glsl_to_tgsi: add each relative address to the previous
[mesa.git] / src / mesa / state_tracker / st_glsl_to_tgsi.cpp
1 /*
2 * Copyright (C) 2005-2007 Brian Paul All Rights Reserved.
3 * Copyright (C) 2008 VMware, Inc. All Rights Reserved.
4 * Copyright © 2010 Intel Corporation
5 * Copyright © 2011 Bryan Cain
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the next
15 * paragraph) shall be included in all copies or substantial portions of the
16 * Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
23 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
24 * DEALINGS IN THE SOFTWARE.
25 */
26
27 /**
28 * \file glsl_to_tgsi.cpp
29 *
30 * Translate GLSL IR to TGSI.
31 */
32
33 #include <stdio.h>
34 #include "main/compiler.h"
35 #include "ir.h"
36 #include "ir_visitor.h"
37 #include "ir_print_visitor.h"
38 #include "ir_expression_flattening.h"
39 #include "glsl_types.h"
40 #include "glsl_parser_extras.h"
41 #include "../glsl/program.h"
42 #include "ir_optimization.h"
43 #include "ast.h"
44
45 extern "C" {
46 #include "main/mtypes.h"
47 #include "main/shaderapi.h"
48 #include "main/shaderobj.h"
49 #include "main/uniforms.h"
50 #include "program/hash_table.h"
51 #include "program/prog_instruction.h"
52 #include "program/prog_optimize.h"
53 #include "program/prog_print.h"
54 #include "program/program.h"
55 #include "program/prog_uniform.h"
56 #include "program/prog_parameter.h"
57 #include "program/sampler.h"
58
59 #include "pipe/p_compiler.h"
60 #include "pipe/p_context.h"
61 #include "pipe/p_screen.h"
62 #include "pipe/p_shader_tokens.h"
63 #include "pipe/p_state.h"
64 #include "util/u_math.h"
65 #include "tgsi/tgsi_ureg.h"
66 #include "tgsi/tgsi_info.h"
67 #include "st_context.h"
68 #include "st_program.h"
69 #include "st_glsl_to_tgsi.h"
70 #include "st_mesa_to_tgsi.h"
71 }
72
73 #define PROGRAM_IMMEDIATE PROGRAM_FILE_MAX
74 #define PROGRAM_ANY_CONST ((1 << PROGRAM_LOCAL_PARAM) | \
75 (1 << PROGRAM_ENV_PARAM) | \
76 (1 << PROGRAM_STATE_VAR) | \
77 (1 << PROGRAM_NAMED_PARAM) | \
78 (1 << PROGRAM_CONSTANT) | \
79 (1 << PROGRAM_UNIFORM))
80
81 #define MAX_TEMPS 4096
82
83 class st_src_reg;
84 class st_dst_reg;
85
86 static int swizzle_for_size(int size);
87
88 /**
89 * This struct is a corresponding struct to TGSI ureg_src.
90 */
91 class st_src_reg {
92 public:
93 st_src_reg(gl_register_file file, int index, const glsl_type *type)
94 {
95 this->file = file;
96 this->index = index;
97 if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
98 this->swizzle = swizzle_for_size(type->vector_elements);
99 else
100 this->swizzle = SWIZZLE_XYZW;
101 this->negate = 0;
102 this->type = type ? type->base_type : GLSL_TYPE_ERROR;
103 this->reladdr = NULL;
104 }
105
106 st_src_reg(gl_register_file file, int index, int type)
107 {
108 this->type = type;
109 this->file = file;
110 this->index = index;
111 this->swizzle = SWIZZLE_XYZW;
112 this->negate = 0;
113 this->reladdr = NULL;
114 }
115
116 st_src_reg()
117 {
118 this->type = GLSL_TYPE_ERROR;
119 this->file = PROGRAM_UNDEFINED;
120 this->index = 0;
121 this->swizzle = 0;
122 this->negate = 0;
123 this->reladdr = NULL;
124 }
125
126 explicit st_src_reg(st_dst_reg reg);
127
128 gl_register_file file; /**< PROGRAM_* from Mesa */
129 int index; /**< temporary index, VERT_ATTRIB_*, FRAG_ATTRIB_*, etc. */
130 GLuint swizzle; /**< SWIZZLE_XYZWONEZERO swizzles from Mesa. */
131 int negate; /**< NEGATE_XYZW mask from mesa */
132 int type; /** GLSL_TYPE_* from GLSL IR (enum glsl_base_type) */
133 /** Register index should be offset by the integer in this reg. */
134 st_src_reg *reladdr;
135 };
136
137 class st_dst_reg {
138 public:
139 st_dst_reg(gl_register_file file, int writemask, int type)
140 {
141 this->file = file;
142 this->index = 0;
143 this->writemask = writemask;
144 this->cond_mask = COND_TR;
145 this->reladdr = NULL;
146 this->type = type;
147 }
148
149 st_dst_reg()
150 {
151 this->type = GLSL_TYPE_ERROR;
152 this->file = PROGRAM_UNDEFINED;
153 this->index = 0;
154 this->writemask = 0;
155 this->cond_mask = COND_TR;
156 this->reladdr = NULL;
157 }
158
159 explicit st_dst_reg(st_src_reg reg);
160
161 gl_register_file file; /**< PROGRAM_* from Mesa */
162 int index; /**< temporary index, VERT_ATTRIB_*, FRAG_ATTRIB_*, etc. */
163 int writemask; /**< Bitfield of WRITEMASK_[XYZW] */
164 GLuint cond_mask:4;
165 int type; /** GLSL_TYPE_* from GLSL IR (enum glsl_base_type) */
166 /** Register index should be offset by the integer in this reg. */
167 st_src_reg *reladdr;
168 };
169
170 st_src_reg::st_src_reg(st_dst_reg reg)
171 {
172 this->type = reg.type;
173 this->file = reg.file;
174 this->index = reg.index;
175 this->swizzle = SWIZZLE_XYZW;
176 this->negate = 0;
177 this->reladdr = NULL;
178 }
179
180 st_dst_reg::st_dst_reg(st_src_reg reg)
181 {
182 this->type = reg.type;
183 this->file = reg.file;
184 this->index = reg.index;
185 this->writemask = WRITEMASK_XYZW;
186 this->cond_mask = COND_TR;
187 this->reladdr = reg.reladdr;
188 }
189
190 class glsl_to_tgsi_instruction : public exec_node {
191 public:
192 /* Callers of this ralloc-based new need not call delete. It's
193 * easier to just ralloc_free 'ctx' (or any of its ancestors). */
194 static void* operator new(size_t size, void *ctx)
195 {
196 void *node;
197
198 node = rzalloc_size(ctx, size);
199 assert(node != NULL);
200
201 return node;
202 }
203
204 unsigned op;
205 st_dst_reg dst;
206 st_src_reg src[3];
207 /** Pointer to the ir source this tree came from for debugging */
208 ir_instruction *ir;
209 GLboolean cond_update;
210 bool saturate;
211 int sampler; /**< sampler index */
212 int tex_target; /**< One of TEXTURE_*_INDEX */
213 GLboolean tex_shadow;
214 int dead_mask; /**< Used in dead code elimination */
215
216 class function_entry *function; /* Set on TGSI_OPCODE_CAL or TGSI_OPCODE_BGNSUB */
217 };
218
219 class variable_storage : public exec_node {
220 public:
221 variable_storage(ir_variable *var, gl_register_file file, int index)
222 : file(file), index(index), var(var)
223 {
224 /* empty */
225 }
226
227 gl_register_file file;
228 int index;
229 ir_variable *var; /* variable that maps to this, if any */
230 };
231
232 class immediate_storage : public exec_node {
233 public:
234 immediate_storage(gl_constant_value *values, int size, int type)
235 {
236 memcpy(this->values, values, size * sizeof(gl_constant_value));
237 this->size = size;
238 this->type = type;
239 }
240
241 gl_constant_value values[4];
242 int size; /**< Number of components (1-4) */
243 int type; /**< GL_FLOAT, GL_INT, GL_BOOL, or GL_UNSIGNED_INT */
244 };
245
246 class function_entry : public exec_node {
247 public:
248 ir_function_signature *sig;
249
250 /**
251 * identifier of this function signature used by the program.
252 *
253 * At the point that TGSI instructions for function calls are
254 * generated, we don't know the address of the first instruction of
255 * the function body. So we make the BranchTarget that is called a
256 * small integer and rewrite them during set_branchtargets().
257 */
258 int sig_id;
259
260 /**
261 * Pointer to first instruction of the function body.
262 *
263 * Set during function body emits after main() is processed.
264 */
265 glsl_to_tgsi_instruction *bgn_inst;
266
267 /**
268 * Index of the first instruction of the function body in actual TGSI.
269 *
270 * Set after conversion from glsl_to_tgsi_instruction to TGSI.
271 */
272 int inst;
273
274 /** Storage for the return value. */
275 st_src_reg return_reg;
276 };
277
278 class glsl_to_tgsi_visitor : public ir_visitor {
279 public:
280 glsl_to_tgsi_visitor();
281 ~glsl_to_tgsi_visitor();
282
283 function_entry *current_function;
284
285 struct gl_context *ctx;
286 struct gl_program *prog;
287 struct gl_shader_program *shader_program;
288 struct gl_shader_compiler_options *options;
289
290 int next_temp;
291
292 int num_address_regs;
293 int samplers_used;
294 bool indirect_addr_temps;
295 bool indirect_addr_consts;
296
297 int glsl_version;
298
299 variable_storage *find_variable_storage(ir_variable *var);
300
301 int add_constant(gl_register_file file, gl_constant_value values[4],
302 int size, int datatype, GLuint *swizzle_out);
303
304 function_entry *get_function_signature(ir_function_signature *sig);
305
306 st_src_reg get_temp(const glsl_type *type);
307 void reladdr_to_temp(ir_instruction *ir, st_src_reg *reg, int *num_reladdr);
308
309 st_src_reg st_src_reg_for_float(float val);
310 st_src_reg st_src_reg_for_int(int val);
311 st_src_reg st_src_reg_for_type(int type, int val);
312
313 /**
314 * \name Visit methods
315 *
316 * As typical for the visitor pattern, there must be one \c visit method for
317 * each concrete subclass of \c ir_instruction. Virtual base classes within
318 * the hierarchy should not have \c visit methods.
319 */
320 /*@{*/
321 virtual void visit(ir_variable *);
322 virtual void visit(ir_loop *);
323 virtual void visit(ir_loop_jump *);
324 virtual void visit(ir_function_signature *);
325 virtual void visit(ir_function *);
326 virtual void visit(ir_expression *);
327 virtual void visit(ir_swizzle *);
328 virtual void visit(ir_dereference_variable *);
329 virtual void visit(ir_dereference_array *);
330 virtual void visit(ir_dereference_record *);
331 virtual void visit(ir_assignment *);
332 virtual void visit(ir_constant *);
333 virtual void visit(ir_call *);
334 virtual void visit(ir_return *);
335 virtual void visit(ir_discard *);
336 virtual void visit(ir_texture *);
337 virtual void visit(ir_if *);
338 /*@}*/
339
340 st_src_reg result;
341
342 /** List of variable_storage */
343 exec_list variables;
344
345 /** List of immediate_storage */
346 exec_list immediates;
347 int num_immediates;
348
349 /** List of function_entry */
350 exec_list function_signatures;
351 int next_signature_id;
352
353 /** List of glsl_to_tgsi_instruction */
354 exec_list instructions;
355
356 glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op);
357
358 glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op,
359 st_dst_reg dst, st_src_reg src0);
360
361 glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op,
362 st_dst_reg dst, st_src_reg src0, st_src_reg src1);
363
364 glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op,
365 st_dst_reg dst,
366 st_src_reg src0, st_src_reg src1, st_src_reg src2);
367
368 unsigned get_opcode(ir_instruction *ir, unsigned op,
369 st_dst_reg dst,
370 st_src_reg src0, st_src_reg src1);
371
372 /**
373 * Emit the correct dot-product instruction for the type of arguments
374 */
375 void emit_dp(ir_instruction *ir,
376 st_dst_reg dst,
377 st_src_reg src0,
378 st_src_reg src1,
379 unsigned elements);
380
381 void emit_scalar(ir_instruction *ir, unsigned op,
382 st_dst_reg dst, st_src_reg src0);
383
384 void emit_scalar(ir_instruction *ir, unsigned op,
385 st_dst_reg dst, st_src_reg src0, st_src_reg src1);
386
387 void emit_arl(ir_instruction *ir, st_dst_reg dst, st_src_reg src0);
388
389 void emit_scs(ir_instruction *ir, unsigned op,
390 st_dst_reg dst, const st_src_reg &src);
391
392 GLboolean try_emit_mad(ir_expression *ir,
393 int mul_operand);
394 GLboolean try_emit_sat(ir_expression *ir);
395
396 void emit_swz(ir_expression *ir);
397
398 bool process_move_condition(ir_rvalue *ir);
399
400 void remove_output_reads(gl_register_file type);
401 void simplify_cmp(void);
402
403 void rename_temp_register(int index, int new_index);
404 int get_first_temp_read(int index);
405 int get_first_temp_write(int index);
406 int get_last_temp_read(int index);
407 int get_last_temp_write(int index);
408
409 void copy_propagate(void);
410 void eliminate_dead_code(void);
411 int eliminate_dead_code_advanced(void);
412 void merge_registers(void);
413 void renumber_registers(void);
414
415 void *mem_ctx;
416 };
417
418 static st_src_reg undef_src = st_src_reg(PROGRAM_UNDEFINED, 0, GLSL_TYPE_ERROR);
419
420 static st_dst_reg undef_dst = st_dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP, GLSL_TYPE_ERROR);
421
422 static st_dst_reg address_reg = st_dst_reg(PROGRAM_ADDRESS, WRITEMASK_X, GLSL_TYPE_FLOAT);
423
424 static void
425 fail_link(struct gl_shader_program *prog, const char *fmt, ...) PRINTFLIKE(2, 3);
426
427 static void
428 fail_link(struct gl_shader_program *prog, const char *fmt, ...)
429 {
430 va_list args;
431 va_start(args, fmt);
432 ralloc_vasprintf_append(&prog->InfoLog, fmt, args);
433 va_end(args);
434
435 prog->LinkStatus = GL_FALSE;
436 }
437
438 static int
439 swizzle_for_size(int size)
440 {
441 int size_swizzles[4] = {
442 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
443 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
444 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
445 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
446 };
447
448 assert((size >= 1) && (size <= 4));
449 return size_swizzles[size - 1];
450 }
451
452 static bool
453 is_tex_instruction(unsigned opcode)
454 {
455 const tgsi_opcode_info* info = tgsi_get_opcode_info(opcode);
456 return info->is_tex;
457 }
458
459 static unsigned
460 num_inst_dst_regs(unsigned opcode)
461 {
462 const tgsi_opcode_info* info = tgsi_get_opcode_info(opcode);
463 return info->num_dst;
464 }
465
466 static unsigned
467 num_inst_src_regs(unsigned opcode)
468 {
469 const tgsi_opcode_info* info = tgsi_get_opcode_info(opcode);
470 return info->is_tex ? info->num_src - 1 : info->num_src;
471 }
472
473 glsl_to_tgsi_instruction *
474 glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op,
475 st_dst_reg dst,
476 st_src_reg src0, st_src_reg src1, st_src_reg src2)
477 {
478 glsl_to_tgsi_instruction *inst = new(mem_ctx) glsl_to_tgsi_instruction();
479 int num_reladdr = 0, i;
480
481 op = get_opcode(ir, op, dst, src0, src1);
482
483 /* If we have to do relative addressing, we want to load the ARL
484 * reg directly for one of the regs, and preload the other reladdr
485 * sources into temps.
