glsl_to_tgsi: use UARL instead of I2F and ARL
[mesa.git] / src / mesa / state_tracker / st_glsl_to_tgsi.cpp
1 /*
2 * Copyright (C) 2005-2007 Brian Paul All Rights Reserved.
3 * Copyright (C) 2008 VMware, Inc. All Rights Reserved.
4 * Copyright © 2010 Intel Corporation
5 * Copyright © 2011 Bryan Cain
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the next
15 * paragraph) shall be included in all copies or substantial portions of the
16 * Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
23 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
24 * DEALINGS IN THE SOFTWARE.
25 */
26
27 /**
28 * \file glsl_to_tgsi.cpp
29 *
30 * Translate GLSL IR to TGSI.
31 */
32
33 #include <stdio.h>
34 #include "main/compiler.h"
35 #include "ir.h"
36 #include "ir_visitor.h"
37 #include "ir_print_visitor.h"
38 #include "ir_expression_flattening.h"
39 #include "glsl_types.h"
40 #include "glsl_parser_extras.h"
41 #include "../glsl/program.h"
42 #include "ir_optimization.h"
43 #include "ast.h"
44
45 extern "C" {
46 #include "main/mtypes.h"
47 #include "main/shaderapi.h"
48 #include "main/shaderobj.h"
49 #include "main/uniforms.h"
50 #include "program/hash_table.h"
51 #include "program/prog_instruction.h"
52 #include "program/prog_optimize.h"
53 #include "program/prog_print.h"
54 #include "program/program.h"
55 #include "program/prog_uniform.h"
56 #include "program/prog_parameter.h"
57 #include "program/sampler.h"
58
59 #include "pipe/p_compiler.h"
60 #include "pipe/p_context.h"
61 #include "pipe/p_screen.h"
62 #include "pipe/p_shader_tokens.h"
63 #include "pipe/p_state.h"
64 #include "util/u_math.h"
65 #include "tgsi/tgsi_ureg.h"
66 #include "tgsi/tgsi_info.h"
67 #include "st_context.h"
68 #include "st_program.h"
69 #include "st_glsl_to_tgsi.h"
70 #include "st_mesa_to_tgsi.h"
71 }
72
73 #define PROGRAM_IMMEDIATE PROGRAM_FILE_MAX
74 #define PROGRAM_ANY_CONST ((1 << PROGRAM_LOCAL_PARAM) | \
75 (1 << PROGRAM_ENV_PARAM) | \
76 (1 << PROGRAM_STATE_VAR) | \
77 (1 << PROGRAM_NAMED_PARAM) | \
78 (1 << PROGRAM_CONSTANT) | \
79 (1 << PROGRAM_UNIFORM))
80
81 #define MAX_TEMPS 4096
82
83 /* will be 4 for GLSL 4.00 */
84 #define MAX_GLSL_TEXTURE_OFFSET 1
85
86 class st_src_reg;
87 class st_dst_reg;
88
89 static int swizzle_for_size(int size);
90
91 /**
92 * This struct is a corresponding struct to TGSI ureg_src.
93 */
94 class st_src_reg {
95 public:
96 st_src_reg(gl_register_file file, int index, const glsl_type *type)
97 {
98 this->file = file;
99 this->index = index;
100 if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
101 this->swizzle = swizzle_for_size(type->vector_elements);
102 else
103 this->swizzle = SWIZZLE_XYZW;
104 this->negate = 0;
105 this->type = type ? type->base_type : GLSL_TYPE_ERROR;
106 this->reladdr = NULL;
107 }
108
109 st_src_reg(gl_register_file file, int index, int type)
110 {
111 this->type = type;
112 this->file = file;
113 this->index = index;
114 this->swizzle = SWIZZLE_XYZW;
115 this->negate = 0;
116 this->reladdr = NULL;
117 }
118
119 st_src_reg()
120 {
121 this->type = GLSL_TYPE_ERROR;
122 this->file = PROGRAM_UNDEFINED;
123 this->index = 0;
124 this->swizzle = 0;
125 this->negate = 0;
126 this->reladdr = NULL;
127 }
128
129 explicit st_src_reg(st_dst_reg reg);
130
131 gl_register_file file; /**< PROGRAM_* from Mesa */
132 int index; /**< temporary index, VERT_ATTRIB_*, FRAG_ATTRIB_*, etc. */
133 GLuint swizzle; /**< SWIZZLE_XYZWONEZERO swizzles from Mesa. */
134 int negate; /**< NEGATE_XYZW mask from mesa */
135 int type; /** GLSL_TYPE_* from GLSL IR (enum glsl_base_type) */
136 /** Register index should be offset by the integer in this reg. */
137 st_src_reg *reladdr;
138 };
139
140 class st_dst_reg {
141 public:
142 st_dst_reg(gl_register_file file, int writemask, int type)
143 {
144 this->file = file;
145 this->index = 0;
146 this->writemask = writemask;
147 this->cond_mask = COND_TR;
148 this->reladdr = NULL;
149 this->type = type;
150 }
151
152 st_dst_reg()
153 {
154 this->type = GLSL_TYPE_ERROR;
155 this->file = PROGRAM_UNDEFINED;
156 this->index = 0;
157 this->writemask = 0;
158 this->cond_mask = COND_TR;
159 this->reladdr = NULL;
160 }
161
162 explicit st_dst_reg(st_src_reg reg);
163
164 gl_register_file file; /**< PROGRAM_* from Mesa */
165 int index; /**< temporary index, VERT_ATTRIB_*, FRAG_ATTRIB_*, etc. */
166 int writemask; /**< Bitfield of WRITEMASK_[XYZW] */
167 GLuint cond_mask:4;
168 int type; /** GLSL_TYPE_* from GLSL IR (enum glsl_base_type) */
169 /** Register index should be offset by the integer in this reg. */
170 st_src_reg *reladdr;
171 };
172
173 st_src_reg::st_src_reg(st_dst_reg reg)
174 {
175 this->type = reg.type;
176 this->file = reg.file;
177 this->index = reg.index;
178 this->swizzle = SWIZZLE_XYZW;
179 this->negate = 0;
180 this->reladdr = reg.reladdr;
181 }
182
183 st_dst_reg::st_dst_reg(st_src_reg reg)
184 {
185 this->type = reg.type;
186 this->file = reg.file;
187 this->index = reg.index;
188 this->writemask = WRITEMASK_XYZW;
189 this->cond_mask = COND_TR;
190 this->reladdr = reg.reladdr;
191 }
192
193 class glsl_to_tgsi_instruction : public exec_node {
194 public:
195 /* Callers of this ralloc-based new need not call delete. It's
196 * easier to just ralloc_free 'ctx' (or any of its ancestors). */
197 static void* operator new(size_t size, void *ctx)
198 {
199 void *node;
200
201 node = rzalloc_size(ctx, size);
202 assert(node != NULL);
203
204 return node;
205 }
206
207 unsigned op;
208 st_dst_reg dst;
209 st_src_reg src[3];
210 /** Pointer to the ir source this tree came from for debugging */
211 ir_instruction *ir;
212 GLboolean cond_update;
213 bool saturate;
214 int sampler; /**< sampler index */
215 int tex_target; /**< One of TEXTURE_*_INDEX */
216 GLboolean tex_shadow;
217 struct tgsi_texture_offset tex_offsets[MAX_GLSL_TEXTURE_OFFSET];
218 unsigned tex_offset_num_offset;
219 int dead_mask; /**< Used in dead code elimination */
220
221 class function_entry *function; /* Set on TGSI_OPCODE_CAL or TGSI_OPCODE_BGNSUB */
222 };
223
224 class variable_storage : public exec_node {
225 public:
226 variable_storage(ir_variable *var, gl_register_file file, int index)
227 : file(file), index(index), var(var)
228 {
229 /* empty */
230 }
231
232 gl_register_file file;
233 int index;
234 ir_variable *var; /* variable that maps to this, if any */
235 };
236
237 class immediate_storage : public exec_node {
238 public:
239 immediate_storage(gl_constant_value *values, int size, int type)
240 {
241 memcpy(this->values, values, size * sizeof(gl_constant_value));
242 this->size = size;
243 this->type = type;
244 }
245
246 gl_constant_value values[4];
247 int size; /**< Number of components (1-4) */
248 int type; /**< GL_FLOAT, GL_INT, GL_BOOL, or GL_UNSIGNED_INT */
249 };
250
251 class function_entry : public exec_node {
252 public:
253 ir_function_signature *sig;
254
255 /**
256 * identifier of this function signature used by the program.
257 *
258 * At the point that TGSI instructions for function calls are
259 * generated, we don't know the address of the first instruction of
260 * the function body. So we make the BranchTarget that is called a
261 * small integer and rewrite them during set_branchtargets().
262 */
263 int sig_id;
264
265 /**
266 * Pointer to first instruction of the function body.
267 *
268 * Set during function body emits after main() is processed.
269 */
270 glsl_to_tgsi_instruction *bgn_inst;
271
272 /**
273 * Index of the first instruction of the function body in actual TGSI.
274 *
275 * Set after conversion from glsl_to_tgsi_instruction to TGSI.
276 */
277 int inst;
278
279 /** Storage for the return value. */
280 st_src_reg return_reg;
281 };
282
283 class glsl_to_tgsi_visitor : public ir_visitor {
284 public:
285 glsl_to_tgsi_visitor();
286 ~glsl_to_tgsi_visitor();
287
288 function_entry *current_function;
289
290 struct gl_context *ctx;
291 struct gl_program *prog;
292 struct gl_shader_program *shader_program;
293 struct gl_shader_compiler_options *options;
294
295 int next_temp;
296
297 int num_address_regs;
298 int samplers_used;
299 bool indirect_addr_temps;
300 bool indirect_addr_consts;
301
302 int glsl_version;
303 bool native_integers;
304
305 variable_storage *find_variable_storage(ir_variable *var);
306
307 int add_constant(gl_register_file file, gl_constant_value values[4],
308 int size, int datatype, GLuint *swizzle_out);
309
310 function_entry *get_function_signature(ir_function_signature *sig);
311
312 st_src_reg get_temp(const glsl_type *type);
313 void reladdr_to_temp(ir_instruction *ir, st_src_reg *reg, int *num_reladdr);
314
315 st_src_reg st_src_reg_for_float(float val);
316 st_src_reg st_src_reg_for_int(int val);
317 st_src_reg st_src_reg_for_type(int type, int val);
318
319 /**
320 * \name Visit methods
321 *
322 * As typical for the visitor pattern, there must be one \c visit method for
323 * each concrete subclass of \c ir_instruction. Virtual base classes within
324 * the hierarchy should not have \c visit methods.
325 */
326 /*@{*/
327 virtual void visit(ir_variable *);
328 virtual void visit(ir_loop *);
329 virtual void visit(ir_loop_jump *);
330 virtual void visit(ir_function_signature *);
331 virtual void visit(ir_function *);
332 virtual void visit(ir_expression *);
333 virtual void visit(ir_swizzle *);
334 virtual void visit(ir_dereference_variable *);
335 virtual void visit(ir_dereference_array *);
336 virtual void visit(ir_dereference_record *);
337 virtual void visit(ir_assignment *);
338 virtual void visit(ir_constant *);
339 virtual void visit(ir_call *);
340 virtual void visit(ir_return *);
341 virtual void visit(ir_discard *);
342 virtual void visit(ir_texture *);
343 virtual void visit(ir_if *);
344 /*@}*/
345
346 st_src_reg result;
347
348 /** List of variable_storage */
349 exec_list variables;
350
351 /** List of immediate_storage */
352 exec_list immediates;
353 int num_immediates;
354
355 /** List of function_entry */
356 exec_list function_signatures;
357 int next_signature_id;
358
359 /** List of glsl_to_tgsi_instruction */
360 exec_list instructions;
361
362 glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op);
363
364 glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op,
365 st_dst_reg dst, st_src_reg src0);
366
367 glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op,
368 st_dst_reg dst, st_src_reg src0, st_src_reg src1);
369
370 glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op,
371 st_dst_reg dst,
372 st_src_reg src0, st_src_reg src1, st_src_reg src2);
373
374 unsigned get_opcode(ir_instruction *ir, unsigned op,
375 st_dst_reg dst,
376 st_src_reg src0, st_src_reg src1);
377
378 /**
379 * Emit the correct dot-product instruction for the type of arguments
380 */
381 glsl_to_tgsi_instruction *emit_dp(ir_instruction *ir,
382 st_dst_reg dst,
383 st_src_reg src0,
384 st_src_reg src1,
385 unsigned elements);
386
387 void emit_scalar(ir_instruction *ir, unsigned op,
388 st_dst_reg dst, st_src_reg src0);
389
390 void emit_scalar(ir_instruction *ir, unsigned op,
391 st_dst_reg dst, st_src_reg src0, st_src_reg src1);
392
393 void try_emit_float_set(ir_instruction *ir, unsigned op, st_dst_reg dst);
394
395 void emit_arl(ir_instruction *ir, st_dst_reg dst, st_src_reg src0);
396
397 void emit_scs(ir_instruction *ir, unsigned op,
398 st_dst_reg dst, const st_src_reg &src);
399
400 bool try_emit_mad(ir_expression *ir,
401 int mul_operand);
402 bool try_emit_mad_for_and_not(ir_expression *ir,
403 int mul_operand);
404 bool try_emit_sat(ir_expression *ir);
405
406 void emit_swz(ir_expression *ir);
407
408 bool process_move_condition(ir_rvalue *ir);
409
410 void remove_output_reads(gl_register_file type);
411 void simplify_cmp(void);
412
413 void rename_temp_register(int index, int new_index);
414 int get_first_temp_read(int index);
415 int get_first_temp_write(int index);
416 int get_last_temp_read(int index);
417 int get_last_temp_write(int index);
418
419 void copy_propagate(void);
420 void eliminate_dead_code(void);
421 int eliminate_dead_code_advanced(void);
422 void merge_registers(void);
423 void renumber_registers(void);
424
425 void *mem_ctx;
426 };
427
428 static st_src_reg undef_src = st_src_reg(PROGRAM_UNDEFINED, 0, GLSL_TYPE_ERROR);
429
430 static st_dst_reg undef_dst = st_dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP, GLSL_TYPE_ERROR);
431
432 static st_dst_reg address_reg = st_dst_reg(PROGRAM_ADDRESS, WRITEMASK_X, GLSL_TYPE_FLOAT);
433
434 static void
435 fail_link(struct gl_shader_program *prog, const char *fmt, ...) PRINTFLIKE(2, 3);
436
437 static void
438 fail_link(struct gl_shader_program *prog, const char *fmt, ...)
439 {
440 va_list args;
441 va_start(args, fmt);
442 ralloc_vasprintf_append(&prog->InfoLog, fmt, args);
443 va_end(args);
444
445 prog->LinkStatus = GL_FALSE;
446 }
447
448 static int
449 swizzle_for_size(int size)
450 {
451 int size_swizzles[4] = {
452 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
453 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
454 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
455 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
456 };
457
458 assert((size >= 1) && (size <= 4));
459 return size_swizzles[size - 1];
460 }
461
462 static bool
463 is_tex_instruction(unsigned opcode)
464 {
465 const tgsi_opcode_info* info = tgsi_get_opcode_info(opcode);
466 return info->is_tex;
467 }
468
469 static unsigned
470 num_inst_dst_regs(unsigned opcode)
471 {
472 const tgsi_opcode_info* info = tgsi_get_opcode_info(opcode);
473 return info->num_dst;
474 }
475
476 static unsigned
477 num_inst_src_regs(unsigned opcode)
478 {
479 const tgsi_opcode_info* info = tgsi_get_opcode_info(opcode);
480 return info->is_tex ? info->num_src - 1 : info->num_src;
481 }
482
483 glsl_to_tgsi_instruction *
484 glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op,
485 st_dst_reg dst,
486 st_src_reg src0, st_src_reg src1, st_src_reg src2)
487 {
488 glsl_to_tgsi_instruction *inst = new(mem_ctx) glsl_to_tgsi_instruction();
489 int num_reladdr = 0, i;
490
491 op = get_opcode(ir, op, dst, src0, src1);
492
493 /* If we have to do relative addressing, we want to load the ARL
494 * reg directly for one of the regs, and preload the other reladdr
495 * sources into temps.
496 */
497 num_reladdr += dst.reladdr != NULL;
498 num_reladdr += src0.reladdr != NULL;
499 num_reladdr += src1.reladdr != NULL;
500 num_reladdr += src2.reladdr != NULL;
501
502 reladdr_to_temp(ir, &src2, &num_reladdr);
503 reladdr_to_temp(ir, &src1, &num_reladdr);
504 reladdr_to_temp(ir, &src0, &num_reladdr);
505
506 if (dst.reladdr) {
507 emit_arl(ir, address_reg, *dst.reladdr);
508 num_reladdr--;
509 }
510 assert(num_reladdr == 0);
511
512 inst->op = op;
513 inst->dst = dst;
514 inst->src[0] = src0;
515 inst->src[1] = src1;
516 inst->src[2] = src2;
517 inst->ir = ir;
518 inst->dead_mask = 0;
519
520 inst->function = NULL;
521
522 if (op == TGSI_OPCODE_ARL || op == TGSI_OPCODE_UARL)
523 this->num_address_regs = 1;
524
525 /* Update indirect addressing status used by TGSI */
526 if (dst.reladdr) {
527 switch(dst.file) {
528 case PROGRAM_TEMPORARY:
529 this->indirect_addr_temps = true;
530 break;
531 case PROGRAM_LOCAL_PARAM:
532 case PROGRAM_ENV_PARAM:
533 case PROGRAM_STATE_VAR:
534 case PROGRAM_NAMED_PARAM:
535 case PROGRAM_CONSTANT:
536 case PROGRAM_UNIFORM:
537 this->indirect_addr_consts = true;
538 break;
539 case PROGRAM_IMMEDIATE:
540 assert(!"immediates should not have indirect addressing");
541 break;
542 default:
543 break;
544 }
545 }
546 else {
547 for (i=0; i<3; i++) {
548 if(inst->src[i].reladdr) {
549 switch(inst->src[i].file) {
550 case PROGRAM_TEMPORARY:
551 this->indirect_addr_temps = true;
552 break;
553 case PROGRAM_LOCAL_PARAM:
554 case PROGRAM_ENV_PARAM:
555 case PROGRAM_STATE_VAR:
556 case PROGRAM_NAMED_PARAM:
557 case PROGRAM_CONSTANT:
558 case PROGRAM_UNIFORM:
559 this->indirect_addr_consts = true;
560 break;
561 case PROGRAM_IMMEDIATE:
562 assert(!"immediates should not have indirect addressing");
563 break;
564 default:
565 break;
566 }
567 }
568 }
569 }
570
571 this->instructions.push_tail(inst);
572
573 if (native_integers)
574 try_emit_float_set(ir, op, dst);
575
576 return inst;
577 }
578
579
580 glsl_to_tgsi_instruction *
581 glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op,
582 st_dst_reg dst, st_src_reg src0, st_src_reg src1)
583 {
584 return emit(ir, op, dst, src0, src1, undef_src);
585 }
586
587 glsl_to_tgsi_instruction *
588 glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op,
589 st_dst_reg dst, st_src_reg src0)
590 {
591 assert(dst.writemask != 0);
592 return emit(ir, op, dst, src0, undef_src, undef_src);
593 }
594
595 glsl_to_tgsi_instruction *
596 glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op)
597 {
598 return emit(ir, op, undef_dst, undef_src, undef_src, undef_src);
599 }
600
601 /**
602 * Emits the code to convert the result of float SET instructions to integers.
603 */
604 void
605 glsl_to_tgsi_visitor::try_emit_float_set(ir_instruction *ir, unsigned op,
606 st_dst_reg dst)
607 {
608 if ((op == TGSI_OPCODE_SEQ ||
609 op == TGSI_OPCODE_SNE ||
610 op == TGSI_OPCODE_SGE ||
611 op == TGSI_OPCODE_SLT))
612 {
613 st_src_reg src = st_src_reg(dst);
614 src.negate = ~src.negate;
615 dst.type = GLSL_TYPE_FLOAT;
616 emit(ir, TGSI_OPCODE_F2I, dst, src);
617 }
618 }
619
620 /**
621 * Determines whether to use an integer, unsigned integer, or float opcode
622 * based on the operands and input opcode, then emits the result.
623 */
624 unsigned
625 glsl_to_tgsi_visitor::get_opcode(ir_instruction *ir, unsigned op,
626 st_dst_reg dst,
627 st_src_reg src0, st_src_reg src1)
628 {
629 int type = GLSL_TYPE_FLOAT;
630
631 if (src0.type == GLSL_TYPE_FLOAT || src1.type == GLSL_TYPE_FLOAT)
632 type = GLSL_TYPE_FLOAT;
633 else if (native_integers)
634 type = src0.type == GLSL_TYPE_BOOL ? GLSL_TYPE_INT : src0.type;
635
636 #define case4(c, f, i, u) \
637 case TGSI_OPCODE_##c: \
638 if (type == GLSL_TYPE_INT) op = TGSI_OPCODE_##i; \
639 else if (type == GLSL_TYPE_UINT) op = TGSI_OPCODE_##u; \
640 else op = TGSI_OPCODE_##f; \
641 break;
642 #define case3(f, i, u) case4(f, f, i, u)
643 #define case2fi(f, i) case4(f, f, i, i)
644 #define case2iu(i, u) case4(i, LAST, i, u)
645
646 switch(op) {
647 case2fi(ADD, UADD);
648 case2fi(MUL, UMUL);
649 case2fi(MAD, UMAD);
650 case3(DIV, IDIV, UDIV);
651 case3(MAX, IMAX, UMAX);
652 case3(MIN, IMIN, UMIN);
653 case2iu(MOD, UMOD);
654
655 case2fi(SEQ, USEQ);
656 case2fi(SNE, USNE);
657 case3(SGE, ISGE, USGE);
658 case3(SLT, ISLT, USLT);
659
660 case2iu(ISHR, USHR);
661
662 default: break;
663 }
664
665 assert(op != TGSI_OPCODE_LAST);
666 return op;
667 }
668
669 glsl_to_tgsi_instruction *
670 glsl_to_tgsi_visitor::emit_dp(ir_instruction *ir,
671 st_dst_reg dst, st_src_reg src0, st_src_reg src1,
672 unsigned elements)
673 {
674 static const unsigned dot_opcodes[] = {
675 TGSI_OPCODE_DP2, TGSI_OPCODE_DP3, TGSI_OPCODE_DP4
676 };
677
678 return emit(ir, dot_opcodes[elements - 2], dst, src0, src1);
679 }
680
681 /**
682 * Emits TGSI scalar opcodes to produce unique answers across channels.
683 *
684 * Some TGSI opcodes are scalar-only, like ARB_fp/vp. The src X
685 * channel determines the result across all channels. So to do a vec4
686 * of this operation, we want to emit a scalar per source channel used
687 * to produce dest channels.
688 */
689 void
690 glsl_to_tgsi_visitor::emit_scalar(ir_instruction *ir, unsigned op,
691 st_dst_reg dst,
692 st_src_reg orig_src0, st_src_reg orig_src1)
693 {
694 int i, j;
695 int done_mask = ~dst.writemask;
696
697 /* TGSI RCP is a scalar operation splatting results to all channels,
698 * like ARB_fp/vp. So emit as many RCPs as necessary to cover our
699 * dst channels.
700 */
701 for (i = 0; i < 4; i++) {
702 GLuint this_mask = (1 << i);
703 glsl_to_tgsi_instruction *inst;
704 st_src_reg src0 = orig_src0;
705 st_src_reg src1 = orig_src1;
706
707 if (done_mask & this_mask)
708 continue;
709
710 GLuint src0_swiz = GET_SWZ(src0.swizzle, i);
711 GLuint src1_swiz = GET_SWZ(src1.swizzle, i);
712 for (j = i + 1; j < 4; j++) {
713 /* If there is another enabled component in the destination that is
714 * derived from the same inputs, generate its value on this pass as
715 * well.
