1625 emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1626 }
1627 break;
1628
1629 case ir_unop_any: {
1630 assert(ir->operands[0]->type->is_vector());
1631
1632 /* After the dot-product, the value will be an integer on the
1633 * range [0,4]. Zero stays zero, and positive values become 1.0.
1634 */
1635 glsl_to_tgsi_instruction *const dp =
1636 emit_dp(ir, result_dst, op[0], op[0],
1637 ir->operands[0]->type->vector_elements);
1638 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB &&
1639 result_dst.type == GLSL_TYPE_FLOAT) {
1640 /* The clamping to [0,1] can be done for free in the fragment
1641 * shader with a saturate.
1642 */
1643 dp->saturate = true;
1644 } else if (result_dst.type == GLSL_TYPE_FLOAT) {
1645 /* Negating the result of the dot-product gives values on the range
1646 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1647 * is achieved using SLT.
1648 */
1649 st_src_reg slt_src = result_src;
1650 slt_src.negate = ~slt_src.negate;
1651 emit(ir, TGSI_OPCODE_SLT, result_dst, slt_src, st_src_reg_for_float(0.0));
1652 }
1653 else {
1654 /* Use SNE 0 if integers are being used as boolean values. */
1655 emit(ir, TGSI_OPCODE_SNE, result_dst, result_src, st_src_reg_for_int(0));
1656 }
1657 break;
1658 }
1659
1660 case ir_binop_logic_xor:
1661 if (native_integers)
1662 emit(ir, TGSI_OPCODE_XOR, result_dst, op[0], op[1]);
1663 else
1664 emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1665 break;
1666
1667 case ir_binop_logic_or: {
1668 if (native_integers) {
1669 /* If integers are used as booleans, we can use an actual "or"
1670 * instruction.
1671 */
1672 assert(native_integers);
1673 emit(ir, TGSI_OPCODE_OR, result_dst, op[0], op[1]);
1674 } else {
1675 /* After the addition, the value will be an integer on the
1676 * range [0,2]. Zero stays zero, and positive values become 1.0.
1677 */
1678 glsl_to_tgsi_instruction *add =
1679 emit(ir, TGSI_OPCODE_ADD, result_dst, op[0], op[1]);
1680 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1681 /* The clamping to [0,1] can be done for free in the fragment
1682 * shader with a saturate if floats are being used as boolean values.
1683 */
1684 add->saturate = true;
1685 } else {
1686 /* Negating the result of the addition gives values on the range
1687 * [-2, 0]. Zero stays zero, and negative values become 1.0. This
1688 * is achieved using SLT.
1689 */
1690 st_src_reg slt_src = result_src;
1691 slt_src.negate = ~slt_src.negate;
1692 emit(ir, TGSI_OPCODE_SLT, result_dst, slt_src, st_src_reg_for_float(0.0));
1693 }
1694 }
1695 break;
1696 }
1697
1698 case ir_binop_logic_and:
1699 /* If native integers are disabled, the bool args are stored as float 0.0
1700 * or 1.0, so "mul" gives us "and". If they're enabled, just use the
1701 * actual AND opcode.
1702 */
1703 if (native_integers)
1704 emit(ir, TGSI_OPCODE_AND, result_dst, op[0], op[1]);
1705 else
1706 emit(ir, TGSI_OPCODE_MUL, result_dst, op[0], op[1]);
1707 break;
1708
1709 case ir_binop_dot:
1710 assert(ir->operands[0]->type->is_vector());
1711 assert(ir->operands[0]->type == ir->operands[1]->type);
1712 emit_dp(ir, result_dst, op[0], op[1],
1713 ir->operands[0]->type->vector_elements);
1714 break;
1715
1716 case ir_unop_sqrt:
1717 /* sqrt(x) = x * rsq(x). */
1718 emit_scalar(ir, TGSI_OPCODE_RSQ, result_dst, op[0]);
1719 emit(ir, TGSI_OPCODE_MUL, result_dst, result_src, op[0]);
1720 /* For incoming channels <= 0, set the result to 0. */
1721 op[0].negate = ~op[0].negate;
1722 emit(ir, TGSI_OPCODE_CMP, result_dst,
1723 op[0], result_src, st_src_reg_for_float(0.0));
1724 break;
1725 case ir_unop_rsq:
1726 emit_scalar(ir, TGSI_OPCODE_RSQ, result_dst, op[0]);
1727 break;
1728 case ir_unop_i2f:
1729 if (native_integers) {
1730 emit(ir, TGSI_OPCODE_I2F, result_dst, op[0]);
1731 break;
1732 }
1733 /* fallthrough to next case otherwise */
1734 case ir_unop_b2f:
1735 if (native_integers) {
1736 emit(ir, TGSI_OPCODE_AND, result_dst, op[0], st_src_reg_for_float(1.0));
1737 break;
1738 }
1739 /* fallthrough to next case otherwise */
1740 case ir_unop_i2u:
1741 case ir_unop_u2i:
1742 /* Converting between signed and unsigned integers is a no-op. */
1743 result_src = op[0];
1744 break;
1745 case ir_unop_b2i:
1746 if (native_integers) {
1747 /* Booleans are stored as integers using ~0 for true and 0 for false.
1748 * GLSL requires that int(bool) return 1 for true and 0 for false.
1749 * This conversion is done with AND, but it could be done with NEG.
1750 */
1751 emit(ir, TGSI_OPCODE_AND, result_dst, op[0], st_src_reg_for_int(1));
1752 } else {
1753 /* Booleans and integers are both stored as floats when native
1754 * integers are disabled.
1755 */
1756 result_src = op[0];
1757 }
1758 break;
1759 case ir_unop_f2i:
1760 if (native_integers)
1761 emit(ir, TGSI_OPCODE_F2I, result_dst, op[0]);
1762 else
1763 emit(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
1764 break;
1765 case ir_unop_f2b:
1766 emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], st_src_reg_for_float(0.0));
1767 break;
1768 case ir_unop_i2b:
1769 if (native_integers)
1770 emit(ir, TGSI_OPCODE_INEG, result_dst, op[0]);
1771 else
1772 emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], st_src_reg_for_float(0.0));
1773 break;
1774 case ir_unop_trunc:
1775 emit(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
1776 break;
1777 case ir_unop_ceil:
1778 op[0].negate = ~op[0].negate;
1779 emit(ir, TGSI_OPCODE_FLR, result_dst, op[0]);
1780 result_src.negate = ~result_src.negate;
1781 break;
1782 case ir_unop_floor:
1783 emit(ir, TGSI_OPCODE_FLR, result_dst, op[0]);
1784 break;
1785 case ir_unop_round_even:
1786 emit(ir, TGSI_OPCODE_ROUND, result_dst, op[0]);
1787 break;
1788 case ir_unop_fract:
1789 emit(ir, TGSI_OPCODE_FRC, result_dst, op[0]);
1790 break;
1791
1792 case ir_binop_min:
1793 emit(ir, TGSI_OPCODE_MIN, result_dst, op[0], op[1]);
1794 break;
1795 case ir_binop_max:
1796 emit(ir, TGSI_OPCODE_MAX, result_dst, op[0], op[1]);
1797 break;
1798 case ir_binop_pow:
1799 emit_scalar(ir, TGSI_OPCODE_POW, result_dst, op[0], op[1]);
1800 break;
1801
1802 case ir_unop_bit_not:
1803 if (native_integers) {
1804 emit(ir, TGSI_OPCODE_NOT, result_dst, op[0]);
1805 break;
1806 }
1807 case ir_unop_u2f:
1808 if (native_integers) {
1809 emit(ir, TGSI_OPCODE_U2F, result_dst, op[0]);
1810 break;
1811 }
1812 case ir_binop_lshift:
1813 if (native_integers) {
1814 emit(ir, TGSI_OPCODE_SHL, result_dst, op[0], op[1]);
1815 break;
1816 }
1817 case ir_binop_rshift:
1818 if (native_integers) {
1819 emit(ir, TGSI_OPCODE_ISHR, result_dst, op[0], op[1]);
1820 break;
1821 }
1822 case ir_binop_bit_and:
1823 if (native_integers) {
1824 emit(ir, TGSI_OPCODE_AND, result_dst, op[0], op[1]);
1825 break;
1826 }
1827 case ir_binop_bit_xor:
1828 if (native_integers) {
1829 emit(ir, TGSI_OPCODE_XOR, result_dst, op[0], op[1]);
1830 break;
1831 }
1832 case ir_binop_bit_or:
1833 if (native_integers) {
1834 emit(ir, TGSI_OPCODE_OR, result_dst, op[0], op[1]);
1835 break;
1836 }
1837
1838 assert(!"GLSL 1.30 features unsupported");
1839 break;
1840
1841 case ir_quadop_vector:
1842 /* This operation should have already been handled.
1843 */
1844 assert(!"Should not get here.");
1845 break;
1846 }
1847
1848 this->result = result_src;
1849 }
1850
1851
1852 void
1853 glsl_to_tgsi_visitor::visit(ir_swizzle *ir)
1854 {
1855 st_src_reg src;
1856 int i;
1857 int swizzle[4];
1858
1859 /* Note that this is only swizzles in expressions, not those on the left
1860 * hand side of an assignment, which do write masking. See ir_assignment
1861 * for that.
1862 */
1863
1864 ir->val->accept(this);
1865 src = this->result;
1866 assert(src.file != PROGRAM_UNDEFINED);
1867
1868 for (i = 0; i < 4; i++) {
1869 if (i < ir->type->vector_elements) {
1870 switch (i) {
1871 case 0:
1872 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x);
1873 break;
1874 case 1:
1875 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y);
1876 break;
1877 case 2:
1878 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z);
1879 break;
1880 case 3:
1881 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w);
1882 break;
1883 }
1884 } else {
1885 /* If the type is smaller than a vec4, replicate the last
1886 * channel out.
1887 */
1888 swizzle[i] = swizzle[ir->type->vector_elements - 1];
1889 }
1890 }
1891
1892 src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
1893
1894 this->result = src;
1895 }
1896
1897 void
1898 glsl_to_tgsi_visitor::visit(ir_dereference_variable *ir)
1899 {
1900 variable_storage *entry = find_variable_storage(ir->var);
1901 ir_variable *var = ir->var;
1902
1903 if (!entry) {
1904 switch (var->mode) {
1905 case ir_var_uniform:
1906 entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM,
1907 var->location);
1908 this->variables.push_tail(entry);
1909 break;
1910 case ir_var_in:
1911 case ir_var_inout:
1912 /* The linker assigns locations for varyings and attributes,
1913 * including deprecated builtins (like gl_Color), user-assign
1914 * generic attributes (glBindVertexLocation), and
1915 * user-defined varyings.
1916 *
1917 * FINISHME: We would hit this path for function arguments. Fix!
1918 */
1919 assert(var->location != -1);
1920 entry = new(mem_ctx) variable_storage(var,
1921 PROGRAM_INPUT,
1922 var->location);
1923 break;
1924 case ir_var_out:
1925 assert(var->location != -1);
1926 entry = new(mem_ctx) variable_storage(var,
1927 PROGRAM_OUTPUT,
1928 var->location);
1929 break;
1930 case ir_var_system_value:
1931 entry = new(mem_ctx) variable_storage(var,
1932 PROGRAM_SYSTEM_VALUE,
1933 var->location);
1934 break;
1935 case ir_var_auto:
1936 case ir_var_temporary:
1937 entry = new(mem_ctx) variable_storage(var, PROGRAM_TEMPORARY,
1938 this->next_temp);
1939 this->variables.push_tail(entry);
1940
1941 next_temp += type_size(var->type);
1942 break;
1943 }
1944
1945 if (!entry) {
1946 printf("Failed to make storage for %s\n", var->name);
1947 exit(1);
1948 }
1949 }
1950
1951 this->result = st_src_reg(entry->file, entry->index, var->type);
1952 if (!native_integers)
1953 this->result.type = GLSL_TYPE_FLOAT;
1954 }
1955
1956 void
1957 glsl_to_tgsi_visitor::visit(ir_dereference_array *ir)
1958 {
1959 ir_constant *index;
1960 st_src_reg src;
1961 int element_size = type_size(ir->type);
1962
1963 index = ir->array_index->constant_expression_value();
1964
1965 ir->array->accept(this);
1966 src = this->result;
1967
1968 if (index) {
1969 src.index += index->value.i[0] * element_size;
1970 } else {
1971 /* Variable index array dereference. It eats the "vec4" of the
1972 * base of the array and an index that offsets the TGSI register
1973 * index.
1974 */
1975 ir->array_index->accept(this);
1976
1977 st_src_reg index_reg;
1978
1979 if (element_size == 1) {
1980 index_reg = this->result;
1981 } else {
1982 index_reg = get_temp(native_integers ?
1983 glsl_type::int_type : glsl_type::float_type);
1984
1985 emit(ir, TGSI_OPCODE_MUL, st_dst_reg(index_reg),
1986 this->result, st_src_reg_for_type(index_reg.type, element_size));
1987 }
1988
1989 /* If there was already a relative address register involved, add the
1990 * new and the old together to get the new offset.
1991 */
1992 if (src.reladdr != NULL) {
1993 st_src_reg accum_reg = get_temp(native_integers ?
1994 glsl_type::int_type : glsl_type::float_type);
1995
1996 emit(ir, TGSI_OPCODE_ADD, st_dst_reg(accum_reg),
1997 index_reg, *src.reladdr);
1998
1999 index_reg = accum_reg;
2000 }
2001
2002 src.reladdr = ralloc(mem_ctx, st_src_reg);
2003 memcpy(src.reladdr, &index_reg, sizeof(index_reg));
2004 }
2005
2006 /* If the type is smaller than a vec4, replicate the last channel out. */
2007 if (ir->type->is_scalar() || ir->type->is_vector())
2008 src.swizzle = swizzle_for_size(ir->type->vector_elements);
2009 else
2010 src.swizzle = SWIZZLE_NOOP;
2011
2012 this->result = src;
2013 }
2014
2015 void
2016 glsl_to_tgsi_visitor::visit(ir_dereference_record *ir)
2017 {
2018 unsigned int i;
2019 const glsl_type *struct_type = ir->record->type;
2020 int offset = 0;
2021
2022 ir->record->accept(this);
2023
2024 for (i = 0; i < struct_type->length; i++) {
2025 if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
2026 break;
2027 offset += type_size(struct_type->fields.structure[i].type);
2028 }
2029
2030 /* If the type is smaller than a vec4, replicate the last channel out. */
2031 if (ir->type->is_scalar() || ir->type->is_vector())
2032 this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
2033 else
2034 this->result.swizzle = SWIZZLE_NOOP;
2035
2036 this->result.index += offset;
2037 }
2038
2039 /**
2040 * We want to be careful in assignment setup to hit the actual storage
2041 * instead of potentially using a temporary like we might with the
2042 * ir_dereference handler.
2043 */
2044 static st_dst_reg
2045 get_assignment_lhs(ir_dereference *ir, glsl_to_tgsi_visitor *v)
2046 {
2047 /* The LHS must be a dereference. If the LHS is a variable indexed array
2048 * access of a vector, it must be separated into a series conditional moves
2049 * before reaching this point (see ir_vec_index_to_cond_assign).
2050 */
2051 assert(ir->as_dereference());
2052 ir_dereference_array *deref_array = ir->as_dereference_array();
2053 if (deref_array) {
2054 assert(!deref_array->array->type->is_vector());
2055 }
2056
2057 /* Use the rvalue deref handler for the most part. We'll ignore
2058 * swizzles in it and write swizzles using writemask, though.
2059 */
2060 ir->accept(v);
2061 return st_dst_reg(v->result);
2062 }
2063
2064 /**
2065 * Process the condition of a conditional assignment
2066 *
2067 * Examines the condition of a conditional assignment to generate the optimal
2068 * first operand of a \c CMP instruction. If the condition is a relational
2069 * operator with 0 (e.g., \c ir_binop_less), the value being compared will be
2070 * used as the source for the \c CMP instruction. Otherwise the comparison
2071 * is processed to a boolean result, and the boolean result is used as the
2072 * operand to the CMP instruction.
2073 */
2074 bool
2075 glsl_to_tgsi_visitor::process_move_condition(ir_rvalue *ir)
2076 {
2077 ir_rvalue *src_ir = ir;
2078 bool negate = true;
2079 bool switch_order = false;
2080
2081 ir_expression *const expr = ir->as_expression();
2082 if ((expr != NULL) && (expr->get_num_operands() == 2)) {
2083 bool zero_on_left = false;
2084
2085 if (expr->operands[0]->is_zero()) {
2086 src_ir = expr->operands[1];
2087 zero_on_left = true;
2088 } else if (expr->operands[1]->is_zero()) {
2089 src_ir = expr->operands[0];
2090 zero_on_left = false;
2091 }
2092
2093 /* a is - 0 + - 0 +
2094 * (a < 0) T F F ( a < 0) T F F
2095 * (0 < a) F F T (-a < 0) F F T
2096 * (a <= 0) T T F (-a < 0) F F T (swap order of other operands)
2097 * (0 <= a) F T T ( a < 0) T F F (swap order of other operands)
2098 * (a > 0) F F T (-a < 0) F F T
2099 * (0 > a) T F F ( a < 0) T F F
2100 * (a >= 0) F T T ( a < 0) T F F (swap order of other operands)
2101 * (0 >= a) T T F (-a < 0) F F T (swap order of other operands)
2102 *
2103 * Note that exchanging the order of 0 and 'a' in the comparison simply
2104 * means that the value of 'a' should be negated.