486 */
487 num_reladdr += dst.reladdr != NULL;
488 num_reladdr += src0.reladdr != NULL;
489 num_reladdr += src1.reladdr != NULL;
490 num_reladdr += src2.reladdr != NULL;
491
492 reladdr_to_temp(ir, &src2, &num_reladdr);
493 reladdr_to_temp(ir, &src1, &num_reladdr);
494 reladdr_to_temp(ir, &src0, &num_reladdr);
495
496 if (dst.reladdr) {
497 emit_arl(ir, address_reg, *dst.reladdr);
498 num_reladdr--;
499 }
500 assert(num_reladdr == 0);
501
502 inst->op = op;
503 inst->dst = dst;
504 inst->src[0] = src0;
505 inst->src[1] = src1;
506 inst->src[2] = src2;
507 inst->ir = ir;
508 inst->dead_mask = 0;
509
510 inst->function = NULL;
511
512 if (op == TGSI_OPCODE_ARL)
513 this->num_address_regs = 1;
514
515 /* Update indirect addressing status used by TGSI */
516 if (dst.reladdr) {
517 switch(dst.file) {
518 case PROGRAM_TEMPORARY:
519 this->indirect_addr_temps = true;
520 break;
521 case PROGRAM_LOCAL_PARAM:
522 case PROGRAM_ENV_PARAM:
523 case PROGRAM_STATE_VAR:
524 case PROGRAM_NAMED_PARAM:
525 case PROGRAM_CONSTANT:
526 case PROGRAM_UNIFORM:
527 this->indirect_addr_consts = true;
528 break;
529 case PROGRAM_IMMEDIATE:
530 assert(!"immediates should not have indirect addressing");
531 break;
532 default:
533 break;
534 }
535 }
536 else {
537 for (i=0; i<3; i++) {
538 if(inst->src[i].reladdr) {
539 switch(inst->src[i].file) {
540 case PROGRAM_TEMPORARY:
541 this->indirect_addr_temps = true;
542 break;
543 case PROGRAM_LOCAL_PARAM:
544 case PROGRAM_ENV_PARAM:
545 case PROGRAM_STATE_VAR:
546 case PROGRAM_NAMED_PARAM:
547 case PROGRAM_CONSTANT:
548 case PROGRAM_UNIFORM:
549 this->indirect_addr_consts = true;
550 break;
551 case PROGRAM_IMMEDIATE:
552 assert(!"immediates should not have indirect addressing");
553 break;
554 default:
555 break;
556 }
557 }
558 }
559 }
560
561 this->instructions.push_tail(inst);
562
563 return inst;
564 }
565
566
567 glsl_to_tgsi_instruction *
568 glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op,
569 st_dst_reg dst, st_src_reg src0, st_src_reg src1)
570 {
571 return emit(ir, op, dst, src0, src1, undef_src);
572 }
573
574 glsl_to_tgsi_instruction *
575 glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op,
576 st_dst_reg dst, st_src_reg src0)
577 {
578 assert(dst.writemask != 0);
579 return emit(ir, op, dst, src0, undef_src, undef_src);
580 }
581
582 glsl_to_tgsi_instruction *
583 glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op)
584 {
585 return emit(ir, op, undef_dst, undef_src, undef_src, undef_src);
586 }
587
588 /**
589 * Determines whether to use an integer, unsigned integer, or float opcode
590 * based on the operands and input opcode, then emits the result.
591 *
592 * TODO: type checking for remaining TGSI opcodes
593 */
594 unsigned
595 glsl_to_tgsi_visitor::get_opcode(ir_instruction *ir, unsigned op,
596 st_dst_reg dst,
597 st_src_reg src0, st_src_reg src1)
598 {
599 int type = GLSL_TYPE_FLOAT;
600
601 if (src0.type == GLSL_TYPE_FLOAT || src1.type == GLSL_TYPE_FLOAT)
602 type = GLSL_TYPE_FLOAT;
603 else if (glsl_version >= 130)
604 type = src0.type;
605
606 #define case4(c, f, i, u) \
607 case TGSI_OPCODE_##c: \
608 if (type == GLSL_TYPE_INT) op = TGSI_OPCODE_##i; \
609 else if (type == GLSL_TYPE_UINT) op = TGSI_OPCODE_##u; \
610 else op = TGSI_OPCODE_##f; \
611 break;
612 #define case3(f, i, u) case4(f, f, i, u)
613 #define case2fi(f, i) case4(f, f, i, i)
614 #define case2iu(i, u) case4(i, LAST, i, u)
615
616 switch(op) {
617 case2fi(ADD, UADD);
618 case2fi(MUL, UMUL);
619 case2fi(MAD, UMAD);
620 case3(DIV, IDIV, UDIV);
621 case3(MAX, IMAX, UMAX);
622 case3(MIN, IMIN, UMIN);
623 case2iu(MOD, UMOD);
624
625 case2fi(SEQ, USEQ);
626 case2fi(SNE, USNE);
627 case3(SGE, ISGE, USGE);
628 case3(SLT, ISLT, USLT);
629
630 case2iu(SHL, SHL);
631 case2iu(ISHR, USHR);
632 case2iu(NOT, NOT);
633 case2iu(AND, AND);
634 case2iu(OR, OR);
635 case2iu(XOR, XOR);
636
637 default: break;
638 }
639
640 assert(op != TGSI_OPCODE_LAST);
641 return op;
642 }
643
644 void
645 glsl_to_tgsi_visitor::emit_dp(ir_instruction *ir,
646 st_dst_reg dst, st_src_reg src0, st_src_reg src1,
647 unsigned elements)
648 {
649 static const unsigned dot_opcodes[] = {
650 TGSI_OPCODE_DP2, TGSI_OPCODE_DP3, TGSI_OPCODE_DP4
651 };
652
653 emit(ir, dot_opcodes[elements - 2], dst, src0, src1);
654 }
655
656 /**
657 * Emits TGSI scalar opcodes to produce unique answers across channels.
658 *
659 * Some TGSI opcodes are scalar-only, like ARB_fp/vp. The src X
660 * channel determines the result across all channels. So to do a vec4
661 * of this operation, we want to emit a scalar per source channel used
662 * to produce dest channels.
663 */
664 void
665 glsl_to_tgsi_visitor::emit_scalar(ir_instruction *ir, unsigned op,
666 st_dst_reg dst,
667 st_src_reg orig_src0, st_src_reg orig_src1)
668 {
669 int i, j;
670 int done_mask = ~dst.writemask;
671
672 /* TGSI RCP is a scalar operation splatting results to all channels,
673 * like ARB_fp/vp. So emit as many RCPs as necessary to cover our
674 * dst channels.
675 */
676 for (i = 0; i < 4; i++) {
677 GLuint this_mask = (1 << i);
678 glsl_to_tgsi_instruction *inst;
679 st_src_reg src0 = orig_src0;
680 st_src_reg src1 = orig_src1;
681
682 if (done_mask & this_mask)
683 continue;
684
685 GLuint src0_swiz = GET_SWZ(src0.swizzle, i);
686 GLuint src1_swiz = GET_SWZ(src1.swizzle, i);
687 for (j = i + 1; j < 4; j++) {
688 /* If there is another enabled component in the destination that is
689 * derived from the same inputs, generate its value on this pass as
690 * well.
691 */
692 if (!(done_mask & (1 << j)) &&
693 GET_SWZ(src0.swizzle, j) == src0_swiz &&
694 GET_SWZ(src1.swizzle, j) == src1_swiz) {
695 this_mask |= (1 << j);
696 }
697 }
698 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
699 src0_swiz, src0_swiz);
700 src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz,
701 src1_swiz, src1_swiz);
702
703 inst = emit(ir, op, dst, src0, src1);
704 inst->dst.writemask = this_mask;
705 done_mask |= this_mask;
706 }
707 }
708
709 void
710 glsl_to_tgsi_visitor::emit_scalar(ir_instruction *ir, unsigned op,
711 st_dst_reg dst, st_src_reg src0)
712 {
713 st_src_reg undef = undef_src;
714
715 undef.swizzle = SWIZZLE_XXXX;
716
717 emit_scalar(ir, op, dst, src0, undef);
718 }
719
720 void
721 glsl_to_tgsi_visitor::emit_arl(ir_instruction *ir,
722 st_dst_reg dst, st_src_reg src0)
723 {
724 st_src_reg tmp = get_temp(glsl_type::float_type);
725
726 if (src0.type == GLSL_TYPE_INT)
727 emit(NULL, TGSI_OPCODE_I2F, st_dst_reg(tmp), src0);
728 else if (src0.type == GLSL_TYPE_UINT)
729 emit(NULL, TGSI_OPCODE_U2F, st_dst_reg(tmp), src0);
730 else
731 tmp = src0;
732
733 emit(NULL, TGSI_OPCODE_ARL, dst, tmp);
734 }
735
736 /**
737 * Emit an TGSI_OPCODE_SCS instruction
738 *
739 * The \c SCS opcode functions a bit differently than the other TGSI opcodes.
740 * Instead of splatting its result across all four components of the
741 * destination, it writes one value to the \c x component and another value to
742 * the \c y component.
743 *
744 * \param ir IR instruction being processed
745 * \param op Either \c TGSI_OPCODE_SIN or \c TGSI_OPCODE_COS depending
746 * on which value is desired.
747 * \param dst Destination register
748 * \param src Source register
749 */
750 void
751 glsl_to_tgsi_visitor::emit_scs(ir_instruction *ir, unsigned op,
752 st_dst_reg dst,
753 const st_src_reg &src)
754 {
755 /* Vertex programs cannot use the SCS opcode.
756 */
757 if (this->prog->Target == GL_VERTEX_PROGRAM_ARB) {
758 emit_scalar(ir, op, dst, src);
759 return;
760 }
761
762 const unsigned component = (op == TGSI_OPCODE_SIN) ? 0 : 1;
763 const unsigned scs_mask = (1U << component);
764 int done_mask = ~dst.writemask;
765 st_src_reg tmp;
766
767 assert(op == TGSI_OPCODE_SIN || op == TGSI_OPCODE_COS);
768
769 /* If there are compnents in the destination that differ from the component
770 * that will be written by the SCS instrution, we'll need a temporary.
771 */
772 if (scs_mask != unsigned(dst.writemask)) {
773 tmp = get_temp(glsl_type::vec4_type);
774 }
775
776 for (unsigned i = 0; i < 4; i++) {
777 unsigned this_mask = (1U << i);
778 st_src_reg src0 = src;
779
780 if ((done_mask & this_mask) != 0)
781 continue;
782
783 /* The source swizzle specified which component of the source generates
784 * sine / cosine for the current component in the destination. The SCS
785 * instruction requires that this value be swizzle to the X component.
786 * Replace the current swizzle with a swizzle that puts the source in
787 * the X component.
788 */
789 unsigned src0_swiz = GET_SWZ(src.swizzle, i);
790
791 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
792 src0_swiz, src0_swiz);
793 for (unsigned j = i + 1; j < 4; j++) {
794 /* If there is another enabled component in the destination that is
795 * derived from the same inputs, generate its value on this pass as
796 * well.
797 */
798 if (!(done_mask & (1 << j)) &&
799 GET_SWZ(src0.swizzle, j) == src0_swiz) {
800 this_mask |= (1 << j);
801 }
802 }
803
804 if (this_mask != scs_mask) {
805 glsl_to_tgsi_instruction *inst;
806 st_dst_reg tmp_dst = st_dst_reg(tmp);
807
808 /* Emit the SCS instruction.
809 */
810 inst = emit(ir, TGSI_OPCODE_SCS, tmp_dst, src0);
811 inst->dst.writemask = scs_mask;
812
813 /* Move the result of the SCS instruction to the desired location in
814 * the destination.
815 */
816 tmp.swizzle = MAKE_SWIZZLE4(component, component,
817 component, component);
818 inst = emit(ir, TGSI_OPCODE_SCS, dst, tmp);
819 inst->dst.writemask = this_mask;
820 } else {
821 /* Emit the SCS instruction to write directly to the destination.
822 */
823 glsl_to_tgsi_instruction *inst = emit(ir, TGSI_OPCODE_SCS, dst, src0);
824 inst->dst.writemask = scs_mask;
825 }
826
827 done_mask |= this_mask;
828 }
829 }
830
831 int
832 glsl_to_tgsi_visitor::add_constant(gl_register_file file,
833 gl_constant_value values[4], int size, int datatype,
834 GLuint *swizzle_out)
835 {
836 if (file == PROGRAM_CONSTANT) {
837 return _mesa_add_typed_unnamed_constant(this->prog->Parameters, values,
838 size, datatype, swizzle_out);
839 } else {
840 int index = 0;
841 immediate_storage *entry;
842 assert(file == PROGRAM_IMMEDIATE);
843 fprintf(stderr, "adding immediate\n");
844
845 /* Search immediate storage to see if we already have an identical
846 * immediate that we can use instead of adding a duplicate entry.
847 */
848 foreach_iter(exec_list_iterator, iter, this->immediates) {
849 entry = (immediate_storage *)iter.get();
850
851 if (entry->size == size &&
852 entry->type == datatype &&
853 !memcmp(entry->values, values, size * sizeof(gl_constant_value))) {
854 return index;
855 }
856 index++;
857 }
858
859 /* Add this immediate to the list. */
860 entry = new(mem_ctx) immediate_storage(values, size, datatype);
861 this->immediates.push_tail(entry);
862 this->num_immediates++;
863 return index;
864 }
865 }
866
867 struct st_src_reg
868 glsl_to_tgsi_visitor::st_src_reg_for_float(float val)
869 {
870 st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_FLOAT);
871 union gl_constant_value uval;
872
873 uval.f = val;
874 src.index = add_constant(src.file, &uval, 1, GL_FLOAT, &src.swizzle);
875
876 return src;
877 }
878
879 struct st_src_reg
880 glsl_to_tgsi_visitor::st_src_reg_for_int(int val)
881 {
882 st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_INT);
883 union gl_constant_value uval;
884
885 assert(glsl_version >= 130);
886
887 uval.i = val;
888 src.index = add_constant(src.file, &uval, 1, GL_INT, &src.swizzle);
889
890 return src;
891 }
892
893 struct st_src_reg
894 glsl_to_tgsi_visitor::st_src_reg_for_type(int type, int val)
895 {
896 if (glsl_version >= 130)
897 return type == GLSL_TYPE_FLOAT ? st_src_reg_for_float(val) :
898 st_src_reg_for_int(val);
899 else
900 return st_src_reg_for_float(val);
901 }
902
903 static int
904 type_size(const struct glsl_type *type)
905 {
906 unsigned int i;
907 int size;
908
909 switch (type->base_type) {
910 case GLSL_TYPE_UINT:
911 case GLSL_TYPE_INT:
912 case GLSL_TYPE_FLOAT:
913 case GLSL_TYPE_BOOL:
914 if (type->is_matrix()) {
915 return type->matrix_columns;
916 } else {
917 /* Regardless of size of vector, it gets a vec4. This is bad
918 * packing for things like floats, but otherwise arrays become a
919 * mess. Hopefully a later pass over the code can pack scalars
920 * down if appropriate.
921 */
922 return 1;
923 }
924 case GLSL_TYPE_ARRAY:
925 assert(type->length > 0);
926 return type_size(type->fields.array) * type->length;
927 case GLSL_TYPE_STRUCT:
928 size = 0;
929 for (i = 0; i < type->length; i++) {
930 size += type_size(type->fields.structure[i].type);
931 }
932 return size;
933 case GLSL_TYPE_SAMPLER:
934 /* Samplers take up one slot in UNIFORMS[], but they're baked in
935 * at link time.
936 */
937 return 1;
938 default:
939 assert(0);
940 return 0;
941 }
942 }
943
944 /**
945 * In the initial pass of codegen, we assign temporary numbers to
946 * intermediate results. (not SSA -- variable assignments will reuse
947 * storage).