716 */
717 if (!(done_mask & (1 << j)) &&
718 GET_SWZ(src0.swizzle, j) == src0_swiz &&
719 GET_SWZ(src1.swizzle, j) == src1_swiz) {
720 this_mask |= (1 << j);
721 }
722 }
723 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
724 src0_swiz, src0_swiz);
725 src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz,
726 src1_swiz, src1_swiz);
727
728 inst = emit(ir, op, dst, src0, src1);
729 inst->dst.writemask = this_mask;
730 done_mask |= this_mask;
731 }
732 }
733
734 void
735 glsl_to_tgsi_visitor::emit_scalar(ir_instruction *ir, unsigned op,
736 st_dst_reg dst, st_src_reg src0)
737 {
738 st_src_reg undef = undef_src;
739
740 undef.swizzle = SWIZZLE_XXXX;
741
742 emit_scalar(ir, op, dst, src0, undef);
743 }
744
745 void
746 glsl_to_tgsi_visitor::emit_arl(ir_instruction *ir,
747 st_dst_reg dst, st_src_reg src0)
748 {
749 int op = TGSI_OPCODE_ARL;
750
751 if (src0.type == GLSL_TYPE_INT || src0.type == GLSL_TYPE_UINT)
752 op = TGSI_OPCODE_UARL;
753
754 emit(NULL, op, dst, src0);
755 }
756
757 /**
758 * Emit an TGSI_OPCODE_SCS instruction
759 *
760 * The \c SCS opcode functions a bit differently than the other TGSI opcodes.
761 * Instead of splatting its result across all four components of the
762 * destination, it writes one value to the \c x component and another value to
763 * the \c y component.
764 *
765 * \param ir IR instruction being processed
766 * \param op Either \c TGSI_OPCODE_SIN or \c TGSI_OPCODE_COS depending
767 * on which value is desired.
768 * \param dst Destination register
769 * \param src Source register
770 */
771 void
772 glsl_to_tgsi_visitor::emit_scs(ir_instruction *ir, unsigned op,
773 st_dst_reg dst,
774 const st_src_reg &src)
775 {
776 /* Vertex programs cannot use the SCS opcode.
777 */
778 if (this->prog->Target == GL_VERTEX_PROGRAM_ARB) {
779 emit_scalar(ir, op, dst, src);
780 return;
781 }
782
783 const unsigned component = (op == TGSI_OPCODE_SIN) ? 0 : 1;
784 const unsigned scs_mask = (1U << component);
785 int done_mask = ~dst.writemask;
786 st_src_reg tmp;
787
788 assert(op == TGSI_OPCODE_SIN || op == TGSI_OPCODE_COS);
789
790 /* If there are compnents in the destination that differ from the component
791 * that will be written by the SCS instrution, we'll need a temporary.
792 */
793 if (scs_mask != unsigned(dst.writemask)) {
794 tmp = get_temp(glsl_type::vec4_type);
795 }
796
797 for (unsigned i = 0; i < 4; i++) {
798 unsigned this_mask = (1U << i);
799 st_src_reg src0 = src;
800
801 if ((done_mask & this_mask) != 0)
802 continue;
803
804 /* The source swizzle specified which component of the source generates
805 * sine / cosine for the current component in the destination. The SCS
806 * instruction requires that this value be swizzle to the X component.
807 * Replace the current swizzle with a swizzle that puts the source in
808 * the X component.
809 */
810 unsigned src0_swiz = GET_SWZ(src.swizzle, i);
811
812 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
813 src0_swiz, src0_swiz);
814 for (unsigned j = i + 1; j < 4; j++) {
815 /* If there is another enabled component in the destination that is
816 * derived from the same inputs, generate its value on this pass as
817 * well.
818 */
819 if (!(done_mask & (1 << j)) &&
820 GET_SWZ(src0.swizzle, j) == src0_swiz) {
821 this_mask |= (1 << j);
822 }
823 }
824
825 if (this_mask != scs_mask) {
826 glsl_to_tgsi_instruction *inst;
827 st_dst_reg tmp_dst = st_dst_reg(tmp);
828
829 /* Emit the SCS instruction.
830 */
831 inst = emit(ir, TGSI_OPCODE_SCS, tmp_dst, src0);
832 inst->dst.writemask = scs_mask;
833
834 /* Move the result of the SCS instruction to the desired location in
835 * the destination.
836 */
837 tmp.swizzle = MAKE_SWIZZLE4(component, component,
838 component, component);
839 inst = emit(ir, TGSI_OPCODE_SCS, dst, tmp);
840 inst->dst.writemask = this_mask;
841 } else {
842 /* Emit the SCS instruction to write directly to the destination.
843 */
844 glsl_to_tgsi_instruction *inst = emit(ir, TGSI_OPCODE_SCS, dst, src0);
845 inst->dst.writemask = scs_mask;
846 }
847
848 done_mask |= this_mask;
849 }
850 }
851
852 int
853 glsl_to_tgsi_visitor::add_constant(gl_register_file file,
854 gl_constant_value values[4], int size, int datatype,
855 GLuint *swizzle_out)
856 {
857 if (file == PROGRAM_CONSTANT) {
858 return _mesa_add_typed_unnamed_constant(this->prog->Parameters, values,
859 size, datatype, swizzle_out);
860 } else {
861 int index = 0;
862 immediate_storage *entry;
863 assert(file == PROGRAM_IMMEDIATE);
864
865 /* Search immediate storage to see if we already have an identical
866 * immediate that we can use instead of adding a duplicate entry.
867 */
868 foreach_iter(exec_list_iterator, iter, this->immediates) {
869 entry = (immediate_storage *)iter.get();
870
871 if (entry->size == size &&
872 entry->type == datatype &&
873 !memcmp(entry->values, values, size * sizeof(gl_constant_value))) {
874 return index;
875 }
876 index++;
877 }
878
879 /* Add this immediate to the list. */
880 entry = new(mem_ctx) immediate_storage(values, size, datatype);
881 this->immediates.push_tail(entry);
882 this->num_immediates++;
883 return index;
884 }
885 }
886
887 st_src_reg
888 glsl_to_tgsi_visitor::st_src_reg_for_float(float val)
889 {
890 st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_FLOAT);
891 union gl_constant_value uval;
892
893 uval.f = val;
894 src.index = add_constant(src.file, &uval, 1, GL_FLOAT, &src.swizzle);
895
896 return src;
897 }
898
899 st_src_reg
900 glsl_to_tgsi_visitor::st_src_reg_for_int(int val)
901 {
902 st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_INT);
903 union gl_constant_value uval;
904
905 assert(native_integers);
906
907 uval.i = val;
908 src.index = add_constant(src.file, &uval, 1, GL_INT, &src.swizzle);
909
910 return src;
911 }
912
913 st_src_reg
914 glsl_to_tgsi_visitor::st_src_reg_for_type(int type, int val)
915 {
916 if (native_integers)
917 return type == GLSL_TYPE_FLOAT ? st_src_reg_for_float(val) :
918 st_src_reg_for_int(val);
919 else
920 return st_src_reg_for_float(val);
921 }
922
923 static int
924 type_size(const struct glsl_type *type)
925 {
926 unsigned int i;
927 int size;
928
929 switch (type->base_type) {
930 case GLSL_TYPE_UINT:
931 case GLSL_TYPE_INT:
932 case GLSL_TYPE_FLOAT:
933 case GLSL_TYPE_BOOL:
934 if (type->is_matrix()) {
935 return type->matrix_columns;
936 } else {
937 /* Regardless of size of vector, it gets a vec4. This is bad
938 * packing for things like floats, but otherwise arrays become a
939 * mess. Hopefully a later pass over the code can pack scalars
940 * down if appropriate.
941 */
942 return 1;
943 }
944 case GLSL_TYPE_ARRAY:
945 assert(type->length > 0);
946 return type_size(type->fields.array) * type->length;
947 case GLSL_TYPE_STRUCT:
948 size = 0;
949 for (i = 0; i < type->length; i++) {
950 size += type_size(type->fields.structure[i].type);
951 }
952 return size;
953 case GLSL_TYPE_SAMPLER:
954 /* Samplers take up one slot in UNIFORMS[], but they're baked in
955 * at link time.
956 */
957 return 1;
958 default:
959 assert(0);
960 return 0;
961 }
962 }
963
964 /**
965 * In the initial pass of codegen, we assign temporary numbers to
966 * intermediate results. (not SSA -- variable assignments will reuse
967 * storage).
968 */
969 st_src_reg
970 glsl_to_tgsi_visitor::get_temp(const glsl_type *type)
971 {
972 st_src_reg src;
973
974 src.type = native_integers ? type->base_type : GLSL_TYPE_FLOAT;
975 src.file = PROGRAM_TEMPORARY;
976 src.index = next_temp;
977 src.reladdr = NULL;
978 next_temp += type_size(type);
979
980 if (type->is_array() || type->is_record()) {
981 src.swizzle = SWIZZLE_NOOP;
982 } else {
983 src.swizzle = swizzle_for_size(type->vector_elements);
984 }
985 src.negate = 0;
986
987 return src;
988 }
989
990 variable_storage *
991 glsl_to_tgsi_visitor::find_variable_storage(ir_variable *var)
992 {
993
994 variable_storage *entry;
995
996 foreach_iter(exec_list_iterator, iter, this->variables) {
997 entry = (variable_storage *)iter.get();
998
999 if (entry->var == var)
1000 return entry;
1001 }
1002
1003 return NULL;
1004 }
1005
1006 void
1007 glsl_to_tgsi_visitor::visit(ir_variable *ir)
1008 {
1009 if (strcmp(ir->name, "gl_FragCoord") == 0) {
1010 struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog;
1011
1012 fp->OriginUpperLeft = ir->origin_upper_left;
1013 fp->PixelCenterInteger = ir->pixel_center_integer;
1014
1015 } else if (strcmp(ir->name, "gl_FragDepth") == 0) {
1016 struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog;
1017 switch (ir->depth_layout) {
1018 case ir_depth_layout_none:
1019 fp->FragDepthLayout = FRAG_DEPTH_LAYOUT_NONE;
1020 break;
1021 case ir_depth_layout_any:
1022 fp->FragDepthLayout = FRAG_DEPTH_LAYOUT_ANY;
1023 break;
1024 case ir_depth_layout_greater:
1025 fp->FragDepthLayout = FRAG_DEPTH_LAYOUT_GREATER;
1026 break;
1027 case ir_depth_layout_less:
1028 fp->FragDepthLayout = FRAG_DEPTH_LAYOUT_LESS;
1029 break;
1030 case ir_depth_layout_unchanged:
1031 fp->FragDepthLayout = FRAG_DEPTH_LAYOUT_UNCHANGED;
1032 break;
1033 default:
1034 assert(0);
1035 break;
1036 }
1037 }
1038
1039 if (ir->mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) {
1040 unsigned int i;
1041 const ir_state_slot *const slots = ir->state_slots;
1042 assert(ir->state_slots != NULL);
1043
1044 /* Check if this statevar's setup in the STATE file exactly
1045 * matches how we'll want to reference it as a
1046 * struct/array/whatever. If not, then we need to move it into
1047 * temporary storage and hope that it'll get copy-propagated
1048 * out.
1049 */
1050 for (i = 0; i < ir->num_state_slots; i++) {
1051 if (slots[i].swizzle != SWIZZLE_XYZW) {
1052 break;
1053 }
1054 }
1055
1056 variable_storage *storage;
1057 st_dst_reg dst;
1058 if (i == ir->num_state_slots) {
1059 /* We'll set the index later. */
1060 storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1);
1061 this->variables.push_tail(storage);
1062
1063 dst = undef_dst;
1064 } else {
1065 /* The variable_storage constructor allocates slots based on the size
1066 * of the type. However, this had better match the number of state
1067 * elements that we're going to copy into the new temporary.
1068 */
1069 assert((int) ir->num_state_slots == type_size(ir->type));
1070
1071 storage = new(mem_ctx) variable_storage(ir, PROGRAM_TEMPORARY,
1072 this->next_temp);
1073 this->variables.push_tail(storage);
1074 this->next_temp += type_size(ir->type);
1075
1076 dst = st_dst_reg(st_src_reg(PROGRAM_TEMPORARY, storage->index,
1077 native_integers ? ir->type->base_type : GLSL_TYPE_FLOAT));
1078 }
1079
1080
1081 for (unsigned int i = 0; i < ir->num_state_slots; i++) {
1082 int index = _mesa_add_state_reference(this->prog->Parameters,
1083 (gl_state_index *)slots[i].tokens);
1084
1085 if (storage->file == PROGRAM_STATE_VAR) {
1086 if (storage->index == -1) {
1087 storage->index = index;
1088 } else {
1089 assert(index == storage->index + (int)i);
1090 }
1091 } else {
1092 st_src_reg src(PROGRAM_STATE_VAR, index,
1093 native_integers ? ir->type->base_type : GLSL_TYPE_FLOAT);
1094 src.swizzle = slots[i].swizzle;
1095 emit(ir, TGSI_OPCODE_MOV, dst, src);
1096 /* even a float takes up a whole vec4 reg in a struct/array. */
1097 dst.index++;
1098 }
1099 }
1100
1101 if (storage->file == PROGRAM_TEMPORARY &&
1102 dst.index != storage->index + (int) ir->num_state_slots) {
1103 fail_link(this->shader_program,
1104 "failed to load builtin uniform `%s' (%d/%d regs loaded)\n",
1105 ir->name, dst.index - storage->index,
1106 type_size(ir->type));
1107 }
1108 }
1109 }
1110
1111 void
1112 glsl_to_tgsi_visitor::visit(ir_loop *ir)
1113 {
1114 ir_dereference_variable *counter = NULL;
1115
1116 if (ir->counter != NULL)
1117 counter = new(ir) ir_dereference_variable(ir->counter);
1118
1119 if (ir->from != NULL) {
1120 assert(ir->counter != NULL);
1121
1122 ir_assignment *a = new(ir) ir_assignment(counter, ir->from, NULL);
1123
1124 a->accept(this);
1125 delete a;
1126 }
1127
1128 emit(NULL, TGSI_OPCODE_BGNLOOP);
1129
1130 if (ir->to) {
1131 ir_expression *e =
1132 new(ir) ir_expression(ir->cmp, glsl_type::bool_type,
1133 counter, ir->to);
1134 ir_if *if_stmt = new(ir) ir_if(e);
1135
1136 ir_loop_jump *brk = new(ir) ir_loop_jump(ir_loop_jump::jump_break);
1137
1138 if_stmt->then_instructions.push_tail(brk);
1139
1140 if_stmt->accept(this);
1141
1142 delete if_stmt;
1143 delete e;
1144 delete brk;
1145 }
1146
1147 visit_exec_list(&ir->body_instructions, this);
1148
1149 if (ir->increment) {
1150 ir_expression *e =
1151 new(ir) ir_expression(ir_binop_add, counter->type,
1152 counter, ir->increment);
1153
1154 ir_assignment *a = new(ir) ir_assignment(counter, e, NULL);
1155
1156 a->accept(this);
1157 delete a;
1158 delete e;
1159 }
1160
1161 emit(NULL, TGSI_OPCODE_ENDLOOP);
1162 }
1163
1164 void
1165 glsl_to_tgsi_visitor::visit(ir_loop_jump *ir)
1166 {
1167 switch (ir->mode) {
1168 case ir_loop_jump::jump_break:
1169 emit(NULL, TGSI_OPCODE_BRK);
1170 break;
1171 case ir_loop_jump::jump_continue:
1172 emit(NULL, TGSI_OPCODE_CONT);
1173 break;
1174 }
1175 }
1176
1177
1178 void
1179 glsl_to_tgsi_visitor::visit(ir_function_signature *ir)
1180 {
1181 assert(0);
1182 (void)ir;
1183 }
1184
1185 void
1186 glsl_to_tgsi_visitor::visit(ir_function *ir)
1187 {
1188 /* Ignore function bodies other than main() -- we shouldn't see calls to
1189 * them since they should all be inlined before we get to glsl_to_tgsi.
1190 */
1191 if (strcmp(ir->name, "main") == 0) {
1192 const ir_function_signature *sig;
1193 exec_list empty;
1194
1195 sig = ir->matching_signature(&empty);
1196
1197 assert(sig);
1198
1199 foreach_iter(exec_list_iterator, iter, sig->body) {
1200 ir_instruction *ir = (ir_instruction *)iter.get();
1201
1202 ir->accept(this);
1203 }
1204 }
1205 }
1206
1207 bool
1208 glsl_to_tgsi_visitor::try_emit_mad(ir_expression *ir, int mul_operand)
1209 {
1210 int nonmul_operand = 1 - mul_operand;
1211 st_src_reg a, b, c;
1212 st_dst_reg result_dst;
1213
1214 ir_expression *expr = ir->operands[mul_operand]->as_expression();
1215 if (!expr || expr->operation != ir_binop_mul)
1216 return false;
1217
1218 expr->operands[0]->accept(this);
1219 a = this->result;
1220 expr->operands[1]->accept(this);
1221 b = this->result;
1222 ir->operands[nonmul_operand]->accept(this);
1223 c = this->result;
1224
1225 this->result = get_temp(ir->type);
1226 result_dst = st_dst_reg(this->result);
1227 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1228 emit(ir, TGSI_OPCODE_MAD, result_dst, a, b, c);
1229
1230 return true;
1231 }
1232
1233 /**
1234 * Emit MAD(a, -b, a) instead of AND(a, NOT(b))
1235 *
1236 * The logic values are 1.0 for true and 0.0 for false. Logical-and is
1237 * implemented using multiplication, and logical-or is implemented using
1238 * addition. Logical-not can be implemented as (true - x), or (1.0 - x).
1239 * As result, the logical expression (a & !b) can be rewritten as:
1240 *
1241 * - a * !b
1242 * - a * (1 - b)
1243 * - (a * 1) - (a * b)
1244 * - a + -(a * b)
1245 * - a + (a * -b)
1246 *
1247 * This final expression can be implemented as a single MAD(a, -b, a)
1248 * instruction.
1249 */
1250 bool
1251 glsl_to_tgsi_visitor::try_emit_mad_for_and_not(ir_expression *ir, int try_operand)
1252 {
1253 const int other_operand = 1 - try_operand;
1254 st_src_reg a, b;
1255
1256 ir_expression *expr = ir->operands[try_operand]->as_expression();
1257 if (!expr || expr->operation != ir_unop_logic_not)
1258 return false;
1259
1260 ir->operands[other_operand]->accept(this);
1261 a = this->result;
1262 expr->operands[0]->accept(this);
1263 b = this->result;
1264
1265 b.negate = ~b.negate;
1266
1267 this->result = get_temp(ir->type);
1268 emit(ir, TGSI_OPCODE_MAD, st_dst_reg(this->result), a, b, a);
1269
1270 return true;
1271 }
1272
1273 bool
1274 glsl_to_tgsi_visitor::try_emit_sat(ir_expression *ir)
1275 {
1276 /* Saturates were only introduced to vertex programs in
1277 * NV_vertex_program3, so don't give them to drivers in the VP.
1278 */
1279 if (this->prog->Target == GL_VERTEX_PROGRAM_ARB)
1280 return false;
1281
1282 ir_rvalue *sat_src = ir->as_rvalue_to_saturate();
1283 if (!sat_src)
1284 return false;
1285
1286 sat_src->accept(this);
1287 st_src_reg src = this->result;
1288
1289 /* If we generated an expression instruction into a temporary in
1290 * processing the saturate's operand, apply the saturate to that
1291 * instruction. Otherwise, generate a MOV to do the saturate.
1292 *
1293 * Note that we have to be careful to only do this optimization if
1294 * the instruction in question was what generated src->result. For
1295 * example, ir_dereference_array might generate a MUL instruction
1296 * to create the reladdr, and return us a src reg using that
1297 * reladdr. That MUL result is not the value we're trying to
1298 * saturate.
1299 */
1300 ir_expression *sat_src_expr = sat_src->as_expression();
1301 if (sat_src_expr && (sat_src_expr->operation == ir_binop_mul ||
1302 sat_src_expr->operation == ir_binop_add ||
1303 sat_src_expr->operation == ir_binop_dot)) {
1304 glsl_to_tgsi_instruction *new_inst;
1305 new_inst = (glsl_to_tgsi_instruction *)this->instructions.get_tail();
1306 new_inst->saturate = true;
1307 } else {
1308 this->result = get_temp(ir->type);
1309 st_dst_reg result_dst = st_dst_reg(this->result);
1310 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1311 glsl_to_tgsi_instruction *inst;
1312 inst = emit(ir, TGSI_OPCODE_MOV, result_dst, src);
1313 inst->saturate = true;
1314 }
1315
1316 return true;
1317 }
1318
1319 void
1320 glsl_to_tgsi_visitor::reladdr_to_temp(ir_instruction *ir,
1321 st_src_reg *reg, int *num_reladdr)
1322 {
1323 if (!reg->reladdr)
1324 return;
1325
1326 emit_arl(ir, address_reg, *reg->reladdr);
1327
1328 if (*num_reladdr != 1) {
1329 st_src_reg temp = get_temp(glsl_type::vec4_type);
1330
1331 emit(ir, TGSI_OPCODE_MOV, st_dst_reg(temp), *reg);
1332 *reg = temp;
1333 }
1334
1335 (*num_reladdr)--;
1336 }
1337
1338 void
1339 glsl_to_tgsi_visitor::visit(ir_expression *ir)
1340 {
1341 unsigned int operand;
1342 st_src_reg op[Elements(ir->operands)];
1343 st_src_reg result_src;
1344 st_dst_reg result_dst;
1345
1346 /* Quick peephole: Emit MAD(a, b, c) instead of ADD(MUL(a, b), c)
1347 */
1348 if (ir->operation == ir_binop_add) {
1349 if (try_emit_mad(ir, 1))
1350 return;
1351 if (try_emit_mad(ir, 0))
1352 return;
1353 }
1354
1355 /* Quick peephole: Emit OPCODE_MAD(-a, -b, a) instead of AND(a, NOT(b))
1356 */
1357 if (ir->operation == ir_binop_logic_and) {
1358 if (try_emit_mad_for_and_not(ir, 1))
1359 return;
1360 if (try_emit_mad_for_and_not(ir, 0))
1361 return;
1362 }
1363
1364 if (try_emit_sat(ir))
1365 return;
1366
1367 if (ir->operation == ir_quadop_vector)
1368 assert(!"ir_quadop_vector should have been lowered");
1369
1370 for (operand = 0; operand < ir->get_num_operands(); operand++) {
1371 this->result.file = PROGRAM_UNDEFINED;
1372 ir->operands[operand]->accept(this);
1373 if (this->result.file == PROGRAM_UNDEFINED) {
1374 ir_print_visitor v;
1375 printf("Failed to get tree for expression operand:\n");
1376 ir->operands[operand]->accept(&v);
1377 exit(1);
1378 }
1379 op[operand] = this->result;
1380
1381 /* Matrix expression operands should have been broken down to vector
1382 * operations already.
1383 */
1384 assert(!ir->operands[operand]->type->is_matrix());
1385 }
1386
1387 int vector_elements = ir->operands[0]->type->vector_elements;
1388 if (ir->operands[1]) {
1389 vector_elements = MAX2(vector_elements,
1390 ir->operands[1]->type->vector_elements);
1391 }
1392
1393 this->result.file = PROGRAM_UNDEFINED;
1394
1395 /* Storage for our result. Ideally for an assignment we'd be using
1396 * the actual storage for the result here, instead.
1397 */
1398 result_src = get_temp(ir->type);
1399 /* convenience for the emit functions below. */
1400 result_dst = st_dst_reg(result_src);
1401 /* Limit writes to the channels that will be used by result_src later.
1402 * This does limit this temp's use as a temporary for multi-instruction
1403 * sequences.
1404 */
1405 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1406
1407 switch (ir->operation) {
1408 case ir_unop_logic_not:
1409 if (result_dst.type != GLSL_TYPE_FLOAT)
1410 emit(ir, TGSI_OPCODE_NOT, result_dst, op[0]);
1411 else {
1412 /* Previously 'SEQ dst, src, 0.0' was used for this. However, many
1413 * older GPUs implement SEQ using multiple instructions (i915 uses two
1414 * SGE instructions and a MUL instruction). Since our logic values are
1415 * 0.0 and 1.0, 1-x also implements !x.