2105 */
2106 if (src_ir != ir) {
2107 switch (expr->operation) {
2108 case ir_binop_less:
2109 switch_order = false;
2110 negate = zero_on_left;
2111 break;
2112
2113 case ir_binop_greater:
2114 switch_order = false;
2115 negate = !zero_on_left;
2116 break;
2117
2118 case ir_binop_lequal:
2119 switch_order = true;
2120 negate = !zero_on_left;
2121 break;
2122
2123 case ir_binop_gequal:
2124 switch_order = true;
2125 negate = zero_on_left;
2126 break;
2127
2128 default:
2129 /* This isn't the right kind of comparison afterall, so make sure
2130 * the whole condition is visited.
2131 */
2132 src_ir = ir;
2133 break;
2134 }
2135 }
2136 }
2137
2138 src_ir->accept(this);
2139
2140 /* We use the TGSI_OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the
2141 * condition we produced is 0.0 or 1.0. By flipping the sign, we can
2142 * choose which value TGSI_OPCODE_CMP produces without an extra instruction
2143 * computing the condition.
2144 */
2145 if (negate)
2146 this->result.negate = ~this->result.negate;
2147
2148 return switch_order;
2149 }
2150
2151 void
2152 glsl_to_tgsi_visitor::visit(ir_assignment *ir)
2153 {
2154 st_dst_reg l;
2155 st_src_reg r;
2156 int i;
2157
2158 ir->rhs->accept(this);
2159 r = this->result;
2160
2161 l = get_assignment_lhs(ir->lhs, this);
2162
2163 /* FINISHME: This should really set to the correct maximal writemask for each
2164 * FINISHME: component written (in the loops below). This case can only
2165 * FINISHME: occur for matrices, arrays, and structures.
2166 */
2167 if (ir->write_mask == 0) {
2168 assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
2169 l.writemask = WRITEMASK_XYZW;
2170 } else if (ir->lhs->type->is_scalar() &&
2171 ir->lhs->variable_referenced()->mode == ir_var_out) {
2172 /* FINISHME: This hack makes writing to gl_FragDepth, which lives in the
2173 * FINISHME: W component of fragment shader output zero, work correctly.
2174 */
2175 l.writemask = WRITEMASK_XYZW;
2176 } else {
2177 int swizzles[4];
2178 int first_enabled_chan = 0;
2179 int rhs_chan = 0;
2180
2181 l.writemask = ir->write_mask;
2182
2183 for (int i = 0; i < 4; i++) {
2184 if (l.writemask & (1 << i)) {
2185 first_enabled_chan = GET_SWZ(r.swizzle, i);
2186 break;
2187 }
2188 }
2189
2190 /* Swizzle a small RHS vector into the channels being written.
2191 *
2192 * glsl ir treats write_mask as dictating how many channels are
2193 * present on the RHS while TGSI treats write_mask as just
2194 * showing which channels of the vec4 RHS get written.
2195 */
2196 for (int i = 0; i < 4; i++) {
2197 if (l.writemask & (1 << i))
2198 swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++);
2199 else
2200 swizzles[i] = first_enabled_chan;
2201 }
2202 r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1],
2203 swizzles[2], swizzles[3]);
2204 }
2205
2206 assert(l.file != PROGRAM_UNDEFINED);
2207 assert(r.file != PROGRAM_UNDEFINED);
2208
2209 if (ir->condition) {
2210 const bool switch_order = this->process_move_condition(ir->condition);
2211 st_src_reg condition = this->result;
2212
2213 for (i = 0; i < type_size(ir->lhs->type); i++) {
2214 st_src_reg l_src = st_src_reg(l);
2215 st_src_reg condition_temp = condition;
2216 l_src.swizzle = swizzle_for_size(ir->lhs->type->vector_elements);
2217
2218 if (native_integers) {
2219 /* This is necessary because TGSI's CMP instruction expects the
2220 * condition to be a float, and we store booleans as integers.
2221 * If TGSI had a UCMP instruction or similar, this extra
2222 * instruction would not be necessary.
2223 */
2224 condition_temp = get_temp(glsl_type::vec4_type);
2225 condition.negate = 0;
2226 emit(ir, TGSI_OPCODE_I2F, st_dst_reg(condition_temp), condition);
2227 condition_temp.swizzle = condition.swizzle;
2228 }
2229
2230 if (switch_order) {
2231 emit(ir, TGSI_OPCODE_CMP, l, condition_temp, l_src, r);
2232 } else {
2233 emit(ir, TGSI_OPCODE_CMP, l, condition_temp, r, l_src);
2234 }
2235
2236 l.index++;
2237 r.index++;
2238 }
2239 } else if (ir->rhs->as_expression() &&
2240 this->instructions.get_tail() &&
2241 ir->rhs == ((glsl_to_tgsi_instruction *)this->instructions.get_tail())->ir &&
2242 type_size(ir->lhs->type) == 1 &&
2243 l.writemask == ((glsl_to_tgsi_instruction *)this->instructions.get_tail())->dst.writemask) {
2244 /* To avoid emitting an extra MOV when assigning an expression to a
2245 * variable, emit the last instruction of the expression again, but
2246 * replace the destination register with the target of the assignment.
2247 * Dead code elimination will remove the original instruction.
2248 */
2249 glsl_to_tgsi_instruction *inst, *new_inst;
2250 inst = (glsl_to_tgsi_instruction *)this->instructions.get_tail();
2251 new_inst = emit(ir, inst->op, l, inst->src[0], inst->src[1], inst->src[2]);
2252 new_inst->saturate = inst->saturate;
2253 inst->dead_mask = inst->dst.writemask;
2254 } else {
2255 for (i = 0; i < type_size(ir->lhs->type); i++) {
2256 emit(ir, TGSI_OPCODE_MOV, l, r);
2257 l.index++;
2258 r.index++;
2259 }
2260 }
2261 }
2262
2263
2264 void
2265 glsl_to_tgsi_visitor::visit(ir_constant *ir)
2266 {
2267 st_src_reg src;
2268 GLfloat stack_vals[4] = { 0 };
2269 gl_constant_value *values = (gl_constant_value *) stack_vals;
2270 GLenum gl_type = GL_NONE;
2271 unsigned int i;
2272 static int in_array = 0;
2273 gl_register_file file = in_array ? PROGRAM_CONSTANT : PROGRAM_IMMEDIATE;
2274
2275 /* Unfortunately, 4 floats is all we can get into
2276 * _mesa_add_typed_unnamed_constant. So, make a temp to store an
2277 * aggregate constant and move each constant value into it. If we
2278 * get lucky, copy propagation will eliminate the extra moves.
2279 */
2280 if (ir->type->base_type == GLSL_TYPE_STRUCT) {
2281 st_src_reg temp_base = get_temp(ir->type);
2282 st_dst_reg temp = st_dst_reg(temp_base);
2283
2284 foreach_iter(exec_list_iterator, iter, ir->components) {
2285 ir_constant *field_value = (ir_constant *)iter.get();
2286 int size = type_size(field_value->type);
2287
2288 assert(size > 0);
2289
2290 field_value->accept(this);
2291 src = this->result;
2292
2293 for (i = 0; i < (unsigned int)size; i++) {
2294 emit(ir, TGSI_OPCODE_MOV, temp, src);
2295
2296 src.index++;
2297 temp.index++;
2298 }
2299 }
2300 this->result = temp_base;
2301 return;
2302 }
2303
2304 if (ir->type->is_array()) {
2305 st_src_reg temp_base = get_temp(ir->type);
2306 st_dst_reg temp = st_dst_reg(temp_base);
2307 int size = type_size(ir->type->fields.array);
2308
2309 assert(size > 0);
2310 in_array++;
2311
2312 for (i = 0; i < ir->type->length; i++) {
2313 ir->array_elements[i]->accept(this);
2314 src = this->result;
2315 for (int j = 0; j < size; j++) {
2316 emit(ir, TGSI_OPCODE_MOV, temp, src);
2317
2318 src.index++;
2319 temp.index++;
2320 }
2321 }
2322 this->result = temp_base;
2323 in_array--;
2324 return;
2325 }
2326
2327 if (ir->type->is_matrix()) {
2328 st_src_reg mat = get_temp(ir->type);
2329 st_dst_reg mat_column = st_dst_reg(mat);
2330
2331 for (i = 0; i < ir->type->matrix_columns; i++) {
2332 assert(ir->type->base_type == GLSL_TYPE_FLOAT);
2333 values = (gl_constant_value *) &ir->value.f[i * ir->type->vector_elements];
2334
2335 src = st_src_reg(file, -1, ir->type->base_type);
2336 src.index = add_constant(file,
2337 values,
2338 ir->type->vector_elements,
2339 GL_FLOAT,
2340 &src.swizzle);
2341 emit(ir, TGSI_OPCODE_MOV, mat_column, src);
2342
2343 mat_column.index++;
2344 }
2345
2346 this->result = mat;
2347 return;
2348 }
2349
2350 switch (ir->type->base_type) {
2351 case GLSL_TYPE_FLOAT:
2352 gl_type = GL_FLOAT;
2353 for (i = 0; i < ir->type->vector_elements; i++) {
2354 values[i].f = ir->value.f[i];
2355 }
2356 break;
2357 case GLSL_TYPE_UINT:
2358 gl_type = native_integers ? GL_UNSIGNED_INT : GL_FLOAT;
2359 for (i = 0; i < ir->type->vector_elements; i++) {
2360 if (native_integers)
2361 values[i].u = ir->value.u[i];
2362 else
2363 values[i].f = ir->value.u[i];
2364 }
2365 break;
2366 case GLSL_TYPE_INT:
2367 gl_type = native_integers ? GL_INT : GL_FLOAT;
2368 for (i = 0; i < ir->type->vector_elements; i++) {
2369 if (native_integers)
2370 values[i].i = ir->value.i[i];
2371 else
2372 values[i].f = ir->value.i[i];
2373 }
2374 break;
2375 case GLSL_TYPE_BOOL:
2376 gl_type = native_integers ? GL_BOOL : GL_FLOAT;
2377 for (i = 0; i < ir->type->vector_elements; i++) {
2378 if (native_integers)
2379 values[i].b = ir->value.b[i];
2380 else
2381 values[i].f = ir->value.b[i];
2382 }
2383 break;
2384 default:
2385 assert(!"Non-float/uint/int/bool constant");
2386 }
2387
2388 this->result = st_src_reg(file, -1, ir->type);
2389 this->result.index = add_constant(file,
2390 values,
2391 ir->type->vector_elements,
2392 gl_type,
2393 &this->result.swizzle);
2394 }
2395
2396 function_entry *
2397 glsl_to_tgsi_visitor::get_function_signature(ir_function_signature *sig)
2398 {
2399 function_entry *entry;
2400
2401 foreach_iter(exec_list_iterator, iter, this->function_signatures) {
2402 entry = (function_entry *)iter.get();
2403
2404 if (entry->sig == sig)
2405 return entry;
2406 }
2407
2408 entry = ralloc(mem_ctx, function_entry);
2409 entry->sig = sig;
2410 entry->sig_id = this->next_signature_id++;
2411 entry->bgn_inst = NULL;
2412
2413 /* Allocate storage for all the parameters. */
2414 foreach_iter(exec_list_iterator, iter, sig->parameters) {
2415 ir_variable *param = (ir_variable *)iter.get();
2416 variable_storage *storage;
2417
2418 storage = find_variable_storage(param);
2419 assert(!storage);
2420
2421 storage = new(mem_ctx) variable_storage(param, PROGRAM_TEMPORARY,
2422 this->next_temp);
2423 this->variables.push_tail(storage);
2424
2425 this->next_temp += type_size(param->type);
2426 }
2427
2428 if (!sig->return_type->is_void()) {
2429 entry->return_reg = get_temp(sig->return_type);
2430 } else {
2431 entry->return_reg = undef_src;
2432 }
2433
2434 this->function_signatures.push_tail(entry);
2435 return entry;
2436 }
2437
2438 void
2439 glsl_to_tgsi_visitor::visit(ir_call *ir)
2440 {
2441 glsl_to_tgsi_instruction *call_inst;
2442 ir_function_signature *sig = ir->get_callee();
2443 function_entry *entry = get_function_signature(sig);
2444 int i;
2445
2446 /* Process in parameters. */
2447 exec_list_iterator sig_iter = sig->parameters.iterator();
2448 foreach_iter(exec_list_iterator, iter, *ir) {
2449 ir_rvalue *param_rval = (ir_rvalue *)iter.get();
2450 ir_variable *param = (ir_variable *)sig_iter.get();
2451
2452 if (param->mode == ir_var_in ||
2453 param->mode == ir_var_inout) {
2454 variable_storage *storage = find_variable_storage(param);
2455 assert(storage);
2456
2457 param_rval->accept(this);
2458 st_src_reg r = this->result;
2459
2460 st_dst_reg l;
2461 l.file = storage->file;
2462 l.index = storage->index;
2463 l.reladdr = NULL;
2464 l.writemask = WRITEMASK_XYZW;
2465 l.cond_mask = COND_TR;
2466
2467 for (i = 0; i < type_size(param->type); i++) {
2468 emit(ir, TGSI_OPCODE_MOV, l, r);
2469 l.index++;
2470 r.index++;
2471 }
2472 }
2473
2474 sig_iter.next();
2475 }
2476 assert(!sig_iter.has_next());
2477
2478 /* Emit call instruction */
2479 call_inst = emit(ir, TGSI_OPCODE_CAL);
2480 call_inst->function = entry;
2481
2482 /* Process out parameters. */
2483 sig_iter = sig->parameters.iterator();
2484 foreach_iter(exec_list_iterator, iter, *ir) {
2485 ir_rvalue *param_rval = (ir_rvalue *)iter.get();
2486 ir_variable *param = (ir_variable *)sig_iter.get();
2487
2488 if (param->mode == ir_var_out ||
2489 param->mode == ir_var_inout) {
2490 variable_storage *storage = find_variable_storage(param);
2491 assert(storage);
2492
2493 st_src_reg r;
2494 r.file = storage->file;
2495 r.index = storage->index;
2496 r.reladdr = NULL;
2497 r.swizzle = SWIZZLE_NOOP;
2498 r.negate = 0;
2499
2500 param_rval->accept(this);
2501 st_dst_reg l = st_dst_reg(this->result);
2502
2503 for (i = 0; i < type_size(param->type); i++) {
2504 emit(ir, TGSI_OPCODE_MOV, l, r);
2505 l.index++;
2506 r.index++;
2507 }
2508 }
2509
2510 sig_iter.next();
2511 }
2512 assert(!sig_iter.has_next());
2513
2514 /* Process return value. */
2515 this->result = entry->return_reg;
2516 }
2517
2518 void
2519 glsl_to_tgsi_visitor::visit(ir_texture *ir)
2520 {
2521 st_src_reg result_src, coord, lod_info, projector, dx, dy, offset;
2522 st_dst_reg result_dst, coord_dst;
2523 glsl_to_tgsi_instruction *inst = NULL;
2524 unsigned opcode = TGSI_OPCODE_NOP;
2525
2526 if (ir->coordinate) {
2527 ir->coordinate->accept(this);
2528
2529 /* Put our coords in a temp. We'll need to modify them for shadow,
2530 * projection, or LOD, so the only case we'd use it as is is if
2531 * we're doing plain old texturing. The optimization passes on
2532 * glsl_to_tgsi_visitor should handle cleaning up our mess in that case.
2533 */
2534 coord = get_temp(glsl_type::vec4_type);
2535 coord_dst = st_dst_reg(coord);
2536 emit(ir, TGSI_OPCODE_MOV, coord_dst, this->result);
2537 }
2538
2539 if (ir->projector) {
2540 ir->projector->accept(this);
2541 projector = this->result;
2542 }
2543
2544 /* Storage for our result. Ideally for an assignment we'd be using
2545 * the actual storage for the result here, instead.