948 */
949 st_src_reg
950 glsl_to_tgsi_visitor::get_temp(const glsl_type *type)
951 {
952 st_src_reg src;
953 int swizzle[4];
954 int i;
955
956 src.type = glsl_version >= 130 ? type->base_type : GLSL_TYPE_FLOAT;
957 src.file = PROGRAM_TEMPORARY;
958 src.index = next_temp;
959 src.reladdr = NULL;
960 next_temp += type_size(type);
961
962 if (type->is_array() || type->is_record()) {
963 src.swizzle = SWIZZLE_NOOP;
964 } else {
965 for (i = 0; i < type->vector_elements; i++)
966 swizzle[i] = i;
967 for (; i < 4; i++)
968 swizzle[i] = type->vector_elements - 1;
969 src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1],
970 swizzle[2], swizzle[3]);
971 }
972 src.negate = 0;
973
974 return src;
975 }
976
977 variable_storage *
978 glsl_to_tgsi_visitor::find_variable_storage(ir_variable *var)
979 {
980
981 variable_storage *entry;
982
983 foreach_iter(exec_list_iterator, iter, this->variables) {
984 entry = (variable_storage *)iter.get();
985
986 if (entry->var == var)
987 return entry;
988 }
989
990 return NULL;
991 }
992
993 void
994 glsl_to_tgsi_visitor::visit(ir_variable *ir)
995 {
996 if (strcmp(ir->name, "gl_FragCoord") == 0) {
997 struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog;
998
999 fp->OriginUpperLeft = ir->origin_upper_left;
1000 fp->PixelCenterInteger = ir->pixel_center_integer;
1001
1002 } else if (strcmp(ir->name, "gl_FragDepth") == 0) {
1003 struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog;
1004 switch (ir->depth_layout) {
1005 case ir_depth_layout_none:
1006 fp->FragDepthLayout = FRAG_DEPTH_LAYOUT_NONE;
1007 break;
1008 case ir_depth_layout_any:
1009 fp->FragDepthLayout = FRAG_DEPTH_LAYOUT_ANY;
1010 break;
1011 case ir_depth_layout_greater:
1012 fp->FragDepthLayout = FRAG_DEPTH_LAYOUT_GREATER;
1013 break;
1014 case ir_depth_layout_less:
1015 fp->FragDepthLayout = FRAG_DEPTH_LAYOUT_LESS;
1016 break;
1017 case ir_depth_layout_unchanged:
1018 fp->FragDepthLayout = FRAG_DEPTH_LAYOUT_UNCHANGED;
1019 break;
1020 default:
1021 assert(0);
1022 break;
1023 }
1024 }
1025
1026 if (ir->mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) {
1027 unsigned int i;
1028 const ir_state_slot *const slots = ir->state_slots;
1029 assert(ir->state_slots != NULL);
1030
1031 /* Check if this statevar's setup in the STATE file exactly
1032 * matches how we'll want to reference it as a
1033 * struct/array/whatever. If not, then we need to move it into
1034 * temporary storage and hope that it'll get copy-propagated
1035 * out.
1036 */
1037 for (i = 0; i < ir->num_state_slots; i++) {
1038 if (slots[i].swizzle != SWIZZLE_XYZW) {
1039 break;
1040 }
1041 }
1042
1043 struct variable_storage *storage;
1044 st_dst_reg dst;
1045 if (i == ir->num_state_slots) {
1046 /* We'll set the index later. */
1047 storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1);
1048 this->variables.push_tail(storage);
1049
1050 dst = undef_dst;
1051 } else {
1052 /* The variable_storage constructor allocates slots based on the size
1053 * of the type. However, this had better match the number of state
1054 * elements that we're going to copy into the new temporary.
1055 */
1056 assert((int) ir->num_state_slots == type_size(ir->type));
1057
1058 storage = new(mem_ctx) variable_storage(ir, PROGRAM_TEMPORARY,
1059 this->next_temp);
1060 this->variables.push_tail(storage);
1061 this->next_temp += type_size(ir->type);
1062
1063 dst = st_dst_reg(st_src_reg(PROGRAM_TEMPORARY, storage->index,
1064 glsl_version >= 130 ? ir->type->base_type : GLSL_TYPE_FLOAT));
1065 }
1066
1067
1068 for (unsigned int i = 0; i < ir->num_state_slots; i++) {
1069 int index = _mesa_add_state_reference(this->prog->Parameters,
1070 (gl_state_index *)slots[i].tokens);
1071
1072 if (storage->file == PROGRAM_STATE_VAR) {
1073 if (storage->index == -1) {
1074 storage->index = index;
1075 } else {
1076 assert(index == storage->index + (int)i);
1077 }
1078 } else {
1079 st_src_reg src(PROGRAM_STATE_VAR, index,
1080 glsl_version >= 130 ? ir->type->base_type : GLSL_TYPE_FLOAT);
1081 src.swizzle = slots[i].swizzle;
1082 emit(ir, TGSI_OPCODE_MOV, dst, src);
1083 /* even a float takes up a whole vec4 reg in a struct/array. */
1084 dst.index++;
1085 }
1086 }
1087
1088 if (storage->file == PROGRAM_TEMPORARY &&
1089 dst.index != storage->index + (int) ir->num_state_slots) {
1090 fail_link(this->shader_program,
1091 "failed to load builtin uniform `%s' (%d/%d regs loaded)\n",
1092 ir->name, dst.index - storage->index,
1093 type_size(ir->type));
1094 }
1095 }
1096 }
1097
1098 void
1099 glsl_to_tgsi_visitor::visit(ir_loop *ir)
1100 {
1101 ir_dereference_variable *counter = NULL;
1102
1103 if (ir->counter != NULL)
1104 counter = new(ir) ir_dereference_variable(ir->counter);
1105
1106 if (ir->from != NULL) {
1107 assert(ir->counter != NULL);
1108
1109 ir_assignment *a = new(ir) ir_assignment(counter, ir->from, NULL);
1110
1111 a->accept(this);
1112 delete a;
1113 }
1114
1115 emit(NULL, TGSI_OPCODE_BGNLOOP);
1116
1117 if (ir->to) {
1118 ir_expression *e =
1119 new(ir) ir_expression(ir->cmp, glsl_type::bool_type,
1120 counter, ir->to);
1121 ir_if *if_stmt = new(ir) ir_if(e);
1122
1123 ir_loop_jump *brk = new(ir) ir_loop_jump(ir_loop_jump::jump_break);
1124
1125 if_stmt->then_instructions.push_tail(brk);
1126
1127 if_stmt->accept(this);
1128
1129 delete if_stmt;
1130 delete e;
1131 delete brk;
1132 }
1133
1134 visit_exec_list(&ir->body_instructions, this);
1135
1136 if (ir->increment) {
1137 ir_expression *e =
1138 new(ir) ir_expression(ir_binop_add, counter->type,
1139 counter, ir->increment);
1140
1141 ir_assignment *a = new(ir) ir_assignment(counter, e, NULL);
1142
1143 a->accept(this);
1144 delete a;
1145 delete e;
1146 }
1147
1148 emit(NULL, TGSI_OPCODE_ENDLOOP);
1149 }
1150
1151 void
1152 glsl_to_tgsi_visitor::visit(ir_loop_jump *ir)
1153 {
1154 switch (ir->mode) {
1155 case ir_loop_jump::jump_break:
1156 emit(NULL, TGSI_OPCODE_BRK);
1157 break;
1158 case ir_loop_jump::jump_continue:
1159 emit(NULL, TGSI_OPCODE_CONT);
1160 break;
1161 }
1162 }
1163
1164
1165 void
1166 glsl_to_tgsi_visitor::visit(ir_function_signature *ir)
1167 {
1168 assert(0);
1169 (void)ir;
1170 }
1171
1172 void
1173 glsl_to_tgsi_visitor::visit(ir_function *ir)
1174 {
1175 /* Ignore function bodies other than main() -- we shouldn't see calls to
1176 * them since they should all be inlined before we get to glsl_to_tgsi.
1177 */
1178 if (strcmp(ir->name, "main") == 0) {
1179 const ir_function_signature *sig;
1180 exec_list empty;
1181
1182 sig = ir->matching_signature(&empty);
1183
1184 assert(sig);
1185
1186 foreach_iter(exec_list_iterator, iter, sig->body) {
1187 ir_instruction *ir = (ir_instruction *)iter.get();
1188
1189 ir->accept(this);
1190 }
1191 }
1192 }
1193
1194 GLboolean
1195 glsl_to_tgsi_visitor::try_emit_mad(ir_expression *ir, int mul_operand)
1196 {
1197 int nonmul_operand = 1 - mul_operand;
1198 st_src_reg a, b, c;
1199 st_dst_reg result_dst;
1200
1201 ir_expression *expr = ir->operands[mul_operand]->as_expression();
1202 if (!expr || expr->operation != ir_binop_mul)
1203 return false;
1204
1205 expr->operands[0]->accept(this);
1206 a = this->result;
1207 expr->operands[1]->accept(this);
1208 b = this->result;
1209 ir->operands[nonmul_operand]->accept(this);
1210 c = this->result;
1211
1212 this->result = get_temp(ir->type);
1213 result_dst = st_dst_reg(this->result);
1214 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1215 emit(ir, TGSI_OPCODE_MAD, result_dst, a, b, c);
1216
1217 return true;
1218 }
1219
1220 GLboolean
1221 glsl_to_tgsi_visitor::try_emit_sat(ir_expression *ir)
1222 {
1223 /* Saturates were only introduced to vertex programs in
1224 * NV_vertex_program3, so don't give them to drivers in the VP.
1225 */
1226 if (this->prog->Target == GL_VERTEX_PROGRAM_ARB)
1227 return false;
1228
1229 ir_rvalue *sat_src = ir->as_rvalue_to_saturate();
1230 if (!sat_src)
1231 return false;
1232
1233 sat_src->accept(this);
1234 st_src_reg src = this->result;
1235
1236 this->result = get_temp(ir->type);
1237 st_dst_reg result_dst = st_dst_reg(this->result);
1238 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1239 glsl_to_tgsi_instruction *inst;
1240 inst = emit(ir, TGSI_OPCODE_MOV, result_dst, src);
1241 inst->saturate = true;
1242
1243 return true;
1244 }
1245
1246 void
1247 glsl_to_tgsi_visitor::reladdr_to_temp(ir_instruction *ir,
1248 st_src_reg *reg, int *num_reladdr)
1249 {
1250 if (!reg->reladdr)
1251 return;
1252
1253 emit_arl(ir, address_reg, *reg->reladdr);
1254
1255 if (*num_reladdr != 1) {
1256 st_src_reg temp = get_temp(glsl_type::vec4_type);
1257
1258 emit(ir, TGSI_OPCODE_MOV, st_dst_reg(temp), *reg);
1259 *reg = temp;
1260 }
1261
1262 (*num_reladdr)--;
1263 }
1264
1265 void
1266 glsl_to_tgsi_visitor::visit(ir_expression *ir)
1267 {
1268 unsigned int operand;
1269 st_src_reg op[Elements(ir->operands)];
1270 st_src_reg result_src;
1271 st_dst_reg result_dst;
1272
1273 /* Quick peephole: Emit MAD(a, b, c) instead of ADD(MUL(a, b), c)
1274 */
1275 if (ir->operation == ir_binop_add) {
1276 if (try_emit_mad(ir, 1))
1277 return;
1278 if (try_emit_mad(ir, 0))
1279 return;
1280 }
1281 if (try_emit_sat(ir))
1282 return;
1283
1284 if (ir->operation == ir_quadop_vector)
1285 assert(!"ir_quadop_vector should have been lowered");
1286
1287 for (operand = 0; operand < ir->get_num_operands(); operand++) {
1288 this->result.file = PROGRAM_UNDEFINED;
1289 ir->operands[operand]->accept(this);
1290 if (this->result.file == PROGRAM_UNDEFINED) {
1291 ir_print_visitor v;
1292 printf("Failed to get tree for expression operand:\n");
1293 ir->operands[operand]->accept(&v);
1294 exit(1);
1295 }
1296 op[operand] = this->result;
1297
1298 /* Matrix expression operands should have been broken down to vector
1299 * operations already.
1300 */
1301 assert(!ir->operands[operand]->type->is_matrix());
1302 }
1303
1304 int vector_elements = ir->operands[0]->type->vector_elements;
1305 if (ir->operands[1]) {
1306 vector_elements = MAX2(vector_elements,
1307 ir->operands[1]->type->vector_elements);
1308 }
1309
1310 this->result.file = PROGRAM_UNDEFINED;
1311
1312 /* Storage for our result. Ideally for an assignment we'd be using
1313 * the actual storage for the result here, instead.
1314 */
1315 result_src = get_temp(ir->type);
1316 /* convenience for the emit functions below. */
1317 result_dst = st_dst_reg(result_src);
1318 /* Limit writes to the channels that will be used by result_src later.
1319 * This does limit this temp's use as a temporary for multi-instruction
1320 * sequences.
1321 */
1322 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1323
1324 switch (ir->operation) {
1325 case ir_unop_logic_not:
1326 emit(ir, TGSI_OPCODE_SEQ, result_dst, op[0], st_src_reg_for_type(result_dst.type, 0));
1327 break;
1328 case ir_unop_neg:
1329 assert(result_dst.type == GLSL_TYPE_FLOAT || result_dst.type == GLSL_TYPE_INT);
1330 if (result_dst.type == GLSL_TYPE_INT)
1331 emit(ir, TGSI_OPCODE_INEG, result_dst, op[0]);
1332 else {
1333 op[0].negate = ~op[0].negate;
1334 result_src = op[0];
1335 }
1336 break;
1337 case ir_unop_abs:
1338 assert(result_dst.type == GLSL_TYPE_FLOAT);
1339 emit(ir, TGSI_OPCODE_ABS, result_dst, op[0]);
1340 break;
1341 case ir_unop_sign:
1342 emit(ir, TGSI_OPCODE_SSG, result_dst, op[0]);
1343 break;
1344 case ir_unop_rcp:
1345 emit_scalar(ir, TGSI_OPCODE_RCP, result_dst, op[0]);
1346 break;
1347
1348 case ir_unop_exp2:
1349 emit_scalar(ir, TGSI_OPCODE_EX2, result_dst, op[0]);
1350 break;
1351 case ir_unop_exp:
1352 case ir_unop_log:
1353 assert(!"not reached: should be handled by ir_explog_to_explog2");
1354 break;
1355 case ir_unop_log2:
1356 emit_scalar(ir, TGSI_OPCODE_LG2, result_dst, op[0]);
1357 break;
1358 case ir_unop_sin:
1359 emit_scalar(ir, TGSI_OPCODE_SIN, result_dst, op[0]);
1360 break;
1361 case ir_unop_cos:
1362 emit_scalar(ir, TGSI_OPCODE_COS, result_dst, op[0]);
1363 break;
1364 case ir_unop_sin_reduced:
1365 emit_scs(ir, TGSI_OPCODE_SIN, result_dst, op[0]);
1366 break;
1367 case ir_unop_cos_reduced:
1368 emit_scs(ir, TGSI_OPCODE_COS, result_dst, op[0]);
1369 break;
1370
1371 case ir_unop_dFdx:
1372 emit(ir, TGSI_OPCODE_DDX, result_dst, op[0]);
1373 break;
1374 case ir_unop_dFdy:
1375 op[0].negate = ~op[0].negate;
1376 emit(ir, TGSI_OPCODE_DDY, result_dst, op[0]);
1377 break;
1378
1379 case ir_unop_noise: {
1380 /* At some point, a motivated person could add a better
1381 * implementation of noise. Currently not even the nvidia
1382 * binary drivers do anything more than this. In any case, the
1383 * place to do this is in the GL state tracker, not the poor
1384 * driver.