1416 */
1417 op[0].negate = ~op[0].negate;
1418 emit(ir, TGSI_OPCODE_ADD, result_dst, op[0], st_src_reg_for_float(1.0));
1419 }
1420 break;
1421 case ir_unop_neg:
1422 assert(result_dst.type == GLSL_TYPE_FLOAT || result_dst.type == GLSL_TYPE_INT);
1423 if (result_dst.type == GLSL_TYPE_INT)
1424 emit(ir, TGSI_OPCODE_INEG, result_dst, op[0]);
1425 else {
1426 op[0].negate = ~op[0].negate;
1427 result_src = op[0];
1428 }
1429 break;
1430 case ir_unop_abs:
1431 assert(result_dst.type == GLSL_TYPE_FLOAT);
1432 emit(ir, TGSI_OPCODE_ABS, result_dst, op[0]);
1433 break;
1434 case ir_unop_sign:
1435 emit(ir, TGSI_OPCODE_SSG, result_dst, op[0]);
1436 break;
1437 case ir_unop_rcp:
1438 emit_scalar(ir, TGSI_OPCODE_RCP, result_dst, op[0]);
1439 break;
1440
1441 case ir_unop_exp2:
1442 emit_scalar(ir, TGSI_OPCODE_EX2, result_dst, op[0]);
1443 break;
1444 case ir_unop_exp:
1445 case ir_unop_log:
1446 assert(!"not reached: should be handled by ir_explog_to_explog2");
1447 break;
1448 case ir_unop_log2:
1449 emit_scalar(ir, TGSI_OPCODE_LG2, result_dst, op[0]);
1450 break;
1451 case ir_unop_sin:
1452 emit_scalar(ir, TGSI_OPCODE_SIN, result_dst, op[0]);
1453 break;
1454 case ir_unop_cos:
1455 emit_scalar(ir, TGSI_OPCODE_COS, result_dst, op[0]);
1456 break;
1457 case ir_unop_sin_reduced:
1458 emit_scs(ir, TGSI_OPCODE_SIN, result_dst, op[0]);
1459 break;
1460 case ir_unop_cos_reduced:
1461 emit_scs(ir, TGSI_OPCODE_COS, result_dst, op[0]);
1462 break;
1463
1464 case ir_unop_dFdx:
1465 emit(ir, TGSI_OPCODE_DDX, result_dst, op[0]);
1466 break;
1467 case ir_unop_dFdy:
1468 op[0].negate = ~op[0].negate;
1469 emit(ir, TGSI_OPCODE_DDY, result_dst, op[0]);
1470 break;
1471
1472 case ir_unop_noise: {
1473 /* At some point, a motivated person could add a better
1474 * implementation of noise. Currently not even the nvidia
1475 * binary drivers do anything more than this. In any case, the
1476 * place to do this is in the GL state tracker, not the poor
1477 * driver.
1478 */
1479 emit(ir, TGSI_OPCODE_MOV, result_dst, st_src_reg_for_float(0.5));
1480 break;
1481 }
1482
1483 case ir_binop_add:
1484 emit(ir, TGSI_OPCODE_ADD, result_dst, op[0], op[1]);
1485 break;
1486 case ir_binop_sub:
1487 emit(ir, TGSI_OPCODE_SUB, result_dst, op[0], op[1]);
1488 break;
1489
1490 case ir_binop_mul:
1491 emit(ir, TGSI_OPCODE_MUL, result_dst, op[0], op[1]);
1492 break;
1493 case ir_binop_div:
1494 if (result_dst.type == GLSL_TYPE_FLOAT)
1495 assert(!"not reached: should be handled by ir_div_to_mul_rcp");
1496 else
1497 emit(ir, TGSI_OPCODE_DIV, result_dst, op[0], op[1]);
1498 break;
1499 case ir_binop_mod:
1500 if (result_dst.type == GLSL_TYPE_FLOAT)
1501 assert(!"ir_binop_mod should have been converted to b * fract(a/b)");
1502 else
1503 emit(ir, TGSI_OPCODE_MOD, result_dst, op[0], op[1]);
1504 break;
1505
1506 case ir_binop_less:
1507 emit(ir, TGSI_OPCODE_SLT, result_dst, op[0], op[1]);
1508 break;
1509 case ir_binop_greater:
1510 emit(ir, TGSI_OPCODE_SLT, result_dst, op[1], op[0]);
1511 break;
1512 case ir_binop_lequal:
1513 emit(ir, TGSI_OPCODE_SGE, result_dst, op[1], op[0]);
1514 break;
1515 case ir_binop_gequal:
1516 emit(ir, TGSI_OPCODE_SGE, result_dst, op[0], op[1]);
1517 break;
1518 case ir_binop_equal:
1519 emit(ir, TGSI_OPCODE_SEQ, result_dst, op[0], op[1]);
1520 break;
1521 case ir_binop_nequal:
1522 emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1523 break;
1524 case ir_binop_all_equal:
1525 /* "==" operator producing a scalar boolean. */
1526 if (ir->operands[0]->type->is_vector() ||
1527 ir->operands[1]->type->is_vector()) {
1528 st_src_reg temp = get_temp(native_integers ?
1529 glsl_type::get_instance(ir->operands[0]->type->base_type, 4, 1) :
1530 glsl_type::vec4_type);
1531 assert(ir->operands[0]->type->base_type == GLSL_TYPE_FLOAT);
1532 emit(ir, TGSI_OPCODE_SNE, st_dst_reg(temp), op[0], op[1]);
1533
1534 /* After the dot-product, the value will be an integer on the
1535 * range [0,4]. Zero becomes 1.0, and positive values become zero.
1536 */
1537 emit_dp(ir, result_dst, temp, temp, vector_elements);
1538
1539 if (result_dst.type == GLSL_TYPE_FLOAT) {
1540 /* Negating the result of the dot-product gives values on the range
1541 * [-4, 0]. Zero becomes 1.0, and negative values become zero.
1542 * This is achieved using SGE.
1543 */
1544 st_src_reg sge_src = result_src;
1545 sge_src.negate = ~sge_src.negate;
1546 emit(ir, TGSI_OPCODE_SGE, result_dst, sge_src, st_src_reg_for_float(0.0));
1547 } else {
1548 /* The TGSI negate flag doesn't work for integers, so use SEQ 0
1549 * instead.
1550 */
1551 emit(ir, TGSI_OPCODE_SEQ, result_dst, result_src, st_src_reg_for_int(0));
1552 }
1553 } else {
1554 emit(ir, TGSI_OPCODE_SEQ, result_dst, op[0], op[1]);
1555 }
1556 break;
1557 case ir_binop_any_nequal:
1558 /* "!=" operator producing a scalar boolean. */
1559 if (ir->operands[0]->type->is_vector() ||
1560 ir->operands[1]->type->is_vector()) {
1561 st_src_reg temp = get_temp(native_integers ?
1562 glsl_type::get_instance(ir->operands[0]->type->base_type, 4, 1) :
1563 glsl_type::vec4_type);
1564 assert(ir->operands[0]->type->base_type == GLSL_TYPE_FLOAT);
1565 emit(ir, TGSI_OPCODE_SNE, st_dst_reg(temp), op[0], op[1]);
1566
1567 /* After the dot-product, the value will be an integer on the
1568 * range [0,4]. Zero stays zero, and positive values become 1.0.
1569 */
1570 glsl_to_tgsi_instruction *const dp =
1571 emit_dp(ir, result_dst, temp, temp, vector_elements);
1572 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB &&
1573 result_dst.type == GLSL_TYPE_FLOAT) {
1574 /* The clamping to [0,1] can be done for free in the fragment
1575 * shader with a saturate.
1576 */
1577 dp->saturate = true;
1578 } else if (result_dst.type == GLSL_TYPE_FLOAT) {
1579 /* Negating the result of the dot-product gives values on the range
1580 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1581 * achieved using SLT.
1582 */
1583 st_src_reg slt_src = result_src;
1584 slt_src.negate = ~slt_src.negate;
1585 emit(ir, TGSI_OPCODE_SLT, result_dst, slt_src, st_src_reg_for_float(0.0));
1586 } else {
1587 emit(ir, TGSI_OPCODE_SNE, result_dst, result_src, st_src_reg_for_int(0));
1588 }
1589 } else {
1590 emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1591 }
1592 break;
1593
1594 case ir_unop_any: {
1595 assert(ir->operands[0]->type->is_vector());
1596
1597 /* After the dot-product, the value will be an integer on the
1598 * range [0,4]. Zero stays zero, and positive values become 1.0.
1599 */
1600 glsl_to_tgsi_instruction *const dp =
1601 emit_dp(ir, result_dst, op[0], op[0],
1602 ir->operands[0]->type->vector_elements);
1603 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB &&
1604 result_dst.type == GLSL_TYPE_FLOAT) {
1605 /* The clamping to [0,1] can be done for free in the fragment
1606 * shader with a saturate.
1607 */
1608 dp->saturate = true;
1609 } else if (result_dst.type == GLSL_TYPE_FLOAT) {
1610 /* Negating the result of the dot-product gives values on the range
1611 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1612 * is achieved using SLT.
1613 */
1614 st_src_reg slt_src = result_src;
1615 slt_src.negate = ~slt_src.negate;
1616 emit(ir, TGSI_OPCODE_SLT, result_dst, slt_src, st_src_reg_for_float(0.0));
1617 }
1618 else {
1619 /* Use SNE 0 if integers are being used as boolean values. */
1620 emit(ir, TGSI_OPCODE_SNE, result_dst, result_src, st_src_reg_for_int(0));
1621 }
1622 break;
1623 }
1624
1625 case ir_binop_logic_xor:
1626 if (native_integers)
1627 emit(ir, TGSI_OPCODE_XOR, result_dst, op[0], op[1]);
1628 else
1629 emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1630 break;
1631
1632 case ir_binop_logic_or: {
1633 if (native_integers) {
1634 /* If integers are used as booleans, we can use an actual "or"
1635 * instruction.
1636 */
1637 assert(native_integers);
1638 emit(ir, TGSI_OPCODE_OR, result_dst, op[0], op[1]);
1639 } else {
1640 /* After the addition, the value will be an integer on the
1641 * range [0,2]. Zero stays zero, and positive values become 1.0.
1642 */
1643 glsl_to_tgsi_instruction *add =
1644 emit(ir, TGSI_OPCODE_ADD, result_dst, op[0], op[1]);
1645 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1646 /* The clamping to [0,1] can be done for free in the fragment
1647 * shader with a saturate if floats are being used as boolean values.
1648 */
1649 add->saturate = true;
1650 } else {
1651 /* Negating the result of the addition gives values on the range
1652 * [-2, 0]. Zero stays zero, and negative values become 1.0. This
1653 * is achieved using SLT.
1654 */
1655 st_src_reg slt_src = result_src;
1656 slt_src.negate = ~slt_src.negate;
1657 emit(ir, TGSI_OPCODE_SLT, result_dst, slt_src, st_src_reg_for_float(0.0));
1658 }
1659 }
1660 break;
1661 }
1662
1663 case ir_binop_logic_and:
1664 /* If native integers are disabled, the bool args are stored as float 0.0
1665 * or 1.0, so "mul" gives us "and". If they're enabled, just use the
1666 * actual AND opcode.
1667 */
1668 if (native_integers)
1669 emit(ir, TGSI_OPCODE_AND, result_dst, op[0], op[1]);
1670 else
1671 emit(ir, TGSI_OPCODE_MUL, result_dst, op[0], op[1]);
1672 break;
1673
1674 case ir_binop_dot:
1675 assert(ir->operands[0]->type->is_vector());
1676 assert(ir->operands[0]->type == ir->operands[1]->type);
1677 emit_dp(ir, result_dst, op[0], op[1],
1678 ir->operands[0]->type->vector_elements);
1679 break;
1680
1681 case ir_unop_sqrt:
1682 /* sqrt(x) = x * rsq(x). */
1683 emit_scalar(ir, TGSI_OPCODE_RSQ, result_dst, op[0]);
1684 emit(ir, TGSI_OPCODE_MUL, result_dst, result_src, op[0]);
1685 /* For incoming channels <= 0, set the result to 0. */
1686 op[0].negate = ~op[0].negate;
1687 emit(ir, TGSI_OPCODE_CMP, result_dst,
1688 op[0], result_src, st_src_reg_for_float(0.0));
1689 break;
1690 case ir_unop_rsq:
1691 emit_scalar(ir, TGSI_OPCODE_RSQ, result_dst, op[0]);
1692 break;
1693 case ir_unop_i2f:
1694 if (native_integers) {
1695 emit(ir, TGSI_OPCODE_I2F, result_dst, op[0]);
1696 break;
1697 }
1698 /* fallthrough to next case otherwise */
1699 case ir_unop_b2f:
1700 if (native_integers) {
1701 emit(ir, TGSI_OPCODE_AND, result_dst, op[0], st_src_reg_for_float(1.0));
1702 break;
1703 }
1704 /* fallthrough to next case otherwise */
1705 case ir_unop_i2u:
1706 case ir_unop_u2i:
1707 /* Converting between signed and unsigned integers is a no-op. */
1708 result_src = op[0];
1709 break;
1710 case ir_unop_b2i:
1711 if (native_integers) {
1712 /* Booleans are stored as integers using ~0 for true and 0 for false.
1713 * GLSL requires that int(bool) return 1 for true and 0 for false.
1714 * This conversion is done with AND, but it could be done with NEG.
1715 */
1716 emit(ir, TGSI_OPCODE_AND, result_dst, op[0], st_src_reg_for_int(1));
1717 } else {
1718 /* Booleans and integers are both stored as floats when native
1719 * integers are disabled.
1720 */
1721 result_src = op[0];
1722 }
1723 break;
1724 case ir_unop_f2i:
1725 if (native_integers)
1726 emit(ir, TGSI_OPCODE_F2I, result_dst, op[0]);
1727 else
1728 emit(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
1729 break;
1730 case ir_unop_f2b:
1731 emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], st_src_reg_for_float(0.0));
1732 break;
1733 case ir_unop_i2b:
1734 if (native_integers)
1735 emit(ir, TGSI_OPCODE_INEG, result_dst, op[0]);
1736 else
1737 emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], st_src_reg_for_float(0.0));
1738 break;
1739 case ir_unop_trunc:
1740 emit(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
1741 break;
1742 case ir_unop_ceil:
1743 op[0].negate = ~op[0].negate;
1744 emit(ir, TGSI_OPCODE_FLR, result_dst, op[0]);
1745 result_src.negate = ~result_src.negate;
1746 break;
1747 case ir_unop_floor:
1748 emit(ir, TGSI_OPCODE_FLR, result_dst, op[0]);
1749 break;
1750 case ir_unop_fract:
1751 emit(ir, TGSI_OPCODE_FRC, result_dst, op[0]);
1752 break;
1753
1754 case ir_binop_min:
1755 emit(ir, TGSI_OPCODE_MIN, result_dst, op[0], op[1]);
1756 break;
1757 case ir_binop_max:
1758 emit(ir, TGSI_OPCODE_MAX, result_dst, op[0], op[1]);
1759 break;
1760 case ir_binop_pow:
1761 emit_scalar(ir, TGSI_OPCODE_POW, result_dst, op[0], op[1]);
1762 break;
1763
1764 case ir_unop_bit_not:
1765 if (native_integers) {
1766 emit(ir, TGSI_OPCODE_NOT, result_dst, op[0]);
1767 break;
1768 }
1769 case ir_unop_u2f:
1770 if (native_integers) {
1771 emit(ir, TGSI_OPCODE_U2F, result_dst, op[0]);
1772 break;
1773 }
1774 case ir_binop_lshift:
1775 if (native_integers) {
1776 emit(ir, TGSI_OPCODE_SHL, result_dst, op[0]);
1777 break;
1778 }
1779 case ir_binop_rshift:
1780 if (native_integers) {
1781 emit(ir, TGSI_OPCODE_ISHR, result_dst, op[0]);
1782 break;
1783 }
1784 case ir_binop_bit_and:
1785 if (native_integers) {
1786 emit(ir, TGSI_OPCODE_AND, result_dst, op[0]);
1787 break;
1788 }
1789 case ir_binop_bit_xor:
1790 if (native_integers) {
1791 emit(ir, TGSI_OPCODE_XOR, result_dst, op[0]);
1792 break;
1793 }
1794 case ir_binop_bit_or:
1795 if (native_integers) {
1796 emit(ir, TGSI_OPCODE_OR, result_dst, op[0]);
1797 break;
1798 }
1799 case ir_unop_round_even:
1800 assert(!"GLSL 1.30 features unsupported");
1801 break;
1802
1803 case ir_quadop_vector:
1804 /* This operation should have already been handled.
1805 */
1806 assert(!"Should not get here.");
1807 break;
1808 }
1809
1810 this->result = result_src;
1811 }
1812
1813
1814 void
1815 glsl_to_tgsi_visitor::visit(ir_swizzle *ir)
1816 {
1817 st_src_reg src;
1818 int i;
1819 int swizzle[4];
1820
1821 /* Note that this is only swizzles in expressions, not those on the left
1822 * hand side of an assignment, which do write masking. See ir_assignment
1823 * for that.
1824 */
1825
1826 ir->val->accept(this);
1827 src = this->result;
1828 assert(src.file != PROGRAM_UNDEFINED);
1829
1830 for (i = 0; i < 4; i++) {
1831 if (i < ir->type->vector_elements) {
1832 switch (i) {
1833 case 0:
1834 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x);
1835 break;
1836 case 1:
1837 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y);
1838 break;
1839 case 2:
1840 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z);
1841 break;
1842 case 3:
1843 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w);
1844 break;
1845 }
1846 } else {
1847 /* If the type is smaller than a vec4, replicate the last
1848 * channel out.
1849 */
1850 swizzle[i] = swizzle[ir->type->vector_elements - 1];
1851 }
1852 }
1853
1854 src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
1855
1856 this->result = src;
1857 }
1858
1859 void
1860 glsl_to_tgsi_visitor::visit(ir_dereference_variable *ir)
1861 {
1862 variable_storage *entry = find_variable_storage(ir->var);
1863 ir_variable *var = ir->var;
1864
1865 if (!entry) {
1866 switch (var->mode) {
1867 case ir_var_uniform:
1868 entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM,
1869 var->location);
1870 this->variables.push_tail(entry);
1871 break;
1872 case ir_var_in:
1873 case ir_var_inout:
1874 /* The linker assigns locations for varyings and attributes,
1875 * including deprecated builtins (like gl_Color), user-assign
1876 * generic attributes (glBindVertexLocation), and
1877 * user-defined varyings.
1878 *
1879 * FINISHME: We would hit this path for function arguments. Fix!
1880 */
1881 assert(var->location != -1);
1882 entry = new(mem_ctx) variable_storage(var,
1883 PROGRAM_INPUT,
1884 var->location);
1885 if (this->prog->Target == GL_VERTEX_PROGRAM_ARB &&
1886 var->location >= VERT_ATTRIB_GENERIC0) {
1887 _mesa_add_attribute(this->prog->Attributes,
1888 var->name,
1889 _mesa_sizeof_glsl_type(var->type->gl_type),
1890 var->type->gl_type,
1891 var->location - VERT_ATTRIB_GENERIC0);
1892 }
1893 break;
1894 case ir_var_out:
1895 assert(var->location != -1);
1896 entry = new(mem_ctx) variable_storage(var,
1897 PROGRAM_OUTPUT,
1898 var->location);
1899 break;
1900 case ir_var_system_value:
1901 entry = new(mem_ctx) variable_storage(var,
1902 PROGRAM_SYSTEM_VALUE,
1903 var->location);
1904 break;
1905 case ir_var_auto:
1906 case ir_var_temporary:
1907 entry = new(mem_ctx) variable_storage(var, PROGRAM_TEMPORARY,
1908 this->next_temp);
1909 this->variables.push_tail(entry);
1910
1911 next_temp += type_size(var->type);
1912 break;
1913 }
1914
1915 if (!entry) {
1916 printf("Failed to make storage for %s\n", var->name);
1917 exit(1);
1918 }
1919 }
1920
1921 this->result = st_src_reg(entry->file, entry->index, var->type);
1922 if (!native_integers)
1923 this->result.type = GLSL_TYPE_FLOAT;
1924 }
1925
1926 void
1927 glsl_to_tgsi_visitor::visit(ir_dereference_array *ir)
1928 {
1929 ir_constant *index;
1930 st_src_reg src;
1931 int element_size = type_size(ir->type);
1932
1933 index = ir->array_index->constant_expression_value();
1934
1935 ir->array->accept(this);
1936 src = this->result;
1937
1938 if (index) {
1939 src.index += index->value.i[0] * element_size;
1940 } else {
1941 /* Variable index array dereference. It eats the "vec4" of the
1942 * base of the array and an index that offsets the TGSI register
1943 * index.
1944 */
1945 ir->array_index->accept(this);
1946
1947 st_src_reg index_reg;
1948
1949 if (element_size == 1) {
1950 index_reg = this->result;
1951 } else {
1952 index_reg = get_temp(native_integers ?
1953 glsl_type::int_type : glsl_type::float_type);
1954
1955 emit(ir, TGSI_OPCODE_MUL, st_dst_reg(index_reg),
1956 this->result, st_src_reg_for_type(index_reg.type, element_size));
1957 }
1958
1959 /* If there was already a relative address register involved, add the
1960 * new and the old together to get the new offset.
1961 */
1962 if (src.reladdr != NULL) {
1963 st_src_reg accum_reg = get_temp(native_integers ?
1964 glsl_type::int_type : glsl_type::float_type);
1965
1966 emit(ir, TGSI_OPCODE_ADD, st_dst_reg(accum_reg),
1967 index_reg, *src.reladdr);
1968
1969 index_reg = accum_reg;
1970 }
1971
1972 src.reladdr = ralloc(mem_ctx, st_src_reg);
1973 memcpy(src.reladdr, &index_reg, sizeof(index_reg));
1974 }
1975
1976 /* If the type is smaller than a vec4, replicate the last channel out. */
1977 if (ir->type->is_scalar() || ir->type->is_vector())
1978 src.swizzle = swizzle_for_size(ir->type->vector_elements);
1979 else
1980 src.swizzle = SWIZZLE_NOOP;
1981
1982 this->result = src;
1983 }
1984
1985 void
1986 glsl_to_tgsi_visitor::visit(ir_dereference_record *ir)
1987 {
1988 unsigned int i;
1989 const glsl_type *struct_type = ir->record->type;
1990 int offset = 0;
1991
1992 ir->record->accept(this);
1993
1994 for (i = 0; i < struct_type->length; i++) {
1995 if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
1996 break;
1997 offset += type_size(struct_type->fields.structure[i].type);
1998 }
1999
2000 /* If the type is smaller than a vec4, replicate the last channel out. */
2001 if (ir->type->is_scalar() || ir->type->is_vector())
2002 this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
2003 else
2004 this->result.swizzle = SWIZZLE_NOOP;
2005
2006 this->result.index += offset;
2007 }
2008
2009 /**
2010 * We want to be careful in assignment setup to hit the actual storage
2011 * instead of potentially using a temporary like we might with the
2012 * ir_dereference handler.
2013 */
2014 static st_dst_reg
2015 get_assignment_lhs(ir_dereference *ir, glsl_to_tgsi_visitor *v)
2016 {
2017 /* The LHS must be a dereference. If the LHS is a variable indexed array
2018 * access of a vector, it must be separated into a series conditional moves
2019 * before reaching this point (see ir_vec_index_to_cond_assign).
2020 */
2021 assert(ir->as_dereference());
2022 ir_dereference_array *deref_array = ir->as_dereference_array();
2023 if (deref_array) {
2024 assert(!deref_array->array->type->is_vector());
2025 }
2026
2027 /* Use the rvalue deref handler for the most part. We'll ignore
2028 * swizzles in it and write swizzles using writemask, though.
2029 */
2030 ir->accept(v);
2031 return st_dst_reg(v->result);
2032 }
2033
2034 /**
2035 * Process the condition of a conditional assignment
2036 *
2037 * Examines the condition of a conditional assignment to generate the optimal
2038 * first operand of a \c CMP instruction. If the condition is a relational
2039 * operator with 0 (e.g., \c ir_binop_less), the value being compared will be
2040 * used as the source for the \c CMP instruction. Otherwise the comparison
2041 * is processed to a boolean result, and the boolean result is used as the
2042 * operand to the CMP instruction.