2546 */
2547 result_src = get_temp(glsl_type::vec4_type);
2548 result_dst = st_dst_reg(result_src);
2549
2550 switch (ir->op) {
2551 case ir_tex:
2552 opcode = TGSI_OPCODE_TEX;
2553 break;
2554 case ir_txb:
2555 opcode = TGSI_OPCODE_TXB;
2556 ir->lod_info.bias->accept(this);
2557 lod_info = this->result;
2558 break;
2559 case ir_txl:
2560 opcode = TGSI_OPCODE_TXL;
2561 ir->lod_info.lod->accept(this);
2562 lod_info = this->result;
2563 break;
2564 case ir_txd:
2565 opcode = TGSI_OPCODE_TXD;
2566 ir->lod_info.grad.dPdx->accept(this);
2567 dx = this->result;
2568 ir->lod_info.grad.dPdy->accept(this);
2569 dy = this->result;
2570 break;
2571 case ir_txs:
2572 opcode = TGSI_OPCODE_TXQ;
2573 ir->lod_info.lod->accept(this);
2574 lod_info = this->result;
2575 break;
2576 case ir_txf:
2577 opcode = TGSI_OPCODE_TXF;
2578 ir->lod_info.lod->accept(this);
2579 lod_info = this->result;
2580 if (ir->offset) {
2581 ir->offset->accept(this);
2582 offset = this->result;
2583 }
2584 break;
2585 }
2586
2587 const glsl_type *sampler_type = ir->sampler->type;
2588
2589 if (ir->projector) {
2590 if (opcode == TGSI_OPCODE_TEX) {
2591 /* Slot the projector in as the last component of the coord. */
2592 coord_dst.writemask = WRITEMASK_W;
2593 emit(ir, TGSI_OPCODE_MOV, coord_dst, projector);
2594 coord_dst.writemask = WRITEMASK_XYZW;
2595 opcode = TGSI_OPCODE_TXP;
2596 } else {
2597 st_src_reg coord_w = coord;
2598 coord_w.swizzle = SWIZZLE_WWWW;
2599
2600 /* For the other TEX opcodes there's no projective version
2601 * since the last slot is taken up by LOD info. Do the
2602 * projective divide now.
2603 */
2604 coord_dst.writemask = WRITEMASK_W;
2605 emit(ir, TGSI_OPCODE_RCP, coord_dst, projector);
2606
2607 /* In the case where we have to project the coordinates "by hand,"
2608 * the shadow comparator value must also be projected.
2609 */
2610 st_src_reg tmp_src = coord;
2611 if (ir->shadow_comparitor) {
2612 /* Slot the shadow value in as the second to last component of the
2613 * coord.
2614 */
2615 ir->shadow_comparitor->accept(this);
2616
2617 tmp_src = get_temp(glsl_type::vec4_type);
2618 st_dst_reg tmp_dst = st_dst_reg(tmp_src);
2619
2620 /* Projective division not allowed for array samplers. */
2621 assert(!sampler_type->sampler_array);
2622
2623 tmp_dst.writemask = WRITEMASK_Z;
2624 emit(ir, TGSI_OPCODE_MOV, tmp_dst, this->result);
2625
2626 tmp_dst.writemask = WRITEMASK_XY;
2627 emit(ir, TGSI_OPCODE_MOV, tmp_dst, coord);
2628 }
2629
2630 coord_dst.writemask = WRITEMASK_XYZ;
2631 emit(ir, TGSI_OPCODE_MUL, coord_dst, tmp_src, coord_w);
2632
2633 coord_dst.writemask = WRITEMASK_XYZW;
2634 coord.swizzle = SWIZZLE_XYZW;
2635 }
2636 }
2637
2638 /* If projection is done and the opcode is not TGSI_OPCODE_TXP, then the shadow
2639 * comparator was put in the correct place (and projected) by the code,
2640 * above, that handles by-hand projection.
2641 */
2642 if (ir->shadow_comparitor && (!ir->projector || opcode == TGSI_OPCODE_TXP)) {
2643 /* Slot the shadow value in as the second to last component of the
2644 * coord.
2645 */
2646 ir->shadow_comparitor->accept(this);
2647
2648 /* XXX This will need to be updated for cubemap array samplers. */
2649 if (sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_2D &&
2650 sampler_type->sampler_array) {
2651 coord_dst.writemask = WRITEMASK_W;
2652 } else {
2653 coord_dst.writemask = WRITEMASK_Z;
2654 }
2655
2656 emit(ir, TGSI_OPCODE_MOV, coord_dst, this->result);
2657 coord_dst.writemask = WRITEMASK_XYZW;
2658 }
2659
2660 if (opcode == TGSI_OPCODE_TXL || opcode == TGSI_OPCODE_TXB ||
2661 opcode == TGSI_OPCODE_TXF) {
2662 /* TGSI stores LOD or LOD bias in the last channel of the coords. */
2663 coord_dst.writemask = WRITEMASK_W;
2664 emit(ir, TGSI_OPCODE_MOV, coord_dst, lod_info);
2665 coord_dst.writemask = WRITEMASK_XYZW;
2666 }
2667
2668 if (opcode == TGSI_OPCODE_TXD)
2669 inst = emit(ir, opcode, result_dst, coord, dx, dy);
2670 else if (opcode == TGSI_OPCODE_TXQ)
2671 inst = emit(ir, opcode, result_dst, lod_info);
2672 else if (opcode == TGSI_OPCODE_TXF) {
2673 inst = emit(ir, opcode, result_dst, coord);
2674 } else
2675 inst = emit(ir, opcode, result_dst, coord);
2676
2677 if (ir->shadow_comparitor)
2678 inst->tex_shadow = GL_TRUE;
2679
2680 inst->sampler = _mesa_get_sampler_uniform_value(ir->sampler,
2681 this->shader_program,
2682 this->prog);
2683
2684 if (ir->offset) {
2685 inst->tex_offset_num_offset = 1;
2686 inst->tex_offsets[0].Index = offset.index;
2687 inst->tex_offsets[0].File = offset.file;
2688 inst->tex_offsets[0].SwizzleX = GET_SWZ(offset.swizzle, 0);
2689 inst->tex_offsets[0].SwizzleY = GET_SWZ(offset.swizzle, 1);
2690 inst->tex_offsets[0].SwizzleZ = GET_SWZ(offset.swizzle, 2);
2691 }
2692
2693 switch (sampler_type->sampler_dimensionality) {
2694 case GLSL_SAMPLER_DIM_1D:
2695 inst->tex_target = (sampler_type->sampler_array)
2696 ? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX;
2697 break;
2698 case GLSL_SAMPLER_DIM_2D:
2699 inst->tex_target = (sampler_type->sampler_array)
2700 ? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX;
2701 break;
2702 case GLSL_SAMPLER_DIM_3D:
2703 inst->tex_target = TEXTURE_3D_INDEX;
2704 break;
2705 case GLSL_SAMPLER_DIM_CUBE:
2706 inst->tex_target = TEXTURE_CUBE_INDEX;
2707 break;
2708 case GLSL_SAMPLER_DIM_RECT:
2709 inst->tex_target = TEXTURE_RECT_INDEX;
2710 break;
2711 case GLSL_SAMPLER_DIM_BUF:
2712 assert(!"FINISHME: Implement ARB_texture_buffer_object");
2713 break;
2714 case GLSL_SAMPLER_DIM_EXTERNAL:
2715 inst->tex_target = TEXTURE_EXTERNAL_INDEX;
2716 break;
2717 default:
2718 assert(!"Should not get here.");
2719 }
2720
2721 this->result = result_src;
2722 }
2723
2724 void
2725 glsl_to_tgsi_visitor::visit(ir_return *ir)
2726 {
2727 if (ir->get_value()) {
2728 st_dst_reg l;
2729 int i;
2730
2731 assert(current_function);
2732
2733 ir->get_value()->accept(this);
2734 st_src_reg r = this->result;
2735
2736 l = st_dst_reg(current_function->return_reg);
2737
2738 for (i = 0; i < type_size(current_function->sig->return_type); i++) {
2739 emit(ir, TGSI_OPCODE_MOV, l, r);
2740 l.index++;
2741 r.index++;
2742 }
2743 }
2744
2745 emit(ir, TGSI_OPCODE_RET);
2746 }
2747
2748 void
2749 glsl_to_tgsi_visitor::visit(ir_discard *ir)
2750 {
2751 struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog;
2752
2753 if (ir->condition) {
2754 ir->condition->accept(this);
2755 this->result.negate = ~this->result.negate;
2756 emit(ir, TGSI_OPCODE_KIL, undef_dst, this->result);
2757 } else {
2758 emit(ir, TGSI_OPCODE_KILP);
2759 }
2760
2761 fp->UsesKill = GL_TRUE;
2762 }
2763
2764 void
2765 glsl_to_tgsi_visitor::visit(ir_if *ir)
2766 {
2767 glsl_to_tgsi_instruction *cond_inst, *if_inst;
2768 glsl_to_tgsi_instruction *prev_inst;
2769
2770 prev_inst = (glsl_to_tgsi_instruction *)this->instructions.get_tail();
2771
2772 ir->condition->accept(this);
2773 assert(this->result.file != PROGRAM_UNDEFINED);
2774
2775 if (this->options->EmitCondCodes) {
2776 cond_inst = (glsl_to_tgsi_instruction *)this->instructions.get_tail();
2777
2778 /* See if we actually generated any instruction for generating
2779 * the condition. If not, then cook up a move to a temp so we
2780 * have something to set cond_update on.
2781 */
2782 if (cond_inst == prev_inst) {
2783 st_src_reg temp = get_temp(glsl_type::bool_type);
2784 cond_inst = emit(ir->condition, TGSI_OPCODE_MOV, st_dst_reg(temp), result);
2785 }
2786 cond_inst->cond_update = GL_TRUE;
2787
2788 if_inst = emit(ir->condition, TGSI_OPCODE_IF);
2789 if_inst->dst.cond_mask = COND_NE;
2790 } else {
2791 if_inst = emit(ir->condition, TGSI_OPCODE_IF, undef_dst, this->result);
2792 }
2793
2794 this->instructions.push_tail(if_inst);
2795
2796 visit_exec_list(&ir->then_instructions, this);
2797
2798 if (!ir->else_instructions.is_empty()) {
2799 emit(ir->condition, TGSI_OPCODE_ELSE);
2800 visit_exec_list(&ir->else_instructions, this);
2801 }
2802
2803 if_inst = emit(ir->condition, TGSI_OPCODE_ENDIF);
2804 }
2805
2806 glsl_to_tgsi_visitor::glsl_to_tgsi_visitor()
2807 {
2808 result.file = PROGRAM_UNDEFINED;
2809 next_temp = 1;
2810 next_signature_id = 1;
2811 num_immediates = 0;
2812 current_function = NULL;
2813 num_address_regs = 0;
2814 indirect_addr_temps = false;
2815 indirect_addr_consts = false;
2816 mem_ctx = ralloc_context(NULL);
2817 }
2818
2819 glsl_to_tgsi_visitor::~glsl_to_tgsi_visitor()
2820 {
2821 ralloc_free(mem_ctx);
2822 }
2823
2824 extern "C" void free_glsl_to_tgsi_visitor(glsl_to_tgsi_visitor *v)
2825 {
2826 delete v;
2827 }
2828
2829
2830 /**
2831 * Count resources used by the given gpu program (number of texture
2832 * samplers, etc).
2833 */
2834 static void
2835 count_resources(glsl_to_tgsi_visitor *v, gl_program *prog)
2836 {
2837 v->samplers_used = 0;
2838
2839 foreach_iter(exec_list_iterator, iter, v->instructions) {
2840 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
2841
2842 if (is_tex_instruction(inst->op)) {
2843 v->samplers_used |= 1 << inst->sampler;
2844
2845 prog->SamplerTargets[inst->sampler] =
2846 (gl_texture_index)inst->tex_target;
2847 if (inst->tex_shadow) {
2848 prog->ShadowSamplers |= 1 << inst->sampler;
2849 }
2850 }
2851 }
2852
2853 prog->SamplersUsed = v->samplers_used;
2854 _mesa_update_shader_textures_used(prog);
2855 }
2856
2857 static void
2858 set_uniform_initializer(struct gl_context *ctx, void *mem_ctx,
2859 struct gl_shader_program *shader_program,
2860 const char *name, const glsl_type *type,
2861 ir_constant *val)
2862 {
2863 if (type->is_record()) {
2864 ir_constant *field_constant;
2865
2866 field_constant = (ir_constant *)val->components.get_head();
2867
2868 for (unsigned int i = 0; i < type->length; i++) {
2869 const glsl_type *field_type = type->fields.structure[i].type;
2870 const char *field_name = ralloc_asprintf(mem_ctx, "%s.%s", name,
2871 type->fields.structure[i].name);
2872 set_uniform_initializer(ctx, mem_ctx, shader_program, field_name,
2873 field_type, field_constant);
2874 field_constant = (ir_constant *)field_constant->next;
2875 }
2876 return;
2877 }
2878
2879 int loc = _mesa_get_uniform_location(ctx, shader_program, name);
2880
2881 if (loc == -1) {
2882 fail_link(shader_program,
2883 "Couldn't find uniform for initializer %s\n", name);
2884 return;
2885 }
2886
2887 for (unsigned int i = 0; i < (type->is_array() ? type->length : 1); i++) {
2888 ir_constant *element;
2889 const glsl_type *element_type;
2890 if (type->is_array()) {
2891 element = val->array_elements[i];
2892 element_type = type->fields.array;
2893 } else {
2894 element = val;
2895 element_type = type;
2896 }
2897
2898 void *values;
2899
2900 if (element_type->base_type == GLSL_TYPE_BOOL) {
2901 int *conv = ralloc_array(mem_ctx, int, element_type->components());
2902 for (unsigned int j = 0; j < element_type->components(); j++) {
2903 conv[j] = element->value.b[j];
2904 }
2905 values = (void *)conv;
2906 element_type = glsl_type::get_instance(GLSL_TYPE_INT,
2907 element_type->vector_elements,
2908 1);
2909 } else {
2910 values = &element->value;
2911 }
2912
2913 if (element_type->is_matrix()) {
2914 _mesa_uniform_matrix(ctx, shader_program,
2915 element_type->matrix_columns,
2916 element_type->vector_elements,
2917 loc, 1, GL_FALSE, (GLfloat *)values);
2918 } else {
2919 _mesa_uniform(ctx, shader_program, loc, element_type->matrix_columns,
2920 values, element_type->gl_type);
2921 }
2922
2923 loc++;
2924 }
2925 }
2926
2927 /*
2928 * Scan/rewrite program to remove reads of custom (output) registers.
2929 * The passed type has to be either PROGRAM_OUTPUT or PROGRAM_VARYING
2930 * (for vertex shaders).
2931 * In GLSL shaders, varying vars can be read and written.
2932 * On some hardware, trying to read an output register causes trouble.
2933 * So, rewrite the program to use a temporary register in this case.
2934 *
2935 * Based on _mesa_remove_output_reads from programopt.c.
2936 */
2937 void
2938 glsl_to_tgsi_visitor::remove_output_reads(gl_register_file type)
2939 {
2940 GLuint i;
2941 GLint outputMap[VERT_RESULT_MAX];
2942 GLint outputTypes[VERT_RESULT_MAX];
2943 GLuint numVaryingReads = 0;
2944 GLboolean *usedTemps;
2945 GLuint firstTemp = 0;
2946
2947 usedTemps = new GLboolean[MAX_TEMPS];
2948 if (!usedTemps) {
2949 return;
2950 }
2951 _mesa_find_used_registers(prog, PROGRAM_TEMPORARY,
2952 usedTemps, MAX_TEMPS);
2953
2954 assert(type == PROGRAM_VARYING || type == PROGRAM_OUTPUT);
2955 assert(prog->Target == GL_VERTEX_PROGRAM_ARB || type != PROGRAM_VARYING);
2956
2957 for (i = 0; i < VERT_RESULT_MAX; i++)
2958 outputMap[i] = -1;
2959
2960 /* look for instructions which read from varying vars */
2961 foreach_iter(exec_list_iterator, iter, this->instructions) {
2962 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
2963 const GLuint numSrc = num_inst_src_regs(inst->op);
2964 GLuint j;
2965 for (j = 0; j < numSrc; j++) {
2966 if (inst->src[j].file == type) {
2967 /* replace the read with a temp reg */
2968 const GLuint var = inst->src[j].index;
2969 if (outputMap[var] == -1) {
2970 numVaryingReads++;
2971 outputMap[var] = _mesa_find_free_register(usedTemps,
2972 MAX_TEMPS,
2973 firstTemp);
2974 outputTypes[var] = inst->src[j].type;
2975 firstTemp = outputMap[var] + 1;
2976 }
2977 inst->src[j].file = PROGRAM_TEMPORARY;
2978 inst->src[j].index = outputMap[var];
2979 }
2980 }
2981 }
2982
2983 delete [] usedTemps;
2984
2985 if (numVaryingReads == 0)
2986 return; /* nothing to be done */
2987
2988 /* look for instructions which write to the varying vars identified above */
2989 foreach_iter(exec_list_iterator, iter, this->instructions) {
2990 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
2991 if (inst->dst.file == type && outputMap[inst->dst.index] >= 0) {
2992 /* change inst to write to the temp reg, instead of the varying */
2993 inst->dst.file = PROGRAM_TEMPORARY;
2994 inst->dst.index = outputMap[inst->dst.index];
2995 }
2996 }
2997
2998 /* insert new MOV instructions at the end */
2999 for (i = 0; i < VERT_RESULT_MAX; i++) {
3000 if (outputMap[i] >= 0) {
3001 /* MOV VAR[i], TEMP[tmp]; */
3002 st_src_reg src = st_src_reg(PROGRAM_TEMPORARY, outputMap[i], outputTypes[i]);
3003 st_dst_reg dst = st_dst_reg(type, WRITEMASK_XYZW, outputTypes[i]);
3004 dst.index = i;
3005 this->emit(NULL, TGSI_OPCODE_MOV, dst, src);
3006 }
3007 }
3008 }
3009
3010 /**
3011 * Returns the mask of channels (bitmask of WRITEMASK_X,Y,Z,W) which
3012 * are read from the given src in this instruction
3013 */
3014 static int
3015 get_src_arg_mask(st_dst_reg dst, st_src_reg src)
3016 {
3017 int read_mask = 0, comp;
3018
3019 /* Now, given the src swizzle and the written channels, find which
3020 * components are actually read
3021 */
3022 for (comp = 0; comp < 4; ++comp) {
3023 const unsigned coord = GET_SWZ(src.swizzle, comp);
3024 ASSERT(coord < 4);
3025 if (dst.writemask & (1 << comp) && coord <= SWIZZLE_W)
3026 read_mask |= 1 << coord;
3027 }
3028
3029 return read_mask;
3030 }
3031
3032 /**
3033 * This pass replaces CMP T0, T1 T2 T0 with MOV T0, T2 when the CMP
3034 * instruction is the first instruction to write to register T0. There are
3035 * several lowering passes done in GLSL IR (e.g. branches and
3036 * relative addressing) that create a large number of conditional assignments
3037 * that ir_to_mesa converts to CMP instructions like the one mentioned above.