1385 */
1386 emit(ir, TGSI_OPCODE_MOV, result_dst, st_src_reg_for_float(0.5));
1387 break;
1388 }
1389
1390 case ir_binop_add:
1391 emit(ir, TGSI_OPCODE_ADD, result_dst, op[0], op[1]);
1392 break;
1393 case ir_binop_sub:
1394 emit(ir, TGSI_OPCODE_SUB, result_dst, op[0], op[1]);
1395 break;
1396
1397 case ir_binop_mul:
1398 emit(ir, TGSI_OPCODE_MUL, result_dst, op[0], op[1]);
1399 break;
1400 case ir_binop_div:
1401 if (result_dst.type == GLSL_TYPE_FLOAT)
1402 assert(!"not reached: should be handled by ir_div_to_mul_rcp");
1403 else
1404 emit(ir, TGSI_OPCODE_DIV, result_dst, op[0], op[1]);
1405 break;
1406 case ir_binop_mod:
1407 if (result_dst.type == GLSL_TYPE_FLOAT)
1408 assert(!"ir_binop_mod should have been converted to b * fract(a/b)");
1409 else
1410 emit(ir, TGSI_OPCODE_MOD, result_dst, op[0], op[1]);
1411 break;
1412
1413 case ir_binop_less:
1414 emit(ir, TGSI_OPCODE_SLT, result_dst, op[0], op[1]);
1415 break;
1416 case ir_binop_greater:
1417 emit(ir, TGSI_OPCODE_SGT, result_dst, op[0], op[1]);
1418 break;
1419 case ir_binop_lequal:
1420 emit(ir, TGSI_OPCODE_SLE, result_dst, op[0], op[1]);
1421 break;
1422 case ir_binop_gequal:
1423 emit(ir, TGSI_OPCODE_SGE, result_dst, op[0], op[1]);
1424 break;
1425 case ir_binop_equal:
1426 emit(ir, TGSI_OPCODE_SEQ, result_dst, op[0], op[1]);
1427 break;
1428 case ir_binop_nequal:
1429 emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1430 break;
1431 case ir_binop_all_equal:
1432 /* "==" operator producing a scalar boolean. */
1433 if (ir->operands[0]->type->is_vector() ||
1434 ir->operands[1]->type->is_vector()) {
1435 st_src_reg temp = get_temp(glsl_version >= 130 ?
1436 glsl_type::get_instance(ir->operands[0]->type->base_type, 4, 1) :
1437 glsl_type::vec4_type);
1438 assert(ir->operands[0]->type->base_type == GLSL_TYPE_FLOAT);
1439 emit(ir, TGSI_OPCODE_SNE, st_dst_reg(temp), op[0], op[1]);
1440 emit_dp(ir, result_dst, temp, temp, vector_elements);
1441 emit(ir, TGSI_OPCODE_SEQ, result_dst, result_src, st_src_reg_for_float(0.0));
1442 } else {
1443 emit(ir, TGSI_OPCODE_SEQ, result_dst, op[0], op[1]);
1444 }
1445 break;
1446 case ir_binop_any_nequal:
1447 /* "!=" operator producing a scalar boolean. */
1448 if (ir->operands[0]->type->is_vector() ||
1449 ir->operands[1]->type->is_vector()) {
1450 st_src_reg temp = get_temp(glsl_version >= 130 ?
1451 glsl_type::get_instance(ir->operands[0]->type->base_type, 4, 1) :
1452 glsl_type::vec4_type);
1453 assert(ir->operands[0]->type->base_type == GLSL_TYPE_FLOAT);
1454 emit(ir, TGSI_OPCODE_SNE, st_dst_reg(temp), op[0], op[1]);
1455 emit_dp(ir, result_dst, temp, temp, vector_elements);
1456 emit(ir, TGSI_OPCODE_SNE, result_dst, result_src, st_src_reg_for_float(0.0));
1457 } else {
1458 emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1459 }
1460 break;
1461
1462 case ir_unop_any:
1463 assert(ir->operands[0]->type->is_vector());
1464 emit_dp(ir, result_dst, op[0], op[0],
1465 ir->operands[0]->type->vector_elements);
1466 emit(ir, TGSI_OPCODE_SNE, result_dst, result_src, st_src_reg_for_float(0.0));
1467 break;
1468
1469 case ir_binop_logic_xor:
1470 emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1471 break;
1472
1473 case ir_binop_logic_or:
1474 /* This could be a saturated add and skip the SNE. */
1475 emit(ir, TGSI_OPCODE_ADD, result_dst, op[0], op[1]);
1476 emit(ir, TGSI_OPCODE_SNE, result_dst, result_src, st_src_reg_for_float(0.0));
1477 break;
1478
1479 case ir_binop_logic_and:
1480 /* the bool args are stored as float 0.0 or 1.0, so "mul" gives us "and". */
1481 emit(ir, TGSI_OPCODE_MUL, result_dst, op[0], op[1]);
1482 break;
1483
1484 case ir_binop_dot:
1485 assert(ir->operands[0]->type->is_vector());
1486 assert(ir->operands[0]->type == ir->operands[1]->type);
1487 emit_dp(ir, result_dst, op[0], op[1],
1488 ir->operands[0]->type->vector_elements);
1489 break;
1490
1491 case ir_unop_sqrt:
1492 /* sqrt(x) = x * rsq(x). */
1493 emit_scalar(ir, TGSI_OPCODE_RSQ, result_dst, op[0]);
1494 emit(ir, TGSI_OPCODE_MUL, result_dst, result_src, op[0]);
1495 /* For incoming channels <= 0, set the result to 0. */
1496 op[0].negate = ~op[0].negate;
1497 emit(ir, TGSI_OPCODE_CMP, result_dst,
1498 op[0], result_src, st_src_reg_for_float(0.0));
1499 break;
1500 case ir_unop_rsq:
1501 emit_scalar(ir, TGSI_OPCODE_RSQ, result_dst, op[0]);
1502 break;
1503 case ir_unop_i2f:
1504 case ir_unop_b2f:
1505 if (glsl_version >= 130) {
1506 emit(ir, TGSI_OPCODE_I2F, result_dst, op[0]);
1507 break;
1508 }
1509 case ir_unop_b2i:
1510 /* Booleans are stored as integers (or floats in GLSL 1.20 and lower). */
1511 result_src = op[0];
1512 break;
1513 case ir_unop_f2i:
1514 if (glsl_version >= 130)
1515 emit(ir, TGSI_OPCODE_F2I, result_dst, op[0]);
1516 else
1517 emit(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
1518 break;
1519 case ir_unop_f2b:
1520 case ir_unop_i2b:
1521 emit(ir, TGSI_OPCODE_SNE, result_dst, op[0],
1522 st_src_reg_for_type(result_dst.type, 0));
1523 break;
1524 case ir_unop_trunc:
1525 emit(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
1526 break;
1527 case ir_unop_ceil:
1528 op[0].negate = ~op[0].negate;
1529 emit(ir, TGSI_OPCODE_FLR, result_dst, op[0]);
1530 result_src.negate = ~result_src.negate;
1531 break;
1532 case ir_unop_floor:
1533 emit(ir, TGSI_OPCODE_FLR, result_dst, op[0]);
1534 break;
1535 case ir_unop_fract:
1536 emit(ir, TGSI_OPCODE_FRC, result_dst, op[0]);
1537 break;
1538
1539 case ir_binop_min:
1540 emit(ir, TGSI_OPCODE_MIN, result_dst, op[0], op[1]);
1541 break;
1542 case ir_binop_max:
1543 emit(ir, TGSI_OPCODE_MAX, result_dst, op[0], op[1]);
1544 break;
1545 case ir_binop_pow:
1546 emit_scalar(ir, TGSI_OPCODE_POW, result_dst, op[0], op[1]);
1547 break;
1548
1549 case ir_unop_bit_not:
1550 if (glsl_version >= 130) {
1551 emit(ir, TGSI_OPCODE_NOT, result_dst, op[0]);
1552 break;
1553 }
1554 case ir_unop_u2f:
1555 if (glsl_version >= 130) {
1556 emit(ir, TGSI_OPCODE_U2F, result_dst, op[0]);
1557 break;
1558 }
1559 case ir_binop_lshift:
1560 if (glsl_version >= 130) {
1561 emit(ir, TGSI_OPCODE_SHL, result_dst, op[0]);
1562 break;
1563 }
1564 case ir_binop_rshift:
1565 if (glsl_version >= 130) {
1566 emit(ir, TGSI_OPCODE_ISHR, result_dst, op[0]);
1567 break;
1568 }
1569 case ir_binop_bit_and:
1570 if (glsl_version >= 130) {
1571 emit(ir, TGSI_OPCODE_AND, result_dst, op[0]);
1572 break;
1573 }
1574 case ir_binop_bit_xor:
1575 if (glsl_version >= 130) {
1576 emit(ir, TGSI_OPCODE_XOR, result_dst, op[0]);
1577 break;
1578 }
1579 case ir_binop_bit_or:
1580 if (glsl_version >= 130) {
1581 emit(ir, TGSI_OPCODE_OR, result_dst, op[0]);
1582 break;
1583 }
1584 case ir_unop_round_even:
1585 assert(!"GLSL 1.30 features unsupported");
1586 break;
1587
1588 case ir_quadop_vector:
1589 /* This operation should have already been handled.
1590 */
1591 assert(!"Should not get here.");
1592 break;
1593 }
1594
1595 this->result = result_src;
1596 }
1597
1598
1599 void
1600 glsl_to_tgsi_visitor::visit(ir_swizzle *ir)
1601 {
1602 st_src_reg src;
1603 int i;
1604 int swizzle[4];
1605
1606 /* Note that this is only swizzles in expressions, not those on the left
1607 * hand side of an assignment, which do write masking. See ir_assignment
1608 * for that.
1609 */
1610
1611 ir->val->accept(this);
1612 src = this->result;
1613 assert(src.file != PROGRAM_UNDEFINED);
1614
1615 for (i = 0; i < 4; i++) {
1616 if (i < ir->type->vector_elements) {
1617 switch (i) {
1618 case 0:
1619 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x);
1620 break;
1621 case 1:
1622 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y);
1623 break;
1624 case 2:
1625 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z);
1626 break;
1627 case 3:
1628 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w);
1629 break;
1630 }
1631 } else {
1632 /* If the type is smaller than a vec4, replicate the last
1633 * channel out.
1634 */
1635 swizzle[i] = swizzle[ir->type->vector_elements - 1];
1636 }
1637 }
1638
1639 src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
1640
1641 this->result = src;
1642 }
1643
1644 void
1645 glsl_to_tgsi_visitor::visit(ir_dereference_variable *ir)
1646 {
1647 variable_storage *entry = find_variable_storage(ir->var);
1648 ir_variable *var = ir->var;
1649
1650 if (!entry) {
1651 switch (var->mode) {
1652 case ir_var_uniform:
1653 entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM,
1654 var->location);
1655 this->variables.push_tail(entry);
1656 break;
1657 case ir_var_in:
1658 case ir_var_inout:
1659 /* The linker assigns locations for varyings and attributes,
1660 * including deprecated builtins (like gl_Color), user-assign
1661 * generic attributes (glBindVertexLocation), and
1662 * user-defined varyings.
1663 *
1664 * FINISHME: We would hit this path for function arguments. Fix!
1665 */
1666 assert(var->location != -1);
1667 entry = new(mem_ctx) variable_storage(var,
1668 PROGRAM_INPUT,
1669 var->location);
1670 if (this->prog->Target == GL_VERTEX_PROGRAM_ARB &&
1671 var->location >= VERT_ATTRIB_GENERIC0) {
1672 _mesa_add_attribute(this->prog->Attributes,
1673 var->name,
1674 _mesa_sizeof_glsl_type(var->type->gl_type),
1675 var->type->gl_type,
1676 var->location - VERT_ATTRIB_GENERIC0);
1677 }
1678 break;
1679 case ir_var_out:
1680 assert(var->location != -1);
1681 entry = new(mem_ctx) variable_storage(var,
1682 PROGRAM_OUTPUT,
1683 var->location);
1684 break;
1685 case ir_var_system_value:
1686 entry = new(mem_ctx) variable_storage(var,
1687 PROGRAM_SYSTEM_VALUE,
1688 var->location);
1689 break;
1690 case ir_var_auto:
1691 case ir_var_temporary:
1692 entry = new(mem_ctx) variable_storage(var, PROGRAM_TEMPORARY,
1693 this->next_temp);
1694 this->variables.push_tail(entry);
1695
1696 next_temp += type_size(var->type);
1697 break;
1698 }
1699
1700 if (!entry) {
1701 printf("Failed to make storage for %s\n", var->name);
1702 exit(1);
1703 }
1704 }
1705
1706 this->result = st_src_reg(entry->file, entry->index, var->type);
1707 if (glsl_version <= 120)
1708 this->result.type = GLSL_TYPE_FLOAT;
1709 }
1710
1711 void
1712 glsl_to_tgsi_visitor::visit(ir_dereference_array *ir)
1713 {
1714 ir_constant *index;
1715 st_src_reg src;
1716 int element_size = type_size(ir->type);
1717
1718 index = ir->array_index->constant_expression_value();
1719
1720 ir->array->accept(this);
1721 src = this->result;
1722
1723 if (index) {
1724 src.index += index->value.i[0] * element_size;
1725 } else {
1726 st_src_reg array_base = this->result;
1727 /* Variable index array dereference. It eats the "vec4" of the
1728 * base of the array and an index that offsets the TGSI register
1729 * index.
1730 */
1731 ir->array_index->accept(this);
1732
1733 st_src_reg index_reg;
1734
1735 if (element_size == 1) {
1736 index_reg = this->result;
1737 } else {
1738 index_reg = get_temp(glsl_type::float_type);
1739
1740 emit(ir, TGSI_OPCODE_MUL, st_dst_reg(index_reg),
1741 this->result, st_src_reg_for_float(element_size));
1742 }
1743
1744 /* If there was already a relative address register involved, add the
1745 * new and the old together to get the new offset.
1746 */
1747 if (src.reladdr != NULL) {
1748 st_src_reg accum_reg = get_temp(glsl_type::float_type);
1749
1750 emit(ir, TGSI_OPCODE_ADD, st_dst_reg(accum_reg),
1751 index_reg, *src.reladdr);
1752
1753 index_reg = accum_reg;
1754 }
1755
1756 src.reladdr = ralloc(mem_ctx, st_src_reg);
1757 memcpy(src.reladdr, &index_reg, sizeof(index_reg));
1758 }
1759
1760 /* If the type is smaller than a vec4, replicate the last channel out. */
1761 if (ir->type->is_scalar() || ir->type->is_vector())
1762 src.swizzle = swizzle_for_size(ir->type->vector_elements);
1763 else
1764 src.swizzle = SWIZZLE_NOOP;
1765
1766 this->result = src;
1767 }
1768
1769 void
1770 glsl_to_tgsi_visitor::visit(ir_dereference_record *ir)
1771 {
1772 unsigned int i;
1773 const glsl_type *struct_type = ir->record->type;
1774 int offset = 0;
1775
1776 ir->record->accept(this);
1777
1778 for (i = 0; i < struct_type->length; i++) {
1779 if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
1780 break;
1781 offset += type_size(struct_type->fields.structure[i].type);
1782 }
1783
1784 /* If the type is smaller than a vec4, replicate the last channel out. */
1785 if (ir->type->is_scalar() || ir->type->is_vector())
1786 this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
1787 else
1788 this->result.swizzle = SWIZZLE_NOOP;
1789
1790 this->result.index += offset;
1791 }
1792
1793 /**
1794 * We want to be careful in assignment setup to hit the actual storage
1795 * instead of potentially using a temporary like we might with the
1796 * ir_dereference handler.