2043 */
2044 bool
2045 glsl_to_tgsi_visitor::process_move_condition(ir_rvalue *ir)
2046 {
2047 ir_rvalue *src_ir = ir;
2048 bool negate = true;
2049 bool switch_order = false;
2050
2051 ir_expression *const expr = ir->as_expression();
2052 if ((expr != NULL) && (expr->get_num_operands() == 2)) {
2053 bool zero_on_left = false;
2054
2055 if (expr->operands[0]->is_zero()) {
2056 src_ir = expr->operands[1];
2057 zero_on_left = true;
2058 } else if (expr->operands[1]->is_zero()) {
2059 src_ir = expr->operands[0];
2060 zero_on_left = false;
2061 }
2062
2063 /* a is - 0 + - 0 +
2064 * (a < 0) T F F ( a < 0) T F F
2065 * (0 < a) F F T (-a < 0) F F T
2066 * (a <= 0) T T F (-a < 0) F F T (swap order of other operands)
2067 * (0 <= a) F T T ( a < 0) T F F (swap order of other operands)
2068 * (a > 0) F F T (-a < 0) F F T
2069 * (0 > a) T F F ( a < 0) T F F
2070 * (a >= 0) F T T ( a < 0) T F F (swap order of other operands)
2071 * (0 >= a) T T F (-a < 0) F F T (swap order of other operands)
2072 *
2073 * Note that exchanging the order of 0 and 'a' in the comparison simply
2074 * means that the value of 'a' should be negated.
2075 */
2076 if (src_ir != ir) {
2077 switch (expr->operation) {
2078 case ir_binop_less:
2079 switch_order = false;
2080 negate = zero_on_left;
2081 break;
2082
2083 case ir_binop_greater:
2084 switch_order = false;
2085 negate = !zero_on_left;
2086 break;
2087
2088 case ir_binop_lequal:
2089 switch_order = true;
2090 negate = !zero_on_left;
2091 break;
2092
2093 case ir_binop_gequal:
2094 switch_order = true;
2095 negate = zero_on_left;
2096 break;
2097
2098 default:
2099 /* This isn't the right kind of comparison afterall, so make sure
2100 * the whole condition is visited.
2101 */
2102 src_ir = ir;
2103 break;
2104 }
2105 }
2106 }
2107
2108 src_ir->accept(this);
2109
2110 /* We use the TGSI_OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the
2111 * condition we produced is 0.0 or 1.0. By flipping the sign, we can
2112 * choose which value TGSI_OPCODE_CMP produces without an extra instruction
2113 * computing the condition.
2114 */
2115 if (negate)
2116 this->result.negate = ~this->result.negate;
2117
2118 return switch_order;
2119 }
2120
2121 void
2122 glsl_to_tgsi_visitor::visit(ir_assignment *ir)
2123 {
2124 st_dst_reg l;
2125 st_src_reg r;
2126 int i;
2127
2128 ir->rhs->accept(this);
2129 r = this->result;
2130
2131 l = get_assignment_lhs(ir->lhs, this);
2132
2133 /* FINISHME: This should really set to the correct maximal writemask for each
2134 * FINISHME: component written (in the loops below). This case can only
2135 * FINISHME: occur for matrices, arrays, and structures.
2136 */
2137 if (ir->write_mask == 0) {
2138 assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
2139 l.writemask = WRITEMASK_XYZW;
2140 } else if (ir->lhs->type->is_scalar() &&
2141 ir->lhs->variable_referenced()->mode == ir_var_out) {
2142 /* FINISHME: This hack makes writing to gl_FragDepth, which lives in the
2143 * FINISHME: W component of fragment shader output zero, work correctly.
2144 */
2145 l.writemask = WRITEMASK_XYZW;
2146 } else {
2147 int swizzles[4];
2148 int first_enabled_chan = 0;
2149 int rhs_chan = 0;
2150
2151 l.writemask = ir->write_mask;
2152
2153 for (int i = 0; i < 4; i++) {
2154 if (l.writemask & (1 << i)) {
2155 first_enabled_chan = GET_SWZ(r.swizzle, i);
2156 break;
2157 }
2158 }
2159
2160 /* Swizzle a small RHS vector into the channels being written.
2161 *
2162 * glsl ir treats write_mask as dictating how many channels are
2163 * present on the RHS while TGSI treats write_mask as just
2164 * showing which channels of the vec4 RHS get written.
2165 */
2166 for (int i = 0; i < 4; i++) {
2167 if (l.writemask & (1 << i))
2168 swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++);
2169 else
2170 swizzles[i] = first_enabled_chan;
2171 }
2172 r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1],
2173 swizzles[2], swizzles[3]);
2174 }
2175
2176 assert(l.file != PROGRAM_UNDEFINED);
2177 assert(r.file != PROGRAM_UNDEFINED);
2178
2179 if (ir->condition) {
2180 const bool switch_order = this->process_move_condition(ir->condition);
2181 st_src_reg condition = this->result;
2182
2183 for (i = 0; i < type_size(ir->lhs->type); i++) {
2184 st_src_reg l_src = st_src_reg(l);
2185 st_src_reg condition_temp = condition;
2186 l_src.swizzle = swizzle_for_size(ir->lhs->type->vector_elements);
2187
2188 if (native_integers) {
2189 /* This is necessary because TGSI's CMP instruction expects the
2190 * condition to be a float, and we store booleans as integers.
2191 * If TGSI had a UCMP instruction or similar, this extra
2192 * instruction would not be necessary.
2193 */
2194 condition_temp = get_temp(glsl_type::vec4_type);
2195 condition.negate = 0;
2196 emit(ir, TGSI_OPCODE_I2F, st_dst_reg(condition_temp), condition);
2197 condition_temp.swizzle = condition.swizzle;
2198 }
2199
2200 if (switch_order) {
2201 emit(ir, TGSI_OPCODE_CMP, l, condition_temp, l_src, r);
2202 } else {
2203 emit(ir, TGSI_OPCODE_CMP, l, condition_temp, r, l_src);
2204 }
2205
2206 l.index++;
2207 r.index++;
2208 }
2209 } else if (ir->rhs->as_expression() &&
2210 this->instructions.get_tail() &&
2211 ir->rhs == ((glsl_to_tgsi_instruction *)this->instructions.get_tail())->ir &&
2212 type_size(ir->lhs->type) == 1 &&
2213 l.writemask == ((glsl_to_tgsi_instruction *)this->instructions.get_tail())->dst.writemask) {
2214 /* To avoid emitting an extra MOV when assigning an expression to a
2215 * variable, emit the last instruction of the expression again, but
2216 * replace the destination register with the target of the assignment.
2217 * Dead code elimination will remove the original instruction.
2218 */
2219 glsl_to_tgsi_instruction *inst, *new_inst;
2220 inst = (glsl_to_tgsi_instruction *)this->instructions.get_tail();
2221 new_inst = emit(ir, inst->op, l, inst->src[0], inst->src[1], inst->src[2]);
2222 new_inst->saturate = inst->saturate;
2223 inst->dead_mask = inst->dst.writemask;
2224 } else {
2225 for (i = 0; i < type_size(ir->lhs->type); i++) {
2226 emit(ir, TGSI_OPCODE_MOV, l, r);
2227 l.index++;
2228 r.index++;
2229 }
2230 }
2231 }
2232
2233
2234 void
2235 glsl_to_tgsi_visitor::visit(ir_constant *ir)
2236 {
2237 st_src_reg src;
2238 GLfloat stack_vals[4] = { 0 };
2239 gl_constant_value *values = (gl_constant_value *) stack_vals;
2240 GLenum gl_type = GL_NONE;
2241 unsigned int i;
2242 static int in_array = 0;
2243 gl_register_file file = in_array ? PROGRAM_CONSTANT : PROGRAM_IMMEDIATE;
2244
2245 /* Unfortunately, 4 floats is all we can get into
2246 * _mesa_add_typed_unnamed_constant. So, make a temp to store an
2247 * aggregate constant and move each constant value into it. If we
2248 * get lucky, copy propagation will eliminate the extra moves.
2249 */
2250 if (ir->type->base_type == GLSL_TYPE_STRUCT) {
2251 st_src_reg temp_base = get_temp(ir->type);
2252 st_dst_reg temp = st_dst_reg(temp_base);
2253
2254 foreach_iter(exec_list_iterator, iter, ir->components) {
2255 ir_constant *field_value = (ir_constant *)iter.get();
2256 int size = type_size(field_value->type);
2257
2258 assert(size > 0);
2259
2260 field_value->accept(this);
2261 src = this->result;
2262
2263 for (i = 0; i < (unsigned int)size; i++) {
2264 emit(ir, TGSI_OPCODE_MOV, temp, src);
2265
2266 src.index++;
2267 temp.index++;
2268 }
2269 }
2270 this->result = temp_base;
2271 return;
2272 }
2273
2274 if (ir->type->is_array()) {
2275 st_src_reg temp_base = get_temp(ir->type);
2276 st_dst_reg temp = st_dst_reg(temp_base);
2277 int size = type_size(ir->type->fields.array);
2278
2279 assert(size > 0);
2280 in_array++;
2281
2282 for (i = 0; i < ir->type->length; i++) {
2283 ir->array_elements[i]->accept(this);
2284 src = this->result;
2285 for (int j = 0; j < size; j++) {
2286 emit(ir, TGSI_OPCODE_MOV, temp, src);
2287
2288 src.index++;
2289 temp.index++;
2290 }
2291 }
2292 this->result = temp_base;
2293 in_array--;
2294 return;
2295 }
2296
2297 if (ir->type->is_matrix()) {
2298 st_src_reg mat = get_temp(ir->type);
2299 st_dst_reg mat_column = st_dst_reg(mat);
2300
2301 for (i = 0; i < ir->type->matrix_columns; i++) {
2302 assert(ir->type->base_type == GLSL_TYPE_FLOAT);
2303 values = (gl_constant_value *) &ir->value.f[i * ir->type->vector_elements];
2304
2305 src = st_src_reg(file, -1, ir->type->base_type);
2306 src.index = add_constant(file,
2307 values,
2308 ir->type->vector_elements,
2309 GL_FLOAT,
2310 &src.swizzle);
2311 emit(ir, TGSI_OPCODE_MOV, mat_column, src);
2312
2313 mat_column.index++;
2314 }
2315
2316 this->result = mat;
2317 return;
2318 }
2319
2320 switch (ir->type->base_type) {
2321 case GLSL_TYPE_FLOAT:
2322 gl_type = GL_FLOAT;
2323 for (i = 0; i < ir->type->vector_elements; i++) {
2324 values[i].f = ir->value.f[i];
2325 }
2326 break;
2327 case GLSL_TYPE_UINT:
2328 gl_type = native_integers ? GL_UNSIGNED_INT : GL_FLOAT;
2329 for (i = 0; i < ir->type->vector_elements; i++) {
2330 if (native_integers)
2331 values[i].u = ir->value.u[i];
2332 else
2333 values[i].f = ir->value.u[i];
2334 }
2335 break;
2336 case GLSL_TYPE_INT:
2337 gl_type = native_integers ? GL_INT : GL_FLOAT;
2338 for (i = 0; i < ir->type->vector_elements; i++) {
2339 if (native_integers)
2340 values[i].i = ir->value.i[i];
2341 else
2342 values[i].f = ir->value.i[i];
2343 }
2344 break;
2345 case GLSL_TYPE_BOOL:
2346 gl_type = native_integers ? GL_BOOL : GL_FLOAT;
2347 for (i = 0; i < ir->type->vector_elements; i++) {
2348 if (native_integers)
2349 values[i].b = ir->value.b[i];
2350 else
2351 values[i].f = ir->value.b[i];
2352 }
2353 break;
2354 default:
2355 assert(!"Non-float/uint/int/bool constant");
2356 }
2357
2358 this->result = st_src_reg(file, -1, ir->type);
2359 this->result.index = add_constant(file,
2360 values,
2361 ir->type->vector_elements,
2362 gl_type,
2363 &this->result.swizzle);
2364 }
2365
2366 function_entry *
2367 glsl_to_tgsi_visitor::get_function_signature(ir_function_signature *sig)
2368 {
2369 function_entry *entry;
2370
2371 foreach_iter(exec_list_iterator, iter, this->function_signatures) {
2372 entry = (function_entry *)iter.get();
2373
2374 if (entry->sig == sig)
2375 return entry;
2376 }
2377
2378 entry = ralloc(mem_ctx, function_entry);
2379 entry->sig = sig;
2380 entry->sig_id = this->next_signature_id++;
2381 entry->bgn_inst = NULL;
2382
2383 /* Allocate storage for all the parameters. */
2384 foreach_iter(exec_list_iterator, iter, sig->parameters) {
2385 ir_variable *param = (ir_variable *)iter.get();
2386 variable_storage *storage;
2387
2388 storage = find_variable_storage(param);
2389 assert(!storage);
2390
2391 storage = new(mem_ctx) variable_storage(param, PROGRAM_TEMPORARY,
2392 this->next_temp);
2393 this->variables.push_tail(storage);
2394
2395 this->next_temp += type_size(param->type);
2396 }
2397
2398 if (!sig->return_type->is_void()) {
2399 entry->return_reg = get_temp(sig->return_type);
2400 } else {
2401 entry->return_reg = undef_src;
2402 }
2403
2404 this->function_signatures.push_tail(entry);
2405 return entry;
2406 }
2407
2408 void
2409 glsl_to_tgsi_visitor::visit(ir_call *ir)
2410 {
2411 glsl_to_tgsi_instruction *call_inst;
2412 ir_function_signature *sig = ir->get_callee();
2413 function_entry *entry = get_function_signature(sig);
2414 int i;
2415
2416 /* Process in parameters. */
2417 exec_list_iterator sig_iter = sig->parameters.iterator();
2418 foreach_iter(exec_list_iterator, iter, *ir) {
2419 ir_rvalue *param_rval = (ir_rvalue *)iter.get();
2420 ir_variable *param = (ir_variable *)sig_iter.get();
2421
2422 if (param->mode == ir_var_in ||
2423 param->mode == ir_var_inout) {
2424 variable_storage *storage = find_variable_storage(param);
2425 assert(storage);
2426
2427 param_rval->accept(this);
2428 st_src_reg r = this->result;
2429
2430 st_dst_reg l;
2431 l.file = storage->file;
2432 l.index = storage->index;
2433 l.reladdr = NULL;
2434 l.writemask = WRITEMASK_XYZW;
2435 l.cond_mask = COND_TR;
2436
2437 for (i = 0; i < type_size(param->type); i++) {
2438 emit(ir, TGSI_OPCODE_MOV, l, r);
2439 l.index++;
2440 r.index++;
2441 }
2442 }
2443
2444 sig_iter.next();
2445 }
2446 assert(!sig_iter.has_next());
2447
2448 /* Emit call instruction */
2449 call_inst = emit(ir, TGSI_OPCODE_CAL);
2450 call_inst->function = entry;
2451
2452 /* Process out parameters. */
2453 sig_iter = sig->parameters.iterator();
2454 foreach_iter(exec_list_iterator, iter, *ir) {
2455 ir_rvalue *param_rval = (ir_rvalue *)iter.get();
2456 ir_variable *param = (ir_variable *)sig_iter.get();
2457
2458 if (param->mode == ir_var_out ||
2459 param->mode == ir_var_inout) {
2460 variable_storage *storage = find_variable_storage(param);
2461 assert(storage);
2462
2463 st_src_reg r;
2464 r.file = storage->file;
2465 r.index = storage->index;
2466 r.reladdr = NULL;
2467 r.swizzle = SWIZZLE_NOOP;
2468 r.negate = 0;
2469
2470 param_rval->accept(this);
2471 st_dst_reg l = st_dst_reg(this->result);
2472
2473 for (i = 0; i < type_size(param->type); i++) {
2474 emit(ir, TGSI_OPCODE_MOV, l, r);
2475 l.index++;
2476 r.index++;
2477 }
2478 }
2479
2480 sig_iter.next();
2481 }
2482 assert(!sig_iter.has_next());
2483
2484 /* Process return value. */
2485 this->result = entry->return_reg;
2486 }
2487
2488 void
2489 glsl_to_tgsi_visitor::visit(ir_texture *ir)
2490 {
2491 st_src_reg result_src, coord, lod_info, projector, dx, dy, offset;
2492 st_dst_reg result_dst, coord_dst;
2493 glsl_to_tgsi_instruction *inst = NULL;
2494 unsigned opcode = TGSI_OPCODE_NOP;
2495
2496 if (ir->coordinate) {
2497 ir->coordinate->accept(this);
2498
2499 /* Put our coords in a temp. We'll need to modify them for shadow,
2500 * projection, or LOD, so the only case we'd use it as is is if
2501 * we're doing plain old texturing. The optimization passes on
2502 * glsl_to_tgsi_visitor should handle cleaning up our mess in that case.
2503 */
2504 coord = get_temp(glsl_type::vec4_type);
2505 coord_dst = st_dst_reg(coord);
2506 emit(ir, TGSI_OPCODE_MOV, coord_dst, this->result);
2507 }
2508
2509 if (ir->projector) {
2510 ir->projector->accept(this);
2511 projector = this->result;
2512 }
2513
2514 /* Storage for our result. Ideally for an assignment we'd be using
2515 * the actual storage for the result here, instead.
2516 */
2517 result_src = get_temp(glsl_type::vec4_type);
2518 result_dst = st_dst_reg(result_src);
2519
2520 switch (ir->op) {
2521 case ir_tex:
2522 opcode = TGSI_OPCODE_TEX;
2523 break;
2524 case ir_txb:
2525 opcode = TGSI_OPCODE_TXB;
2526 ir->lod_info.bias->accept(this);
2527 lod_info = this->result;
2528 break;
2529 case ir_txl:
2530 opcode = TGSI_OPCODE_TXL;
2531 ir->lod_info.lod->accept(this);
2532 lod_info = this->result;
2533 break;
2534 case ir_txd:
2535 opcode = TGSI_OPCODE_TXD;
2536 ir->lod_info.grad.dPdx->accept(this);
2537 dx = this->result;
2538 ir->lod_info.grad.dPdy->accept(this);
2539 dy = this->result;
2540 break;
2541 case ir_txs:
2542 opcode = TGSI_OPCODE_TXQ;
2543 ir->lod_info.lod->accept(this);
2544 lod_info = this->result;
2545 break;
2546 case ir_txf:
2547 opcode = TGSI_OPCODE_TXF;
2548 ir->lod_info.lod->accept(this);
2549 lod_info = this->result;
2550 if (ir->offset) {
2551 ir->offset->accept(this);
2552 offset = this->result;
2553 }
2554 break;
2555 }
2556
2557 const glsl_type *sampler_type = ir->sampler->type;
2558
2559 if (ir->projector) {
2560 if (opcode == TGSI_OPCODE_TEX) {
2561 /* Slot the projector in as the last component of the coord. */
2562 coord_dst.writemask = WRITEMASK_W;
2563 emit(ir, TGSI_OPCODE_MOV, coord_dst, projector);
2564 coord_dst.writemask = WRITEMASK_XYZW;
2565 opcode = TGSI_OPCODE_TXP;
2566 } else {
2567 st_src_reg coord_w = coord;
2568 coord_w.swizzle = SWIZZLE_WWWW;
2569
2570 /* For the other TEX opcodes there's no projective version
2571 * since the last slot is taken up by LOD info. Do the
2572 * projective divide now.
2573 */
2574 coord_dst.writemask = WRITEMASK_W;
2575 emit(ir, TGSI_OPCODE_RCP, coord_dst, projector);
2576
2577 /* In the case where we have to project the coordinates "by hand,"
2578 * the shadow comparator value must also be projected.
2579 */
2580 st_src_reg tmp_src = coord;
2581 if (ir->shadow_comparitor) {
2582 /* Slot the shadow value in as the second to last component of the
2583 * coord.
2584 */
2585 ir->shadow_comparitor->accept(this);
2586
2587 tmp_src = get_temp(glsl_type::vec4_type);
2588 st_dst_reg tmp_dst = st_dst_reg(tmp_src);
2589
2590 /* Projective division not allowed for array samplers. */
2591 assert(!sampler_type->sampler_array);
2592
2593 tmp_dst.writemask = WRITEMASK_Z;
2594 emit(ir, TGSI_OPCODE_MOV, tmp_dst, this->result);
2595
2596 tmp_dst.writemask = WRITEMASK_XY;
2597 emit(ir, TGSI_OPCODE_MOV, tmp_dst, coord);
2598 }
2599
2600 coord_dst.writemask = WRITEMASK_XYZ;
2601 emit(ir, TGSI_OPCODE_MUL, coord_dst, tmp_src, coord_w);
2602
2603 coord_dst.writemask = WRITEMASK_XYZW;
2604 coord.swizzle = SWIZZLE_XYZW;
2605 }
2606 }
2607
2608 /* If projection is done and the opcode is not TGSI_OPCODE_TXP, then the shadow
2609 * comparator was put in the correct place (and projected) by the code,
2610 * above, that handles by-hand projection.
2611 */
2612 if (ir->shadow_comparitor && (!ir->projector || opcode == TGSI_OPCODE_TXP)) {
2613 /* Slot the shadow value in as the second to last component of the
2614 * coord.
2615 */
2616 ir->shadow_comparitor->accept(this);
2617
2618 /* XXX This will need to be updated for cubemap array samplers. */
2619 if (sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_2D &&
2620 sampler_type->sampler_array) {
2621 coord_dst.writemask = WRITEMASK_W;
2622 } else {
2623 coord_dst.writemask = WRITEMASK_Z;
2624 }
2625
2626 emit(ir, TGSI_OPCODE_MOV, coord_dst, this->result);
2627 coord_dst.writemask = WRITEMASK_XYZW;
2628 }
2629
2630 if (opcode == TGSI_OPCODE_TXL || opcode == TGSI_OPCODE_TXB ||
2631 opcode == TGSI_OPCODE_TXF) {
2632 /* TGSI stores LOD or LOD bias in the last channel of the coords. */
2633 coord_dst.writemask = WRITEMASK_W;
2634 emit(ir, TGSI_OPCODE_MOV, coord_dst, lod_info);
2635 coord_dst.writemask = WRITEMASK_XYZW;
2636 }
2637
2638 if (opcode == TGSI_OPCODE_TXD)
2639 inst = emit(ir, opcode, result_dst, coord, dx, dy);
2640 else if (opcode == TGSI_OPCODE_TXQ)
2641 inst = emit(ir, opcode, result_dst, lod_info);
2642 else if (opcode == TGSI_OPCODE_TXF) {
2643 inst = emit(ir, opcode, result_dst, coord);
2644 } else
2645 inst = emit(ir, opcode, result_dst, coord);
2646
2647 if (ir->shadow_comparitor)
2648 inst->tex_shadow = GL_TRUE;
2649
2650 inst->sampler = _mesa_get_sampler_uniform_value(ir->sampler,
2651 this->shader_program,
2652 this->prog);
2653
2654 if (ir->offset) {
2655 inst->tex_offset_num_offset = 1;
2656 inst->tex_offsets[0].Index = offset.index;
2657 inst->tex_offsets[0].File = offset.file;
2658 inst->tex_offsets[0].SwizzleX = GET_SWZ(offset.swizzle, 0);
2659 inst->tex_offsets[0].SwizzleY = GET_SWZ(offset.swizzle, 1);
2660 inst->tex_offsets[0].SwizzleZ = GET_SWZ(offset.swizzle, 2);
2661 }
2662
2663 switch (sampler_type->sampler_dimensionality) {
2664 case GLSL_SAMPLER_DIM_1D:
2665 inst->tex_target = (sampler_type->sampler_array)
2666 ? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX;
2667 break;
2668 case GLSL_SAMPLER_DIM_2D:
2669 inst->tex_target = (sampler_type->sampler_array)
2670 ? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX;
2671 break;
2672 case GLSL_SAMPLER_DIM_3D:
2673 inst->tex_target = TEXTURE_3D_INDEX;
2674 break;
2675 case GLSL_SAMPLER_DIM_CUBE:
2676 inst->tex_target = TEXTURE_CUBE_INDEX;
2677 break;
2678 case GLSL_SAMPLER_DIM_RECT:
2679 inst->tex_target = TEXTURE_RECT_INDEX;
2680 break;
2681 case GLSL_SAMPLER_DIM_BUF:
2682 assert(!"FINISHME: Implement ARB_texture_buffer_object");
2683 break;
2684 default:
2685 assert(!"Should not get here.");
2686 }
2687
2688 this->result = result_src;
2689 }
2690
2691 void
2692 glsl_to_tgsi_visitor::visit(ir_return *ir)
2693 {
2694 if (ir->get_value()) {
2695 st_dst_reg l;
2696 int i;
2697
2698 assert(current_function);
2699
2700 ir->get_value()->accept(this);
2701 st_src_reg r = this->result;
2702
2703 l = st_dst_reg(current_function->return_reg);
2704
2705 for (i = 0; i < type_size(current_function->sig->return_type); i++) {
2706 emit(ir, TGSI_OPCODE_MOV, l, r);
2707 l.index++;
2708 r.index++;
2709 }
2710 }
2711
2712 emit(ir, TGSI_OPCODE_RET);
2713 }
2714
2715 void
2716 glsl_to_tgsi_visitor::visit(ir_discard *ir)
2717 {
2718 struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog;
2719
2720 if (ir->condition) {
2721 ir->condition->accept(this);
2722 this->result.negate = ~this->result.negate;
2723 emit(ir, TGSI_OPCODE_KIL, undef_dst, this->result);
2724 } else {
2725 emit(ir, TGSI_OPCODE_KILP);
2726 }
2727
2728 fp->UsesKill = GL_TRUE;
2729 }
2730
2731 void
2732 glsl_to_tgsi_visitor::visit(ir_if *ir)
2733 {
2734 glsl_to_tgsi_instruction *cond_inst, *if_inst;
2735 glsl_to_tgsi_instruction *prev_inst;
2736
2737 prev_inst = (glsl_to_tgsi_instruction *)this->instructions.get_tail();
2738
2739 ir->condition->accept(this);
2740 assert(this->result.file != PROGRAM_UNDEFINED);
2741
2742 if (this->options->EmitCondCodes) {
2743 cond_inst = (glsl_to_tgsi_instruction *)this->instructions.get_tail();
2744
2745 /* See if we actually generated any instruction for generating
2746 * the condition. If not, then cook up a move to a temp so we
2747 * have something to set cond_update on.