3038 *
3039 * Here is why this conversion is safe:
3040 * CMP T0, T1 T2 T0 can be expanded to:
3041 * if (T1 < 0.0)
3042 * MOV T0, T2;
3043 * else
3044 * MOV T0, T0;
3045 *
3046 * If (T1 < 0.0) evaluates to true then our replacement MOV T0, T2 is the same
3047 * as the original program. If (T1 < 0.0) evaluates to false, executing
3048 * MOV T0, T0 will store a garbage value in T0 since T0 is uninitialized.
3049 * Therefore, it doesn't matter that we are replacing MOV T0, T0 with MOV T0, T2
3050 * because any instruction that was going to read from T0 after this was going
3051 * to read a garbage value anyway.
3052 */
3053 void
3054 glsl_to_tgsi_visitor::simplify_cmp(void)
3055 {
3056 unsigned *tempWrites;
3057 unsigned outputWrites[MAX_PROGRAM_OUTPUTS];
3058
3059 tempWrites = new unsigned[MAX_TEMPS];
3060 if (!tempWrites) {
3061 return;
3062 }
3063 memset(tempWrites, 0, sizeof(tempWrites));
3064 memset(outputWrites, 0, sizeof(outputWrites));
3065
3066 foreach_iter(exec_list_iterator, iter, this->instructions) {
3067 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3068 unsigned prevWriteMask = 0;
3069
3070 /* Give up if we encounter relative addressing or flow control. */
3071 if (inst->dst.reladdr ||
3072 tgsi_get_opcode_info(inst->op)->is_branch ||
3073 inst->op == TGSI_OPCODE_BGNSUB ||
3074 inst->op == TGSI_OPCODE_CONT ||
3075 inst->op == TGSI_OPCODE_END ||
3076 inst->op == TGSI_OPCODE_ENDSUB ||
3077 inst->op == TGSI_OPCODE_RET) {
3078 break;
3079 }
3080
3081 if (inst->dst.file == PROGRAM_OUTPUT) {
3082 assert(inst->dst.index < MAX_PROGRAM_OUTPUTS);
3083 prevWriteMask = outputWrites[inst->dst.index];
3084 outputWrites[inst->dst.index] |= inst->dst.writemask;
3085 } else if (inst->dst.file == PROGRAM_TEMPORARY) {
3086 assert(inst->dst.index < MAX_TEMPS);
3087 prevWriteMask = tempWrites[inst->dst.index];
3088 tempWrites[inst->dst.index] |= inst->dst.writemask;
3089 }
3090
3091 /* For a CMP to be considered a conditional write, the destination
3092 * register and source register two must be the same. */
3093 if (inst->op == TGSI_OPCODE_CMP
3094 && !(inst->dst.writemask & prevWriteMask)
3095 && inst->src[2].file == inst->dst.file
3096 && inst->src[2].index == inst->dst.index
3097 && inst->dst.writemask == get_src_arg_mask(inst->dst, inst->src[2])) {
3098
3099 inst->op = TGSI_OPCODE_MOV;
3100 inst->src[0] = inst->src[1];
3101 }
3102 }
3103
3104 delete [] tempWrites;
3105 }
3106
3107 /* Replaces all references to a temporary register index with another index. */
3108 void
3109 glsl_to_tgsi_visitor::rename_temp_register(int index, int new_index)
3110 {
3111 foreach_iter(exec_list_iterator, iter, this->instructions) {
3112 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3113 unsigned j;
3114
3115 for (j=0; j < num_inst_src_regs(inst->op); j++) {
3116 if (inst->src[j].file == PROGRAM_TEMPORARY &&
3117 inst->src[j].index == index) {
3118 inst->src[j].index = new_index;
3119 }
3120 }
3121
3122 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.index == index) {
3123 inst->dst.index = new_index;
3124 }
3125 }
3126 }
3127
3128 int
3129 glsl_to_tgsi_visitor::get_first_temp_read(int index)
3130 {
3131 int depth = 0; /* loop depth */
3132 int loop_start = -1; /* index of the first active BGNLOOP (if any) */
3133 unsigned i = 0, j;
3134
3135 foreach_iter(exec_list_iterator, iter, this->instructions) {
3136 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3137
3138 for (j=0; j < num_inst_src_regs(inst->op); j++) {
3139 if (inst->src[j].file == PROGRAM_TEMPORARY &&
3140 inst->src[j].index == index) {
3141 return (depth == 0) ? i : loop_start;
3142 }
3143 }
3144
3145 if (inst->op == TGSI_OPCODE_BGNLOOP) {
3146 if(depth++ == 0)
3147 loop_start = i;
3148 } else if (inst->op == TGSI_OPCODE_ENDLOOP) {
3149 if (--depth == 0)
3150 loop_start = -1;
3151 }
3152 assert(depth >= 0);
3153
3154 i++;
3155 }
3156
3157 return -1;
3158 }
3159
3160 int
3161 glsl_to_tgsi_visitor::get_first_temp_write(int index)
3162 {
3163 int depth = 0; /* loop depth */
3164 int loop_start = -1; /* index of the first active BGNLOOP (if any) */
3165 int i = 0;
3166
3167 foreach_iter(exec_list_iterator, iter, this->instructions) {
3168 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3169
3170 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.index == index) {
3171 return (depth == 0) ? i : loop_start;
3172 }
3173
3174 if (inst->op == TGSI_OPCODE_BGNLOOP) {
3175 if(depth++ == 0)
3176 loop_start = i;
3177 } else if (inst->op == TGSI_OPCODE_ENDLOOP) {
3178 if (--depth == 0)
3179 loop_start = -1;
3180 }
3181 assert(depth >= 0);
3182
3183 i++;
3184 }
3185
3186 return -1;
3187 }
3188
3189 int
3190 glsl_to_tgsi_visitor::get_last_temp_read(int index)
3191 {
3192 int depth = 0; /* loop depth */
3193 int last = -1; /* index of last instruction that reads the temporary */
3194 unsigned i = 0, j;
3195
3196 foreach_iter(exec_list_iterator, iter, this->instructions) {
3197 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3198
3199 for (j=0; j < num_inst_src_regs(inst->op); j++) {
3200 if (inst->src[j].file == PROGRAM_TEMPORARY &&
3201 inst->src[j].index == index) {
3202 last = (depth == 0) ? i : -2;
3203 }
3204 }
3205
3206 if (inst->op == TGSI_OPCODE_BGNLOOP)
3207 depth++;
3208 else if (inst->op == TGSI_OPCODE_ENDLOOP)
3209 if (--depth == 0 && last == -2)
3210 last = i;
3211 assert(depth >= 0);
3212
3213 i++;
3214 }
3215
3216 assert(last >= -1);
3217 return last;
3218 }
3219
3220 int
3221 glsl_to_tgsi_visitor::get_last_temp_write(int index)
3222 {
3223 int depth = 0; /* loop depth */
3224 int last = -1; /* index of last instruction that writes to the temporary */
3225 int i = 0;
3226
3227 foreach_iter(exec_list_iterator, iter, this->instructions) {
3228 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3229
3230 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.index == index)
3231 last = (depth == 0) ? i : -2;
3232
3233 if (inst->op == TGSI_OPCODE_BGNLOOP)
3234 depth++;
3235 else if (inst->op == TGSI_OPCODE_ENDLOOP)
3236 if (--depth == 0 && last == -2)
3237 last = i;
3238 assert(depth >= 0);
3239
3240 i++;
3241 }
3242
3243 assert(last >= -1);
3244 return last;
3245 }
3246
3247 /*
3248 * On a basic block basis, tracks available PROGRAM_TEMPORARY register
3249 * channels for copy propagation and updates following instructions to
3250 * use the original versions.
3251 *
3252 * The glsl_to_tgsi_visitor lazily produces code assuming that this pass
3253 * will occur. As an example, a TXP production before this pass:
3254 *
3255 * 0: MOV TEMP[1], INPUT[4].xyyy;
3256 * 1: MOV TEMP[1].w, INPUT[4].wwww;
3257 * 2: TXP TEMP[2], TEMP[1], texture[0], 2D;
3258 *
3259 * and after:
3260 *
3261 * 0: MOV TEMP[1], INPUT[4].xyyy;
3262 * 1: MOV TEMP[1].w, INPUT[4].wwww;
3263 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
3264 *
3265 * which allows for dead code elimination on TEMP[1]'s writes.
3266 */
3267 void
3268 glsl_to_tgsi_visitor::copy_propagate(void)
3269 {
3270 glsl_to_tgsi_instruction **acp = rzalloc_array(mem_ctx,
3271 glsl_to_tgsi_instruction *,
3272 this->next_temp * 4);
3273 int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
3274 int level = 0;
3275
3276 foreach_iter(exec_list_iterator, iter, this->instructions) {
3277 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3278
3279 assert(inst->dst.file != PROGRAM_TEMPORARY
3280 || inst->dst.index < this->next_temp);
3281
3282 /* First, do any copy propagation possible into the src regs. */
3283 for (int r = 0; r < 3; r++) {
3284 glsl_to_tgsi_instruction *first = NULL;
3285 bool good = true;
3286 int acp_base = inst->src[r].index * 4;
3287
3288 if (inst->src[r].file != PROGRAM_TEMPORARY ||
3289 inst->src[r].reladdr)
3290 continue;
3291
3292 /* See if we can find entries in the ACP consisting of MOVs
3293 * from the same src register for all the swizzled channels
3294 * of this src register reference.
3295 */
3296 for (int i = 0; i < 4; i++) {
3297 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
3298 glsl_to_tgsi_instruction *copy_chan = acp[acp_base + src_chan];
3299
3300 if (!copy_chan) {
3301 good = false;
3302 break;
3303 }
3304
3305 assert(acp_level[acp_base + src_chan] <= level);
3306
3307 if (!first) {
3308 first = copy_chan;
3309 } else {
3310 if (first->src[0].file != copy_chan->src[0].file ||
3311 first->src[0].index != copy_chan->src[0].index) {
3312 good = false;
3313 break;
3314 }
3315 }
3316 }
3317
3318 if (good) {
3319 /* We've now validated that we can copy-propagate to
3320 * replace this src register reference. Do it.
3321 */
3322 inst->src[r].file = first->src[0].file;
3323 inst->src[r].index = first->src[0].index;
3324
3325 int swizzle = 0;
3326 for (int i = 0; i < 4; i++) {
3327 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
3328 glsl_to_tgsi_instruction *copy_inst = acp[acp_base + src_chan];
3329 swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) <<
3330 (3 * i));
3331 }
3332 inst->src[r].swizzle = swizzle;
3333 }
3334 }
3335
3336 switch (inst->op) {
3337 case TGSI_OPCODE_BGNLOOP:
3338 case TGSI_OPCODE_ENDLOOP:
3339 /* End of a basic block, clear the ACP entirely. */
3340 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
3341 break;
3342
3343 case TGSI_OPCODE_IF:
3344 ++level;
3345 break;
3346
3347 case TGSI_OPCODE_ENDIF:
3348 case TGSI_OPCODE_ELSE:
3349 /* Clear all channels written inside the block from the ACP, but
3350 * leaving those that were not touched.
3351 */
3352 for (int r = 0; r < this->next_temp; r++) {
3353 for (int c = 0; c < 4; c++) {
3354 if (!acp[4 * r + c])
3355 continue;
3356
3357 if (acp_level[4 * r + c] >= level)
3358 acp[4 * r + c] = NULL;
3359 }
3360 }
3361 if (inst->op == TGSI_OPCODE_ENDIF)
3362 --level;
3363 break;
3364
3365 default:
3366 /* Continuing the block, clear any written channels from
3367 * the ACP.
3368 */
3369 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.reladdr) {
3370 /* Any temporary might be written, so no copy propagation
3371 * across this instruction.
3372 */
3373 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
3374 } else if (inst->dst.file == PROGRAM_OUTPUT &&
3375 inst->dst.reladdr) {
3376 /* Any output might be written, so no copy propagation
3377 * from outputs across this instruction.
3378 */
3379 for (int r = 0; r < this->next_temp; r++) {
3380 for (int c = 0; c < 4; c++) {
3381 if (!acp[4 * r + c])
3382 continue;
3383
3384 if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT)
3385 acp[4 * r + c] = NULL;
3386 }
3387 }
3388 } else if (inst->dst.file == PROGRAM_TEMPORARY ||
3389 inst->dst.file == PROGRAM_OUTPUT) {
3390 /* Clear where it's used as dst. */
3391 if (inst->dst.file == PROGRAM_TEMPORARY) {
3392 for (int c = 0; c < 4; c++) {
3393 if (inst->dst.writemask & (1 << c)) {
3394 acp[4 * inst->dst.index + c] = NULL;
3395 }
3396 }
3397 }
3398
3399 /* Clear where it's used as src. */
3400 for (int r = 0; r < this->next_temp; r++) {
3401 for (int c = 0; c < 4; c++) {
3402 if (!acp[4 * r + c])
3403 continue;
3404
3405 int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c);
3406
3407 if (acp[4 * r + c]->src[0].file == inst->dst.file &&
3408 acp[4 * r + c]->src[0].index == inst->dst.index &&
3409 inst->dst.writemask & (1 << src_chan))
3410 {
3411 acp[4 * r + c] = NULL;
3412 }
3413 }
3414 }
3415 }
3416 break;
3417 }
3418
3419 /* If this is a copy, add it to the ACP. */
3420 if (inst->op == TGSI_OPCODE_MOV &&
3421 inst->dst.file == PROGRAM_TEMPORARY &&
3422 !inst->dst.reladdr &&
3423 !inst->saturate &&
3424 !inst->src[0].reladdr &&
3425 !inst->src[0].negate) {
3426 for (int i = 0; i < 4; i++) {
3427 if (inst->dst.writemask & (1 << i)) {
3428 acp[4 * inst->dst.index + i] = inst;
3429 acp_level[4 * inst->dst.index + i] = level;
3430 }
3431 }
3432 }
3433 }
3434
3435 ralloc_free(acp_level);
3436 ralloc_free(acp);
3437 }
3438
3439 /*
3440 * Tracks available PROGRAM_TEMPORARY registers for dead code elimination.
3441 *
3442 * The glsl_to_tgsi_visitor lazily produces code assuming that this pass
3443 * will occur. As an example, a TXP production after copy propagation but
3444 * before this pass:
3445 *
3446 * 0: MOV TEMP[1], INPUT[4].xyyy;
3447 * 1: MOV TEMP[1].w, INPUT[4].wwww;
3448 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
3449 *
3450 * and after this pass:
3451 *
3452 * 0: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
3453 *
3454 * FIXME: assumes that all functions are inlined (no support for BGNSUB/ENDSUB)
3455 * FIXME: doesn't eliminate all dead code inside of loops; it steps around them
3456 */
3457 void
3458 glsl_to_tgsi_visitor::eliminate_dead_code(void)
3459 {
3460 int i;
3461
3462 for (i=0; i < this->next_temp; i++) {
3463 int last_read = get_last_temp_read(i);
3464 int j = 0;
3465
3466 foreach_iter(exec_list_iterator, iter, this->instructions) {
3467 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3468
3469 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.index == i &&
3470 j > last_read)
3471 {
3472 iter.remove();
3473 delete inst;
3474 }
3475
3476 j++;
3477 }
3478 }
3479 }
3480
3481 /*
3482 * On a basic block basis, tracks available PROGRAM_TEMPORARY registers for dead
3483 * code elimination. This is less primitive than eliminate_dead_code(), as it
3484 * is per-channel and can detect consecutive writes without a read between them
3485 * as dead code. However, there is some dead code that can be eliminated by
3486 * eliminate_dead_code() but not this function - for example, this function
3487 * cannot eliminate an instruction writing to a register that is never read and
3488 * is the only instruction writing to that register.
3489 *
3490 * The glsl_to_tgsi_visitor lazily produces code assuming that this pass
3491 * will occur.