1797 */
1798 static st_dst_reg
1799 get_assignment_lhs(ir_dereference *ir, glsl_to_tgsi_visitor *v)
1800 {
1801 /* The LHS must be a dereference. If the LHS is a variable indexed array
1802 * access of a vector, it must be separated into a series conditional moves
1803 * before reaching this point (see ir_vec_index_to_cond_assign).
1804 */
1805 assert(ir->as_dereference());
1806 ir_dereference_array *deref_array = ir->as_dereference_array();
1807 if (deref_array) {
1808 assert(!deref_array->array->type->is_vector());
1809 }
1810
1811 /* Use the rvalue deref handler for the most part. We'll ignore
1812 * swizzles in it and write swizzles using writemask, though.
1813 */
1814 ir->accept(v);
1815 return st_dst_reg(v->result);
1816 }
1817
1818 /**
1819 * Process the condition of a conditional assignment
1820 *
1821 * Examines the condition of a conditional assignment to generate the optimal
1822 * first operand of a \c CMP instruction. If the condition is a relational
1823 * operator with 0 (e.g., \c ir_binop_less), the value being compared will be
1824 * used as the source for the \c CMP instruction. Otherwise the comparison
1825 * is processed to a boolean result, and the boolean result is used as the
1826 * operand to the CMP instruction.
1827 */
1828 bool
1829 glsl_to_tgsi_visitor::process_move_condition(ir_rvalue *ir)
1830 {
1831 ir_rvalue *src_ir = ir;
1832 bool negate = true;
1833 bool switch_order = false;
1834
1835 ir_expression *const expr = ir->as_expression();
1836 if ((expr != NULL) && (expr->get_num_operands() == 2)) {
1837 bool zero_on_left = false;
1838
1839 if (expr->operands[0]->is_zero()) {
1840 src_ir = expr->operands[1];
1841 zero_on_left = true;
1842 } else if (expr->operands[1]->is_zero()) {
1843 src_ir = expr->operands[0];
1844 zero_on_left = false;
1845 }
1846
1847 /* a is - 0 + - 0 +
1848 * (a < 0) T F F ( a < 0) T F F
1849 * (0 < a) F F T (-a < 0) F F T
1850 * (a <= 0) T T F (-a < 0) F F T (swap order of other operands)
1851 * (0 <= a) F T T ( a < 0) T F F (swap order of other operands)
1852 * (a > 0) F F T (-a < 0) F F T
1853 * (0 > a) T F F ( a < 0) T F F
1854 * (a >= 0) F T T ( a < 0) T F F (swap order of other operands)
1855 * (0 >= a) T T F (-a < 0) F F T (swap order of other operands)
1856 *
1857 * Note that exchanging the order of 0 and 'a' in the comparison simply
1858 * means that the value of 'a' should be negated.
1859 */
1860 if (src_ir != ir) {
1861 switch (expr->operation) {
1862 case ir_binop_less:
1863 switch_order = false;
1864 negate = zero_on_left;
1865 break;
1866
1867 case ir_binop_greater:
1868 switch_order = false;
1869 negate = !zero_on_left;
1870 break;
1871
1872 case ir_binop_lequal:
1873 switch_order = true;
1874 negate = !zero_on_left;
1875 break;
1876
1877 case ir_binop_gequal:
1878 switch_order = true;
1879 negate = zero_on_left;
1880 break;
1881
1882 default:
1883 /* This isn't the right kind of comparison afterall, so make sure
1884 * the whole condition is visited.
1885 */
1886 src_ir = ir;
1887 break;
1888 }
1889 }
1890 }
1891
1892 src_ir->accept(this);
1893
1894 /* We use the TGSI_OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the
1895 * condition we produced is 0.0 or 1.0. By flipping the sign, we can
1896 * choose which value TGSI_OPCODE_CMP produces without an extra instruction
1897 * computing the condition.
1898 */
1899 if (negate)
1900 this->result.negate = ~this->result.negate;
1901
1902 return switch_order;
1903 }
1904
1905 void
1906 glsl_to_tgsi_visitor::visit(ir_assignment *ir)
1907 {
1908 st_dst_reg l;
1909 st_src_reg r;
1910 int i;
1911
1912 ir->rhs->accept(this);
1913 r = this->result;
1914
1915 l = get_assignment_lhs(ir->lhs, this);
1916
1917 /* FINISHME: This should really set to the correct maximal writemask for each
1918 * FINISHME: component written (in the loops below). This case can only
1919 * FINISHME: occur for matrices, arrays, and structures.
1920 */
1921 if (ir->write_mask == 0) {
1922 assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
1923 l.writemask = WRITEMASK_XYZW;
1924 } else if (ir->lhs->type->is_scalar() &&
1925 ir->lhs->variable_referenced()->mode == ir_var_out) {
1926 /* FINISHME: This hack makes writing to gl_FragDepth, which lives in the
1927 * FINISHME: W component of fragment shader output zero, work correctly.
1928 */
1929 l.writemask = WRITEMASK_XYZW;
1930 } else {
1931 int swizzles[4];
1932 int first_enabled_chan = 0;
1933 int rhs_chan = 0;
1934
1935 l.writemask = ir->write_mask;
1936
1937 for (int i = 0; i < 4; i++) {
1938 if (l.writemask & (1 << i)) {
1939 first_enabled_chan = GET_SWZ(r.swizzle, i);
1940 break;
1941 }
1942 }
1943
1944 /* Swizzle a small RHS vector into the channels being written.
1945 *
1946 * glsl ir treats write_mask as dictating how many channels are
1947 * present on the RHS while TGSI treats write_mask as just
1948 * showing which channels of the vec4 RHS get written.
1949 */
1950 for (int i = 0; i < 4; i++) {
1951 if (l.writemask & (1 << i))
1952 swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++);
1953 else
1954 swizzles[i] = first_enabled_chan;
1955 }
1956 r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1],
1957 swizzles[2], swizzles[3]);
1958 }
1959
1960 assert(l.file != PROGRAM_UNDEFINED);
1961 assert(r.file != PROGRAM_UNDEFINED);
1962
1963 if (ir->condition) {
1964 const bool switch_order = this->process_move_condition(ir->condition);
1965 st_src_reg condition = this->result;
1966
1967 for (i = 0; i < type_size(ir->lhs->type); i++) {
1968 st_src_reg l_src = st_src_reg(l);
1969 l_src.swizzle = swizzle_for_size(ir->lhs->type->vector_elements);
1970
1971 if (switch_order) {
1972 emit(ir, TGSI_OPCODE_CMP, l, condition, l_src, r);
1973 } else {
1974 emit(ir, TGSI_OPCODE_CMP, l, condition, r, l_src);
1975 }
1976
1977 l.index++;
1978 r.index++;
1979 }
1980 } else if (ir->rhs->as_expression() &&
1981 this->instructions.get_tail() &&
1982 ir->rhs == ((glsl_to_tgsi_instruction *)this->instructions.get_tail())->ir &&
1983 type_size(ir->lhs->type) == 1) {
1984 /* To avoid emitting an extra MOV when assigning an expression to a
1985 * variable, emit the last instruction of the expression again, but
1986 * replace the destination register with the target of the assignment.
1987 * Dead code elimination will remove the original instruction.
1988 */
1989 glsl_to_tgsi_instruction *inst;
1990 inst = (glsl_to_tgsi_instruction *)this->instructions.get_tail();
1991 emit(ir, inst->op, l, inst->src[0], inst->src[1], inst->src[2]);
1992 } else {
1993 for (i = 0; i < type_size(ir->lhs->type); i++) {
1994 emit(ir, TGSI_OPCODE_MOV, l, r);
1995 l.index++;
1996 r.index++;
1997 }
1998 }
1999 }
2000
2001
2002 void
2003 glsl_to_tgsi_visitor::visit(ir_constant *ir)
2004 {
2005 st_src_reg src;
2006 GLfloat stack_vals[4] = { 0 };
2007 gl_constant_value *values = (gl_constant_value *) stack_vals;
2008 GLenum gl_type = GL_NONE;
2009 unsigned int i;
2010 static int in_array = 0;
2011 gl_register_file file = in_array ? PROGRAM_CONSTANT : PROGRAM_IMMEDIATE;
2012
2013 /* Unfortunately, 4 floats is all we can get into
2014 * _mesa_add_typed_unnamed_constant. So, make a temp to store an
2015 * aggregate constant and move each constant value into it. If we
2016 * get lucky, copy propagation will eliminate the extra moves.
2017 */
2018 if (ir->type->base_type == GLSL_TYPE_STRUCT) {
2019 st_src_reg temp_base = get_temp(ir->type);
2020 st_dst_reg temp = st_dst_reg(temp_base);
2021
2022 foreach_iter(exec_list_iterator, iter, ir->components) {
2023 ir_constant *field_value = (ir_constant *)iter.get();
2024 int size = type_size(field_value->type);
2025
2026 assert(size > 0);
2027
2028 field_value->accept(this);
2029 src = this->result;
2030
2031 for (i = 0; i < (unsigned int)size; i++) {
2032 emit(ir, TGSI_OPCODE_MOV, temp, src);
2033
2034 src.index++;
2035 temp.index++;
2036 }
2037 }
2038 this->result = temp_base;
2039 return;
2040 }
2041
2042 if (ir->type->is_array()) {
2043 st_src_reg temp_base = get_temp(ir->type);
2044 st_dst_reg temp = st_dst_reg(temp_base);
2045 int size = type_size(ir->type->fields.array);
2046
2047 assert(size > 0);
2048 in_array++;
2049
2050 for (i = 0; i < ir->type->length; i++) {
2051 ir->array_elements[i]->accept(this);
2052 src = this->result;
2053 for (int j = 0; j < size; j++) {
2054 emit(ir, TGSI_OPCODE_MOV, temp, src);
2055
2056 src.index++;
2057 temp.index++;
2058 }
2059 }
2060 this->result = temp_base;
2061 in_array--;
2062 return;
2063 }
2064
2065 if (ir->type->is_matrix()) {
2066 st_src_reg mat = get_temp(ir->type);
2067 st_dst_reg mat_column = st_dst_reg(mat);
2068
2069 for (i = 0; i < ir->type->matrix_columns; i++) {
2070 assert(ir->type->base_type == GLSL_TYPE_FLOAT);
2071 values = (gl_constant_value *) &ir->value.f[i * ir->type->vector_elements];
2072
2073 src = st_src_reg(file, -1, ir->type->base_type);
2074 src.index = add_constant(file,
2075 values,
2076 ir->type->vector_elements,
2077 GL_FLOAT,
2078 &src.swizzle);
2079 emit(ir, TGSI_OPCODE_MOV, mat_column, src);
2080
2081 mat_column.index++;
2082 }
2083
2084 this->result = mat;
2085 return;
2086 }
2087
2088 switch (ir->type->base_type) {
2089 case GLSL_TYPE_FLOAT:
2090 gl_type = GL_FLOAT;
2091 for (i = 0; i < ir->type->vector_elements; i++) {
2092 values[i].f = ir->value.f[i];
2093 }
2094 break;
2095 case GLSL_TYPE_UINT:
2096 gl_type = glsl_version >= 130 ? GL_UNSIGNED_INT : GL_FLOAT;
2097 for (i = 0; i < ir->type->vector_elements; i++) {
2098 if (glsl_version >= 130)
2099 values[i].u = ir->value.u[i];
2100 else
2101 values[i].f = ir->value.u[i];
2102 }
2103 break;
2104 case GLSL_TYPE_INT:
2105 gl_type = glsl_version >= 130 ? GL_INT : GL_FLOAT;
2106 for (i = 0; i < ir->type->vector_elements; i++) {
2107 if (glsl_version >= 130)
2108 values[i].i = ir->value.i[i];
2109 else
2110 values[i].f = ir->value.i[i];
2111 }
2112 break;
2113 case GLSL_TYPE_BOOL:
2114 gl_type = glsl_version >= 130 ? GL_BOOL : GL_FLOAT;
2115 for (i = 0; i < ir->type->vector_elements; i++) {
2116 if (glsl_version >= 130)
2117 values[i].b = ir->value.b[i];
2118 else
2119 values[i].f = ir->value.b[i];
2120 }
2121 break;
2122 default:
2123 assert(!"Non-float/uint/int/bool constant");
2124 }
2125
2126 this->result = st_src_reg(file, -1, ir->type);
2127 this->result.index = add_constant(file,
2128 values,
2129 ir->type->vector_elements,
2130 gl_type,
2131 &this->result.swizzle);
2132 }
2133
2134 function_entry *
2135 glsl_to_tgsi_visitor::get_function_signature(ir_function_signature *sig)
2136 {
2137 function_entry *entry;
2138
2139 foreach_iter(exec_list_iterator, iter, this->function_signatures) {
2140 entry = (function_entry *)iter.get();
2141
2142 if (entry->sig == sig)
2143 return entry;
2144 }
2145
2146 entry = ralloc(mem_ctx, function_entry);
2147 entry->sig = sig;
2148 entry->sig_id = this->next_signature_id++;
2149 entry->bgn_inst = NULL;
2150
2151 /* Allocate storage for all the parameters. */
2152 foreach_iter(exec_list_iterator, iter, sig->parameters) {
2153 ir_variable *param = (ir_variable *)iter.get();
2154 variable_storage *storage;
2155
2156 storage = find_variable_storage(param);
2157 assert(!storage);
2158
2159 storage = new(mem_ctx) variable_storage(param, PROGRAM_TEMPORARY,
2160 this->next_temp);
2161 this->variables.push_tail(storage);
2162
2163 this->next_temp += type_size(param->type);
2164 }
2165
2166 if (!sig->return_type->is_void()) {
2167 entry->return_reg = get_temp(sig->return_type);
2168 } else {
2169 entry->return_reg = undef_src;
2170 }
2171
2172 this->function_signatures.push_tail(entry);
2173 return entry;
2174 }
2175
2176 void
2177 glsl_to_tgsi_visitor::visit(ir_call *ir)
2178 {
2179 glsl_to_tgsi_instruction *call_inst;
2180 ir_function_signature *sig = ir->get_callee();
2181 function_entry *entry = get_function_signature(sig);
2182 int i;
2183
2184 /* Process in parameters. */
2185 exec_list_iterator sig_iter = sig->parameters.iterator();
2186 foreach_iter(exec_list_iterator, iter, *ir) {
2187 ir_rvalue *param_rval = (ir_rvalue *)iter.get();
2188 ir_variable *param = (ir_variable *)sig_iter.get();
2189
2190 if (param->mode == ir_var_in ||
2191 param->mode == ir_var_inout) {
2192 variable_storage *storage = find_variable_storage(param);
2193 assert(storage);
2194
2195 param_rval->accept(this);
2196 st_src_reg r = this->result;
2197
2198 st_dst_reg l;
2199 l.file = storage->file;
2200 l.index = storage->index;
2201 l.reladdr = NULL;
2202 l.writemask = WRITEMASK_XYZW;
2203 l.cond_mask = COND_TR;
2204
2205 for (i = 0; i < type_size(param->type); i++) {
2206 emit(ir, TGSI_OPCODE_MOV, l, r);
2207 l.index++;
2208 r.index++;
2209 }
2210 }
2211
2212 sig_iter.next();
2213 }
2214 assert(!sig_iter.has_next());
2215
2216 /* Emit call instruction */
2217 call_inst = emit(ir, TGSI_OPCODE_CAL);
2218 call_inst->function = entry;
2219
2220 /* Process out parameters. */
2221 sig_iter = sig->parameters.iterator();
2222 foreach_iter(exec_list_iterator, iter, *ir) {
2223 ir_rvalue *param_rval = (ir_rvalue *)iter.get();
2224 ir_variable *param = (ir_variable *)sig_iter.get();
2225
2226 if (param->mode == ir_var_out ||
2227 param->mode == ir_var_inout) {
2228 variable_storage *storage = find_variable_storage(param);
2229 assert(storage);
2230
2231 st_src_reg r;
2232 r.file = storage->file;
2233 r.index = storage->index;
2234 r.reladdr = NULL;
2235 r.swizzle = SWIZZLE_NOOP;
2236 r.negate = 0;
2237
2238 param_rval->accept(this);
2239 st_dst_reg l = st_dst_reg(this->result);
2240
2241 for (i = 0; i < type_size(param->type); i++) {
2242 emit(ir, TGSI_OPCODE_MOV, l, r);
2243 l.index++;
2244 r.index++;
2245 }
2246 }
2247
2248 sig_iter.next();
2249 }
2250 assert(!sig_iter.has_next());
2251
2252 /* Process return value. */
2253 this->result = entry->return_reg;
2254 }
2255
2256 void
2257 glsl_to_tgsi_visitor::visit(ir_texture *ir)
2258 {
2259 st_src_reg result_src, coord, lod_info, projector, dx, dy;
2260 st_dst_reg result_dst, coord_dst;
2261 glsl_to_tgsi_instruction *inst = NULL;
2262 unsigned opcode = TGSI_OPCODE_NOP;
2263
2264 ir->coordinate->accept(this);
2265
2266 /* Put our coords in a temp. We'll need to modify them for shadow,
2267 * projection, or LOD, so the only case we'd use it as is is if
2268 * we're doing plain old texturing. The optimization passes on
2269 * glsl_to_tgsi_visitor should handle cleaning up our mess in that case.