2748 */
2749 if (cond_inst == prev_inst) {
2750 st_src_reg temp = get_temp(glsl_type::bool_type);
2751 cond_inst = emit(ir->condition, TGSI_OPCODE_MOV, st_dst_reg(temp), result);
2752 }
2753 cond_inst->cond_update = GL_TRUE;
2754
2755 if_inst = emit(ir->condition, TGSI_OPCODE_IF);
2756 if_inst->dst.cond_mask = COND_NE;
2757 } else {
2758 if_inst = emit(ir->condition, TGSI_OPCODE_IF, undef_dst, this->result);
2759 }
2760
2761 this->instructions.push_tail(if_inst);
2762
2763 visit_exec_list(&ir->then_instructions, this);
2764
2765 if (!ir->else_instructions.is_empty()) {
2766 emit(ir->condition, TGSI_OPCODE_ELSE);
2767 visit_exec_list(&ir->else_instructions, this);
2768 }
2769
2770 if_inst = emit(ir->condition, TGSI_OPCODE_ENDIF);
2771 }
2772
2773 glsl_to_tgsi_visitor::glsl_to_tgsi_visitor()
2774 {
2775 result.file = PROGRAM_UNDEFINED;
2776 next_temp = 1;
2777 next_signature_id = 1;
2778 num_immediates = 0;
2779 current_function = NULL;
2780 num_address_regs = 0;
2781 indirect_addr_temps = false;
2782 indirect_addr_consts = false;
2783 mem_ctx = ralloc_context(NULL);
2784 }
2785
2786 glsl_to_tgsi_visitor::~glsl_to_tgsi_visitor()
2787 {
2788 ralloc_free(mem_ctx);
2789 }
2790
2791 extern "C" void free_glsl_to_tgsi_visitor(glsl_to_tgsi_visitor *v)
2792 {
2793 delete v;
2794 }
2795
2796
2797 /**
2798 * Count resources used by the given gpu program (number of texture
2799 * samplers, etc).
2800 */
2801 static void
2802 count_resources(glsl_to_tgsi_visitor *v, gl_program *prog)
2803 {
2804 v->samplers_used = 0;
2805
2806 foreach_iter(exec_list_iterator, iter, v->instructions) {
2807 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
2808
2809 if (is_tex_instruction(inst->op)) {
2810 v->samplers_used |= 1 << inst->sampler;
2811
2812 prog->SamplerTargets[inst->sampler] =
2813 (gl_texture_index)inst->tex_target;
2814 if (inst->tex_shadow) {
2815 prog->ShadowSamplers |= 1 << inst->sampler;
2816 }
2817 }
2818 }
2819
2820 prog->SamplersUsed = v->samplers_used;
2821 _mesa_update_shader_textures_used(prog);
2822 }
2823
2824
2825 /**
2826 * Check if the given vertex/fragment/shader program is within the
2827 * resource limits of the context (number of texture units, etc).
2828 * If any of those checks fail, record a linker error.
2829 *
2830 * XXX more checks are needed...
2831 */
2832 static void
2833 check_resources(const struct gl_context *ctx,
2834 struct gl_shader_program *shader_program,
2835 glsl_to_tgsi_visitor *prog,
2836 struct gl_program *proginfo)
2837 {
2838 switch (proginfo->Target) {
2839 case GL_VERTEX_PROGRAM_ARB:
2840 if (_mesa_bitcount(prog->samplers_used) >
2841 ctx->Const.MaxVertexTextureImageUnits) {
2842 fail_link(shader_program, "Too many vertex shader texture samplers");
2843 }
2844 if (proginfo->Parameters->NumParameters > MAX_UNIFORMS) {
2845 fail_link(shader_program, "Too many vertex shader constants");
2846 }
2847 break;
2848 case MESA_GEOMETRY_PROGRAM:
2849 if (_mesa_bitcount(prog->samplers_used) >
2850 ctx->Const.MaxGeometryTextureImageUnits) {
2851 fail_link(shader_program, "Too many geometry shader texture samplers");
2852 }
2853 if (proginfo->Parameters->NumParameters >
2854 MAX_GEOMETRY_UNIFORM_COMPONENTS / 4) {
2855 fail_link(shader_program, "Too many geometry shader constants");
2856 }
2857 break;
2858 case GL_FRAGMENT_PROGRAM_ARB:
2859 if (_mesa_bitcount(prog->samplers_used) >
2860 ctx->Const.MaxTextureImageUnits) {
2861 fail_link(shader_program, "Too many fragment shader texture samplers");
2862 }
2863 if (proginfo->Parameters->NumParameters > MAX_UNIFORMS) {
2864 fail_link(shader_program, "Too many fragment shader constants");
2865 }
2866 break;
2867 default:
2868 _mesa_problem(ctx, "unexpected program type in check_resources()");
2869 }
2870 }
2871
2872
2873
2874 struct uniform_sort {
2875 struct gl_uniform *u;
2876 int pos;
2877 };
2878
2879 /* The shader_program->Uniforms list is almost sorted in increasing
2880 * uniform->{Frag,Vert}Pos locations, but not quite when there are
2881 * uniforms shared between targets. We need to add parameters in
2882 * increasing order for the targets.
2883 */
2884 static int
2885 sort_uniforms(const void *a, const void *b)
2886 {
2887 struct uniform_sort *u1 = (struct uniform_sort *)a;
2888 struct uniform_sort *u2 = (struct uniform_sort *)b;
2889
2890 return u1->pos - u2->pos;
2891 }
2892
2893 /* Add the uniforms to the parameters. The linker chose locations
2894 * in our parameters lists (which weren't created yet), which the
2895 * uniforms code will use to poke values into our parameters list
2896 * when uniforms are updated.
2897 */
2898 static void
2899 add_uniforms_to_parameters_list(struct gl_shader_program *shader_program,
2900 struct gl_shader *shader,
2901 struct gl_program *prog)
2902 {
2903 unsigned int i;
2904 unsigned int next_sampler = 0, num_uniforms = 0;
2905 struct uniform_sort *sorted_uniforms;
2906
2907 sorted_uniforms = ralloc_array(NULL, struct uniform_sort,
2908 shader_program->Uniforms->NumUniforms);
2909
2910 for (i = 0; i < shader_program->Uniforms->NumUniforms; i++) {
2911 struct gl_uniform *uniform = shader_program->Uniforms->Uniforms + i;
2912 int parameter_index = -1;
2913
2914 switch (shader->Type) {
2915 case GL_VERTEX_SHADER:
2916 parameter_index = uniform->VertPos;
2917 break;
2918 case GL_FRAGMENT_SHADER:
2919 parameter_index = uniform->FragPos;
2920 break;
2921 case GL_GEOMETRY_SHADER:
2922 parameter_index = uniform->GeomPos;
2923 break;
2924 }
2925
2926 /* Only add uniforms used in our target. */
2927 if (parameter_index != -1) {
2928 sorted_uniforms[num_uniforms].pos = parameter_index;
2929 sorted_uniforms[num_uniforms].u = uniform;
2930 num_uniforms++;
2931 }
2932 }
2933
2934 qsort(sorted_uniforms, num_uniforms, sizeof(struct uniform_sort),
2935 sort_uniforms);
2936
2937 for (i = 0; i < num_uniforms; i++) {
2938 struct gl_uniform *uniform = sorted_uniforms[i].u;
2939 int parameter_index = sorted_uniforms[i].pos;
2940 const glsl_type *type = uniform->Type;
2941 unsigned int size;
2942
2943 if (type->is_vector() ||
2944 type->is_scalar()) {
2945 size = type->vector_elements;
2946 } else {
2947 size = type_size(type) * 4;
2948 }
2949
2950 gl_register_file file;
2951 if (type->is_sampler() ||
2952 (type->is_array() && type->fields.array->is_sampler())) {
2953 file = PROGRAM_SAMPLER;
2954 } else {
2955 file = PROGRAM_UNIFORM;
2956 }
2957
2958 GLint index = _mesa_lookup_parameter_index(prog->Parameters, -1,
2959 uniform->Name);
2960
2961 if (index < 0) {
2962 index = _mesa_add_parameter(prog->Parameters, file,
2963 uniform->Name, size, type->gl_type,
2964 NULL, NULL, 0x0);
2965
2966 /* Sampler uniform values are stored in prog->SamplerUnits,
2967 * and the entry in that array is selected by this index we
2968 * store in ParameterValues[].
2969 */
2970 if (file == PROGRAM_SAMPLER) {
2971 for (unsigned int j = 0; j < size / 4; j++)
2972 prog->Parameters->ParameterValues[index + j][0].f = next_sampler++;
2973 }
2974
2975 /* The location chosen in the Parameters list here (returned
2976 * from _mesa_add_uniform) has to match what the linker chose.
2977 */
2978 if (index != parameter_index) {
2979 fail_link(shader_program, "Allocation of uniform `%s' to target "
2980 "failed (%d vs %d)\n",
2981 uniform->Name, index, parameter_index);
2982 }
2983 }
2984 }
2985
2986 ralloc_free(sorted_uniforms);
2987 }
2988
2989 static void
2990 set_uniform_initializer(struct gl_context *ctx, void *mem_ctx,
2991 struct gl_shader_program *shader_program,
2992 const char *name, const glsl_type *type,
2993 ir_constant *val)
2994 {
2995 if (type->is_record()) {
2996 ir_constant *field_constant;
2997
2998 field_constant = (ir_constant *)val->components.get_head();
2999
3000 for (unsigned int i = 0; i < type->length; i++) {
3001 const glsl_type *field_type = type->fields.structure[i].type;
3002 const char *field_name = ralloc_asprintf(mem_ctx, "%s.%s", name,
3003 type->fields.structure[i].name);
3004 set_uniform_initializer(ctx, mem_ctx, shader_program, field_name,
3005 field_type, field_constant);
3006 field_constant = (ir_constant *)field_constant->next;
3007 }
3008 return;
3009 }
3010
3011 int loc = _mesa_get_uniform_location(ctx, shader_program, name);
3012
3013 if (loc == -1) {
3014 fail_link(shader_program,
3015 "Couldn't find uniform for initializer %s\n", name);
3016 return;
3017 }
3018
3019 for (unsigned int i = 0; i < (type->is_array() ? type->length : 1); i++) {
3020 ir_constant *element;
3021 const glsl_type *element_type;
3022 if (type->is_array()) {
3023 element = val->array_elements[i];
3024 element_type = type->fields.array;
3025 } else {
3026 element = val;
3027 element_type = type;
3028 }
3029
3030 void *values;
3031
3032 if (element_type->base_type == GLSL_TYPE_BOOL) {
3033 int *conv = ralloc_array(mem_ctx, int, element_type->components());
3034 for (unsigned int j = 0; j < element_type->components(); j++) {
3035 conv[j] = element->value.b[j];
3036 }
3037 values = (void *)conv;
3038 element_type = glsl_type::get_instance(GLSL_TYPE_INT,
3039 element_type->vector_elements,
3040 1);
3041 } else {
3042 values = &element->value;
3043 }
3044
3045 if (element_type->is_matrix()) {
3046 _mesa_uniform_matrix(ctx, shader_program,
3047 element_type->matrix_columns,
3048 element_type->vector_elements,
3049 loc, 1, GL_FALSE, (GLfloat *)values);
3050 loc += element_type->matrix_columns;
3051 } else {
3052 _mesa_uniform(ctx, shader_program, loc, element_type->matrix_columns,
3053 values, element_type->gl_type);
3054 loc += type_size(element_type);
3055 }
3056 }
3057 }
3058
3059 /*
3060 * Scan/rewrite program to remove reads of custom (output) registers.
3061 * The passed type has to be either PROGRAM_OUTPUT or PROGRAM_VARYING
3062 * (for vertex shaders).
3063 * In GLSL shaders, varying vars can be read and written.
3064 * On some hardware, trying to read an output register causes trouble.
3065 * So, rewrite the program to use a temporary register in this case.
3066 *
3067 * Based on _mesa_remove_output_reads from programopt.c.
3068 */
3069 void
3070 glsl_to_tgsi_visitor::remove_output_reads(gl_register_file type)
3071 {
3072 GLuint i;
3073 GLint outputMap[VERT_RESULT_MAX];
3074 GLint outputTypes[VERT_RESULT_MAX];
3075 GLuint numVaryingReads = 0;
3076 GLboolean usedTemps[MAX_TEMPS];
3077 GLuint firstTemp = 0;
3078
3079 _mesa_find_used_registers(prog, PROGRAM_TEMPORARY,
3080 usedTemps, MAX_TEMPS);
3081
3082 assert(type == PROGRAM_VARYING || type == PROGRAM_OUTPUT);
3083 assert(prog->Target == GL_VERTEX_PROGRAM_ARB || type != PROGRAM_VARYING);
3084
3085 for (i = 0; i < VERT_RESULT_MAX; i++)
3086 outputMap[i] = -1;
3087
3088 /* look for instructions which read from varying vars */
3089 foreach_iter(exec_list_iterator, iter, this->instructions) {
3090 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3091 const GLuint numSrc = num_inst_src_regs(inst->op);
3092 GLuint j;
3093 for (j = 0; j < numSrc; j++) {
3094 if (inst->src[j].file == type) {
3095 /* replace the read with a temp reg */
3096 const GLuint var = inst->src[j].index;
3097 if (outputMap[var] == -1) {
3098 numVaryingReads++;
3099 outputMap[var] = _mesa_find_free_register(usedTemps,
3100 MAX_TEMPS,
3101 firstTemp);
3102 outputTypes[var] = inst->src[j].type;
3103 firstTemp = outputMap[var] + 1;
3104 }
3105 inst->src[j].file = PROGRAM_TEMPORARY;
3106 inst->src[j].index = outputMap[var];
3107 }
3108 }
3109 }
3110
3111 if (numVaryingReads == 0)
3112 return; /* nothing to be done */
3113
3114 /* look for instructions which write to the varying vars identified above */
3115 foreach_iter(exec_list_iterator, iter, this->instructions) {
3116 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3117 if (inst->dst.file == type && outputMap[inst->dst.index] >= 0) {
3118 /* change inst to write to the temp reg, instead of the varying */
3119 inst->dst.file = PROGRAM_TEMPORARY;
3120 inst->dst.index = outputMap[inst->dst.index];
3121 }
3122 }
3123
3124 /* insert new MOV instructions at the end */
3125 for (i = 0; i < VERT_RESULT_MAX; i++) {
3126 if (outputMap[i] >= 0) {
3127 /* MOV VAR[i], TEMP[tmp]; */
3128 st_src_reg src = st_src_reg(PROGRAM_TEMPORARY, outputMap[i], outputTypes[i]);
3129 st_dst_reg dst = st_dst_reg(type, WRITEMASK_XYZW, outputTypes[i]);
3130 dst.index = i;
3131 this->emit(NULL, TGSI_OPCODE_MOV, dst, src);
3132 }
3133 }
3134 }
3135
3136 /**
3137 * Returns the mask of channels (bitmask of WRITEMASK_X,Y,Z,W) which
3138 * are read from the given src in this instruction
3139 */
3140 static int
3141 get_src_arg_mask(st_dst_reg dst, st_src_reg src)
3142 {
3143 int read_mask = 0, comp;
3144
3145 /* Now, given the src swizzle and the written channels, find which
3146 * components are actually read
3147 */
3148 for (comp = 0; comp < 4; ++comp) {
3149 const unsigned coord = GET_SWZ(src.swizzle, comp);
3150 ASSERT(coord < 4);
3151 if (dst.writemask & (1 << comp) && coord <= SWIZZLE_W)
3152 read_mask |= 1 << coord;
3153 }
3154
3155 return read_mask;
3156 }
3157
3158 /**
3159 * This pass replaces CMP T0, T1 T2 T0 with MOV T0, T2 when the CMP
3160 * instruction is the first instruction to write to register T0. There are
3161 * several lowering passes done in GLSL IR (e.g. branches and
3162 * relative addressing) that create a large number of conditional assignments
3163 * that ir_to_mesa converts to CMP instructions like the one mentioned above.
3164 *
3165 * Here is why this conversion is safe:
3166 * CMP T0, T1 T2 T0 can be expanded to:
3167 * if (T1 < 0.0)
3168 * MOV T0, T2;
3169 * else
3170 * MOV T0, T0;
3171 *
3172 * If (T1 < 0.0) evaluates to true then our replacement MOV T0, T2 is the same
3173 * as the original program. If (T1 < 0.0) evaluates to false, executing
3174 * MOV T0, T0 will store a garbage value in T0 since T0 is uninitialized.
3175 * Therefore, it doesn't matter that we are replacing MOV T0, T0 with MOV T0, T2
3176 * because any instruction that was going to read from T0 after this was going
3177 * to read a garbage value anyway.
3178 */
3179 void
3180 glsl_to_tgsi_visitor::simplify_cmp(void)
3181 {
3182 unsigned tempWrites[MAX_TEMPS];
3183 unsigned outputWrites[MAX_PROGRAM_OUTPUTS];
3184
3185 memset(tempWrites, 0, sizeof(tempWrites));
3186 memset(outputWrites, 0, sizeof(outputWrites));
3187
3188 foreach_iter(exec_list_iterator, iter, this->instructions) {
3189 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3190 unsigned prevWriteMask = 0;
3191
3192 /* Give up if we encounter relative addressing or flow control. */
3193 if (inst->dst.reladdr ||
3194 tgsi_get_opcode_info(inst->op)->is_branch ||
3195 inst->op == TGSI_OPCODE_BGNSUB ||
3196 inst->op == TGSI_OPCODE_CONT ||
3197 inst->op == TGSI_OPCODE_END ||
3198 inst->op == TGSI_OPCODE_ENDSUB ||
3199 inst->op == TGSI_OPCODE_RET) {
3200 return;
3201 }
3202
3203 if (inst->dst.file == PROGRAM_OUTPUT) {
3204 assert(inst->dst.index < MAX_PROGRAM_OUTPUTS);
3205 prevWriteMask = outputWrites[inst->dst.index];
3206 outputWrites[inst->dst.index] |= inst->dst.writemask;
3207 } else if (inst->dst.file == PROGRAM_TEMPORARY) {
3208 assert(inst->dst.index < MAX_TEMPS);
3209 prevWriteMask = tempWrites[inst->dst.index];
3210 tempWrites[inst->dst.index] |= inst->dst.writemask;
3211 }
3212
3213 /* For a CMP to be considered a conditional write, the destination
3214 * register and source register two must be the same. */
3215 if (inst->op == TGSI_OPCODE_CMP
3216 && !(inst->dst.writemask & prevWriteMask)
3217 && inst->src[2].file == inst->dst.file
3218 && inst->src[2].index == inst->dst.index
3219 && inst->dst.writemask == get_src_arg_mask(inst->dst, inst->src[2])) {
3220
3221 inst->op = TGSI_OPCODE_MOV;
3222 inst->src[0] = inst->src[1];
3223 }
3224 }
3225 }
3226
3227 /* Replaces all references to a temporary register index with another index. */
3228 void
3229 glsl_to_tgsi_visitor::rename_temp_register(int index, int new_index)
3230 {
3231 foreach_iter(exec_list_iterator, iter, this->instructions) {
3232 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3233 unsigned j;
3234
3235 for (j=0; j < num_inst_src_regs(inst->op); j++) {
3236 if (inst->src[j].file == PROGRAM_TEMPORARY &&
3237 inst->src[j].index == index) {
3238 inst->src[j].index = new_index;
3239 }
3240 }
3241
3242 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.index == index) {
3243 inst->dst.index = new_index;
3244 }
3245 }
3246 }
3247
3248 int
3249 glsl_to_tgsi_visitor::get_first_temp_read(int index)
3250 {
3251 int depth = 0; /* loop depth */
3252 int loop_start = -1; /* index of the first active BGNLOOP (if any) */
3253 unsigned i = 0, j;
3254
3255 foreach_iter(exec_list_iterator, iter, this->instructions) {
3256 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3257
3258 for (j=0; j < num_inst_src_regs(inst->op); j++) {
3259 if (inst->src[j].file == PROGRAM_TEMPORARY &&
3260 inst->src[j].index == index) {
3261 return (depth == 0) ? i : loop_start;
3262 }
3263 }
3264
3265 if (inst->op == TGSI_OPCODE_BGNLOOP) {
3266 if(depth++ == 0)
3267 loop_start = i;
3268 } else if (inst->op == TGSI_OPCODE_ENDLOOP) {
3269 if (--depth == 0)
3270 loop_start = -1;
3271 }
3272 assert(depth >= 0);
3273
3274 i++;
3275 }
3276
3277 return -1;
3278 }
3279
3280 int
3281 glsl_to_tgsi_visitor::get_first_temp_write(int index)
3282 {
3283 int depth = 0; /* loop depth */
3284 int loop_start = -1; /* index of the first active BGNLOOP (if any) */
3285 int i = 0;
3286
3287 foreach_iter(exec_list_iterator, iter, this->instructions) {
3288 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3289
3290 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.index == index) {
3291 return (depth == 0) ? i : loop_start;
3292 }
3293
3294 if (inst->op == TGSI_OPCODE_BGNLOOP) {
3295 if(depth++ == 0)
3296 loop_start = i;
3297 } else if (inst->op == TGSI_OPCODE_ENDLOOP) {
3298 if (--depth == 0)
3299 loop_start = -1;
3300 }
3301 assert(depth >= 0);
3302
3303 i++;
3304 }
3305
3306 return -1;
3307 }
3308
3309 int
3310 glsl_to_tgsi_visitor::get_last_temp_read(int index)
3311 {
3312 int depth = 0; /* loop depth */
3313 int last = -1; /* index of last instruction that reads the temporary */
3314 unsigned i = 0, j;
3315
3316 foreach_iter(exec_list_iterator, iter, this->instructions) {
3317 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3318
3319 for (j=0; j < num_inst_src_regs(inst->op); j++) {
3320 if (inst->src[j].file == PROGRAM_TEMPORARY &&
3321 inst->src[j].index == index) {
3322 last = (depth == 0) ? i : -2;
3323 }
3324 }
3325
3326 if (inst->op == TGSI_OPCODE_BGNLOOP)
3327 depth++;
3328 else if (inst->op == TGSI_OPCODE_ENDLOOP)
3329 if (--depth == 0 && last == -2)
3330 last = i;
3331 assert(depth >= 0);
3332
3333 i++;
3334 }
3335
3336 assert(last >= -1);
3337 return last;
3338 }
3339
3340 int
3341 glsl_to_tgsi_visitor::get_last_temp_write(int index)
3342 {
3343 int depth = 0; /* loop depth */
3344 int last = -1; /* index of last instruction that writes to the temporary */
3345 int i = 0;
3346
3347 foreach_iter(exec_list_iterator, iter, this->instructions) {
3348 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3349
3350 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.index == index)
3351 last = (depth == 0) ? i : -2;
3352
3353 if (inst->op == TGSI_OPCODE_BGNLOOP)
3354 depth++;
3355 else if (inst->op == TGSI_OPCODE_ENDLOOP)
3356 if (--depth == 0 && last == -2)
3357 last = i;
3358 assert(depth >= 0);
3359
3360 i++;
3361 }
3362
3363 assert(last >= -1);
3364 return last;
3365 }
3366
3367 /*
3368 * On a basic block basis, tracks available PROGRAM_TEMPORARY register
3369 * channels for copy propagation and updates following instructions to
3370 * use the original versions.