3492 */
3493 int
3494 glsl_to_tgsi_visitor::eliminate_dead_code_advanced(void)
3495 {
3496 glsl_to_tgsi_instruction **writes = rzalloc_array(mem_ctx,
3497 glsl_to_tgsi_instruction *,
3498 this->next_temp * 4);
3499 int *write_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
3500 int level = 0;
3501 int removed = 0;
3502
3503 foreach_iter(exec_list_iterator, iter, this->instructions) {
3504 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3505
3506 assert(inst->dst.file != PROGRAM_TEMPORARY
3507 || inst->dst.index < this->next_temp);
3508
3509 switch (inst->op) {
3510 case TGSI_OPCODE_BGNLOOP:
3511 case TGSI_OPCODE_ENDLOOP:
3512 case TGSI_OPCODE_CONT:
3513 case TGSI_OPCODE_BRK:
3514 /* End of a basic block, clear the write array entirely.
3515 *
3516 * This keeps us from killing dead code when the writes are
3517 * on either side of a loop, even when the register isn't touched
3518 * inside the loop. However, glsl_to_tgsi_visitor doesn't seem to emit
3519 * dead code of this type, so it shouldn't make a difference as long as
3520 * the dead code elimination pass in the GLSL compiler does its job.
3521 */
3522 memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
3523 break;
3524
3525 case TGSI_OPCODE_ENDIF:
3526 case TGSI_OPCODE_ELSE:
3527 /* Promote the recorded level of all channels written inside the
3528 * preceding if or else block to the level above the if/else block.
3529 */
3530 for (int r = 0; r < this->next_temp; r++) {
3531 for (int c = 0; c < 4; c++) {
3532 if (!writes[4 * r + c])
3533 continue;
3534
3535 if (write_level[4 * r + c] == level)
3536 write_level[4 * r + c] = level-1;
3537 }
3538 }
3539
3540 if(inst->op == TGSI_OPCODE_ENDIF)
3541 --level;
3542
3543 break;
3544
3545 case TGSI_OPCODE_IF:
3546 ++level;
3547 /* fallthrough to default case to mark the condition as read */
3548
3549 default:
3550 /* Continuing the block, clear any channels from the write array that
3551 * are read by this instruction.
3552 */
3553 for (unsigned i = 0; i < Elements(inst->src); i++) {
3554 if (inst->src[i].file == PROGRAM_TEMPORARY && inst->src[i].reladdr){
3555 /* Any temporary might be read, so no dead code elimination
3556 * across this instruction.
3557 */
3558 memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
3559 } else if (inst->src[i].file == PROGRAM_TEMPORARY) {
3560 /* Clear where it's used as src. */
3561 int src_chans = 1 << GET_SWZ(inst->src[i].swizzle, 0);
3562 src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 1);
3563 src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 2);
3564 src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 3);
3565
3566 for (int c = 0; c < 4; c++) {
3567 if (src_chans & (1 << c)) {
3568 writes[4 * inst->src[i].index + c] = NULL;
3569 }
3570 }
3571 }
3572 }
3573 break;
3574 }
3575
3576 /* If this instruction writes to a temporary, add it to the write array.
3577 * If there is already an instruction in the write array for one or more
3578 * of the channels, flag that channel write as dead.
3579 */
3580 if (inst->dst.file == PROGRAM_TEMPORARY &&
3581 !inst->dst.reladdr &&
3582 !inst->saturate) {
3583 for (int c = 0; c < 4; c++) {
3584 if (inst->dst.writemask & (1 << c)) {
3585 if (writes[4 * inst->dst.index + c]) {
3586 if (write_level[4 * inst->dst.index + c] < level)
3587 continue;
3588 else
3589 writes[4 * inst->dst.index + c]->dead_mask |= (1 << c);
3590 }
3591 writes[4 * inst->dst.index + c] = inst;
3592 write_level[4 * inst->dst.index + c] = level;
3593 }
3594 }
3595 }
3596 }
3597
3598 /* Anything still in the write array at this point is dead code. */
3599 for (int r = 0; r < this->next_temp; r++) {
3600 for (int c = 0; c < 4; c++) {
3601 glsl_to_tgsi_instruction *inst = writes[4 * r + c];
3602 if (inst)
3603 inst->dead_mask |= (1 << c);
3604 }
3605 }
3606
3607 /* Now actually remove the instructions that are completely dead and update
3608 * the writemask of other instructions with dead channels.
3609 */
3610 foreach_iter(exec_list_iterator, iter, this->instructions) {
3611 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3612
3613 if (!inst->dead_mask || !inst->dst.writemask)
3614 continue;
3615 else if ((inst->dst.writemask & ~inst->dead_mask) == 0) {
3616 iter.remove();
3617 delete inst;
3618 removed++;
3619 } else
3620 inst->dst.writemask &= ~(inst->dead_mask);
3621 }
3622
3623 ralloc_free(write_level);
3624 ralloc_free(writes);
3625
3626 return removed;
3627 }
3628
3629 /* Merges temporary registers together where possible to reduce the number of
3630 * registers needed to run a program.
3631 *
3632 * Produces optimal code only after copy propagation and dead code elimination
3633 * have been run. */
3634 void
3635 glsl_to_tgsi_visitor::merge_registers(void)
3636 {
3637 int *last_reads = rzalloc_array(mem_ctx, int, this->next_temp);
3638 int *first_writes = rzalloc_array(mem_ctx, int, this->next_temp);
3639 int i, j;
3640
3641 /* Read the indices of the last read and first write to each temp register
3642 * into an array so that we don't have to traverse the instruction list as
3643 * much. */
3644 for (i=0; i < this->next_temp; i++) {
3645 last_reads[i] = get_last_temp_read(i);
3646 first_writes[i] = get_first_temp_write(i);
3647 }
3648
3649 /* Start looking for registers with non-overlapping usages that can be
3650 * merged together. */
3651 for (i=0; i < this->next_temp; i++) {
3652 /* Don't touch unused registers. */
3653 if (last_reads[i] < 0 || first_writes[i] < 0) continue;
3654
3655 for (j=0; j < this->next_temp; j++) {
3656 /* Don't touch unused registers. */
3657 if (last_reads[j] < 0 || first_writes[j] < 0) continue;
3658
3659 /* We can merge the two registers if the first write to j is after or
3660 * in the same instruction as the last read from i. Note that the
3661 * register at index i will always be used earlier or at the same time
3662 * as the register at index j. */
3663 if (first_writes[i] <= first_writes[j] &&
3664 last_reads[i] <= first_writes[j])
3665 {
3666 rename_temp_register(j, i); /* Replace all references to j with i.*/
3667
3668 /* Update the first_writes and last_reads arrays with the new
3669 * values for the merged register index, and mark the newly unused
3670 * register index as such. */
3671 last_reads[i] = last_reads[j];
3672 first_writes[j] = -1;
3673 last_reads[j] = -1;
3674 }
3675 }
3676 }
3677
3678 ralloc_free(last_reads);
3679 ralloc_free(first_writes);
3680 }
3681
3682 /* Reassign indices to temporary registers by reusing unused indices created
3683 * by optimization passes. */
3684 void
3685 glsl_to_tgsi_visitor::renumber_registers(void)
3686 {
3687 int i = 0;
3688 int new_index = 0;
3689
3690 for (i=0; i < this->next_temp; i++) {
3691 if (get_first_temp_read(i) < 0) continue;
3692 if (i != new_index)
3693 rename_temp_register(i, new_index);
3694 new_index++;
3695 }
3696
3697 this->next_temp = new_index;
3698 }
3699
3700 /**
3701 * Returns a fragment program which implements the current pixel transfer ops.
3702 * Based on get_pixel_transfer_program in st_atom_pixeltransfer.c.
3703 */
3704 extern "C" void
3705 get_pixel_transfer_visitor(struct st_fragment_program *fp,
3706 glsl_to_tgsi_visitor *original,
3707 int scale_and_bias, int pixel_maps)
3708 {
3709 glsl_to_tgsi_visitor *v = new glsl_to_tgsi_visitor();
3710 struct st_context *st = st_context(original->ctx);
3711 struct gl_program *prog = &fp->Base.Base;
3712 struct gl_program_parameter_list *params = _mesa_new_parameter_list();
3713 st_src_reg coord, src0;
3714 st_dst_reg dst0;
3715 glsl_to_tgsi_instruction *inst;
3716
3717 /* Copy attributes of the glsl_to_tgsi_visitor in the original shader. */
3718 v->ctx = original->ctx;
3719 v->prog = prog;
3720 v->shader_program = NULL;
3721 v->glsl_version = original->glsl_version;
3722 v->native_integers = original->native_integers;
3723 v->options = original->options;
3724 v->next_temp = original->next_temp;
3725 v->num_address_regs = original->num_address_regs;
3726 v->samplers_used = prog->SamplersUsed = original->samplers_used;
3727 v->indirect_addr_temps = original->indirect_addr_temps;
3728 v->indirect_addr_consts = original->indirect_addr_consts;
3729 memcpy(&v->immediates, &original->immediates, sizeof(v->immediates));
3730
3731 /*
3732 * Get initial pixel color from the texture.
3733 * TEX colorTemp, fragment.texcoord[0], texture[0], 2D;
3734 */
3735 coord = st_src_reg(PROGRAM_INPUT, FRAG_ATTRIB_TEX0, glsl_type::vec2_type);
3736 src0 = v->get_temp(glsl_type::vec4_type);
3737 dst0 = st_dst_reg(src0);
3738 inst = v->emit(NULL, TGSI_OPCODE_TEX, dst0, coord);
3739 inst->sampler = 0;
3740 inst->tex_target = TEXTURE_2D_INDEX;
3741
3742 prog->InputsRead |= FRAG_BIT_TEX0;
3743 prog->SamplersUsed |= (1 << 0); /* mark sampler 0 as used */
3744 v->samplers_used |= (1 << 0);
3745
3746 if (scale_and_bias) {
3747 static const gl_state_index scale_state[STATE_LENGTH] =
3748 { STATE_INTERNAL, STATE_PT_SCALE,
3749 (gl_state_index) 0, (gl_state_index) 0, (gl_state_index) 0 };
3750 static const gl_state_index bias_state[STATE_LENGTH] =
3751 { STATE_INTERNAL, STATE_PT_BIAS,
3752 (gl_state_index) 0, (gl_state_index) 0, (gl_state_index) 0 };
3753 GLint scale_p, bias_p;
3754 st_src_reg scale, bias;
3755
3756 scale_p = _mesa_add_state_reference(params, scale_state);
3757 bias_p = _mesa_add_state_reference(params, bias_state);
3758
3759 /* MAD colorTemp, colorTemp, scale, bias; */
3760 scale = st_src_reg(PROGRAM_STATE_VAR, scale_p, GLSL_TYPE_FLOAT);
3761 bias = st_src_reg(PROGRAM_STATE_VAR, bias_p, GLSL_TYPE_FLOAT);
3762 inst = v->emit(NULL, TGSI_OPCODE_MAD, dst0, src0, scale, bias);
3763 }
3764
3765 if (pixel_maps) {
3766 st_src_reg temp = v->get_temp(glsl_type::vec4_type);
3767 st_dst_reg temp_dst = st_dst_reg(temp);
3768
3769 assert(st->pixel_xfer.pixelmap_texture);
3770
3771 /* With a little effort, we can do four pixel map look-ups with
3772 * two TEX instructions:
3773 */
3774
3775 /* TEX temp.rg, colorTemp.rgba, texture[1], 2D; */
3776 temp_dst.writemask = WRITEMASK_XY; /* write R,G */
3777 inst = v->emit(NULL, TGSI_OPCODE_TEX, temp_dst, src0);
3778 inst->sampler = 1;
3779 inst->tex_target = TEXTURE_2D_INDEX;
3780
3781 /* TEX temp.ba, colorTemp.baba, texture[1], 2D; */
3782 src0.swizzle = MAKE_SWIZZLE4(SWIZZLE_Z, SWIZZLE_W, SWIZZLE_Z, SWIZZLE_W);
3783 temp_dst.writemask = WRITEMASK_ZW; /* write B,A */
3784 inst = v->emit(NULL, TGSI_OPCODE_TEX, temp_dst, src0);
3785 inst->sampler = 1;
3786 inst->tex_target = TEXTURE_2D_INDEX;
3787
3788 prog->SamplersUsed |= (1 << 1); /* mark sampler 1 as used */
3789 v->samplers_used |= (1 << 1);
3790
3791 /* MOV colorTemp, temp; */
3792 inst = v->emit(NULL, TGSI_OPCODE_MOV, dst0, temp);
3793 }
3794
3795 /* Now copy the instructions from the original glsl_to_tgsi_visitor into the
3796 * new visitor. */
3797 foreach_iter(exec_list_iterator, iter, original->instructions) {
3798 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3799 glsl_to_tgsi_instruction *newinst;
3800 st_src_reg src_regs[3];
3801
3802 if (inst->dst.file == PROGRAM_OUTPUT)
3803 prog->OutputsWritten |= BITFIELD64_BIT(inst->dst.index);
3804
3805 for (int i=0; i<3; i++) {
3806 src_regs[i] = inst->src[i];
3807 if (src_regs[i].file == PROGRAM_INPUT &&
3808 src_regs[i].index == FRAG_ATTRIB_COL0)
3809 {
3810 src_regs[i].file = PROGRAM_TEMPORARY;
3811 src_regs[i].index = src0.index;
3812 }
3813 else if (src_regs[i].file == PROGRAM_INPUT)
3814 prog->InputsRead |= BITFIELD64_BIT(src_regs[i].index);
3815 }
3816
3817 newinst = v->emit(NULL, inst->op, inst->dst, src_regs[0], src_regs[1], src_regs[2]);
3818 newinst->tex_target = inst->tex_target;
3819 }
3820
3821 /* Make modifications to fragment program info. */
3822 prog->Parameters = _mesa_combine_parameter_lists(params,
3823 original->prog->Parameters);
3824 _mesa_free_parameter_list(params);
3825 count_resources(v, prog);
3826 fp->glsl_to_tgsi = v;
3827 }
3828
3829 /**
3830 * Make fragment program for glBitmap:
3831 * Sample the texture and kill the fragment if the bit is 0.
3832 * This program will be combined with the user's fragment program.
3833 *
3834 * Based on make_bitmap_fragment_program in st_cb_bitmap.c.
3835 */
3836 extern "C" void
3837 get_bitmap_visitor(struct st_fragment_program *fp,
3838 glsl_to_tgsi_visitor *original, int samplerIndex)
3839 {
3840 glsl_to_tgsi_visitor *v = new glsl_to_tgsi_visitor();
3841 struct st_context *st = st_context(original->ctx);
3842 struct gl_program *prog = &fp->Base.Base;
3843 st_src_reg coord, src0;
3844 st_dst_reg dst0;
3845 glsl_to_tgsi_instruction *inst;
3846
3847 /* Copy attributes of the glsl_to_tgsi_visitor in the original shader. */
3848 v->ctx = original->ctx;
3849 v->prog = prog;
3850 v->shader_program = NULL;
3851 v->glsl_version = original->glsl_version;
3852 v->native_integers = original->native_integers;
3853 v->options = original->options;
3854 v->next_temp = original->next_temp;
3855 v->num_address_regs = original->num_address_regs;
3856 v->samplers_used = prog->SamplersUsed = original->samplers_used;
3857 v->indirect_addr_temps = original->indirect_addr_temps;
3858 v->indirect_addr_consts = original->indirect_addr_consts;
3859 memcpy(&v->immediates, &original->immediates, sizeof(v->immediates));
3860
3861 /* TEX tmp0, fragment.texcoord[0], texture[0], 2D; */
3862 coord = st_src_reg(PROGRAM_INPUT, FRAG_ATTRIB_TEX0, glsl_type::vec2_type);
3863 src0 = v->get_temp(glsl_type::vec4_type);
3864 dst0 = st_dst_reg(src0);
3865 inst = v->emit(NULL, TGSI_OPCODE_TEX, dst0, coord);
3866 inst->sampler = samplerIndex;
3867 inst->tex_target = TEXTURE_2D_INDEX;
3868
3869 prog->InputsRead |= FRAG_BIT_TEX0;
3870 prog->SamplersUsed |= (1 << samplerIndex); /* mark sampler as used */
3871 v->samplers_used |= (1 << samplerIndex);
3872
3873 /* KIL if -tmp0 < 0 # texel=0 -> keep / texel=0 -> discard */
3874 src0.negate = NEGATE_XYZW;
3875 if (st->bitmap.tex_format == PIPE_FORMAT_L8_UNORM)
3876 src0.swizzle = SWIZZLE_XXXX;
3877 inst = v->emit(NULL, TGSI_OPCODE_KIL, undef_dst, src0);
3878
3879 /* Now copy the instructions from the original glsl_to_tgsi_visitor into the
3880 * new visitor. */
3881 foreach_iter(exec_list_iterator, iter, original->instructions) {
3882 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3883 glsl_to_tgsi_instruction *newinst;
3884 st_src_reg src_regs[3];
3885
3886 if (inst->dst.file == PROGRAM_OUTPUT)
3887 prog->OutputsWritten |= BITFIELD64_BIT(inst->dst.index);
3888
3889 for (int i=0; i<3; i++) {
3890 src_regs[i] = inst->src[i];
3891 if (src_regs[i].file == PROGRAM_INPUT)
3892 prog->InputsRead |= BITFIELD64_BIT(src_regs[i].index);
3893 }
3894
3895 newinst = v->emit(NULL, inst->op, inst->dst, src_regs[0], src_regs[1], src_regs[2]);
3896 newinst->tex_target = inst->tex_target;
3897 }
3898
3899 /* Make modifications to fragment program info. */
3900 prog->Parameters = _mesa_clone_parameter_list(original->prog->Parameters);
3901 count_resources(v, prog);
3902 fp->glsl_to_tgsi = v;
3903 }
3904
3905 /* ------------------------- TGSI conversion stuff -------------------------- */
3906 struct label {
3907 unsigned branch_target;
3908 unsigned token;
3909 };
3910
3911 /**
3912 * Intermediate state used during shader translation.