2270 */
2271 coord = get_temp(glsl_type::vec4_type);
2272 coord_dst = st_dst_reg(coord);
2273 emit(ir, TGSI_OPCODE_MOV, coord_dst, this->result);
2274
2275 if (ir->projector) {
2276 ir->projector->accept(this);
2277 projector = this->result;
2278 }
2279
2280 /* Storage for our result. Ideally for an assignment we'd be using
2281 * the actual storage for the result here, instead.
2282 */
2283 result_src = get_temp(glsl_type::vec4_type);
2284 result_dst = st_dst_reg(result_src);
2285
2286 switch (ir->op) {
2287 case ir_tex:
2288 opcode = TGSI_OPCODE_TEX;
2289 break;
2290 case ir_txb:
2291 opcode = TGSI_OPCODE_TXB;
2292 ir->lod_info.bias->accept(this);
2293 lod_info = this->result;
2294 break;
2295 case ir_txl:
2296 opcode = TGSI_OPCODE_TXL;
2297 ir->lod_info.lod->accept(this);
2298 lod_info = this->result;
2299 break;
2300 case ir_txd:
2301 opcode = TGSI_OPCODE_TXD;
2302 ir->lod_info.grad.dPdx->accept(this);
2303 dx = this->result;
2304 ir->lod_info.grad.dPdy->accept(this);
2305 dy = this->result;
2306 break;
2307 case ir_txf: /* TODO: use TGSI_OPCODE_TXF here */
2308 assert(!"GLSL 1.30 features unsupported");
2309 break;
2310 }
2311
2312 if (ir->projector) {
2313 if (opcode == TGSI_OPCODE_TEX) {
2314 /* Slot the projector in as the last component of the coord. */
2315 coord_dst.writemask = WRITEMASK_W;
2316 emit(ir, TGSI_OPCODE_MOV, coord_dst, projector);
2317 coord_dst.writemask = WRITEMASK_XYZW;
2318 opcode = TGSI_OPCODE_TXP;
2319 } else {
2320 st_src_reg coord_w = coord;
2321 coord_w.swizzle = SWIZZLE_WWWW;
2322
2323 /* For the other TEX opcodes there's no projective version
2324 * since the last slot is taken up by LOD info. Do the
2325 * projective divide now.
2326 */
2327 coord_dst.writemask = WRITEMASK_W;
2328 emit(ir, TGSI_OPCODE_RCP, coord_dst, projector);
2329
2330 /* In the case where we have to project the coordinates "by hand,"
2331 * the shadow comparator value must also be projected.
2332 */
2333 st_src_reg tmp_src = coord;
2334 if (ir->shadow_comparitor) {
2335 /* Slot the shadow value in as the second to last component of the
2336 * coord.
2337 */
2338 ir->shadow_comparitor->accept(this);
2339
2340 tmp_src = get_temp(glsl_type::vec4_type);
2341 st_dst_reg tmp_dst = st_dst_reg(tmp_src);
2342
2343 tmp_dst.writemask = WRITEMASK_Z;
2344 emit(ir, TGSI_OPCODE_MOV, tmp_dst, this->result);
2345
2346 tmp_dst.writemask = WRITEMASK_XY;
2347 emit(ir, TGSI_OPCODE_MOV, tmp_dst, coord);
2348 }
2349
2350 coord_dst.writemask = WRITEMASK_XYZ;
2351 emit(ir, TGSI_OPCODE_MUL, coord_dst, tmp_src, coord_w);
2352
2353 coord_dst.writemask = WRITEMASK_XYZW;
2354 coord.swizzle = SWIZZLE_XYZW;
2355 }
2356 }
2357
2358 /* If projection is done and the opcode is not TGSI_OPCODE_TXP, then the shadow
2359 * comparator was put in the correct place (and projected) by the code,
2360 * above, that handles by-hand projection.
2361 */
2362 if (ir->shadow_comparitor && (!ir->projector || opcode == TGSI_OPCODE_TXP)) {
2363 /* Slot the shadow value in as the second to last component of the
2364 * coord.
2365 */
2366 ir->shadow_comparitor->accept(this);
2367 coord_dst.writemask = WRITEMASK_Z;
2368 emit(ir, TGSI_OPCODE_MOV, coord_dst, this->result);
2369 coord_dst.writemask = WRITEMASK_XYZW;
2370 }
2371
2372 if (opcode == TGSI_OPCODE_TXL || opcode == TGSI_OPCODE_TXB) {
2373 /* TGSI stores LOD or LOD bias in the last channel of the coords. */
2374 coord_dst.writemask = WRITEMASK_W;
2375 emit(ir, TGSI_OPCODE_MOV, coord_dst, lod_info);
2376 coord_dst.writemask = WRITEMASK_XYZW;
2377 }
2378
2379 if (opcode == TGSI_OPCODE_TXD)
2380 inst = emit(ir, opcode, result_dst, coord, dx, dy);
2381 else
2382 inst = emit(ir, opcode, result_dst, coord);
2383
2384 if (ir->shadow_comparitor)
2385 inst->tex_shadow = GL_TRUE;
2386
2387 inst->sampler = _mesa_get_sampler_uniform_value(ir->sampler,
2388 this->shader_program,
2389 this->prog);
2390
2391 const glsl_type *sampler_type = ir->sampler->type;
2392
2393 switch (sampler_type->sampler_dimensionality) {
2394 case GLSL_SAMPLER_DIM_1D:
2395 inst->tex_target = (sampler_type->sampler_array)
2396 ? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX;
2397 break;
2398 case GLSL_SAMPLER_DIM_2D:
2399 inst->tex_target = (sampler_type->sampler_array)
2400 ? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX;
2401 break;
2402 case GLSL_SAMPLER_DIM_3D:
2403 inst->tex_target = TEXTURE_3D_INDEX;
2404 break;
2405 case GLSL_SAMPLER_DIM_CUBE:
2406 inst->tex_target = TEXTURE_CUBE_INDEX;
2407 break;
2408 case GLSL_SAMPLER_DIM_RECT:
2409 inst->tex_target = TEXTURE_RECT_INDEX;
2410 break;
2411 case GLSL_SAMPLER_DIM_BUF:
2412 assert(!"FINISHME: Implement ARB_texture_buffer_object");
2413 break;
2414 default:
2415 assert(!"Should not get here.");
2416 }
2417
2418 this->result = result_src;
2419 }
2420
2421 void
2422 glsl_to_tgsi_visitor::visit(ir_return *ir)
2423 {
2424 if (ir->get_value()) {
2425 st_dst_reg l;
2426 int i;
2427
2428 assert(current_function);
2429
2430 ir->get_value()->accept(this);
2431 st_src_reg r = this->result;
2432
2433 l = st_dst_reg(current_function->return_reg);
2434
2435 for (i = 0; i < type_size(current_function->sig->return_type); i++) {
2436 emit(ir, TGSI_OPCODE_MOV, l, r);
2437 l.index++;
2438 r.index++;
2439 }
2440 }
2441
2442 emit(ir, TGSI_OPCODE_RET);
2443 }
2444
2445 void
2446 glsl_to_tgsi_visitor::visit(ir_discard *ir)
2447 {
2448 struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog;
2449
2450 if (ir->condition) {
2451 ir->condition->accept(this);
2452 this->result.negate = ~this->result.negate;
2453 emit(ir, TGSI_OPCODE_KIL, undef_dst, this->result);
2454 } else {
2455 emit(ir, TGSI_OPCODE_KILP);
2456 }
2457
2458 fp->UsesKill = GL_TRUE;
2459 }
2460
2461 void
2462 glsl_to_tgsi_visitor::visit(ir_if *ir)
2463 {
2464 glsl_to_tgsi_instruction *cond_inst, *if_inst, *else_inst = NULL;
2465 glsl_to_tgsi_instruction *prev_inst;
2466
2467 prev_inst = (glsl_to_tgsi_instruction *)this->instructions.get_tail();
2468
2469 ir->condition->accept(this);
2470 assert(this->result.file != PROGRAM_UNDEFINED);
2471
2472 if (this->options->EmitCondCodes) {
2473 cond_inst = (glsl_to_tgsi_instruction *)this->instructions.get_tail();
2474
2475 /* See if we actually generated any instruction for generating
2476 * the condition. If not, then cook up a move to a temp so we
2477 * have something to set cond_update on.
2478 */
2479 if (cond_inst == prev_inst) {
2480 st_src_reg temp = get_temp(glsl_type::bool_type);
2481 cond_inst = emit(ir->condition, TGSI_OPCODE_MOV, st_dst_reg(temp), result);
2482 }
2483 cond_inst->cond_update = GL_TRUE;
2484
2485 if_inst = emit(ir->condition, TGSI_OPCODE_IF);
2486 if_inst->dst.cond_mask = COND_NE;
2487 } else {
2488 if_inst = emit(ir->condition, TGSI_OPCODE_IF, undef_dst, this->result);
2489 }
2490
2491 this->instructions.push_tail(if_inst);
2492
2493 visit_exec_list(&ir->then_instructions, this);
2494
2495 if (!ir->else_instructions.is_empty()) {
2496 else_inst = emit(ir->condition, TGSI_OPCODE_ELSE);
2497 visit_exec_list(&ir->else_instructions, this);
2498 }
2499
2500 if_inst = emit(ir->condition, TGSI_OPCODE_ENDIF);
2501 }
2502
2503 glsl_to_tgsi_visitor::glsl_to_tgsi_visitor()
2504 {
2505 result.file = PROGRAM_UNDEFINED;
2506 next_temp = 1;
2507 next_signature_id = 1;
2508 num_immediates = 0;
2509 current_function = NULL;
2510 num_address_regs = 0;
2511 indirect_addr_temps = false;
2512 indirect_addr_consts = false;
2513 mem_ctx = ralloc_context(NULL);
2514 }
2515
2516 glsl_to_tgsi_visitor::~glsl_to_tgsi_visitor()
2517 {
2518 ralloc_free(mem_ctx);
2519 }
2520
2521 extern "C" void free_glsl_to_tgsi_visitor(glsl_to_tgsi_visitor *v)
2522 {
2523 delete v;
2524 }
2525
2526
2527 /**
2528 * Count resources used by the given gpu program (number of texture
2529 * samplers, etc).
2530 */
2531 static void
2532 count_resources(glsl_to_tgsi_visitor *v, gl_program *prog)
2533 {
2534 v->samplers_used = 0;
2535
2536 foreach_iter(exec_list_iterator, iter, v->instructions) {
2537 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
2538
2539 if (is_tex_instruction(inst->op)) {
2540 v->samplers_used |= 1 << inst->sampler;
2541
2542 prog->SamplerTargets[inst->sampler] =
2543 (gl_texture_index)inst->tex_target;
2544 if (inst->tex_shadow) {
2545 prog->ShadowSamplers |= 1 << inst->sampler;
2546 }
2547 }
2548 }
2549
2550 prog->SamplersUsed = v->samplers_used;
2551 _mesa_update_shader_textures_used(prog);
2552 }
2553
2554
2555 /**
2556 * Check if the given vertex/fragment/shader program is within the
2557 * resource limits of the context (number of texture units, etc).
2558 * If any of those checks fail, record a linker error.
2559 *
2560 * XXX more checks are needed...
2561 */
2562 static void
2563 check_resources(const struct gl_context *ctx,
2564 struct gl_shader_program *shader_program,
2565 glsl_to_tgsi_visitor *prog,
2566 struct gl_program *proginfo)
2567 {
2568 switch (proginfo->Target) {
2569 case GL_VERTEX_PROGRAM_ARB:
2570 if (_mesa_bitcount(prog->samplers_used) >
2571 ctx->Const.MaxVertexTextureImageUnits) {
2572 fail_link(shader_program, "Too many vertex shader texture samplers");
2573 }
2574 if (proginfo->Parameters->NumParameters > MAX_UNIFORMS) {
2575 fail_link(shader_program, "Too many vertex shader constants");
2576 }
2577 break;
2578 case MESA_GEOMETRY_PROGRAM:
2579 if (_mesa_bitcount(prog->samplers_used) >
2580 ctx->Const.MaxGeometryTextureImageUnits) {
2581 fail_link(shader_program, "Too many geometry shader texture samplers");
2582 }
2583 if (proginfo->Parameters->NumParameters >
2584 MAX_GEOMETRY_UNIFORM_COMPONENTS / 4) {
2585 fail_link(shader_program, "Too many geometry shader constants");
2586 }
2587 break;
2588 case GL_FRAGMENT_PROGRAM_ARB:
2589 if (_mesa_bitcount(prog->samplers_used) >
2590 ctx->Const.MaxTextureImageUnits) {
2591 fail_link(shader_program, "Too many fragment shader texture samplers");
2592 }
2593 if (proginfo->Parameters->NumParameters > MAX_UNIFORMS) {
2594 fail_link(shader_program, "Too many fragment shader constants");
2595 }
2596 break;
2597 default:
2598 _mesa_problem(ctx, "unexpected program type in check_resources()");
2599 }
2600 }
2601
2602
2603
2604 struct uniform_sort {
2605 struct gl_uniform *u;
2606 int pos;
2607 };
2608
2609 /* The shader_program->Uniforms list is almost sorted in increasing
2610 * uniform->{Frag,Vert}Pos locations, but not quite when there are
2611 * uniforms shared between targets. We need to add parameters in
2612 * increasing order for the targets.
2613 */
2614 static int
2615 sort_uniforms(const void *a, const void *b)
2616 {
2617 struct uniform_sort *u1 = (struct uniform_sort *)a;
2618 struct uniform_sort *u2 = (struct uniform_sort *)b;
2619
2620 return u1->pos - u2->pos;
2621 }
2622
2623 /* Add the uniforms to the parameters. The linker chose locations
2624 * in our parameters lists (which weren't created yet), which the
2625 * uniforms code will use to poke values into our parameters list
2626 * when uniforms are updated.