3371 *
3372 * The glsl_to_tgsi_visitor lazily produces code assuming that this pass
3373 * will occur. As an example, a TXP production before this pass:
3374 *
3375 * 0: MOV TEMP[1], INPUT[4].xyyy;
3376 * 1: MOV TEMP[1].w, INPUT[4].wwww;
3377 * 2: TXP TEMP[2], TEMP[1], texture[0], 2D;
3378 *
3379 * and after:
3380 *
3381 * 0: MOV TEMP[1], INPUT[4].xyyy;
3382 * 1: MOV TEMP[1].w, INPUT[4].wwww;
3383 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
3384 *
3385 * which allows for dead code elimination on TEMP[1]'s writes.
3386 */
3387 void
3388 glsl_to_tgsi_visitor::copy_propagate(void)
3389 {
3390 glsl_to_tgsi_instruction **acp = rzalloc_array(mem_ctx,
3391 glsl_to_tgsi_instruction *,
3392 this->next_temp * 4);
3393 int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
3394 int level = 0;
3395
3396 foreach_iter(exec_list_iterator, iter, this->instructions) {
3397 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3398
3399 assert(inst->dst.file != PROGRAM_TEMPORARY
3400 || inst->dst.index < this->next_temp);
3401
3402 /* First, do any copy propagation possible into the src regs. */
3403 for (int r = 0; r < 3; r++) {
3404 glsl_to_tgsi_instruction *first = NULL;
3405 bool good = true;
3406 int acp_base = inst->src[r].index * 4;
3407
3408 if (inst->src[r].file != PROGRAM_TEMPORARY ||
3409 inst->src[r].reladdr)
3410 continue;
3411
3412 /* See if we can find entries in the ACP consisting of MOVs
3413 * from the same src register for all the swizzled channels
3414 * of this src register reference.
3415 */
3416 for (int i = 0; i < 4; i++) {
3417 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
3418 glsl_to_tgsi_instruction *copy_chan = acp[acp_base + src_chan];
3419
3420 if (!copy_chan) {
3421 good = false;
3422 break;
3423 }
3424
3425 assert(acp_level[acp_base + src_chan] <= level);
3426
3427 if (!first) {
3428 first = copy_chan;
3429 } else {
3430 if (first->src[0].file != copy_chan->src[0].file ||
3431 first->src[0].index != copy_chan->src[0].index) {
3432 good = false;
3433 break;
3434 }
3435 }
3436 }
3437
3438 if (good) {
3439 /* We've now validated that we can copy-propagate to
3440 * replace this src register reference. Do it.
3441 */
3442 inst->src[r].file = first->src[0].file;
3443 inst->src[r].index = first->src[0].index;
3444
3445 int swizzle = 0;
3446 for (int i = 0; i < 4; i++) {
3447 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
3448 glsl_to_tgsi_instruction *copy_inst = acp[acp_base + src_chan];
3449 swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) <<
3450 (3 * i));
3451 }
3452 inst->src[r].swizzle = swizzle;
3453 }
3454 }
3455
3456 switch (inst->op) {
3457 case TGSI_OPCODE_BGNLOOP:
3458 case TGSI_OPCODE_ENDLOOP:
3459 /* End of a basic block, clear the ACP entirely. */
3460 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
3461 break;
3462
3463 case TGSI_OPCODE_IF:
3464 ++level;
3465 break;
3466
3467 case TGSI_OPCODE_ENDIF:
3468 case TGSI_OPCODE_ELSE:
3469 /* Clear all channels written inside the block from the ACP, but
3470 * leaving those that were not touched.
3471 */
3472 for (int r = 0; r < this->next_temp; r++) {
3473 for (int c = 0; c < 4; c++) {
3474 if (!acp[4 * r + c])
3475 continue;
3476
3477 if (acp_level[4 * r + c] >= level)
3478 acp[4 * r + c] = NULL;
3479 }
3480 }
3481 if (inst->op == TGSI_OPCODE_ENDIF)
3482 --level;
3483 break;
3484
3485 default:
3486 /* Continuing the block, clear any written channels from
3487 * the ACP.
3488 */
3489 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.reladdr) {
3490 /* Any temporary might be written, so no copy propagation
3491 * across this instruction.
3492 */
3493 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
3494 } else if (inst->dst.file == PROGRAM_OUTPUT &&
3495 inst->dst.reladdr) {
3496 /* Any output might be written, so no copy propagation
3497 * from outputs across this instruction.
3498 */
3499 for (int r = 0; r < this->next_temp; r++) {
3500 for (int c = 0; c < 4; c++) {
3501 if (!acp[4 * r + c])
3502 continue;
3503
3504 if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT)
3505 acp[4 * r + c] = NULL;
3506 }
3507 }
3508 } else if (inst->dst.file == PROGRAM_TEMPORARY ||
3509 inst->dst.file == PROGRAM_OUTPUT) {
3510 /* Clear where it's used as dst. */
3511 if (inst->dst.file == PROGRAM_TEMPORARY) {
3512 for (int c = 0; c < 4; c++) {
3513 if (inst->dst.writemask & (1 << c)) {
3514 acp[4 * inst->dst.index + c] = NULL;
3515 }
3516 }
3517 }
3518
3519 /* Clear where it's used as src. */
3520 for (int r = 0; r < this->next_temp; r++) {
3521 for (int c = 0; c < 4; c++) {
3522 if (!acp[4 * r + c])
3523 continue;
3524
3525 int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c);
3526
3527 if (acp[4 * r + c]->src[0].file == inst->dst.file &&
3528 acp[4 * r + c]->src[0].index == inst->dst.index &&
3529 inst->dst.writemask & (1 << src_chan))
3530 {
3531 acp[4 * r + c] = NULL;
3532 }
3533 }
3534 }
3535 }
3536 break;
3537 }
3538
3539 /* If this is a copy, add it to the ACP. */
3540 if (inst->op == TGSI_OPCODE_MOV &&
3541 inst->dst.file == PROGRAM_TEMPORARY &&
3542 !inst->dst.reladdr &&
3543 !inst->saturate &&
3544 !inst->src[0].reladdr &&
3545 !inst->src[0].negate) {
3546 for (int i = 0; i < 4; i++) {
3547 if (inst->dst.writemask & (1 << i)) {
3548 acp[4 * inst->dst.index + i] = inst;
3549 acp_level[4 * inst->dst.index + i] = level;
3550 }
3551 }
3552 }
3553 }
3554
3555 ralloc_free(acp_level);
3556 ralloc_free(acp);
3557 }
3558
3559 /*
3560 * Tracks available PROGRAM_TEMPORARY registers for dead code elimination.
3561 *
3562 * The glsl_to_tgsi_visitor lazily produces code assuming that this pass
3563 * will occur. As an example, a TXP production after copy propagation but
3564 * before this pass:
3565 *
3566 * 0: MOV TEMP[1], INPUT[4].xyyy;
3567 * 1: MOV TEMP[1].w, INPUT[4].wwww;
3568 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
3569 *
3570 * and after this pass:
3571 *
3572 * 0: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
3573 *
3574 * FIXME: assumes that all functions are inlined (no support for BGNSUB/ENDSUB)
3575 * FIXME: doesn't eliminate all dead code inside of loops; it steps around them
3576 */
3577 void
3578 glsl_to_tgsi_visitor::eliminate_dead_code(void)
3579 {
3580 int i;
3581
3582 for (i=0; i < this->next_temp; i++) {
3583 int last_read = get_last_temp_read(i);
3584 int j = 0;
3585
3586 foreach_iter(exec_list_iterator, iter, this->instructions) {
3587 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3588
3589 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.index == i &&
3590 j > last_read)
3591 {
3592 iter.remove();
3593 delete inst;
3594 }
3595
3596 j++;
3597 }
3598 }
3599 }
3600
3601 /*
3602 * On a basic block basis, tracks available PROGRAM_TEMPORARY registers for dead
3603 * code elimination. This is less primitive than eliminate_dead_code(), as it
3604 * is per-channel and can detect consecutive writes without a read between them
3605 * as dead code. However, there is some dead code that can be eliminated by
3606 * eliminate_dead_code() but not this function - for example, this function
3607 * cannot eliminate an instruction writing to a register that is never read and
3608 * is the only instruction writing to that register.
3609 *
3610 * The glsl_to_tgsi_visitor lazily produces code assuming that this pass
3611 * will occur.
3612 */
3613 int
3614 glsl_to_tgsi_visitor::eliminate_dead_code_advanced(void)
3615 {
3616 glsl_to_tgsi_instruction **writes = rzalloc_array(mem_ctx,
3617 glsl_to_tgsi_instruction *,
3618 this->next_temp * 4);
3619 int *write_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
3620 int level = 0;
3621 int removed = 0;
3622
3623 foreach_iter(exec_list_iterator, iter, this->instructions) {
3624 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3625
3626 assert(inst->dst.file != PROGRAM_TEMPORARY
3627 || inst->dst.index < this->next_temp);
3628
3629 switch (inst->op) {
3630 case TGSI_OPCODE_BGNLOOP:
3631 case TGSI_OPCODE_ENDLOOP:
3632 /* End of a basic block, clear the write array entirely.
3633 * FIXME: This keeps us from killing dead code when the writes are
3634 * on either side of a loop, even when the register isn't touched
3635 * inside the loop.
3636 */
3637 memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
3638 break;
3639
3640 case TGSI_OPCODE_ENDIF:
3641 --level;
3642 break;
3643
3644 case TGSI_OPCODE_ELSE:
3645 /* Clear all channels written inside the preceding if block from the
3646 * write array, but leave those that were not touched.
3647 *
3648 * FIXME: This destroys opportunities to remove dead code inside of
3649 * IF blocks that are followed by an ELSE block.
3650 */
3651 for (int r = 0; r < this->next_temp; r++) {
3652 for (int c = 0; c < 4; c++) {
3653 if (!writes[4 * r + c])
3654 continue;
3655
3656 if (write_level[4 * r + c] >= level)
3657 writes[4 * r + c] = NULL;
3658 }
3659 }
3660 break;
3661
3662 case TGSI_OPCODE_IF:
3663 ++level;
3664 /* fallthrough to default case to mark the condition as read */
3665
3666 default:
3667 /* Continuing the block, clear any channels from the write array that
3668 * are read by this instruction.
3669 */
3670 for (unsigned i = 0; i < Elements(inst->src); i++) {
3671 if (inst->src[i].file == PROGRAM_TEMPORARY && inst->src[i].reladdr){
3672 /* Any temporary might be read, so no dead code elimination
3673 * across this instruction.
3674 */
3675 memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
3676 } else if (inst->src[i].file == PROGRAM_TEMPORARY) {
3677 /* Clear where it's used as src. */
3678 int src_chans = 1 << GET_SWZ(inst->src[i].swizzle, 0);
3679 src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 1);
3680 src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 2);
3681 src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 3);
3682
3683 for (int c = 0; c < 4; c++) {
3684 if (src_chans & (1 << c)) {
3685 writes[4 * inst->src[i].index + c] = NULL;
3686 }
3687 }
3688 }
3689 }
3690 break;
3691 }
3692
3693 /* If this instruction writes to a temporary, add it to the write array.
3694 * If there is already an instruction in the write array for one or more
3695 * of the channels, flag that channel write as dead.
3696 */
3697 if (inst->dst.file == PROGRAM_TEMPORARY &&
3698 !inst->dst.reladdr &&
3699 !inst->saturate) {
3700 for (int c = 0; c < 4; c++) {
3701 if (inst->dst.writemask & (1 << c)) {
3702 if (writes[4 * inst->dst.index + c]) {
3703 if (write_level[4 * inst->dst.index + c] < level)
3704 continue;
3705 else
3706 writes[4 * inst->dst.index + c]->dead_mask |= (1 << c);
3707 }
3708 writes[4 * inst->dst.index + c] = inst;
3709 write_level[4 * inst->dst.index + c] = level;
3710 }
3711 }
3712 }
3713 }
3714
3715 /* Anything still in the write array at this point is dead code. */
3716 for (int r = 0; r < this->next_temp; r++) {
3717 for (int c = 0; c < 4; c++) {
3718 glsl_to_tgsi_instruction *inst = writes[4 * r + c];
3719 if (inst)
3720 inst->dead_mask |= (1 << c);
3721 }
3722 }
3723
3724 /* Now actually remove the instructions that are completely dead and update
3725 * the writemask of other instructions with dead channels.
3726 */
3727 foreach_iter(exec_list_iterator, iter, this->instructions) {
3728 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3729
3730 if (!inst->dead_mask || !inst->dst.writemask)
3731 continue;
3732 else if (inst->dead_mask == inst->dst.writemask) {
3733 iter.remove();
3734 delete inst;
3735 removed++;
3736 } else
3737 inst->dst.writemask &= ~(inst->dead_mask);
3738 }
3739
3740 ralloc_free(write_level);
3741 ralloc_free(writes);
3742
3743 return removed;
3744 }
3745
3746 /* Merges temporary registers together where possible to reduce the number of
3747 * registers needed to run a program.
3748 *
3749 * Produces optimal code only after copy propagation and dead code elimination
3750 * have been run. */
3751 void
3752 glsl_to_tgsi_visitor::merge_registers(void)
3753 {
3754 int *last_reads = rzalloc_array(mem_ctx, int, this->next_temp);
3755 int *first_writes = rzalloc_array(mem_ctx, int, this->next_temp);
3756 int i, j;
3757
3758 /* Read the indices of the last read and first write to each temp register
3759 * into an array so that we don't have to traverse the instruction list as
3760 * much. */
3761 for (i=0; i < this->next_temp; i++) {
3762 last_reads[i] = get_last_temp_read(i);
3763 first_writes[i] = get_first_temp_write(i);
3764 }
3765
3766 /* Start looking for registers with non-overlapping usages that can be
3767 * merged together. */
3768 for (i=0; i < this->next_temp; i++) {
3769 /* Don't touch unused registers. */
3770 if (last_reads[i] < 0 || first_writes[i] < 0) continue;
3771
3772 for (j=0; j < this->next_temp; j++) {
3773 /* Don't touch unused registers. */
3774 if (last_reads[j] < 0 || first_writes[j] < 0) continue;
3775
3776 /* We can merge the two registers if the first write to j is after or
3777 * in the same instruction as the last read from i. Note that the
3778 * register at index i will always be used earlier or at the same time
3779 * as the register at index j. */
3780 if (first_writes[i] <= first_writes[j] &&
3781 last_reads[i] <= first_writes[j])
3782 {
3783 rename_temp_register(j, i); /* Replace all references to j with i.*/
3784
3785 /* Update the first_writes and last_reads arrays with the new
3786 * values for the merged register index, and mark the newly unused
3787 * register index as such. */
3788 last_reads[i] = last_reads[j];
3789 first_writes[j] = -1;
3790 last_reads[j] = -1;
3791 }
3792 }
3793 }
3794
3795 ralloc_free(last_reads);
3796 ralloc_free(first_writes);
3797 }
3798
3799 /* Reassign indices to temporary registers by reusing unused indices created
3800 * by optimization passes. */
3801 void
3802 glsl_to_tgsi_visitor::renumber_registers(void)
3803 {
3804 int i = 0;
3805 int new_index = 0;
3806
3807 for (i=0; i < this->next_temp; i++) {
3808 if (get_first_temp_read(i) < 0) continue;
3809 if (i != new_index)
3810 rename_temp_register(i, new_index);
3811 new_index++;
3812 }
3813
3814 this->next_temp = new_index;
3815 }
3816
3817 /**
3818 * Returns a fragment program which implements the current pixel transfer ops.
3819 * Based on get_pixel_transfer_program in st_atom_pixeltransfer.c.
3820 */
3821 extern "C" void
3822 get_pixel_transfer_visitor(struct st_fragment_program *fp,
3823 glsl_to_tgsi_visitor *original,
3824 int scale_and_bias, int pixel_maps)
3825 {
3826 glsl_to_tgsi_visitor *v = new glsl_to_tgsi_visitor();
3827 struct st_context *st = st_context(original->ctx);
3828 struct gl_program *prog = &fp->Base.Base;
3829 struct gl_program_parameter_list *params = _mesa_new_parameter_list();
3830 st_src_reg coord, src0;
3831 st_dst_reg dst0;
3832 glsl_to_tgsi_instruction *inst;
3833
3834 /* Copy attributes of the glsl_to_tgsi_visitor in the original shader. */
3835 v->ctx = original->ctx;
3836 v->prog = prog;
3837 v->glsl_version = original->glsl_version;
3838 v->native_integers = original->native_integers;
3839 v->options = original->options;
3840 v->next_temp = original->next_temp;
3841 v->num_address_regs = original->num_address_regs;
3842 v->samplers_used = prog->SamplersUsed = original->samplers_used;
3843 v->indirect_addr_temps = original->indirect_addr_temps;
3844 v->indirect_addr_consts = original->indirect_addr_consts;
3845 memcpy(&v->immediates, &original->immediates, sizeof(v->immediates));
3846
3847 /*
3848 * Get initial pixel color from the texture.
3849 * TEX colorTemp, fragment.texcoord[0], texture[0], 2D;
3850 */
3851 coord = st_src_reg(PROGRAM_INPUT, FRAG_ATTRIB_TEX0, glsl_type::vec2_type);
3852 src0 = v->get_temp(glsl_type::vec4_type);
3853 dst0 = st_dst_reg(src0);
3854 inst = v->emit(NULL, TGSI_OPCODE_TEX, dst0, coord);
3855 inst->sampler = 0;
3856 inst->tex_target = TEXTURE_2D_INDEX;
3857
3858 prog->InputsRead |= (1 << FRAG_ATTRIB_TEX0);
3859 prog->SamplersUsed |= (1 << 0); /* mark sampler 0 as used */
3860 v->samplers_used |= (1 << 0);
3861
3862 if (scale_and_bias) {
3863 static const gl_state_index scale_state[STATE_LENGTH] =
3864 { STATE_INTERNAL, STATE_PT_SCALE,
3865 (gl_state_index) 0, (gl_state_index) 0, (gl_state_index) 0 };
3866 static const gl_state_index bias_state[STATE_LENGTH] =
3867 { STATE_INTERNAL, STATE_PT_BIAS,
3868 (gl_state_index) 0, (gl_state_index) 0, (gl_state_index) 0 };
3869 GLint scale_p, bias_p;
3870 st_src_reg scale, bias;
3871
3872 scale_p = _mesa_add_state_reference(params, scale_state);
3873 bias_p = _mesa_add_state_reference(params, bias_state);
3874
3875 /* MAD colorTemp, colorTemp, scale, bias; */
3876 scale = st_src_reg(PROGRAM_STATE_VAR, scale_p, GLSL_TYPE_FLOAT);
3877 bias = st_src_reg(PROGRAM_STATE_VAR, bias_p, GLSL_TYPE_FLOAT);
3878 inst = v->emit(NULL, TGSI_OPCODE_MAD, dst0, src0, scale, bias);
3879 }
3880
3881 if (pixel_maps) {
3882 st_src_reg temp = v->get_temp(glsl_type::vec4_type);
3883 st_dst_reg temp_dst = st_dst_reg(temp);
3884
3885 assert(st->pixel_xfer.pixelmap_texture);
3886
3887 /* With a little effort, we can do four pixel map look-ups with
3888 * two TEX instructions:
3889 */
3890
3891 /* TEX temp.rg, colorTemp.rgba, texture[1], 2D; */
3892 temp_dst.writemask = WRITEMASK_XY; /* write R,G */
3893 inst = v->emit(NULL, TGSI_OPCODE_TEX, temp_dst, src0);
3894 inst->sampler = 1;
3895 inst->tex_target = TEXTURE_2D_INDEX;
3896
3897 /* TEX temp.ba, colorTemp.baba, texture[1], 2D; */
3898 src0.swizzle = MAKE_SWIZZLE4(SWIZZLE_Z, SWIZZLE_W, SWIZZLE_Z, SWIZZLE_W);
3899 temp_dst.writemask = WRITEMASK_ZW; /* write B,A */
3900 inst = v->emit(NULL, TGSI_OPCODE_TEX, temp_dst, src0);
3901 inst->sampler = 1;
3902 inst->tex_target = TEXTURE_2D_INDEX;
3903
3904 prog->SamplersUsed |= (1 << 1); /* mark sampler 1 as used */
3905 v->samplers_used |= (1 << 1);
3906
3907 /* MOV colorTemp, temp; */
3908 inst = v->emit(NULL, TGSI_OPCODE_MOV, dst0, temp);
3909 }
3910
3911 /* Now copy the instructions from the original glsl_to_tgsi_visitor into the
3912 * new visitor. */
3913 foreach_iter(exec_list_iterator, iter, original->instructions) {
3914 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3915 st_src_reg src_regs[3];
3916
3917 if (inst->dst.file == PROGRAM_OUTPUT)
3918 prog->OutputsWritten |= BITFIELD64_BIT(inst->dst.index);
3919
3920 for (int i=0; i<3; i++) {
3921 src_regs[i] = inst->src[i];
3922 if (src_regs[i].file == PROGRAM_INPUT &&
3923 src_regs[i].index == FRAG_ATTRIB_COL0)
3924 {
3925 src_regs[i].file = PROGRAM_TEMPORARY;
3926 src_regs[i].index = src0.index;
3927 }
3928 else if (src_regs[i].file == PROGRAM_INPUT)
3929 prog->InputsRead |= (1 << src_regs[i].index);
3930 }
3931
3932 v->emit(NULL, inst->op, inst->dst, src_regs[0], src_regs[1], src_regs[2]);
3933 }
3934
3935 /* Make modifications to fragment program info. */
3936 prog->Parameters = _mesa_combine_parameter_lists(params,
3937 original->prog->Parameters);
3938 prog->Attributes = _mesa_clone_parameter_list(original->prog->Attributes);
3939 prog->Varying = _mesa_clone_parameter_list(original->prog->Varying);
3940 _mesa_free_parameter_list(params);
3941 count_resources(v, prog);
3942 fp->glsl_to_tgsi = v;
3943 }
3944
3945 /**
3946 * Make fragment program for glBitmap:
3947 * Sample the texture and kill the fragment if the bit is 0.
3948 * This program will be combined with the user's fragment program.
3949 *
3950 * Based on make_bitmap_fragment_program in st_cb_bitmap.c.