3913 */
3914 struct st_translate {
3915 struct ureg_program *ureg;
3916
3917 struct ureg_dst temps[MAX_TEMPS];
3918 struct ureg_src *constants;
3919 struct ureg_src *immediates;
3920 struct ureg_dst outputs[PIPE_MAX_SHADER_OUTPUTS];
3921 struct ureg_src inputs[PIPE_MAX_SHADER_INPUTS];
3922 struct ureg_dst address[1];
3923 struct ureg_src samplers[PIPE_MAX_SAMPLERS];
3924 struct ureg_src systemValues[SYSTEM_VALUE_MAX];
3925
3926 /* Extra info for handling point size clamping in vertex shader */
3927 struct ureg_dst pointSizeResult; /**< Actual point size output register */
3928 struct ureg_src pointSizeConst; /**< Point size range constant register */
3929 GLint pointSizeOutIndex; /**< Temp point size output register */
3930 GLboolean prevInstWrotePointSize;
3931
3932 const GLuint *inputMapping;
3933 const GLuint *outputMapping;
3934
3935 /* For every instruction that contains a label (eg CALL), keep
3936 * details so that we can go back afterwards and emit the correct
3937 * tgsi instruction number for each label.
3938 */
3939 struct label *labels;
3940 unsigned labels_size;
3941 unsigned labels_count;
3942
3943 /* Keep a record of the tgsi instruction number that each mesa
3944 * instruction starts at, will be used to fix up labels after
3945 * translation.
3946 */
3947 unsigned *insn;
3948 unsigned insn_size;
3949 unsigned insn_count;
3950
3951 unsigned procType; /**< TGSI_PROCESSOR_VERTEX/FRAGMENT */
3952
3953 boolean error;
3954 };
3955
3956 /** Map Mesa's SYSTEM_VALUE_x to TGSI_SEMANTIC_x */
3957 static unsigned mesa_sysval_to_semantic[SYSTEM_VALUE_MAX] = {
3958 TGSI_SEMANTIC_FACE,
3959 TGSI_SEMANTIC_VERTEXID,
3960 TGSI_SEMANTIC_INSTANCEID
3961 };
3962
3963 /**
3964 * Make note of a branch to a label in the TGSI code.
3965 * After we've emitted all instructions, we'll go over the list
3966 * of labels built here and patch the TGSI code with the actual
3967 * location of each label.
3968 */
3969 static unsigned *get_label(struct st_translate *t, unsigned branch_target)
3970 {
3971 unsigned i;
3972
3973 if (t->labels_count + 1 >= t->labels_size) {
3974 t->labels_size = 1 << (util_logbase2(t->labels_size) + 1);
3975 t->labels = (struct label *)realloc(t->labels,
3976 t->labels_size * sizeof(struct label));
3977 if (t->labels == NULL) {
3978 static unsigned dummy;
3979 t->error = TRUE;
3980 return &dummy;
3981 }
3982 }
3983
3984 i = t->labels_count++;
3985 t->labels[i].branch_target = branch_target;
3986 return &t->labels[i].token;
3987 }
3988
3989 /**
3990 * Called prior to emitting the TGSI code for each instruction.
3991 * Allocate additional space for instructions if needed.
3992 * Update the insn[] array so the next glsl_to_tgsi_instruction points to
3993 * the next TGSI instruction.
3994 */
3995 static void set_insn_start(struct st_translate *t, unsigned start)
3996 {
3997 if (t->insn_count + 1 >= t->insn_size) {
3998 t->insn_size = 1 << (util_logbase2(t->insn_size) + 1);
3999 t->insn = (unsigned *)realloc(t->insn, t->insn_size * sizeof(t->insn[0]));
4000 if (t->insn == NULL) {
4001 t->error = TRUE;
4002 return;
4003 }
4004 }
4005
4006 t->insn[t->insn_count++] = start;
4007 }
4008
4009 /**
4010 * Map a glsl_to_tgsi constant/immediate to a TGSI immediate.
4011 */
4012 static struct ureg_src
4013 emit_immediate(struct st_translate *t,
4014 gl_constant_value values[4],
4015 int type, int size)
4016 {
4017 struct ureg_program *ureg = t->ureg;
4018
4019 switch(type)
4020 {
4021 case GL_FLOAT:
4022 return ureg_DECL_immediate(ureg, &values[0].f, size);
4023 case GL_INT:
4024 return ureg_DECL_immediate_int(ureg, &values[0].i, size);
4025 case GL_UNSIGNED_INT:
4026 case GL_BOOL:
4027 return ureg_DECL_immediate_uint(ureg, &values[0].u, size);
4028 default:
4029 assert(!"should not get here - type must be float, int, uint, or bool");
4030 return ureg_src_undef();
4031 }
4032 }
4033
4034 /**
4035 * Map a glsl_to_tgsi dst register to a TGSI ureg_dst register.
4036 */
4037 static struct ureg_dst
4038 dst_register(struct st_translate *t,
4039 gl_register_file file,
4040 GLuint index)
4041 {
4042 switch(file) {
4043 case PROGRAM_UNDEFINED:
4044 return ureg_dst_undef();
4045
4046 case PROGRAM_TEMPORARY:
4047 if (ureg_dst_is_undef(t->temps[index]))
4048 t->temps[index] = ureg_DECL_temporary(t->ureg);
4049
4050 return t->temps[index];
4051
4052 case PROGRAM_OUTPUT:
4053 if (t->procType == TGSI_PROCESSOR_VERTEX && index == VERT_RESULT_PSIZ)
4054 t->prevInstWrotePointSize = GL_TRUE;
4055
4056 if (t->procType == TGSI_PROCESSOR_VERTEX)
4057 assert(index < VERT_RESULT_MAX);
4058 else if (t->procType == TGSI_PROCESSOR_FRAGMENT)
4059 assert(index < FRAG_RESULT_MAX);
4060 else
4061 assert(index < GEOM_RESULT_MAX);
4062
4063 assert(t->outputMapping[index] < Elements(t->outputs));
4064
4065 return t->outputs[t->outputMapping[index]];
4066
4067 case PROGRAM_ADDRESS:
4068 return t->address[index];
4069
4070 default:
4071 assert(!"unknown dst register file");
4072 return ureg_dst_undef();
4073 }
4074 }
4075
4076 /**
4077 * Map a glsl_to_tgsi src register to a TGSI ureg_src register.
4078 */
4079 static struct ureg_src
4080 src_register(struct st_translate *t,
4081 gl_register_file file,
4082 GLuint index)
4083 {
4084 switch(file) {
4085 case PROGRAM_UNDEFINED:
4086 return ureg_src_undef();
4087
4088 case PROGRAM_TEMPORARY:
4089 assert(index >= 0);
4090 assert(index < Elements(t->temps));
4091 if (ureg_dst_is_undef(t->temps[index]))
4092 t->temps[index] = ureg_DECL_temporary(t->ureg);
4093 return ureg_src(t->temps[index]);
4094
4095 case PROGRAM_NAMED_PARAM:
4096 case PROGRAM_ENV_PARAM:
4097 case PROGRAM_LOCAL_PARAM:
4098 case PROGRAM_UNIFORM:
4099 assert(index >= 0);
4100 return t->constants[index];
4101 case PROGRAM_STATE_VAR:
4102 case PROGRAM_CONSTANT: /* ie, immediate */
4103 if (index < 0)
4104 return ureg_DECL_constant(t->ureg, 0);
4105 else
4106 return t->constants[index];
4107
4108 case PROGRAM_IMMEDIATE:
4109 return t->immediates[index];
4110
4111 case PROGRAM_INPUT:
4112 assert(t->inputMapping[index] < Elements(t->inputs));
4113 return t->inputs[t->inputMapping[index]];
4114
4115 case PROGRAM_OUTPUT:
4116 assert(t->outputMapping[index] < Elements(t->outputs));
4117 return ureg_src(t->outputs[t->outputMapping[index]]); /* not needed? */
4118
4119 case PROGRAM_ADDRESS:
4120 return ureg_src(t->address[index]);
4121
4122 case PROGRAM_SYSTEM_VALUE:
4123 assert(index < Elements(t->systemValues));
4124 return t->systemValues[index];
4125
4126 default:
4127 assert(!"unknown src register file");
4128 return ureg_src_undef();
4129 }
4130 }
4131
4132 /**
4133 * Create a TGSI ureg_dst register from an st_dst_reg.
4134 */
4135 static struct ureg_dst
4136 translate_dst(struct st_translate *t,
4137 const st_dst_reg *dst_reg,
4138 bool saturate)
4139 {
4140 struct ureg_dst dst = dst_register(t,
4141 dst_reg->file,
4142 dst_reg->index);
4143
4144 dst = ureg_writemask(dst, dst_reg->writemask);
4145
4146 if (saturate)
4147 dst = ureg_saturate(dst);
4148
4149 if (dst_reg->reladdr != NULL)
4150 dst = ureg_dst_indirect(dst, ureg_src(t->address[0]));
4151
4152 return dst;
4153 }
4154
4155 /**
4156 * Create a TGSI ureg_src register from an st_src_reg.
4157 */
4158 static struct ureg_src
4159 translate_src(struct st_translate *t, const st_src_reg *src_reg)
4160 {
4161 struct ureg_src src = src_register(t, src_reg->file, src_reg->index);
4162
4163 src = ureg_swizzle(src,
4164 GET_SWZ(src_reg->swizzle, 0) & 0x3,
4165 GET_SWZ(src_reg->swizzle, 1) & 0x3,
4166 GET_SWZ(src_reg->swizzle, 2) & 0x3,
4167 GET_SWZ(src_reg->swizzle, 3) & 0x3);
4168
4169 if ((src_reg->negate & 0xf) == NEGATE_XYZW)
4170 src = ureg_negate(src);
4171
4172 if (src_reg->reladdr != NULL) {
4173 /* Normally ureg_src_indirect() would be used here, but a stupid compiler
4174 * bug in g++ makes ureg_src_indirect (an inline C function) erroneously
4175 * set the bit for src.Negate. So we have to do the operation manually
4176 * here to work around the compiler's problems. */
4177 /*src = ureg_src_indirect(src, ureg_src(t->address[0]));*/
4178 struct ureg_src addr = ureg_src(t->address[0]);
4179 src.Indirect = 1;
4180 src.IndirectFile = addr.File;
4181 src.IndirectIndex = addr.Index;
4182 src.IndirectSwizzle = addr.SwizzleX;
4183
4184 if (src_reg->file != PROGRAM_INPUT &&
4185 src_reg->file != PROGRAM_OUTPUT) {
4186 /* If src_reg->index was negative, it was set to zero in
4187 * src_register(). Reassign it now. But don't do this
4188 * for input/output regs since they get remapped while
4189 * const buffers don't.
4190 */
4191 src.Index = src_reg->index;
4192 }
4193 }
4194
4195 return src;
4196 }
4197
4198 static struct tgsi_texture_offset
4199 translate_tex_offset(struct st_translate *t,
4200 const struct tgsi_texture_offset *in_offset)
4201 {
4202 struct tgsi_texture_offset offset;
4203
4204 assert(in_offset->File == PROGRAM_IMMEDIATE);
4205
4206 offset.File = TGSI_FILE_IMMEDIATE;
4207 offset.Index = in_offset->Index;
4208 offset.SwizzleX = in_offset->SwizzleX;
4209 offset.SwizzleY = in_offset->SwizzleY;
4210 offset.SwizzleZ = in_offset->SwizzleZ;
4211
4212 return offset;
4213 }
4214
4215 static void
4216 compile_tgsi_instruction(struct st_translate *t,
4217 const glsl_to_tgsi_instruction *inst)
4218 {
4219 struct ureg_program *ureg = t->ureg;
4220 GLuint i;
4221 struct ureg_dst dst[1];
4222 struct ureg_src src[4];
4223 struct tgsi_texture_offset texoffsets[MAX_GLSL_TEXTURE_OFFSET];
4224
4225 unsigned num_dst;
4226 unsigned num_src;
4227
4228 num_dst = num_inst_dst_regs(inst->op);
4229 num_src = num_inst_src_regs(inst->op);
4230
4231 if (num_dst)
4232 dst[0] = translate_dst(t,
4233 &inst->dst,
4234 inst->saturate);
4235
4236 for (i = 0; i < num_src; i++)
4237 src[i] = translate_src(t, &inst->src[i]);
4238
4239 switch(inst->op) {
4240 case TGSI_OPCODE_BGNLOOP:
4241 case TGSI_OPCODE_CAL:
4242 case TGSI_OPCODE_ELSE:
4243 case TGSI_OPCODE_ENDLOOP:
4244 case TGSI_OPCODE_IF:
4245 assert(num_dst == 0);
4246 ureg_label_insn(ureg,
4247 inst->op,
4248 src, num_src,
4249 get_label(t,
4250 inst->op == TGSI_OPCODE_CAL ? inst->function->sig_id : 0));
4251 return;
4252
4253 case TGSI_OPCODE_TEX:
4254 case TGSI_OPCODE_TXB:
4255 case TGSI_OPCODE_TXD:
4256 case TGSI_OPCODE_TXL:
4257 case TGSI_OPCODE_TXP:
4258 case TGSI_OPCODE_TXQ:
4259 case TGSI_OPCODE_TXF:
4260 src[num_src++] = t->samplers[inst->sampler];
4261 for (i = 0; i < inst->tex_offset_num_offset; i++) {
4262 texoffsets[i] = translate_tex_offset(t, &inst->tex_offsets[i]);
4263 }
4264 ureg_tex_insn(ureg,
4265 inst->op,
4266 dst, num_dst,
4267 translate_texture_target(inst->tex_target, inst->tex_shadow),
4268 texoffsets, inst->tex_offset_num_offset,
4269 src, num_src);
4270 return;
4271
4272 case TGSI_OPCODE_SCS:
4273 dst[0] = ureg_writemask(dst[0], TGSI_WRITEMASK_XY);
4274 ureg_insn(ureg, inst->op, dst, num_dst, src, num_src);
4275 break;
4276
4277 default:
4278 ureg_insn(ureg,
4279 inst->op,
4280 dst, num_dst,
4281 src, num_src);
4282 break;
4283 }
4284 }
4285
4286 /**
4287 * Emit the TGSI instructions for inverting and adjusting WPOS.
4288 * This code is unavoidable because it also depends on whether
4289 * a FBO is bound (STATE_FB_WPOS_Y_TRANSFORM).
4290 */
4291 static void
4292 emit_wpos_adjustment( struct st_translate *t,
4293 const struct gl_program *program,
4294 boolean invert,
4295 GLfloat adjX, GLfloat adjY[2])
4296 {
4297 struct ureg_program *ureg = t->ureg;
4298
4299 /* Fragment program uses fragment position input.
4300 * Need to replace instances of INPUT[WPOS] with temp T
4301 * where T = INPUT[WPOS] by y is inverted.
4302 */
4303 static const gl_state_index wposTransformState[STATE_LENGTH]
4304 = { STATE_INTERNAL, STATE_FB_WPOS_Y_TRANSFORM,
4305 (gl_state_index)0, (gl_state_index)0, (gl_state_index)0 };
4306
4307 /* XXX: note we are modifying the incoming shader here! Need to
4308 * do this before emitting the constant decls below, or this
4309 * will be missed:
4310 */
4311 unsigned wposTransConst = _mesa_add_state_reference(program->Parameters,
4312 wposTransformState);
4313
4314 struct ureg_src wpostrans = ureg_DECL_constant( ureg, wposTransConst );
4315 struct ureg_dst wpos_temp = ureg_DECL_temporary( ureg );
4316 struct ureg_src wpos_input = t->inputs[t->inputMapping[FRAG_ATTRIB_WPOS]];
4317
4318 /* First, apply the coordinate shift: */
4319 if (adjX || adjY[0] || adjY[1]) {
4320 if (adjY[0] != adjY[1]) {
4321 /* Adjust the y coordinate by adjY[1] or adjY[0] respectively
4322 * depending on whether inversion is actually going to be applied
4323 * or not, which is determined by testing against the inversion
4324 * state variable used below, which will be either +1 or -1.
4325 */
4326 struct ureg_dst adj_temp = ureg_DECL_temporary(ureg);
4327
4328 ureg_CMP(ureg, adj_temp,
4329 ureg_scalar(wpostrans, invert ? 2 : 0),
4330 ureg_imm4f(ureg, adjX, adjY[0], 0.0f, 0.0f),
4331 ureg_imm4f(ureg, adjX, adjY[1], 0.0f, 0.0f));
4332 ureg_ADD(ureg, wpos_temp, wpos_input, ureg_src(adj_temp));
4333 } else {
4334 ureg_ADD(ureg, wpos_temp, wpos_input,
4335 ureg_imm4f(ureg, adjX, adjY[0], 0.0f, 0.0f));
4336 }
4337 wpos_input = ureg_src(wpos_temp);
4338 } else {
4339 /* MOV wpos_temp, input[wpos]
4340 */
4341 ureg_MOV( ureg, wpos_temp, wpos_input );
4342 }
4343
4344 /* Now the conditional y flip: STATE_FB_WPOS_Y_TRANSFORM.xy/zw will be
4345 * inversion/identity, or the other way around if we're drawing to an FBO.