2627 */
2628 static void
2629 add_uniforms_to_parameters_list(struct gl_shader_program *shader_program,
2630 struct gl_shader *shader,
2631 struct gl_program *prog)
2632 {
2633 unsigned int i;
2634 unsigned int next_sampler = 0, num_uniforms = 0;
2635 struct uniform_sort *sorted_uniforms;
2636
2637 sorted_uniforms = ralloc_array(NULL, struct uniform_sort,
2638 shader_program->Uniforms->NumUniforms);
2639
2640 for (i = 0; i < shader_program->Uniforms->NumUniforms; i++) {
2641 struct gl_uniform *uniform = shader_program->Uniforms->Uniforms + i;
2642 int parameter_index = -1;
2643
2644 switch (shader->Type) {
2645 case GL_VERTEX_SHADER:
2646 parameter_index = uniform->VertPos;
2647 break;
2648 case GL_FRAGMENT_SHADER:
2649 parameter_index = uniform->FragPos;
2650 break;
2651 case GL_GEOMETRY_SHADER:
2652 parameter_index = uniform->GeomPos;
2653 break;
2654 }
2655
2656 /* Only add uniforms used in our target. */
2657 if (parameter_index != -1) {
2658 sorted_uniforms[num_uniforms].pos = parameter_index;
2659 sorted_uniforms[num_uniforms].u = uniform;
2660 num_uniforms++;
2661 }
2662 }
2663
2664 qsort(sorted_uniforms, num_uniforms, sizeof(struct uniform_sort),
2665 sort_uniforms);
2666
2667 for (i = 0; i < num_uniforms; i++) {
2668 struct gl_uniform *uniform = sorted_uniforms[i].u;
2669 int parameter_index = sorted_uniforms[i].pos;
2670 const glsl_type *type = uniform->Type;
2671 unsigned int size;
2672
2673 if (type->is_vector() ||
2674 type->is_scalar()) {
2675 size = type->vector_elements;
2676 } else {
2677 size = type_size(type) * 4;
2678 }
2679
2680 gl_register_file file;
2681 if (type->is_sampler() ||
2682 (type->is_array() && type->fields.array->is_sampler())) {
2683 file = PROGRAM_SAMPLER;
2684 } else {
2685 file = PROGRAM_UNIFORM;
2686 }
2687
2688 GLint index = _mesa_lookup_parameter_index(prog->Parameters, -1,
2689 uniform->Name);
2690
2691 if (index < 0) {
2692 index = _mesa_add_parameter(prog->Parameters, file,
2693 uniform->Name, size, type->gl_type,
2694 NULL, NULL, 0x0);
2695
2696 /* Sampler uniform values are stored in prog->SamplerUnits,
2697 * and the entry in that array is selected by this index we
2698 * store in ParameterValues[].
2699 */
2700 if (file == PROGRAM_SAMPLER) {
2701 for (unsigned int j = 0; j < size / 4; j++)
2702 prog->Parameters->ParameterValues[index + j][0].f = next_sampler++;
2703 }
2704
2705 /* The location chosen in the Parameters list here (returned
2706 * from _mesa_add_uniform) has to match what the linker chose.
2707 */
2708 if (index != parameter_index) {
2709 fail_link(shader_program, "Allocation of uniform `%s' to target "
2710 "failed (%d vs %d)\n",
2711 uniform->Name, index, parameter_index);
2712 }
2713 }
2714 }
2715
2716 ralloc_free(sorted_uniforms);
2717 }
2718
2719 static void
2720 set_uniform_initializer(struct gl_context *ctx, void *mem_ctx,
2721 struct gl_shader_program *shader_program,
2722 const char *name, const glsl_type *type,
2723 ir_constant *val)
2724 {
2725 if (type->is_record()) {
2726 ir_constant *field_constant;
2727
2728 field_constant = (ir_constant *)val->components.get_head();
2729
2730 for (unsigned int i = 0; i < type->length; i++) {
2731 const glsl_type *field_type = type->fields.structure[i].type;
2732 const char *field_name = ralloc_asprintf(mem_ctx, "%s.%s", name,
2733 type->fields.structure[i].name);
2734 set_uniform_initializer(ctx, mem_ctx, shader_program, field_name,
2735 field_type, field_constant);
2736 field_constant = (ir_constant *)field_constant->next;
2737 }
2738 return;
2739 }
2740
2741 int loc = _mesa_get_uniform_location(ctx, shader_program, name);
2742
2743 if (loc == -1) {
2744 fail_link(shader_program,
2745 "Couldn't find uniform for initializer %s\n", name);
2746 return;
2747 }
2748
2749 for (unsigned int i = 0; i < (type->is_array() ? type->length : 1); i++) {
2750 ir_constant *element;
2751 const glsl_type *element_type;
2752 if (type->is_array()) {
2753 element = val->array_elements[i];
2754 element_type = type->fields.array;
2755 } else {
2756 element = val;
2757 element_type = type;
2758 }
2759
2760 void *values;
2761
2762 if (element_type->base_type == GLSL_TYPE_BOOL) {
2763 int *conv = ralloc_array(mem_ctx, int, element_type->components());
2764 for (unsigned int j = 0; j < element_type->components(); j++) {
2765 conv[j] = element->value.b[j];
2766 }
2767 values = (void *)conv;
2768 element_type = glsl_type::get_instance(GLSL_TYPE_INT,
2769 element_type->vector_elements,
2770 1);
2771 } else {
2772 values = &element->value;
2773 }
2774
2775 if (element_type->is_matrix()) {
2776 _mesa_uniform_matrix(ctx, shader_program,
2777 element_type->matrix_columns,
2778 element_type->vector_elements,
2779 loc, 1, GL_FALSE, (GLfloat *)values);
2780 loc += element_type->matrix_columns;
2781 } else {
2782 _mesa_uniform(ctx, shader_program, loc, element_type->matrix_columns,
2783 values, element_type->gl_type);
2784 loc += type_size(element_type);
2785 }
2786 }
2787 }
2788
2789 static void
2790 set_uniform_initializers(struct gl_context *ctx,
2791 struct gl_shader_program *shader_program)
2792 {
2793 void *mem_ctx = NULL;
2794
2795 for (unsigned int i = 0; i < MESA_SHADER_TYPES; i++) {
2796 struct gl_shader *shader = shader_program->_LinkedShaders[i];
2797
2798 if (shader == NULL)
2799 continue;
2800
2801 foreach_iter(exec_list_iterator, iter, *shader->ir) {
2802 ir_instruction *ir = (ir_instruction *)iter.get();
2803 ir_variable *var = ir->as_variable();
2804
2805 if (!var || var->mode != ir_var_uniform || !var->constant_value)
2806 continue;
2807
2808 if (!mem_ctx)
2809 mem_ctx = ralloc_context(NULL);
2810
2811 set_uniform_initializer(ctx, mem_ctx, shader_program, var->name,
2812 var->type, var->constant_value);
2813 }
2814 }
2815
2816 ralloc_free(mem_ctx);
2817 }
2818
2819 /*
2820 * Scan/rewrite program to remove reads of custom (output) registers.
2821 * The passed type has to be either PROGRAM_OUTPUT or PROGRAM_VARYING
2822 * (for vertex shaders).
2823 * In GLSL shaders, varying vars can be read and written.
2824 * On some hardware, trying to read an output register causes trouble.
2825 * So, rewrite the program to use a temporary register in this case.
2826 *
2827 * Based on _mesa_remove_output_reads from programopt.c.
2828 */
2829 void
2830 glsl_to_tgsi_visitor::remove_output_reads(gl_register_file type)
2831 {
2832 GLuint i;
2833 GLint outputMap[VERT_RESULT_MAX];
2834 GLint outputTypes[VERT_RESULT_MAX];
2835 GLuint numVaryingReads = 0;
2836 GLboolean usedTemps[MAX_TEMPS];
2837 GLuint firstTemp = 0;
2838
2839 _mesa_find_used_registers(prog, PROGRAM_TEMPORARY,
2840 usedTemps, MAX_TEMPS);
2841
2842 assert(type == PROGRAM_VARYING || type == PROGRAM_OUTPUT);
2843 assert(prog->Target == GL_VERTEX_PROGRAM_ARB || type != PROGRAM_VARYING);
2844
2845 for (i = 0; i < VERT_RESULT_MAX; i++)
2846 outputMap[i] = -1;
2847
2848 /* look for instructions which read from varying vars */
2849 foreach_iter(exec_list_iterator, iter, this->instructions) {
2850 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
2851 const GLuint numSrc = num_inst_src_regs(inst->op);
2852 GLuint j;
2853 for (j = 0; j < numSrc; j++) {
2854 if (inst->src[j].file == type) {
2855 /* replace the read with a temp reg */
2856 const GLuint var = inst->src[j].index;
2857 if (outputMap[var] == -1) {
2858 numVaryingReads++;
2859 outputMap[var] = _mesa_find_free_register(usedTemps,
2860 MAX_TEMPS,
2861 firstTemp);
2862 outputTypes[var] = inst->src[j].type;
2863 firstTemp = outputMap[var] + 1;
2864 }
2865 inst->src[j].file = PROGRAM_TEMPORARY;
2866 inst->src[j].index = outputMap[var];
2867 }
2868 }
2869 }
2870
2871 if (numVaryingReads == 0)
2872 return; /* nothing to be done */
2873
2874 /* look for instructions which write to the varying vars identified above */
2875 foreach_iter(exec_list_iterator, iter, this->instructions) {
2876 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
2877 if (inst->dst.file == type && outputMap[inst->dst.index] >= 0) {
2878 /* change inst to write to the temp reg, instead of the varying */
2879 inst->dst.file = PROGRAM_TEMPORARY;
2880 inst->dst.index = outputMap[inst->dst.index];
2881 }
2882 }
2883
2884 /* insert new MOV instructions at the end */
2885 for (i = 0; i < VERT_RESULT_MAX; i++) {
2886 if (outputMap[i] >= 0) {
2887 /* MOV VAR[i], TEMP[tmp]; */
2888 st_src_reg src = st_src_reg(PROGRAM_TEMPORARY, outputMap[i], outputTypes[i]);
2889 st_dst_reg dst = st_dst_reg(type, WRITEMASK_XYZW, outputTypes[i]);
2890 dst.index = i;
2891 this->emit(NULL, TGSI_OPCODE_MOV, dst, src);
2892 }
2893 }
2894 }
2895
2896 /**
2897 * Returns the mask of channels (bitmask of WRITEMASK_X,Y,Z,W) which
2898 * are read from the given src in this instruction
2899 */
2900 static int
2901 get_src_arg_mask(st_dst_reg dst, st_src_reg src)
2902 {
2903 int read_mask = 0, comp;
2904
2905 /* Now, given the src swizzle and the written channels, find which
2906 * components are actually read
2907 */
2908 for (comp = 0; comp < 4; ++comp) {
2909 const unsigned coord = GET_SWZ(src.swizzle, comp);
2910 ASSERT(coord < 4);
2911 if (dst.writemask & (1 << comp) && coord <= SWIZZLE_W)
2912 read_mask |= 1 << coord;
2913 }
2914
2915 return read_mask;
2916 }
2917
2918 /**
2919 * This pass replaces CMP T0, T1 T2 T0 with MOV T0, T2 when the CMP
2920 * instruction is the first instruction to write to register T0. There are
2921 * several lowering passes done in GLSL IR (e.g. branches and
2922 * relative addressing) that create a large number of conditional assignments
2923 * that ir_to_mesa converts to CMP instructions like the one mentioned above.
2924 *
2925 * Here is why this conversion is safe:
2926 * CMP T0, T1 T2 T0 can be expanded to:
2927 * if (T1 < 0.0)
2928 * MOV T0, T2;
2929 * else
2930 * MOV T0, T0;
2931 *
2932 * If (T1 < 0.0) evaluates to true then our replacement MOV T0, T2 is the same
2933 * as the original program. If (T1 < 0.0) evaluates to false, executing
2934 * MOV T0, T0 will store a garbage value in T0 since T0 is uninitialized.
2935 * Therefore, it doesn't matter that we are replacing MOV T0, T0 with MOV T0, T2
2936 * because any instruction that was going to read from T0 after this was going
2937 * to read a garbage value anyway.
2938 */
2939 void
2940 glsl_to_tgsi_visitor::simplify_cmp(void)
2941 {
2942 unsigned tempWrites[MAX_TEMPS];
2943 unsigned outputWrites[MAX_PROGRAM_OUTPUTS];
2944
2945 memset(tempWrites, 0, sizeof(tempWrites));
2946 memset(outputWrites, 0, sizeof(outputWrites));
2947
2948 foreach_iter(exec_list_iterator, iter, this->instructions) {
2949 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
2950 unsigned prevWriteMask = 0;
2951
2952 /* Give up if we encounter relative addressing or flow control. */
2953 if (inst->dst.reladdr ||
2954 tgsi_get_opcode_info(inst->op)->is_branch ||
2955 inst->op == TGSI_OPCODE_BGNSUB ||
2956 inst->op == TGSI_OPCODE_CONT ||
2957 inst->op == TGSI_OPCODE_END ||
2958 inst->op == TGSI_OPCODE_ENDSUB ||
2959 inst->op == TGSI_OPCODE_RET) {
2960 return;
2961 }
2962
2963 if (inst->dst.file == PROGRAM_OUTPUT) {
2964 assert(inst->dst.index < MAX_PROGRAM_OUTPUTS);
2965 prevWriteMask = outputWrites[inst->dst.index];
2966 outputWrites[inst->dst.index] |= inst->dst.writemask;
2967 } else if (inst->dst.file == PROGRAM_TEMPORARY) {
2968 assert(inst->dst.index < MAX_TEMPS);
2969 prevWriteMask = tempWrites[inst->dst.index];
2970 tempWrites[inst->dst.index] |= inst->dst.writemask;
2971 }
2972
2973 /* For a CMP to be considered a conditional write, the destination
2974 * register and source register two must be the same. */
2975 if (inst->op == TGSI_OPCODE_CMP
2976 && !(inst->dst.writemask & prevWriteMask)
2977 && inst->src[2].file == inst->dst.file
2978 && inst->src[2].index == inst->dst.index
2979 && inst->dst.writemask == get_src_arg_mask(inst->dst, inst->src[2])) {
2980
2981 inst->op = TGSI_OPCODE_MOV;
2982 inst->src[0] = inst->src[1];
2983 }
2984 }
2985 }
2986
2987 /* Replaces all references to a temporary register index with another index. */
2988 void
2989 glsl_to_tgsi_visitor::rename_temp_register(int index, int new_index)
2990 {
2991 foreach_iter(exec_list_iterator, iter, this->instructions) {
2992 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
2993 unsigned j;
2994
2995 for (j=0; j < num_inst_src_regs(inst->op); j++) {
2996 if (inst->src[j].file == PROGRAM_TEMPORARY &&
2997 inst->src[j].index == index) {
2998 inst->src[j].index = new_index;
2999 }
3000 }
3001
3002 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.index == index) {
3003 inst->dst.index = new_index;
3004 }
3005 }
3006 }
3007
3008 int
3009 glsl_to_tgsi_visitor::get_first_temp_read(int index)
3010 {
3011 int depth = 0; /* loop depth */
3012 int loop_start = -1; /* index of the first active BGNLOOP (if any) */
3013 unsigned i = 0, j;
3014
3015 foreach_iter(exec_list_iterator, iter, this->instructions) {
3016 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3017
3018 for (j=0; j < num_inst_src_regs(inst->op); j++) {
3019 if (inst->src[j].file == PROGRAM_TEMPORARY &&
3020 inst->src[j].index == index) {
3021 return (depth == 0) ? i : loop_start;
3022 }
3023 }
3024
3025 if (inst->op == TGSI_OPCODE_BGNLOOP) {
3026 if(depth++ == 0)
3027 loop_start = i;
3028 } else if (inst->op == TGSI_OPCODE_ENDLOOP) {
3029 if (--depth == 0)
3030 loop_start = -1;
3031 }
3032 assert(depth >= 0);
3033
3034 i++;
3035 }
3036
3037 return -1;
3038 }
3039
3040 int
3041 glsl_to_tgsi_visitor::get_first_temp_write(int index)
3042 {
3043 int depth = 0; /* loop depth */
3044 int loop_start = -1; /* index of the first active BGNLOOP (if any) */
3045 int i = 0;
3046
3047 foreach_iter(exec_list_iterator, iter, this->instructions) {
3048 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3049
3050 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.index == index) {
3051 return (depth == 0) ? i : loop_start;
3052 }
3053
3054 if (inst->op == TGSI_OPCODE_BGNLOOP) {
3055 if(depth++ == 0)
3056 loop_start = i;
3057 } else if (inst->op == TGSI_OPCODE_ENDLOOP) {
3058 if (--depth == 0)
3059 loop_start = -1;
3060 }
3061 assert(depth >= 0);
3062
3063 i++;
3064 }
3065
3066 return -1;
3067 }
3068
3069 int
3070 glsl_to_tgsi_visitor::get_last_temp_read(int index)
3071 {
3072 int depth = 0; /* loop depth */
3073 int last = -1; /* index of last instruction that reads the temporary */
3074 unsigned i = 0, j;
3075
3076 foreach_iter(exec_list_iterator, iter, this->instructions) {
3077 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3078
3079 for (j=0; j < num_inst_src_regs(inst->op); j++) {
3080 if (inst->src[j].file == PROGRAM_TEMPORARY &&
3081 inst->src[j].index == index) {
3082 last = (depth == 0) ? i : -2;
3083 }
3084 }
3085
3086 if (inst->op == TGSI_OPCODE_BGNLOOP)
3087 depth++;
3088 else if (inst->op == TGSI_OPCODE_ENDLOOP)
3089 if (--depth == 0 && last == -2)
3090 last = i;
3091 assert(depth >= 0);
3092
3093 i++;
3094 }
3095
3096 assert(last >= -1);
3097 return last;
3098 }
3099
3100 int
3101 glsl_to_tgsi_visitor::get_last_temp_write(int index)
3102 {
3103 int depth = 0; /* loop depth */
3104 int last = -1; /* index of last instruction that writes to the temporary */
3105 int i = 0;
3106
3107 foreach_iter(exec_list_iterator, iter, this->instructions) {
3108 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3109
3110 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.index == index)
3111 last = (depth == 0) ? i : -2;
3112
3113 if (inst->op == TGSI_OPCODE_BGNLOOP)
3114 depth++;
3115 else if (inst->op == TGSI_OPCODE_ENDLOOP)
3116 if (--depth == 0 && last == -2)
3117 last = i;
3118 assert(depth >= 0);
3119
3120 i++;
3121 }
3122
3123 assert(last >= -1);
3124 return last;
3125 }
3126
3127 /*
3128 * On a basic block basis, tracks available PROGRAM_TEMPORARY register
3129 * channels for copy propagation and updates following instructions to
3130 * use the original versions.