3951 */
3952 extern "C" void
3953 get_bitmap_visitor(struct st_fragment_program *fp,
3954 glsl_to_tgsi_visitor *original, int samplerIndex)
3955 {
3956 glsl_to_tgsi_visitor *v = new glsl_to_tgsi_visitor();
3957 struct st_context *st = st_context(original->ctx);
3958 struct gl_program *prog = &fp->Base.Base;
3959 st_src_reg coord, src0;
3960 st_dst_reg dst0;
3961 glsl_to_tgsi_instruction *inst;
3962
3963 /* Copy attributes of the glsl_to_tgsi_visitor in the original shader. */
3964 v->ctx = original->ctx;
3965 v->prog = prog;
3966 v->glsl_version = original->glsl_version;
3967 v->native_integers = original->native_integers;
3968 v->options = original->options;
3969 v->next_temp = original->next_temp;
3970 v->num_address_regs = original->num_address_regs;
3971 v->samplers_used = prog->SamplersUsed = original->samplers_used;
3972 v->indirect_addr_temps = original->indirect_addr_temps;
3973 v->indirect_addr_consts = original->indirect_addr_consts;
3974 memcpy(&v->immediates, &original->immediates, sizeof(v->immediates));
3975
3976 /* TEX tmp0, fragment.texcoord[0], texture[0], 2D; */
3977 coord = st_src_reg(PROGRAM_INPUT, FRAG_ATTRIB_TEX0, glsl_type::vec2_type);
3978 src0 = v->get_temp(glsl_type::vec4_type);
3979 dst0 = st_dst_reg(src0);
3980 inst = v->emit(NULL, TGSI_OPCODE_TEX, dst0, coord);
3981 inst->sampler = samplerIndex;
3982 inst->tex_target = TEXTURE_2D_INDEX;
3983
3984 prog->InputsRead |= (1 << FRAG_ATTRIB_TEX0);
3985 prog->SamplersUsed |= (1 << samplerIndex); /* mark sampler as used */
3986 v->samplers_used |= (1 << samplerIndex);
3987
3988 /* KIL if -tmp0 < 0 # texel=0 -> keep / texel=0 -> discard */
3989 src0.negate = NEGATE_XYZW;
3990 if (st->bitmap.tex_format == PIPE_FORMAT_L8_UNORM)
3991 src0.swizzle = SWIZZLE_XXXX;
3992 inst = v->emit(NULL, TGSI_OPCODE_KIL, undef_dst, src0);
3993
3994 /* Now copy the instructions from the original glsl_to_tgsi_visitor into the
3995 * new visitor. */
3996 foreach_iter(exec_list_iterator, iter, original->instructions) {
3997 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3998 st_src_reg src_regs[3];
3999
4000 if (inst->dst.file == PROGRAM_OUTPUT)
4001 prog->OutputsWritten |= BITFIELD64_BIT(inst->dst.index);
4002
4003 for (int i=0; i<3; i++) {
4004 src_regs[i] = inst->src[i];
4005 if (src_regs[i].file == PROGRAM_INPUT)
4006 prog->InputsRead |= (1 << src_regs[i].index);
4007 }
4008
4009 v->emit(NULL, inst->op, inst->dst, src_regs[0], src_regs[1], src_regs[2]);
4010 }
4011
4012 /* Make modifications to fragment program info. */
4013 prog->Parameters = _mesa_clone_parameter_list(original->prog->Parameters);
4014 prog->Attributes = _mesa_clone_parameter_list(original->prog->Attributes);
4015 prog->Varying = _mesa_clone_parameter_list(original->prog->Varying);
4016 count_resources(v, prog);
4017 fp->glsl_to_tgsi = v;
4018 }
4019
4020 /* ------------------------- TGSI conversion stuff -------------------------- */
4021 struct label {
4022 unsigned branch_target;
4023 unsigned token;
4024 };
4025
4026 /**
4027 * Intermediate state used during shader translation.
4028 */
4029 struct st_translate {
4030 struct ureg_program *ureg;
4031
4032 struct ureg_dst temps[MAX_TEMPS];
4033 struct ureg_src *constants;
4034 struct ureg_src *immediates;
4035 struct ureg_dst outputs[PIPE_MAX_SHADER_OUTPUTS];
4036 struct ureg_src inputs[PIPE_MAX_SHADER_INPUTS];
4037 struct ureg_dst address[1];
4038 struct ureg_src samplers[PIPE_MAX_SAMPLERS];
4039 struct ureg_src systemValues[SYSTEM_VALUE_MAX];
4040
4041 /* Extra info for handling point size clamping in vertex shader */
4042 struct ureg_dst pointSizeResult; /**< Actual point size output register */
4043 struct ureg_src pointSizeConst; /**< Point size range constant register */
4044 GLint pointSizeOutIndex; /**< Temp point size output register */
4045 GLboolean prevInstWrotePointSize;
4046
4047 const GLuint *inputMapping;
4048 const GLuint *outputMapping;
4049
4050 /* For every instruction that contains a label (eg CALL), keep
4051 * details so that we can go back afterwards and emit the correct
4052 * tgsi instruction number for each label.
4053 */
4054 struct label *labels;
4055 unsigned labels_size;
4056 unsigned labels_count;
4057
4058 /* Keep a record of the tgsi instruction number that each mesa
4059 * instruction starts at, will be used to fix up labels after
4060 * translation.
4061 */
4062 unsigned *insn;
4063 unsigned insn_size;
4064 unsigned insn_count;
4065
4066 unsigned procType; /**< TGSI_PROCESSOR_VERTEX/FRAGMENT */
4067
4068 boolean error;
4069 };
4070
4071 /** Map Mesa's SYSTEM_VALUE_x to TGSI_SEMANTIC_x */
4072 static unsigned mesa_sysval_to_semantic[SYSTEM_VALUE_MAX] = {
4073 TGSI_SEMANTIC_FACE,
4074 TGSI_SEMANTIC_INSTANCEID
4075 };
4076
4077 /**
4078 * Make note of a branch to a label in the TGSI code.
4079 * After we've emitted all instructions, we'll go over the list
4080 * of labels built here and patch the TGSI code with the actual
4081 * location of each label.
4082 */
4083 static unsigned *get_label(struct st_translate *t, unsigned branch_target)
4084 {
4085 unsigned i;
4086
4087 if (t->labels_count + 1 >= t->labels_size) {
4088 t->labels_size = 1 << (util_logbase2(t->labels_size) + 1);
4089 t->labels = (struct label *)realloc(t->labels,
4090 t->labels_size * sizeof(struct label));
4091 if (t->labels == NULL) {
4092 static unsigned dummy;
4093 t->error = TRUE;
4094 return &dummy;
4095 }
4096 }
4097
4098 i = t->labels_count++;
4099 t->labels[i].branch_target = branch_target;
4100 return &t->labels[i].token;
4101 }
4102
4103 /**
4104 * Called prior to emitting the TGSI code for each instruction.
4105 * Allocate additional space for instructions if needed.
4106 * Update the insn[] array so the next glsl_to_tgsi_instruction points to
4107 * the next TGSI instruction.
4108 */
4109 static void set_insn_start(struct st_translate *t, unsigned start)
4110 {
4111 if (t->insn_count + 1 >= t->insn_size) {
4112 t->insn_size = 1 << (util_logbase2(t->insn_size) + 1);
4113 t->insn = (unsigned *)realloc(t->insn, t->insn_size * sizeof(t->insn[0]));
4114 if (t->insn == NULL) {
4115 t->error = TRUE;
4116 return;
4117 }
4118 }
4119
4120 t->insn[t->insn_count++] = start;
4121 }
4122
4123 /**
4124 * Map a glsl_to_tgsi constant/immediate to a TGSI immediate.
4125 */
4126 static struct ureg_src
4127 emit_immediate(struct st_translate *t,
4128 gl_constant_value values[4],
4129 int type, int size)
4130 {
4131 struct ureg_program *ureg = t->ureg;
4132
4133 switch(type)
4134 {
4135 case GL_FLOAT:
4136 return ureg_DECL_immediate(ureg, &values[0].f, size);
4137 case GL_INT:
4138 return ureg_DECL_immediate_int(ureg, &values[0].i, size);
4139 case GL_UNSIGNED_INT:
4140 case GL_BOOL:
4141 return ureg_DECL_immediate_uint(ureg, &values[0].u, size);
4142 default:
4143 assert(!"should not get here - type must be float, int, uint, or bool");
4144 return ureg_src_undef();
4145 }
4146 }
4147
4148 /**
4149 * Map a glsl_to_tgsi dst register to a TGSI ureg_dst register.
4150 */
4151 static struct ureg_dst
4152 dst_register(struct st_translate *t,
4153 gl_register_file file,
4154 GLuint index)
4155 {
4156 switch(file) {
4157 case PROGRAM_UNDEFINED:
4158 return ureg_dst_undef();
4159
4160 case PROGRAM_TEMPORARY:
4161 if (ureg_dst_is_undef(t->temps[index]))
4162 t->temps[index] = ureg_DECL_temporary(t->ureg);
4163
4164 return t->temps[index];
4165
4166 case PROGRAM_OUTPUT:
4167 if (t->procType == TGSI_PROCESSOR_VERTEX && index == VERT_RESULT_PSIZ)
4168 t->prevInstWrotePointSize = GL_TRUE;
4169
4170 if (t->procType == TGSI_PROCESSOR_VERTEX)
4171 assert(index < VERT_RESULT_MAX);
4172 else if (t->procType == TGSI_PROCESSOR_FRAGMENT)
4173 assert(index < FRAG_RESULT_MAX);
4174 else
4175 assert(index < GEOM_RESULT_MAX);
4176
4177 assert(t->outputMapping[index] < Elements(t->outputs));
4178
4179 return t->outputs[t->outputMapping[index]];
4180
4181 case PROGRAM_ADDRESS:
4182 return t->address[index];
4183
4184 default:
4185 assert(!"unknown dst register file");
4186 return ureg_dst_undef();
4187 }
4188 }
4189
4190 /**
4191 * Map a glsl_to_tgsi src register to a TGSI ureg_src register.
4192 */
4193 static struct ureg_src
4194 src_register(struct st_translate *t,
4195 gl_register_file file,
4196 GLuint index)
4197 {
4198 switch(file) {
4199 case PROGRAM_UNDEFINED:
4200 return ureg_src_undef();
4201
4202 case PROGRAM_TEMPORARY:
4203 assert(index >= 0);
4204 assert(index < Elements(t->temps));
4205 if (ureg_dst_is_undef(t->temps[index]))
4206 t->temps[index] = ureg_DECL_temporary(t->ureg);
4207 return ureg_src(t->temps[index]);
4208
4209 case PROGRAM_NAMED_PARAM:
4210 case PROGRAM_ENV_PARAM:
4211 case PROGRAM_LOCAL_PARAM:
4212 case PROGRAM_UNIFORM:
4213 assert(index >= 0);
4214 return t->constants[index];
4215 case PROGRAM_STATE_VAR:
4216 case PROGRAM_CONSTANT: /* ie, immediate */
4217 if (index < 0)
4218 return ureg_DECL_constant(t->ureg, 0);
4219 else
4220 return t->constants[index];
4221
4222 case PROGRAM_IMMEDIATE:
4223 return t->immediates[index];
4224
4225 case PROGRAM_INPUT:
4226 assert(t->inputMapping[index] < Elements(t->inputs));
4227 return t->inputs[t->inputMapping[index]];
4228
4229 case PROGRAM_OUTPUT:
4230 assert(t->outputMapping[index] < Elements(t->outputs));
4231 return ureg_src(t->outputs[t->outputMapping[index]]); /* not needed? */
4232
4233 case PROGRAM_ADDRESS:
4234 return ureg_src(t->address[index]);
4235
4236 case PROGRAM_SYSTEM_VALUE:
4237 assert(index < Elements(t->systemValues));
4238 return t->systemValues[index];
4239
4240 default:
4241 assert(!"unknown src register file");
4242 return ureg_src_undef();
4243 }
4244 }
4245
4246 /**
4247 * Create a TGSI ureg_dst register from an st_dst_reg.
4248 */
4249 static struct ureg_dst
4250 translate_dst(struct st_translate *t,
4251 const st_dst_reg *dst_reg,
4252 bool saturate)
4253 {
4254 struct ureg_dst dst = dst_register(t,
4255 dst_reg->file,
4256 dst_reg->index);
4257
4258 dst = ureg_writemask(dst, dst_reg->writemask);
4259
4260 if (saturate)
4261 dst = ureg_saturate(dst);
4262
4263 if (dst_reg->reladdr != NULL)
4264 dst = ureg_dst_indirect(dst, ureg_src(t->address[0]));
4265
4266 return dst;
4267 }
4268
4269 /**
4270 * Create a TGSI ureg_src register from an st_src_reg.
4271 */
4272 static struct ureg_src
4273 translate_src(struct st_translate *t, const st_src_reg *src_reg)
4274 {
4275 struct ureg_src src = src_register(t, src_reg->file, src_reg->index);
4276
4277 src = ureg_swizzle(src,
4278 GET_SWZ(src_reg->swizzle, 0) & 0x3,
4279 GET_SWZ(src_reg->swizzle, 1) & 0x3,
4280 GET_SWZ(src_reg->swizzle, 2) & 0x3,
4281 GET_SWZ(src_reg->swizzle, 3) & 0x3);
4282
4283 if ((src_reg->negate & 0xf) == NEGATE_XYZW)
4284 src = ureg_negate(src);
4285
4286 if (src_reg->reladdr != NULL) {
4287 /* Normally ureg_src_indirect() would be used here, but a stupid compiler
4288 * bug in g++ makes ureg_src_indirect (an inline C function) erroneously
4289 * set the bit for src.Negate. So we have to do the operation manually
4290 * here to work around the compiler's problems. */
4291 /*src = ureg_src_indirect(src, ureg_src(t->address[0]));*/
4292 struct ureg_src addr = ureg_src(t->address[0]);
4293 src.Indirect = 1;
4294 src.IndirectFile = addr.File;
4295 src.IndirectIndex = addr.Index;
4296 src.IndirectSwizzle = addr.SwizzleX;
4297
4298 if (src_reg->file != PROGRAM_INPUT &&
4299 src_reg->file != PROGRAM_OUTPUT) {
4300 /* If src_reg->index was negative, it was set to zero in
4301 * src_register(). Reassign it now. But don't do this
4302 * for input/output regs since they get remapped while
4303 * const buffers don't.
4304 */
4305 src.Index = src_reg->index;
4306 }
4307 }
4308
4309 return src;
4310 }
4311
4312 static struct tgsi_texture_offset
4313 translate_tex_offset(struct st_translate *t,
4314 const struct tgsi_texture_offset *in_offset)
4315 {
4316 struct tgsi_texture_offset offset;
4317
4318 assert(in_offset->File == PROGRAM_IMMEDIATE);
4319
4320 offset.File = TGSI_FILE_IMMEDIATE;
4321 offset.Index = in_offset->Index;
4322 offset.SwizzleX = in_offset->SwizzleX;
4323 offset.SwizzleY = in_offset->SwizzleY;
4324 offset.SwizzleZ = in_offset->SwizzleZ;
4325
4326 return offset;
4327 }
4328
4329 static void
4330 compile_tgsi_instruction(struct st_translate *t,
4331 const glsl_to_tgsi_instruction *inst)
4332 {
4333 struct ureg_program *ureg = t->ureg;
4334 GLuint i;
4335 struct ureg_dst dst[1];
4336 struct ureg_src src[4];
4337 struct tgsi_texture_offset texoffsets[MAX_GLSL_TEXTURE_OFFSET];
4338
4339 unsigned num_dst;
4340 unsigned num_src;
4341
4342 num_dst = num_inst_dst_regs(inst->op);
4343 num_src = num_inst_src_regs(inst->op);
4344
4345 if (num_dst)
4346 dst[0] = translate_dst(t,
4347 &inst->dst,
4348 inst->saturate);
4349
4350 for (i = 0; i < num_src; i++)
4351 src[i] = translate_src(t, &inst->src[i]);
4352
4353 switch(inst->op) {
4354 case TGSI_OPCODE_BGNLOOP:
4355 case TGSI_OPCODE_CAL:
4356 case TGSI_OPCODE_ELSE:
4357 case TGSI_OPCODE_ENDLOOP:
4358 case TGSI_OPCODE_IF:
4359 assert(num_dst == 0);
4360 ureg_label_insn(ureg,
4361 inst->op,
4362 src, num_src,
4363 get_label(t,
4364 inst->op == TGSI_OPCODE_CAL ? inst->function->sig_id : 0));
4365 return;
4366
4367 case TGSI_OPCODE_TEX:
4368 case TGSI_OPCODE_TXB:
4369 case TGSI_OPCODE_TXD:
4370 case TGSI_OPCODE_TXL:
4371 case TGSI_OPCODE_TXP:
4372 case TGSI_OPCODE_TXQ:
4373 case TGSI_OPCODE_TXF:
4374 src[num_src++] = t->samplers[inst->sampler];
4375 for (i = 0; i < inst->tex_offset_num_offset; i++) {
4376 texoffsets[i] = translate_tex_offset(t, &inst->tex_offsets[i]);
4377 }
4378 ureg_tex_insn(ureg,
4379 inst->op,
4380 dst, num_dst,
4381 translate_texture_target(inst->tex_target, inst->tex_shadow),
4382 texoffsets, inst->tex_offset_num_offset,
4383 src, num_src);
4384 return;
4385
4386 case TGSI_OPCODE_SCS:
4387 dst[0] = ureg_writemask(dst[0], TGSI_WRITEMASK_XY);
4388 ureg_insn(ureg, inst->op, dst, num_dst, src, num_src);
4389 break;
4390
4391 default:
4392 ureg_insn(ureg,
4393 inst->op,
4394 dst, num_dst,
4395 src, num_src);
4396 break;
4397 }
4398 }
4399
4400 /**
4401 * Emit the TGSI instructions to adjust the WPOS pixel center convention
4402 * Basically, add (adjX, adjY) to the fragment position.
4403 */
4404 static void
4405 emit_adjusted_wpos(struct st_translate *t,
4406 const struct gl_program *program,
4407 float adjX, float adjY)
4408 {
4409 struct ureg_program *ureg = t->ureg;
4410 struct ureg_dst wpos_temp = ureg_DECL_temporary(ureg);
4411 struct ureg_src wpos_input = t->inputs[t->inputMapping[FRAG_ATTRIB_WPOS]];
4412
4413 /* Note that we bias X and Y and pass Z and W through unchanged.
4414 * The shader might also use gl_FragCoord.w and .z.
4415 */
4416 ureg_ADD(ureg, wpos_temp, wpos_input,
4417 ureg_imm4f(ureg, adjX, adjY, 0.0f, 0.0f));
4418
4419 t->inputs[t->inputMapping[FRAG_ATTRIB_WPOS]] = ureg_src(wpos_temp);
4420 }
4421
4422
4423 /**
4424 * Emit the TGSI instructions for inverting the WPOS y coordinate.
4425 * This code is unavoidable because it also depends on whether
4426 * a FBO is bound (STATE_FB_WPOS_Y_TRANSFORM).
4427 */
4428 static void
4429 emit_wpos_inversion(struct st_translate *t,
4430 const struct gl_program *program,
4431 bool invert)
4432 {
4433 struct ureg_program *ureg = t->ureg;
4434
4435 /* Fragment program uses fragment position input.
4436 * Need to replace instances of INPUT[WPOS] with temp T
4437 * where T = INPUT[WPOS] by y is inverted.
4438 */
4439 static const gl_state_index wposTransformState[STATE_LENGTH]
4440 = { STATE_INTERNAL, STATE_FB_WPOS_Y_TRANSFORM,
4441 (gl_state_index)0, (gl_state_index)0, (gl_state_index)0 };
4442
4443 /* XXX: note we are modifying the incoming shader here! Need to
4444 * do this before emitting the constant decls below, or this
4445 * will be missed:
4446 */
4447 unsigned wposTransConst = _mesa_add_state_reference(program->Parameters,
4448 wposTransformState);
4449
4450 struct ureg_src wpostrans = ureg_DECL_constant(ureg, wposTransConst);
4451 struct ureg_dst wpos_temp;
4452 struct ureg_src wpos_input = t->inputs[t->inputMapping[FRAG_ATTRIB_WPOS]];
4453
4454 /* MOV wpos_temp, input[wpos]
4455 */
4456 if (wpos_input.File == TGSI_FILE_TEMPORARY)
4457 wpos_temp = ureg_dst(wpos_input);
4458 else {
4459 wpos_temp = ureg_DECL_temporary(ureg);
4460 ureg_MOV(ureg, wpos_temp, wpos_input);
4461 }
4462
4463 if (invert) {
4464 /* MAD wpos_temp.y, wpos_input, wpostrans.xxxx, wpostrans.yyyy
4465 */
4466 ureg_MAD(ureg,
4467 ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y),
4468 wpos_input,
4469 ureg_scalar(wpostrans, 0),
4470 ureg_scalar(wpostrans, 1));
4471 } else {
4472 /* MAD wpos_temp.y, wpos_input, wpostrans.zzzz, wpostrans.wwww
4473 */
4474 ureg_MAD(ureg,
4475 ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y),
4476 wpos_input,
4477 ureg_scalar(wpostrans, 2),
4478 ureg_scalar(wpostrans, 3));
4479 }
4480
4481 /* Use wpos_temp as position input from here on:
4482 */
4483 t->inputs[t->inputMapping[FRAG_ATTRIB_WPOS]] = ureg_src(wpos_temp);
4484 }
4485
4486
4487 /**
4488 * Emit fragment position/ooordinate code.
4489 */
4490 static void
4491 emit_wpos(struct st_context *st,
4492 struct st_translate *t,
4493 const struct gl_program *program,
4494 struct ureg_program *ureg)
4495 {
4496 const struct gl_fragment_program *fp =
4497 (const struct gl_fragment_program *) program;
4498 struct pipe_screen *pscreen = st->pipe->screen;
4499 boolean invert = FALSE;
4500
4501 if (fp->OriginUpperLeft) {
4502 /* Fragment shader wants origin in upper-left */
4503 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT)) {
4504 /* the driver supports upper-left origin */
4505 }
4506 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT)) {
4507 /* the driver supports lower-left origin, need to invert Y */
4508 ureg_property_fs_coord_origin(ureg, TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
4509 invert = TRUE;
4510 }
4511 else
4512 assert(0);
4513 }
4514 else {
4515 /* Fragment shader wants origin in lower-left */
4516 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT))
4517 /* the driver supports lower-left origin */
4518 ureg_property_fs_coord_origin(ureg, TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
4519 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT))
4520 /* the driver supports upper-left origin, need to invert Y */
4521 invert = TRUE;
4522 else
4523 assert(0);
4524 }
4525
4526 if (fp->PixelCenterInteger) {
4527 /* Fragment shader wants pixel center integer */
4528 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER))
4529 /* the driver supports pixel center integer */
4530 ureg_property_fs_coord_pixel_center(ureg, TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
4531 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER))
4532 /* the driver supports pixel center half integer, need to bias X,Y */
4533 emit_adjusted_wpos(t, program, 0.5f, invert ? 0.5f : -0.5f);
4534 else
4535 assert(0);
4536 }
4537 else {
4538 /* Fragment shader wants pixel center half integer */
4539 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
4540 /* the driver supports pixel center half integer */
4541 }
4542 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
4543 /* the driver supports pixel center integer, need to bias X,Y */
4544 ureg_property_fs_coord_pixel_center(ureg, TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
4545 emit_adjusted_wpos(t, program, 0.5f, invert ? -0.5f : 0.5f);
4546 }
4547 else
4548 assert(0);
4549 }
4550
4551 /* we invert after adjustment so that we avoid the MOV to temporary,
4552 * and reuse the adjustment ADD instead */
4553 emit_wpos_inversion(t, program, invert);
4554 }
4555
4556 /**
4557 * OpenGL's fragment gl_FrontFace input is 1 for front-facing, 0 for back.
4558 * TGSI uses +1 for front, -1 for back.
4559 * This function converts the TGSI value to the GL value. Simply clamping/
4560 * saturating the value to [0,1] does the job.
4561 */
4562 static void
4563 emit_face_var(struct st_translate *t)
4564 {
4565 struct ureg_program *ureg = t->ureg;
4566 struct ureg_dst face_temp = ureg_DECL_temporary(ureg);
4567 struct ureg_src face_input = t->inputs[t->inputMapping[FRAG_ATTRIB_FACE]];
4568
4569 /* MOV_SAT face_temp, input[face] */
4570 face_temp = ureg_saturate(face_temp);
4571 ureg_MOV(ureg, face_temp, face_input);
4572
4573 /* Use face_temp as face input from here on: */
4574 t->inputs[t->inputMapping[FRAG_ATTRIB_FACE]] = ureg_src(face_temp);
4575 }
4576
4577 static void
4578 emit_edgeflags(struct st_translate *t)
4579 {
4580 struct ureg_program *ureg = t->ureg;
4581 struct ureg_dst edge_dst = t->outputs[t->outputMapping[VERT_RESULT_EDGE]];
4582 struct ureg_src edge_src = t->inputs[t->inputMapping[VERT_ATTRIB_EDGEFLAG]];
4583
4584 ureg_MOV(ureg, edge_dst, edge_src);
4585 }
4586
4587 /**
4588 * Translate intermediate IR (glsl_to_tgsi_instruction) to TGSI format.