4346 */
4347 if (invert) {
4348 /* MAD wpos_temp.y, wpos_input, wpostrans.xxxx, wpostrans.yyyy
4349 */
4350 ureg_MAD( ureg,
4351 ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y ),
4352 wpos_input,
4353 ureg_scalar(wpostrans, 0),
4354 ureg_scalar(wpostrans, 1));
4355 } else {
4356 /* MAD wpos_temp.y, wpos_input, wpostrans.zzzz, wpostrans.wwww
4357 */
4358 ureg_MAD( ureg,
4359 ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y ),
4360 wpos_input,
4361 ureg_scalar(wpostrans, 2),
4362 ureg_scalar(wpostrans, 3));
4363 }
4364
4365 /* Use wpos_temp as position input from here on:
4366 */
4367 t->inputs[t->inputMapping[FRAG_ATTRIB_WPOS]] = ureg_src(wpos_temp);
4368 }
4369
4370
4371 /**
4372 * Emit fragment position/ooordinate code.
4373 */
4374 static void
4375 emit_wpos(struct st_context *st,
4376 struct st_translate *t,
4377 const struct gl_program *program,
4378 struct ureg_program *ureg)
4379 {
4380 const struct gl_fragment_program *fp =
4381 (const struct gl_fragment_program *) program;
4382 struct pipe_screen *pscreen = st->pipe->screen;
4383 GLfloat adjX = 0.0f;
4384 GLfloat adjY[2] = { 0.0f, 0.0f };
4385 boolean invert = FALSE;
4386
4387 /* Query the pixel center conventions supported by the pipe driver and set
4388 * adjX, adjY to help out if it cannot handle the requested one internally.
4389 *
4390 * The bias of the y-coordinate depends on whether y-inversion takes place
4391 * (adjY[1]) or not (adjY[0]), which is in turn dependent on whether we are
4392 * drawing to an FBO (causes additional inversion), and whether the the pipe
4393 * driver origin and the requested origin differ (the latter condition is
4394 * stored in the 'invert' variable).
4395 *
4396 * For height = 100 (i = integer, h = half-integer, l = lower, u = upper):
4397 *
4398 * center shift only:
4399 * i -> h: +0.5
4400 * h -> i: -0.5
4401 *
4402 * inversion only:
4403 * l,i -> u,i: ( 0.0 + 1.0) * -1 + 100 = 99
4404 * l,h -> u,h: ( 0.5 + 0.0) * -1 + 100 = 99.5
4405 * u,i -> l,i: (99.0 + 1.0) * -1 + 100 = 0
4406 * u,h -> l,h: (99.5 + 0.0) * -1 + 100 = 0.5
4407 *
4408 * inversion and center shift:
4409 * l,i -> u,h: ( 0.0 + 0.5) * -1 + 100 = 99.5
4410 * l,h -> u,i: ( 0.5 + 0.5) * -1 + 100 = 99
4411 * u,i -> l,h: (99.0 + 0.5) * -1 + 100 = 0.5
4412 * u,h -> l,i: (99.5 + 0.5) * -1 + 100 = 0
4413 */
4414 if (fp->OriginUpperLeft) {
4415 /* Fragment shader wants origin in upper-left */
4416 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT)) {
4417 /* the driver supports upper-left origin */
4418 }
4419 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT)) {
4420 /* the driver supports lower-left origin, need to invert Y */
4421 ureg_property_fs_coord_origin(ureg, TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
4422 invert = TRUE;
4423 }
4424 else
4425 assert(0);
4426 }
4427 else {
4428 /* Fragment shader wants origin in lower-left */
4429 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT))
4430 /* the driver supports lower-left origin */
4431 ureg_property_fs_coord_origin(ureg, TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
4432 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT))
4433 /* the driver supports upper-left origin, need to invert Y */
4434 invert = TRUE;
4435 else
4436 assert(0);
4437 }
4438
4439 if (fp->PixelCenterInteger) {
4440 /* Fragment shader wants pixel center integer */
4441 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
4442 /* the driver supports pixel center integer */
4443 adjY[1] = 1.0f;
4444 ureg_property_fs_coord_pixel_center(ureg, TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
4445 }
4446 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
4447 /* the driver supports pixel center half integer, need to bias X,Y */
4448 adjX = -0.5f;
4449 adjY[0] = -0.5f;
4450 adjY[1] = 0.5f;
4451 }
4452 else
4453 assert(0);
4454 }
4455 else {
4456 /* Fragment shader wants pixel center half integer */
4457 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
4458 /* the driver supports pixel center half integer */
4459 }
4460 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
4461 /* the driver supports pixel center integer, need to bias X,Y */
4462 adjX = adjY[0] = adjY[1] = 0.5f;
4463 ureg_property_fs_coord_pixel_center(ureg, TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
4464 }
4465 else
4466 assert(0);
4467 }
4468
4469 /* we invert after adjustment so that we avoid the MOV to temporary,
4470 * and reuse the adjustment ADD instead */
4471 emit_wpos_adjustment(t, program, invert, adjX, adjY);
4472 }
4473
4474 /**
4475 * OpenGL's fragment gl_FrontFace input is 1 for front-facing, 0 for back.
4476 * TGSI uses +1 for front, -1 for back.
4477 * This function converts the TGSI value to the GL value. Simply clamping/
4478 * saturating the value to [0,1] does the job.
4479 */
4480 static void
4481 emit_face_var(struct st_translate *t)
4482 {
4483 struct ureg_program *ureg = t->ureg;
4484 struct ureg_dst face_temp = ureg_DECL_temporary(ureg);
4485 struct ureg_src face_input = t->inputs[t->inputMapping[FRAG_ATTRIB_FACE]];
4486
4487 /* MOV_SAT face_temp, input[face] */
4488 face_temp = ureg_saturate(face_temp);
4489 ureg_MOV(ureg, face_temp, face_input);
4490
4491 /* Use face_temp as face input from here on: */
4492 t->inputs[t->inputMapping[FRAG_ATTRIB_FACE]] = ureg_src(face_temp);
4493 }
4494
4495 static void
4496 emit_edgeflags(struct st_translate *t)
4497 {
4498 struct ureg_program *ureg = t->ureg;
4499 struct ureg_dst edge_dst = t->outputs[t->outputMapping[VERT_RESULT_EDGE]];
4500 struct ureg_src edge_src = t->inputs[t->inputMapping[VERT_ATTRIB_EDGEFLAG]];
4501
4502 ureg_MOV(ureg, edge_dst, edge_src);
4503 }
4504
4505 /**
4506 * Translate intermediate IR (glsl_to_tgsi_instruction) to TGSI format.
4507 * \param program the program to translate
4508 * \param numInputs number of input registers used
4509 * \param inputMapping maps Mesa fragment program inputs to TGSI generic
4510 * input indexes
4511 * \param inputSemanticName the TGSI_SEMANTIC flag for each input
4512 * \param inputSemanticIndex the semantic index (ex: which texcoord) for
4513 * each input
4514 * \param interpMode the TGSI_INTERPOLATE_LINEAR/PERSP mode for each input
4515 * \param numOutputs number of output registers used
4516 * \param outputMapping maps Mesa fragment program outputs to TGSI
4517 * generic outputs
4518 * \param outputSemanticName the TGSI_SEMANTIC flag for each output
4519 * \param outputSemanticIndex the semantic index (ex: which texcoord) for
4520 * each output
4521 *
4522 * \return PIPE_OK or PIPE_ERROR_OUT_OF_MEMORY
4523 */
4524 extern "C" enum pipe_error
4525 st_translate_program(
4526 struct gl_context *ctx,
4527 uint procType,
4528 struct ureg_program *ureg,
4529 glsl_to_tgsi_visitor *program,
4530 const struct gl_program *proginfo,
4531 GLuint numInputs,
4532 const GLuint inputMapping[],
4533 const ubyte inputSemanticName[],
4534 const ubyte inputSemanticIndex[],
4535 const GLuint interpMode[],
4536 GLuint numOutputs,
4537 const GLuint outputMapping[],
4538 const ubyte outputSemanticName[],
4539 const ubyte outputSemanticIndex[],
4540 boolean passthrough_edgeflags)
4541 {
4542 struct st_translate *t;
4543 unsigned i;
4544 enum pipe_error ret = PIPE_OK;
4545
4546 assert(numInputs <= Elements(t->inputs));
4547 assert(numOutputs <= Elements(t->outputs));
4548
4549 t = CALLOC_STRUCT(st_translate);
4550 if (!t) {
4551 ret = PIPE_ERROR_OUT_OF_MEMORY;
4552 goto out;
4553 }
4554
4555 memset(t, 0, sizeof *t);
4556
4557 t->procType = procType;
4558 t->inputMapping = inputMapping;
4559 t->outputMapping = outputMapping;
4560 t->ureg = ureg;
4561 t->pointSizeOutIndex = -1;
4562 t->prevInstWrotePointSize = GL_FALSE;
4563
4564 if (program->shader_program) {
4565 for (i = 0; i < program->shader_program->NumUserUniformStorage; i++) {
4566 struct gl_uniform_storage *const storage =
4567 &program->shader_program->UniformStorage[i];
4568
4569 _mesa_uniform_detach_all_driver_storage(storage);
4570 }
4571 }
4572
4573 /*
4574 * Declare input attributes.
4575 */
4576 if (procType == TGSI_PROCESSOR_FRAGMENT) {
4577 for (i = 0; i < numInputs; i++) {
4578 t->inputs[i] = ureg_DECL_fs_input(ureg,
4579 inputSemanticName[i],
4580 inputSemanticIndex[i],
4581 interpMode[i]);
4582 }
4583
4584 if (proginfo->InputsRead & FRAG_BIT_WPOS) {
4585 /* Must do this after setting up t->inputs, and before
4586 * emitting constant references, below:
4587 */
4588 emit_wpos(st_context(ctx), t, proginfo, ureg);
4589 }
4590
4591 if (proginfo->InputsRead & FRAG_BIT_FACE)
4592 emit_face_var(t);
4593
4594 /*
4595 * Declare output attributes.
4596 */
4597 for (i = 0; i < numOutputs; i++) {
4598 switch (outputSemanticName[i]) {
4599 case TGSI_SEMANTIC_POSITION:
4600 t->outputs[i] = ureg_DECL_output(ureg,
4601 TGSI_SEMANTIC_POSITION, /* Z/Depth */
4602 outputSemanticIndex[i]);
4603 t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_Z);
4604 break;
4605 case TGSI_SEMANTIC_STENCIL:
4606 t->outputs[i] = ureg_DECL_output(ureg,
4607 TGSI_SEMANTIC_STENCIL, /* Stencil */
4608 outputSemanticIndex[i]);
4609 t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_Y);
4610 break;
4611 case TGSI_SEMANTIC_COLOR:
4612 t->outputs[i] = ureg_DECL_output(ureg,
4613 TGSI_SEMANTIC_COLOR,
4614 outputSemanticIndex[i]);
4615 break;
4616 default:
4617 assert(!"fragment shader outputs must be POSITION/STENCIL/COLOR");
4618 ret = PIPE_ERROR_BAD_INPUT;
4619 goto out;
4620 }
4621 }
4622 }
4623 else if (procType == TGSI_PROCESSOR_GEOMETRY) {
4624 for (i = 0; i < numInputs; i++) {
4625 t->inputs[i] = ureg_DECL_gs_input(ureg,
4626 i,
4627 inputSemanticName[i],
4628 inputSemanticIndex[i]);
4629 }
4630
4631 for (i = 0; i < numOutputs; i++) {
4632 t->outputs[i] = ureg_DECL_output(ureg,
4633 outputSemanticName[i],
4634 outputSemanticIndex[i]);
4635 }
4636 }
4637 else {
4638 assert(procType == TGSI_PROCESSOR_VERTEX);
4639
4640 for (i = 0; i < numInputs; i++) {
4641 t->inputs[i] = ureg_DECL_vs_input(ureg, i);
4642 }
4643
4644 for (i = 0; i < numOutputs; i++) {
4645 if (outputSemanticName[i] == TGSI_SEMANTIC_CLIPDIST) {
4646 int mask = ((1 << (program->num_clip_distances - 4*outputSemanticIndex[i])) - 1) & TGSI_WRITEMASK_XYZW;
4647 t->outputs[i] = ureg_DECL_output_masked(ureg,
4648 outputSemanticName[i],
4649 outputSemanticIndex[i],
4650 mask);
4651 } else {
4652 t->outputs[i] = ureg_DECL_output(ureg,
4653 outputSemanticName[i],
4654 outputSemanticIndex[i]);
4655 }
4656 if ((outputSemanticName[i] == TGSI_SEMANTIC_PSIZE) && proginfo->Id) {
4657 /* Writing to the point size result register requires special
4658 * handling to implement clamping.
4659 */
4660 static const gl_state_index pointSizeClampState[STATE_LENGTH]
4661 = { STATE_INTERNAL, STATE_POINT_SIZE_IMPL_CLAMP, (gl_state_index)0, (gl_state_index)0, (gl_state_index)0 };
4662 /* XXX: note we are modifying the incoming shader here! Need to
4663 * do this before emitting the constant decls below, or this
4664 * will be missed.
4665 */
4666 unsigned pointSizeClampConst =
4667 _mesa_add_state_reference(proginfo->Parameters,
4668 pointSizeClampState);
4669 struct ureg_dst psizregtemp = ureg_DECL_temporary(ureg);
4670 t->pointSizeConst = ureg_DECL_constant(ureg, pointSizeClampConst);
4671 t->pointSizeResult = t->outputs[i];
4672 t->pointSizeOutIndex = i;
4673 t->outputs[i] = psizregtemp;
4674 }
4675 }
4676 if (passthrough_edgeflags)
4677 emit_edgeflags(t);
4678 }
4679
4680 /* Declare address register.
4681 */
4682 if (program->num_address_regs > 0) {
4683 assert(program->num_address_regs == 1);
4684 t->address[0] = ureg_DECL_address(ureg);
4685 }
4686
4687 /* Declare misc input registers
4688 */
4689 {
4690 GLbitfield sysInputs = proginfo->SystemValuesRead;
4691 unsigned numSys = 0;
4692 for (i = 0; sysInputs; i++) {
4693 if (sysInputs & (1 << i)) {
4694 unsigned semName = mesa_sysval_to_semantic[i];
4695 t->systemValues[i] = ureg_DECL_system_value(ureg, numSys, semName, 0);
4696 numSys++;
4697 sysInputs &= ~(1 << i);
4698 }
4699 }
4700 }
4701
4702 if (program->indirect_addr_temps) {
4703 /* If temps are accessed with indirect addressing, declare temporaries
4704 * in sequential order. Else, we declare them on demand elsewhere.
4705 * (Note: the number of temporaries is equal to program->next_temp)
4706 */
4707 for (i = 0; i < (unsigned)program->next_temp; i++) {
4708 /* XXX use TGSI_FILE_TEMPORARY_ARRAY when it's supported by ureg */
4709 t->temps[i] = ureg_DECL_temporary(t->ureg);
4710 }
4711 }
4712
4713 /* Emit constants and uniforms. TGSI uses a single index space for these,
4714 * so we put all the translated regs in t->constants.
4715 */
4716 if (proginfo->Parameters) {
4717 t->constants = (struct ureg_src *)CALLOC(proginfo->Parameters->NumParameters * sizeof(t->constants[0]));
4718 if (t->constants == NULL) {
4719 ret = PIPE_ERROR_OUT_OF_MEMORY;
4720 goto out;
4721 }
4722
4723 for (i = 0; i < proginfo->Parameters->NumParameters; i++) {
4724 switch (proginfo->Parameters->Parameters[i].Type) {
4725 case PROGRAM_ENV_PARAM:
4726 case PROGRAM_LOCAL_PARAM:
4727 case PROGRAM_STATE_VAR:
4728 case PROGRAM_NAMED_PARAM:
4729 case PROGRAM_UNIFORM:
4730 t->constants[i] = ureg_DECL_constant(ureg, i);
4731 break;
4732
4733 /* Emit immediates for PROGRAM_CONSTANT only when there's no indirect
4734 * addressing of the const buffer.
4735 * FIXME: Be smarter and recognize param arrays:
4736 * indirect addressing is only valid within the referenced
4737 * array.
4738 */
4739 case PROGRAM_CONSTANT:
4740 if (program->indirect_addr_consts)
4741 t->constants[i] = ureg_DECL_constant(ureg, i);
4742 else
4743 t->constants[i] = emit_immediate(t,
4744 proginfo->Parameters->ParameterValues[i],
4745 proginfo->Parameters->Parameters[i].DataType,
4746 4);
4747 break;
4748 default:
4749 break;
4750 }
4751 }
4752 }
4753
4754 /* Emit immediate values.
4755 */
4756 t->immediates = (struct ureg_src *)CALLOC(program->num_immediates * sizeof(struct ureg_src));
4757 if (t->immediates == NULL) {
4758 ret = PIPE_ERROR_OUT_OF_MEMORY;
4759 goto out;
4760 }
4761 i = 0;
4762 foreach_iter(exec_list_iterator, iter, program->immediates) {
4763 immediate_storage *imm = (immediate_storage *)iter.get();
4764 t->immediates[i++] = emit_immediate(t, imm->values, imm->type, imm->size);
4765 }
4766
4767 /* texture samplers */
4768 for (i = 0; i < ctx->Const.MaxTextureImageUnits; i++) {
4769 if (program->samplers_used & (1 << i)) {
4770 t->samplers[i] = ureg_DECL_sampler(ureg, i);
4771 }
4772 }
4773
4774 /* Emit each instruction in turn:
4775 */
4776 foreach_iter(exec_list_iterator, iter, program->instructions) {
4777 set_insn_start(t, ureg_get_instruction_number(ureg));
4778 compile_tgsi_instruction(t, (glsl_to_tgsi_instruction *)iter.get());
4779
4780 if (t->prevInstWrotePointSize && proginfo->Id) {
4781 /* The previous instruction wrote to the (fake) vertex point size
4782 * result register. Now we need to clamp that value to the min/max
4783 * point size range, putting the result into the real point size
4784 * register.
4785 * Note that we can't do this easily at the end of program due to
4786 * possible early return.
4787 */
4788 set_insn_start(t, ureg_get_instruction_number(ureg));
4789 ureg_MAX(t->ureg,
4790 ureg_writemask(t->outputs[t->pointSizeOutIndex], WRITEMASK_X),
4791 ureg_src(t->outputs[t->pointSizeOutIndex]),
4792 ureg_swizzle(t->pointSizeConst, 1,1,1,1));
4793 ureg_MIN(t->ureg, ureg_writemask(t->pointSizeResult, WRITEMASK_X),
4794 ureg_src(t->outputs[t->pointSizeOutIndex]),
4795 ureg_swizzle(t->pointSizeConst, 2,2,2,2));
4796 }
4797 t->prevInstWrotePointSize = GL_FALSE;
4798 }
4799
4800 /* Fix up all emitted labels:
4801 */
4802 for (i = 0; i < t->labels_count; i++) {
4803 ureg_fixup_label(ureg, t->labels[i].token,
4804 t->insn[t->labels[i].branch_target]);
4805 }
4806
4807 if (program->shader_program) {
4808 /* This has to be done last. Any operation the can cause
4809 * prog->ParameterValues to get reallocated (e.g., anything that adds a
4810 * program constant) has to happen before creating this linkage.
4811 */
4812 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
4813 if (program->shader_program->_LinkedShaders[i] == NULL)
4814 continue;
4815
4816 _mesa_associate_uniform_storage(ctx, program->shader_program,
4817 program->shader_program->_LinkedShaders[i]->Program->Parameters);
4818 }
4819 }
4820
4821 out:
4822 if (t) {
4823 FREE(t->insn);
4824 FREE(t->labels);
4825 FREE(t->constants);
4826 FREE(t->immediates);
4827
4828 if (t->error) {
4829 debug_printf("%s: translate error flag set\n", __FUNCTION__);
4830 }
4831
4832 FREE(t);
4833 }
4834
4835 return ret;
4836 }
4837 /* ----------------------------- End TGSI code ------------------------------ */
4838
4839 /**
4840 * Convert a shader's GLSL IR into a Mesa gl_program, although without
4841 * generating Mesa IR.
4842 */
4843 static struct gl_program *
4844 get_mesa_program(struct gl_context *ctx,
4845 struct gl_shader_program *shader_program,
4846 struct gl_shader *shader,
4847 int num_clip_distances)
4848 {
4849 glsl_to_tgsi_visitor* v = new glsl_to_tgsi_visitor();
4850 struct gl_program *prog;
4851 struct pipe_screen * screen = st_context(ctx)->pipe->screen;
4852 unsigned pipe_shader_type;
4853 GLenum target;
4854 const char *target_string;
4855 bool progress;
4856 struct gl_shader_compiler_options *options =
4857 &ctx->ShaderCompilerOptions[_mesa_shader_type_to_index(shader->Type)];
4858
4859 switch (shader->Type) {
4860 case GL_VERTEX_SHADER:
4861 target = GL_VERTEX_PROGRAM_ARB;
4862 target_string = "vertex";
4863 pipe_shader_type = PIPE_SHADER_VERTEX;
4864 break;
4865 case GL_FRAGMENT_SHADER:
4866 target = GL_FRAGMENT_PROGRAM_ARB;
4867 target_string = "fragment";
4868 pipe_shader_type = PIPE_SHADER_FRAGMENT;
4869 break;
4870 case GL_GEOMETRY_SHADER:
4871 target = GL_GEOMETRY_PROGRAM_NV;
4872 target_string = "geometry";
4873 pipe_shader_type = PIPE_SHADER_GEOMETRY;
4874 break;
4875 default:
4876 assert(!"should not be reached");
4877 return NULL;
4878 }
4879
4880 validate_ir_tree(shader->ir);
4881
4882 prog = ctx->Driver.NewProgram(ctx, target, shader_program->Name);
4883 if (!prog)
4884 return NULL;
4885 prog->Parameters = _mesa_new_parameter_list();
4886 v->ctx = ctx;
4887 v->prog = prog;
4888 v->shader_program = shader_program;
4889 v->options = options;
4890 v->glsl_version = ctx->Const.GLSLVersion;
4891 v->native_integers = ctx->Const.NativeIntegers;
4892 v->num_clip_distances = num_clip_distances;
4893
4894 _mesa_generate_parameters_list_for_uniforms(shader_program, shader,
4895 prog->Parameters);
4896
4897 if (!screen->get_shader_param(screen, pipe_shader_type,
4898 PIPE_SHADER_CAP_OUTPUT_READ)) {
4899 /* Remove reads to output registers, and to varyings in vertex shaders. */
4900 lower_output_reads(shader->ir);
4901 }
4902
4903
4904 /* Emit intermediate IR for main(). */
4905 visit_exec_list(shader->ir, v);
4906
4907 /* Now emit bodies for any functions that were used. */
4908 do {
4909 progress = GL_FALSE;
4910
4911 foreach_iter(exec_list_iterator, iter, v->function_signatures) {
4912 function_entry *entry = (function_entry *)iter.get();
4913
4914 if (!entry->bgn_inst) {
4915 v->current_function = entry;
4916
4917 entry->bgn_inst = v->emit(NULL, TGSI_OPCODE_BGNSUB);
4918 entry->bgn_inst->function = entry;
4919
4920 visit_exec_list(&entry->sig->body, v);
4921
4922 glsl_to_tgsi_instruction *last;
4923 last = (glsl_to_tgsi_instruction *)v->instructions.get_tail();
4924 if (last->op != TGSI_OPCODE_RET)
4925 v->emit(NULL, TGSI_OPCODE_RET);
4926
4927 glsl_to_tgsi_instruction *end;
4928 end = v->emit(NULL, TGSI_OPCODE_ENDSUB);
4929 end->function = entry;
4930
4931 progress = GL_TRUE;
4932 }
4933 }
4934 } while (progress);
4935
4936 #if 0
4937 /* Print out some information (for debugging purposes) used by the
4938 * optimization passes. */
4939 for (i=0; i < v->next_temp; i++) {
4940 int fr = v->get_first_temp_read(i);
4941 int fw = v->get_first_temp_write(i);
4942 int lr = v->get_last_temp_read(i);
4943 int lw = v->get_last_temp_write(i);
4944
4945 printf("Temp %d: FR=%3d FW=%3d LR=%3d LW=%3d\n", i, fr, fw, lr, lw);
4946 assert(fw <= fr);
4947 }
4948 #endif
4949
4950 /* Perform optimizations on the instructions in the glsl_to_tgsi_visitor. */
4951 v->simplify_cmp();
4952 v->copy_propagate();
4953 while (v->eliminate_dead_code_advanced());
4954
4955 /* FIXME: These passes to optimize temporary registers don't work when there
4956 * is indirect addressing of the temporary register space. We need proper
4957 * array support so that we don't have to give up these passes in every
4958 * shader that uses arrays.
4959 */
4960 if (!v->indirect_addr_temps) {
4961 v->eliminate_dead_code();
4962 v->merge_registers();
4963 v->renumber_registers();
4964 }
4965
4966 /* Write the END instruction. */
4967 v->emit(NULL, TGSI_OPCODE_END);
4968
4969 if (ctx->Shader.Flags & GLSL_DUMP) {
4970 printf("\n");
4971 printf("GLSL IR for linked %s program %d:\n", target_string,
4972 shader_program->Name);
4973 _mesa_print_ir(shader->ir, NULL);
4974 printf("\n");
4975 printf("\n");
4976 fflush(stdout);
4977 }
4978
4979 prog->Instructions = NULL;
4980 prog->NumInstructions = 0;
4981
4982 do_set_program_inouts(shader->ir, prog, shader->Type == GL_FRAGMENT_SHADER);
4983 count_resources(v, prog);
4984
4985 _mesa_reference_program(ctx, &shader->Program, prog);
4986
4987 /* This has to be done last. Any operation the can cause
4988 * prog->ParameterValues to get reallocated (e.g., anything that adds a
4989 * program constant) has to happen before creating this linkage.
4990 */
4991 _mesa_associate_uniform_storage(ctx, shader_program, prog->Parameters);
4992 if (!shader_program->LinkStatus) {
4993 return NULL;
4994 }
4995
4996 struct st_vertex_program *stvp;
4997 struct st_fragment_program *stfp;
4998 struct st_geometry_program *stgp;
4999
5000 switch (shader->Type) {
5001 case GL_VERTEX_SHADER:
5002 stvp = (struct st_vertex_program *)prog;
5003 stvp->glsl_to_tgsi = v;
5004 break;
5005 case GL_FRAGMENT_SHADER:
5006 stfp = (struct st_fragment_program *)prog;
5007 stfp->glsl_to_tgsi = v;
5008 break;
5009 case GL_GEOMETRY_SHADER:
5010 stgp = (struct st_geometry_program *)prog;
5011 stgp->glsl_to_tgsi = v;
5012 break;
5013 default:
5014 assert(!"should not be reached");
5015 return NULL;
5016 }
5017
5018 return prog;
5019 }
5020
5021 /**
5022 * Searches through the IR for a declaration of gl_ClipDistance and returns the
5023 * declared size of the gl_ClipDistance array. Returns 0 if gl_ClipDistance is
5024 * not declared in the IR.
5025 */
5026 int get_clip_distance_size(exec_list *ir)
5027 {
5028 foreach_iter (exec_list_iterator, iter, *ir) {
5029 ir_instruction *inst = (ir_instruction *)iter.get();
5030 ir_variable *var = inst->as_variable();
5031 if (var == NULL) continue;
5032 if (!strcmp(var->name, "gl_ClipDistance")) {
5033 return var->type->length;
5034 }
5035 }
5036
5037 return 0;
5038 }
5039
5040 extern "C" {
5041
5042 struct gl_shader *
5043 st_new_shader(struct gl_context *ctx, GLuint name, GLuint type)
5044 {
5045 struct gl_shader *shader;
5046 assert(type == GL_FRAGMENT_SHADER || type == GL_VERTEX_SHADER ||
5047 type == GL_GEOMETRY_SHADER_ARB);
5048 shader = rzalloc(NULL, struct gl_shader);
5049 if (shader) {
5050 shader->Type = type;
5051 shader->Name = name;
5052 _mesa_init_shader(ctx, shader);
5053 }
5054 return shader;
5055 }
5056
5057 struct gl_shader_program *
5058 st_new_shader_program(struct gl_context *ctx, GLuint name)
5059 {
5060 struct gl_shader_program *shProg;
5061 shProg = rzalloc(NULL, struct gl_shader_program);
5062 if (shProg) {
5063 shProg->Name = name;
5064 _mesa_init_shader_program(ctx, shProg);
5065 }
5066 return shProg;
5067 }
5068
5069 /**
5070 * Link a shader.
5071 * Called via ctx->Driver.LinkShader()
5072 * This actually involves converting GLSL IR into an intermediate TGSI-like IR
5073 * with code lowering and other optimizations.
5074 */
5075 GLboolean
5076 st_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
5077 {
5078 int num_clip_distances[MESA_SHADER_TYPES];
5079 assert(prog->LinkStatus);
5080
5081 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
5082 if (prog->_LinkedShaders[i] == NULL)
5083 continue;
5084
5085 bool progress;
5086 exec_list *ir = prog->_LinkedShaders[i]->ir;
5087 const struct gl_shader_compiler_options *options =
5088 &ctx->ShaderCompilerOptions[_mesa_shader_type_to_index(prog->_LinkedShaders[i]->Type)];
5089
5090 /* We have to determine the length of the gl_ClipDistance array before
5091 * the array is lowered to two vec4s by lower_clip_distance().
5092 */
5093 num_clip_distances[i] = get_clip_distance_size(ir);
5094
5095 do {
5096 progress = false;
5097
5098 /* Lowering */
5099 do_mat_op_to_vec(ir);
5100 lower_instructions(ir, (MOD_TO_FRACT | DIV_TO_MUL_RCP | EXP_TO_EXP2
5101 | LOG_TO_LOG2 | INT_DIV_TO_MUL_RCP
5102 | ((options->EmitNoPow) ? POW_TO_EXP2 : 0)));
5103
5104 progress = do_lower_jumps(ir, true, true, options->EmitNoMainReturn, options->EmitNoCont, options->EmitNoLoops) || progress;
5105
5106 progress = do_common_optimization(ir, true, true,
5107 options->MaxUnrollIterations)
5108 || progress;
5109
5110 progress = lower_quadop_vector(ir, false) || progress;
5111 progress = lower_clip_distance(ir) || progress;
5112
5113 if (options->MaxIfDepth == 0)
5114 progress = lower_discard(ir) || progress;
5115
5116 progress = lower_if_to_cond_assign(ir, options->MaxIfDepth) || progress;
5117
5118 if (options->EmitNoNoise)
5119 progress = lower_noise(ir) || progress;
5120
5121 /* If there are forms of indirect addressing that the driver
5122 * cannot handle, perform the lowering pass.
5123 */
5124 if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput
5125 || options->EmitNoIndirectTemp || options->EmitNoIndirectUniform)
5126 progress =
5127 lower_variable_index_to_cond_assign(ir,
5128 options->EmitNoIndirectInput,
5129 options->EmitNoIndirectOutput,
5130 options->EmitNoIndirectTemp,
5131 options->EmitNoIndirectUniform)
5132 || progress;
5133
5134 progress = do_vec_index_to_cond_assign(ir) || progress;
5135 } while (progress);
5136
5137 validate_ir_tree(ir);
5138 }
5139
5140 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
5141 struct gl_program *linked_prog;
5142
5143 if (prog->_LinkedShaders[i] == NULL)
5144 continue;
5145
5146 linked_prog = get_mesa_program(ctx, prog, prog->_LinkedShaders[i],
5147 num_clip_distances[i]);
5148
5149 if (linked_prog) {
5150 static const GLenum targets[] = {
5151 GL_VERTEX_PROGRAM_ARB,
5152 GL_FRAGMENT_PROGRAM_ARB,
5153 GL_GEOMETRY_PROGRAM_NV
5154 };
5155
5156 _mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program,
5157 linked_prog);
5158 if (!ctx->Driver.ProgramStringNotify(ctx, targets[i], linked_prog)) {
5159 _mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program,
5160 NULL);
5161 _mesa_reference_program(ctx, &linked_prog, NULL);
5162 return GL_FALSE;
5163 }
5164 }
5165
5166 _mesa_reference_program(ctx, &linked_prog, NULL);
5167 }
5168
5169 return GL_TRUE;
5170 }
5171
5172 void
5173 st_translate_stream_output_info(struct glsl_to_tgsi_visitor *glsl_to_tgsi,
5174 const GLuint outputMapping[],
5175 struct pipe_stream_output_info *so)
5176 {
5177 static unsigned comps_to_mask[] = {
5178 0,
5179 TGSI_WRITEMASK_X,
5180 TGSI_WRITEMASK_XY,
5181 TGSI_WRITEMASK_XYZ,
5182 TGSI_WRITEMASK_XYZW
5183 };
5184 unsigned i;
5185 struct gl_transform_feedback_info *info =
5186 &glsl_to_tgsi->shader_program->LinkedTransformFeedback;
5187
5188 for (i = 0; i < info->NumOutputs; i++) {
5189 assert(info->Outputs[i].NumComponents < Elements(comps_to_mask));
5190 so->output[i].register_index =
5191 outputMapping[info->Outputs[i].OutputRegister];
5192 so->output[i].register_mask =
5193 comps_to_mask[info->Outputs[i].NumComponents]
5194 << info->Outputs[i].ComponentOffset;
5195 so->output[i].output_buffer = info->Outputs[i].OutputBuffer;
5196 }
5197 so->num_outputs = info->NumOutputs;
5198 }
5199
5200 } /* extern "C" */