4589 * \param program the program to translate
4590 * \param numInputs number of input registers used
4591 * \param inputMapping maps Mesa fragment program inputs to TGSI generic
4592 * input indexes
4593 * \param inputSemanticName the TGSI_SEMANTIC flag for each input
4594 * \param inputSemanticIndex the semantic index (ex: which texcoord) for
4595 * each input
4596 * \param interpMode the TGSI_INTERPOLATE_LINEAR/PERSP mode for each input
4597 * \param numOutputs number of output registers used
4598 * \param outputMapping maps Mesa fragment program outputs to TGSI
4599 * generic outputs
4600 * \param outputSemanticName the TGSI_SEMANTIC flag for each output
4601 * \param outputSemanticIndex the semantic index (ex: which texcoord) for
4602 * each output
4603 *
4604 * \return PIPE_OK or PIPE_ERROR_OUT_OF_MEMORY
4605 */
4606 extern "C" enum pipe_error
4607 st_translate_program(
4608 struct gl_context *ctx,
4609 uint procType,
4610 struct ureg_program *ureg,
4611 glsl_to_tgsi_visitor *program,
4612 const struct gl_program *proginfo,
4613 GLuint numInputs,
4614 const GLuint inputMapping[],
4615 const ubyte inputSemanticName[],
4616 const ubyte inputSemanticIndex[],
4617 const GLuint interpMode[],
4618 GLuint numOutputs,
4619 const GLuint outputMapping[],
4620 const ubyte outputSemanticName[],
4621 const ubyte outputSemanticIndex[],
4622 boolean passthrough_edgeflags)
4623 {
4624 struct st_translate translate, *t;
4625 unsigned i;
4626 enum pipe_error ret = PIPE_OK;
4627
4628 assert(numInputs <= Elements(t->inputs));
4629 assert(numOutputs <= Elements(t->outputs));
4630
4631 t = &translate;
4632 memset(t, 0, sizeof *t);
4633
4634 t->procType = procType;
4635 t->inputMapping = inputMapping;
4636 t->outputMapping = outputMapping;
4637 t->ureg = ureg;
4638 t->pointSizeOutIndex = -1;
4639 t->prevInstWrotePointSize = GL_FALSE;
4640
4641 /*
4642 * Declare input attributes.
4643 */
4644 if (procType == TGSI_PROCESSOR_FRAGMENT) {
4645 for (i = 0; i < numInputs; i++) {
4646 t->inputs[i] = ureg_DECL_fs_input(ureg,
4647 inputSemanticName[i],
4648 inputSemanticIndex[i],
4649 interpMode[i]);
4650 }
4651
4652 if (proginfo->InputsRead & FRAG_BIT_WPOS) {
4653 /* Must do this after setting up t->inputs, and before
4654 * emitting constant references, below:
4655 */
4656 emit_wpos(st_context(ctx), t, proginfo, ureg);
4657 }
4658
4659 if (proginfo->InputsRead & FRAG_BIT_FACE)
4660 emit_face_var(t);
4661
4662 /*
4663 * Declare output attributes.
4664 */
4665 for (i = 0; i < numOutputs; i++) {
4666 switch (outputSemanticName[i]) {
4667 case TGSI_SEMANTIC_POSITION:
4668 t->outputs[i] = ureg_DECL_output(ureg,
4669 TGSI_SEMANTIC_POSITION, /* Z/Depth */
4670 outputSemanticIndex[i]);
4671 t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_Z);
4672 break;
4673 case TGSI_SEMANTIC_STENCIL:
4674 t->outputs[i] = ureg_DECL_output(ureg,
4675 TGSI_SEMANTIC_STENCIL, /* Stencil */
4676 outputSemanticIndex[i]);
4677 t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_Y);
4678 break;
4679 case TGSI_SEMANTIC_COLOR:
4680 t->outputs[i] = ureg_DECL_output(ureg,
4681 TGSI_SEMANTIC_COLOR,
4682 outputSemanticIndex[i]);
4683 break;
4684 default:
4685 assert(!"fragment shader outputs must be POSITION/STENCIL/COLOR");
4686 return PIPE_ERROR_BAD_INPUT;
4687 }
4688 }
4689 }
4690 else if (procType == TGSI_PROCESSOR_GEOMETRY) {
4691 for (i = 0; i < numInputs; i++) {
4692 t->inputs[i] = ureg_DECL_gs_input(ureg,
4693 i,
4694 inputSemanticName[i],
4695 inputSemanticIndex[i]);
4696 }
4697
4698 for (i = 0; i < numOutputs; i++) {
4699 t->outputs[i] = ureg_DECL_output(ureg,
4700 outputSemanticName[i],
4701 outputSemanticIndex[i]);
4702 }
4703 }
4704 else {
4705 assert(procType == TGSI_PROCESSOR_VERTEX);
4706
4707 for (i = 0; i < numInputs; i++) {
4708 t->inputs[i] = ureg_DECL_vs_input(ureg, i);
4709 }
4710
4711 for (i = 0; i < numOutputs; i++) {
4712 t->outputs[i] = ureg_DECL_output(ureg,
4713 outputSemanticName[i],
4714 outputSemanticIndex[i]);
4715 if ((outputSemanticName[i] == TGSI_SEMANTIC_PSIZE) && proginfo->Id) {
4716 /* Writing to the point size result register requires special
4717 * handling to implement clamping.
4718 */
4719 static const gl_state_index pointSizeClampState[STATE_LENGTH]
4720 = { STATE_INTERNAL, STATE_POINT_SIZE_IMPL_CLAMP, (gl_state_index)0, (gl_state_index)0, (gl_state_index)0 };
4721 /* XXX: note we are modifying the incoming shader here! Need to
4722 * do this before emitting the constant decls below, or this
4723 * will be missed.
4724 */
4725 unsigned pointSizeClampConst =
4726 _mesa_add_state_reference(proginfo->Parameters,
4727 pointSizeClampState);
4728 struct ureg_dst psizregtemp = ureg_DECL_temporary(ureg);
4729 t->pointSizeConst = ureg_DECL_constant(ureg, pointSizeClampConst);
4730 t->pointSizeResult = t->outputs[i];
4731 t->pointSizeOutIndex = i;
4732 t->outputs[i] = psizregtemp;
4733 }
4734 }
4735 if (passthrough_edgeflags)
4736 emit_edgeflags(t);
4737 }
4738
4739 /* Declare address register.
4740 */
4741 if (program->num_address_regs > 0) {
4742 assert(program->num_address_regs == 1);
4743 t->address[0] = ureg_DECL_address(ureg);
4744 }
4745
4746 /* Declare misc input registers
4747 */
4748 {
4749 GLbitfield sysInputs = proginfo->SystemValuesRead;
4750 unsigned numSys = 0;
4751 for (i = 0; sysInputs; i++) {
4752 if (sysInputs & (1 << i)) {
4753 unsigned semName = mesa_sysval_to_semantic[i];
4754 t->systemValues[i] = ureg_DECL_system_value(ureg, numSys, semName, 0);
4755 numSys++;
4756 sysInputs &= ~(1 << i);
4757 }
4758 }
4759 }
4760
4761 if (program->indirect_addr_temps) {
4762 /* If temps are accessed with indirect addressing, declare temporaries
4763 * in sequential order. Else, we declare them on demand elsewhere.
4764 * (Note: the number of temporaries is equal to program->next_temp)
4765 */
4766 for (i = 0; i < (unsigned)program->next_temp; i++) {
4767 /* XXX use TGSI_FILE_TEMPORARY_ARRAY when it's supported by ureg */
4768 t->temps[i] = ureg_DECL_temporary(t->ureg);
4769 }
4770 }
4771
4772 /* Emit constants and uniforms. TGSI uses a single index space for these,
4773 * so we put all the translated regs in t->constants.
4774 */
4775 if (proginfo->Parameters) {
4776 t->constants = (struct ureg_src *)CALLOC(proginfo->Parameters->NumParameters * sizeof(t->constants[0]));
4777 if (t->constants == NULL) {
4778 ret = PIPE_ERROR_OUT_OF_MEMORY;
4779 goto out;
4780 }
4781
4782 for (i = 0; i < proginfo->Parameters->NumParameters; i++) {
4783 switch (proginfo->Parameters->Parameters[i].Type) {
4784 case PROGRAM_ENV_PARAM:
4785 case PROGRAM_LOCAL_PARAM:
4786 case PROGRAM_STATE_VAR:
4787 case PROGRAM_NAMED_PARAM:
4788 case PROGRAM_UNIFORM:
4789 t->constants[i] = ureg_DECL_constant(ureg, i);
4790 break;
4791
4792 /* Emit immediates for PROGRAM_CONSTANT only when there's no indirect
4793 * addressing of the const buffer.
4794 * FIXME: Be smarter and recognize param arrays:
4795 * indirect addressing is only valid within the referenced
4796 * array.
4797 */
4798 case PROGRAM_CONSTANT:
4799 if (program->indirect_addr_consts)
4800 t->constants[i] = ureg_DECL_constant(ureg, i);
4801 else
4802 t->constants[i] = emit_immediate(t,
4803 proginfo->Parameters->ParameterValues[i],
4804 proginfo->Parameters->Parameters[i].DataType,
4805 4);
4806 break;
4807 default:
4808 break;
4809 }
4810 }
4811 }
4812
4813 /* Emit immediate values.
4814 */
4815 t->immediates = (struct ureg_src *)CALLOC(program->num_immediates * sizeof(struct ureg_src));
4816 if (t->immediates == NULL) {
4817 ret = PIPE_ERROR_OUT_OF_MEMORY;
4818 goto out;
4819 }
4820 i = 0;
4821 foreach_iter(exec_list_iterator, iter, program->immediates) {
4822 immediate_storage *imm = (immediate_storage *)iter.get();
4823 t->immediates[i++] = emit_immediate(t, imm->values, imm->type, imm->size);
4824 }
4825
4826 /* texture samplers */
4827 for (i = 0; i < ctx->Const.MaxTextureImageUnits; i++) {
4828 if (program->samplers_used & (1 << i)) {
4829 t->samplers[i] = ureg_DECL_sampler(ureg, i);
4830 }
4831 }
4832
4833 /* Emit each instruction in turn:
4834 */
4835 foreach_iter(exec_list_iterator, iter, program->instructions) {
4836 set_insn_start(t, ureg_get_instruction_number(ureg));
4837 compile_tgsi_instruction(t, (glsl_to_tgsi_instruction *)iter.get());
4838
4839 if (t->prevInstWrotePointSize && proginfo->Id) {
4840 /* The previous instruction wrote to the (fake) vertex point size
4841 * result register. Now we need to clamp that value to the min/max
4842 * point size range, putting the result into the real point size
4843 * register.
4844 * Note that we can't do this easily at the end of program due to
4845 * possible early return.
4846 */
4847 set_insn_start(t, ureg_get_instruction_number(ureg));
4848 ureg_MAX(t->ureg,
4849 ureg_writemask(t->outputs[t->pointSizeOutIndex], WRITEMASK_X),
4850 ureg_src(t->outputs[t->pointSizeOutIndex]),
4851 ureg_swizzle(t->pointSizeConst, 1,1,1,1));
4852 ureg_MIN(t->ureg, ureg_writemask(t->pointSizeResult, WRITEMASK_X),
4853 ureg_src(t->outputs[t->pointSizeOutIndex]),
4854 ureg_swizzle(t->pointSizeConst, 2,2,2,2));
4855 }
4856 t->prevInstWrotePointSize = GL_FALSE;
4857 }
4858
4859 /* Fix up all emitted labels:
4860 */
4861 for (i = 0; i < t->labels_count; i++) {
4862 ureg_fixup_label(ureg, t->labels[i].token,
4863 t->insn[t->labels[i].branch_target]);
4864 }
4865
4866 out:
4867 FREE(t->insn);
4868 FREE(t->labels);
4869 FREE(t->constants);
4870 FREE(t->immediates);
4871
4872 if (t->error) {
4873 debug_printf("%s: translate error flag set\n", __FUNCTION__);
4874 }
4875
4876 return ret;
4877 }
4878 /* ----------------------------- End TGSI code ------------------------------ */
4879
4880 /**
4881 * Convert a shader's GLSL IR into a Mesa gl_program, although without
4882 * generating Mesa IR.
4883 */
4884 static struct gl_program *
4885 get_mesa_program(struct gl_context *ctx,
4886 struct gl_shader_program *shader_program,
4887 struct gl_shader *shader)
4888 {
4889 glsl_to_tgsi_visitor* v = new glsl_to_tgsi_visitor();
4890 struct gl_program *prog;
4891 GLenum target;
4892 const char *target_string;
4893 bool progress;
4894 struct gl_shader_compiler_options *options =
4895 &ctx->ShaderCompilerOptions[_mesa_shader_type_to_index(shader->Type)];
4896
4897 switch (shader->Type) {
4898 case GL_VERTEX_SHADER:
4899 target = GL_VERTEX_PROGRAM_ARB;
4900 target_string = "vertex";
4901 break;
4902 case GL_FRAGMENT_SHADER:
4903 target = GL_FRAGMENT_PROGRAM_ARB;
4904 target_string = "fragment";
4905 break;
4906 case GL_GEOMETRY_SHADER:
4907 target = GL_GEOMETRY_PROGRAM_NV;
4908 target_string = "geometry";
4909 break;
4910 default:
4911 assert(!"should not be reached");
4912 return NULL;
4913 }
4914
4915 validate_ir_tree(shader->ir);
4916
4917 prog = ctx->Driver.NewProgram(ctx, target, shader_program->Name);
4918 if (!prog)
4919 return NULL;
4920 prog->Parameters = _mesa_new_parameter_list();
4921 prog->Varying = _mesa_new_parameter_list();
4922 prog->Attributes = _mesa_new_parameter_list();
4923 v->ctx = ctx;
4924 v->prog = prog;
4925 v->shader_program = shader_program;
4926 v->options = options;
4927 v->glsl_version = ctx->Const.GLSLVersion;
4928 v->native_integers = ctx->Const.NativeIntegers;
4929
4930 add_uniforms_to_parameters_list(shader_program, shader, prog);
4931
4932 /* Emit intermediate IR for main(). */
4933 visit_exec_list(shader->ir, v);
4934
4935 /* Now emit bodies for any functions that were used. */
4936 do {
4937 progress = GL_FALSE;
4938
4939 foreach_iter(exec_list_iterator, iter, v->function_signatures) {
4940 function_entry *entry = (function_entry *)iter.get();
4941
4942 if (!entry->bgn_inst) {
4943 v->current_function = entry;
4944
4945 entry->bgn_inst = v->emit(NULL, TGSI_OPCODE_BGNSUB);
4946 entry->bgn_inst->function = entry;
4947
4948 visit_exec_list(&entry->sig->body, v);
4949
4950 glsl_to_tgsi_instruction *last;
4951 last = (glsl_to_tgsi_instruction *)v->instructions.get_tail();
4952 if (last->op != TGSI_OPCODE_RET)
4953 v->emit(NULL, TGSI_OPCODE_RET);
4954
4955 glsl_to_tgsi_instruction *end;
4956 end = v->emit(NULL, TGSI_OPCODE_ENDSUB);
4957 end->function = entry;
4958
4959 progress = GL_TRUE;
4960 }
4961 }
4962 } while (progress);
4963
4964 #if 0
4965 /* Print out some information (for debugging purposes) used by the
4966 * optimization passes. */
4967 for (i=0; i < v->next_temp; i++) {
4968 int fr = v->get_first_temp_read(i);
4969 int fw = v->get_first_temp_write(i);
4970 int lr = v->get_last_temp_read(i);
4971 int lw = v->get_last_temp_write(i);
4972
4973 printf("Temp %d: FR=%3d FW=%3d LR=%3d LW=%3d\n", i, fr, fw, lr, lw);
4974 assert(fw <= fr);
4975 }
4976 #endif
4977
4978 /* Remove reads to output registers, and to varyings in vertex shaders. */
4979 v->remove_output_reads(PROGRAM_OUTPUT);
4980 if (target == GL_VERTEX_PROGRAM_ARB)
4981 v->remove_output_reads(PROGRAM_VARYING);
4982
4983 /* Perform optimizations on the instructions in the glsl_to_tgsi_visitor. */
4984 v->simplify_cmp();
4985 v->copy_propagate();
4986 while (v->eliminate_dead_code_advanced());
4987
4988 /* FIXME: These passes to optimize temporary registers don't work when there
4989 * is indirect addressing of the temporary register space. We need proper
4990 * array support so that we don't have to give up these passes in every
4991 * shader that uses arrays.
4992 */
4993 if (!v->indirect_addr_temps) {
4994 v->eliminate_dead_code();
4995 v->merge_registers();
4996 v->renumber_registers();
4997 }
4998
4999 /* Write the END instruction. */
5000 v->emit(NULL, TGSI_OPCODE_END);
5001
5002 if (ctx->Shader.Flags & GLSL_DUMP) {
5003 printf("\n");
5004 printf("GLSL IR for linked %s program %d:\n", target_string,
5005 shader_program->Name);
5006 _mesa_print_ir(shader->ir, NULL);
5007 printf("\n");
5008 printf("\n");
5009 }
5010
5011 prog->Instructions = NULL;
5012 prog->NumInstructions = 0;
5013
5014 do_set_program_inouts(shader->ir, prog);
5015 count_resources(v, prog);
5016
5017 check_resources(ctx, shader_program, v, prog);
5018
5019 _mesa_reference_program(ctx, &shader->Program, prog);
5020
5021 struct st_vertex_program *stvp;
5022 struct st_fragment_program *stfp;
5023 struct st_geometry_program *stgp;
5024
5025 switch (shader->Type) {
5026 case GL_VERTEX_SHADER:
5027 stvp = (struct st_vertex_program *)prog;
5028 stvp->glsl_to_tgsi = v;
5029 break;
5030 case GL_FRAGMENT_SHADER:
5031 stfp = (struct st_fragment_program *)prog;
5032 stfp->glsl_to_tgsi = v;
5033 break;
5034 case GL_GEOMETRY_SHADER:
5035 stgp = (struct st_geometry_program *)prog;
5036 stgp->glsl_to_tgsi = v;
5037 break;
5038 default:
5039 assert(!"should not be reached");
5040 return NULL;
5041 }
5042
5043 return prog;
5044 }
5045
5046 extern "C" {
5047
5048 struct gl_shader *
5049 st_new_shader(struct gl_context *ctx, GLuint name, GLuint type)
5050 {
5051 struct gl_shader *shader;
5052 assert(type == GL_FRAGMENT_SHADER || type == GL_VERTEX_SHADER ||
5053 type == GL_GEOMETRY_SHADER_ARB);
5054 shader = rzalloc(NULL, struct gl_shader);
5055 if (shader) {
5056 shader->Type = type;
5057 shader->Name = name;
5058 _mesa_init_shader(ctx, shader);
5059 }
5060 return shader;
5061 }
5062
5063 struct gl_shader_program *
5064 st_new_shader_program(struct gl_context *ctx, GLuint name)
5065 {
5066 struct gl_shader_program *shProg;
5067 shProg = rzalloc(NULL, struct gl_shader_program);
5068 if (shProg) {
5069 shProg->Name = name;
5070 _mesa_init_shader_program(ctx, shProg);
5071 }
5072 return shProg;
5073 }
5074
5075 /**
5076 * Link a shader.
5077 * Called via ctx->Driver.LinkShader()
5078 * This actually involves converting GLSL IR into an intermediate TGSI-like IR
5079 * with code lowering and other optimizations.
5080 */
5081 GLboolean
5082 st_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
5083 {
5084 assert(prog->LinkStatus);
5085
5086 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
5087 if (prog->_LinkedShaders[i] == NULL)
5088 continue;
5089
5090 bool progress;
5091 exec_list *ir = prog->_LinkedShaders[i]->ir;
5092 const struct gl_shader_compiler_options *options =
5093 &ctx->ShaderCompilerOptions[_mesa_shader_type_to_index(prog->_LinkedShaders[i]->Type)];
5094
5095 do {
5096 progress = false;
5097
5098 /* Lowering */
5099 do_mat_op_to_vec(ir);
5100 lower_instructions(ir, (MOD_TO_FRACT | DIV_TO_MUL_RCP | EXP_TO_EXP2
5101 | LOG_TO_LOG2 | INT_DIV_TO_MUL_RCP
5102 | ((options->EmitNoPow) ? POW_TO_EXP2 : 0)));
5103
5104 progress = do_lower_jumps(ir, true, true, options->EmitNoMainReturn, options->EmitNoCont, options->EmitNoLoops) || progress;
5105
5106 progress = do_common_optimization(ir, true, options->MaxUnrollIterations) || progress;
5107
5108 progress = lower_quadop_vector(ir, false) || progress;
5109
5110 if (options->MaxIfDepth == 0)
5111 progress = lower_discard(ir) || progress;
5112
5113 progress = lower_if_to_cond_assign(ir, options->MaxIfDepth) || progress;
5114
5115 if (options->EmitNoNoise)
5116 progress = lower_noise(ir) || progress;
5117
5118 /* If there are forms of indirect addressing that the driver
5119 * cannot handle, perform the lowering pass.
5120 */
5121 if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput
5122 || options->EmitNoIndirectTemp || options->EmitNoIndirectUniform)
5123 progress =
5124 lower_variable_index_to_cond_assign(ir,
5125 options->EmitNoIndirectInput,
5126 options->EmitNoIndirectOutput,
5127 options->EmitNoIndirectTemp,
5128 options->EmitNoIndirectUniform)
5129 || progress;
5130
5131 progress = do_vec_index_to_cond_assign(ir) || progress;
5132 } while (progress);
5133
5134 validate_ir_tree(ir);
5135 }
5136
5137 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
5138 struct gl_program *linked_prog;
5139
5140 if (prog->_LinkedShaders[i] == NULL)
5141 continue;
5142
5143 linked_prog = get_mesa_program(ctx, prog, prog->_LinkedShaders[i]);
5144
5145 if (linked_prog) {
5146 bool ok = true;
5147
5148 switch (prog->_LinkedShaders[i]->Type) {
5149 case GL_VERTEX_SHADER:
5150 _mesa_reference_vertprog(ctx, &prog->VertexProgram,
5151 (struct gl_vertex_program *)linked_prog);
5152 ok = ctx->Driver.ProgramStringNotify(ctx, GL_VERTEX_PROGRAM_ARB,
5153 linked_prog);
5154 if (!ok) {
5155 _mesa_reference_vertprog(ctx, &prog->VertexProgram, NULL);
5156 }
5157 break;
5158 case GL_FRAGMENT_SHADER:
5159 _mesa_reference_fragprog(ctx, &prog->FragmentProgram,
5160 (struct gl_fragment_program *)linked_prog);
5161 ok = ctx->Driver.ProgramStringNotify(ctx, GL_FRAGMENT_PROGRAM_ARB,
5162 linked_prog);
5163 if (!ok) {
5164 _mesa_reference_fragprog(ctx, &prog->FragmentProgram, NULL);
5165 }
5166 break;
5167 case GL_GEOMETRY_SHADER:
5168 _mesa_reference_geomprog(ctx, &prog->GeometryProgram,
5169 (struct gl_geometry_program *)linked_prog);
5170 ok = ctx->Driver.ProgramStringNotify(ctx, GL_GEOMETRY_PROGRAM_NV,
5171 linked_prog);
5172 if (!ok) {
5173 _mesa_reference_geomprog(ctx, &prog->GeometryProgram, NULL);
5174 }
5175 break;
5176 }
5177 if (!ok) {
5178 _mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program, NULL);
5179 _mesa_reference_program(ctx, &linked_prog, NULL);
5180 return GL_FALSE;
5181 }
5182 }
5183
5184 _mesa_reference_program(ctx, &linked_prog, NULL);
5185 }
5186
5187 return GL_TRUE;
5188 }
5189
5190 } /* extern "C" */