3131 *
3132 * The glsl_to_tgsi_visitor lazily produces code assuming that this pass
3133 * will occur. As an example, a TXP production before this pass:
3134 *
3135 * 0: MOV TEMP[1], INPUT[4].xyyy;
3136 * 1: MOV TEMP[1].w, INPUT[4].wwww;
3137 * 2: TXP TEMP[2], TEMP[1], texture[0], 2D;
3138 *
3139 * and after:
3140 *
3141 * 0: MOV TEMP[1], INPUT[4].xyyy;
3142 * 1: MOV TEMP[1].w, INPUT[4].wwww;
3143 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
3144 *
3145 * which allows for dead code elimination on TEMP[1]'s writes.
3146 */
3147 void
3148 glsl_to_tgsi_visitor::copy_propagate(void)
3149 {
3150 glsl_to_tgsi_instruction **acp = rzalloc_array(mem_ctx,
3151 glsl_to_tgsi_instruction *,
3152 this->next_temp * 4);
3153 int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
3154 int level = 0;
3155
3156 foreach_iter(exec_list_iterator, iter, this->instructions) {
3157 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3158
3159 assert(inst->dst.file != PROGRAM_TEMPORARY
3160 || inst->dst.index < this->next_temp);
3161
3162 /* First, do any copy propagation possible into the src regs. */
3163 for (int r = 0; r < 3; r++) {
3164 glsl_to_tgsi_instruction *first = NULL;
3165 bool good = true;
3166 int acp_base = inst->src[r].index * 4;
3167
3168 if (inst->src[r].file != PROGRAM_TEMPORARY ||
3169 inst->src[r].reladdr)
3170 continue;
3171
3172 /* See if we can find entries in the ACP consisting of MOVs
3173 * from the same src register for all the swizzled channels
3174 * of this src register reference.
3175 */
3176 for (int i = 0; i < 4; i++) {
3177 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
3178 glsl_to_tgsi_instruction *copy_chan = acp[acp_base + src_chan];
3179
3180 if (!copy_chan) {
3181 good = false;
3182 break;
3183 }
3184
3185 assert(acp_level[acp_base + src_chan] <= level);
3186
3187 if (!first) {
3188 first = copy_chan;
3189 } else {
3190 if (first->src[0].file != copy_chan->src[0].file ||
3191 first->src[0].index != copy_chan->src[0].index) {
3192 good = false;
3193 break;
3194 }
3195 }
3196 }
3197
3198 if (good) {
3199 /* We've now validated that we can copy-propagate to
3200 * replace this src register reference. Do it.
3201 */
3202 inst->src[r].file = first->src[0].file;
3203 inst->src[r].index = first->src[0].index;
3204
3205 int swizzle = 0;
3206 for (int i = 0; i < 4; i++) {
3207 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
3208 glsl_to_tgsi_instruction *copy_inst = acp[acp_base + src_chan];
3209 swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) <<
3210 (3 * i));
3211 }
3212 inst->src[r].swizzle = swizzle;
3213 }
3214 }
3215
3216 switch (inst->op) {
3217 case TGSI_OPCODE_BGNLOOP:
3218 case TGSI_OPCODE_ENDLOOP:
3219 /* End of a basic block, clear the ACP entirely. */
3220 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
3221 break;
3222
3223 case TGSI_OPCODE_IF:
3224 ++level;
3225 break;
3226
3227 case TGSI_OPCODE_ENDIF:
3228 case TGSI_OPCODE_ELSE:
3229 /* Clear all channels written inside the block from the ACP, but
3230 * leaving those that were not touched.
3231 */
3232 for (int r = 0; r < this->next_temp; r++) {
3233 for (int c = 0; c < 4; c++) {
3234 if (!acp[4 * r + c])
3235 continue;
3236
3237 if (acp_level[4 * r + c] >= level)
3238 acp[4 * r + c] = NULL;
3239 }
3240 }
3241 if (inst->op == TGSI_OPCODE_ENDIF)
3242 --level;
3243 break;
3244
3245 default:
3246 /* Continuing the block, clear any written channels from
3247 * the ACP.
3248 */
3249 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.reladdr) {
3250 /* Any temporary might be written, so no copy propagation
3251 * across this instruction.
3252 */
3253 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
3254 } else if (inst->dst.file == PROGRAM_OUTPUT &&
3255 inst->dst.reladdr) {
3256 /* Any output might be written, so no copy propagation
3257 * from outputs across this instruction.
3258 */
3259 for (int r = 0; r < this->next_temp; r++) {
3260 for (int c = 0; c < 4; c++) {
3261 if (!acp[4 * r + c])
3262 continue;
3263
3264 if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT)
3265 acp[4 * r + c] = NULL;
3266 }
3267 }
3268 } else if (inst->dst.file == PROGRAM_TEMPORARY ||
3269 inst->dst.file == PROGRAM_OUTPUT) {
3270 /* Clear where it's used as dst. */
3271 if (inst->dst.file == PROGRAM_TEMPORARY) {
3272 for (int c = 0; c < 4; c++) {
3273 if (inst->dst.writemask & (1 << c)) {
3274 acp[4 * inst->dst.index + c] = NULL;
3275 }
3276 }
3277 }
3278
3279 /* Clear where it's used as src. */
3280 for (int r = 0; r < this->next_temp; r++) {
3281 for (int c = 0; c < 4; c++) {
3282 if (!acp[4 * r + c])
3283 continue;
3284
3285 int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c);
3286
3287 if (acp[4 * r + c]->src[0].file == inst->dst.file &&
3288 acp[4 * r + c]->src[0].index == inst->dst.index &&
3289 inst->dst.writemask & (1 << src_chan))
3290 {
3291 acp[4 * r + c] = NULL;
3292 }
3293 }
3294 }
3295 }
3296 break;
3297 }
3298
3299 /* If this is a copy, add it to the ACP. */
3300 if (inst->op == TGSI_OPCODE_MOV &&
3301 inst->dst.file == PROGRAM_TEMPORARY &&
3302 !inst->dst.reladdr &&
3303 !inst->saturate &&
3304 !inst->src[0].reladdr &&
3305 !inst->src[0].negate) {
3306 for (int i = 0; i < 4; i++) {
3307 if (inst->dst.writemask & (1 << i)) {
3308 acp[4 * inst->dst.index + i] = inst;
3309 acp_level[4 * inst->dst.index + i] = level;
3310 }
3311 }
3312 }
3313 }
3314
3315 ralloc_free(acp_level);
3316 ralloc_free(acp);
3317 }
3318
3319 /*
3320 * Tracks available PROGRAM_TEMPORARY registers for dead code elimination.
3321 *
3322 * The glsl_to_tgsi_visitor lazily produces code assuming that this pass
3323 * will occur. As an example, a TXP production after copy propagation but
3324 * before this pass:
3325 *
3326 * 0: MOV TEMP[1], INPUT[4].xyyy;
3327 * 1: MOV TEMP[1].w, INPUT[4].wwww;
3328 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
3329 *
3330 * and after this pass:
3331 *
3332 * 0: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
3333 *
3334 * FIXME: assumes that all functions are inlined (no support for BGNSUB/ENDSUB)
3335 * FIXME: doesn't eliminate all dead code inside of loops; it steps around them
3336 */
3337 void
3338 glsl_to_tgsi_visitor::eliminate_dead_code(void)
3339 {
3340 int i;
3341
3342 for (i=0; i < this->next_temp; i++) {
3343 int last_read = get_last_temp_read(i);
3344 int j = 0;
3345
3346 foreach_iter(exec_list_iterator, iter, this->instructions) {
3347 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3348
3349 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.index == i &&
3350 j > last_read)
3351 {
3352 iter.remove();
3353 delete inst;
3354 }
3355
3356 j++;
3357 }
3358 }
3359 }
3360
3361 /*
3362 * On a basic block basis, tracks available PROGRAM_TEMPORARY registers for dead
3363 * code elimination. This is less primitive than eliminate_dead_code(), as it
3364 * is per-channel and can detect consecutive writes without a read between them
3365 * as dead code. However, there is some dead code that can be eliminated by
3366 * eliminate_dead_code() but not this function - for example, this function
3367 * cannot eliminate an instruction writing to a register that is never read and
3368 * is the only instruction writing to that register.
3369 *
3370 * The glsl_to_tgsi_visitor lazily produces code assuming that this pass
3371 * will occur.
3372 */
3373 int
3374 glsl_to_tgsi_visitor::eliminate_dead_code_advanced(void)
3375 {
3376 glsl_to_tgsi_instruction **writes = rzalloc_array(mem_ctx,
3377 glsl_to_tgsi_instruction *,
3378 this->next_temp * 4);
3379 int *write_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
3380 int level = 0;
3381 int removed = 0;
3382
3383 foreach_iter(exec_list_iterator, iter, this->instructions) {
3384 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3385
3386 assert(inst->dst.file != PROGRAM_TEMPORARY
3387 || inst->dst.index < this->next_temp);
3388
3389 switch (inst->op) {
3390 case TGSI_OPCODE_BGNLOOP:
3391 case TGSI_OPCODE_ENDLOOP:
3392 /* End of a basic block, clear the write array entirely.
3393 * FIXME: This keeps us from killing dead code when the writes are
3394 * on either side of a loop, even when the register isn't touched
3395 * inside the loop.
3396 */
3397 memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
3398 break;
3399
3400 case TGSI_OPCODE_ENDIF:
3401 --level;
3402 break;
3403
3404 case TGSI_OPCODE_ELSE:
3405 /* Clear all channels written inside the preceding if block from the
3406 * write array, but leave those that were not touched.
3407 *
3408 * FIXME: This destroys opportunities to remove dead code inside of
3409 * IF blocks that are followed by an ELSE block.
3410 */
3411 for (int r = 0; r < this->next_temp; r++) {
3412 for (int c = 0; c < 4; c++) {
3413 if (!writes[4 * r + c])
3414 continue;
3415
3416 if (write_level[4 * r + c] >= level)
3417 writes[4 * r + c] = NULL;
3418 }
3419 }
3420 break;
3421
3422 case TGSI_OPCODE_IF:
3423 ++level;
3424 /* fallthrough to default case to mark the condition as read */
3425
3426 default:
3427 /* Continuing the block, clear any channels from the write array that
3428 * are read by this instruction.
3429 */
3430 for (int i = 0; i < 4; i++) {
3431 if (inst->src[i].file == PROGRAM_TEMPORARY && inst->src[i].reladdr){
3432 /* Any temporary might be read, so no dead code elimination
3433 * across this instruction.
3434 */
3435 memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
3436 } else if (inst->src[i].file == PROGRAM_TEMPORARY) {
3437 /* Clear where it's used as src. */
3438 int src_chans = 1 << GET_SWZ(inst->src[i].swizzle, 0);
3439 src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 1);
3440 src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 2);
3441 src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 3);
3442
3443 for (int c = 0; c < 4; c++) {
3444 if (src_chans & (1 << c)) {
3445 writes[4 * inst->src[i].index + c] = NULL;
3446 }
3447 }
3448 }
3449 }
3450 break;
3451 }
3452
3453 /* If this instruction writes to a temporary, add it to the write array.
3454 * If there is already an instruction in the write array for one or more
3455 * of the channels, flag that channel write as dead.
3456 */
3457 if (inst->dst.file == PROGRAM_TEMPORARY &&
3458 !inst->dst.reladdr &&
3459 !inst->saturate) {
3460 for (int c = 0; c < 4; c++) {
3461 if (inst->dst.writemask & (1 << c)) {
3462 if (writes[4 * inst->dst.index + c]) {
3463 if (write_level[4 * inst->dst.index + c] < level)
3464 continue;
3465 else
3466 writes[4 * inst->dst.index + c]->dead_mask |= (1 << c);
3467 }
3468 writes[4 * inst->dst.index + c] = inst;
3469 write_level[4 * inst->dst.index + c] = level;
3470 }
3471 }
3472 }
3473 }
3474
3475 /* Anything still in the write array at this point is dead code. */
3476 for (int r = 0; r < this->next_temp; r++) {
3477 for (int c = 0; c < 4; c++) {
3478 glsl_to_tgsi_instruction *inst = writes[4 * r + c];
3479 if (inst)
3480 inst->dead_mask |= (1 << c);
3481 }
3482 }
3483
3484 /* Now actually remove the instructions that are completely dead and update
3485 * the writemask of other instructions with dead channels.
3486 */
3487 foreach_iter(exec_list_iterator, iter, this->instructions) {
3488 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3489
3490 if (!inst->dead_mask || !inst->dst.writemask)
3491 continue;
3492 else if (inst->dead_mask == inst->dst.writemask) {
3493 iter.remove();
3494 delete inst;
3495 removed++;
3496 } else
3497 inst->dst.writemask &= ~(inst->dead_mask);
3498 }
3499
3500 ralloc_free(write_level);
3501 ralloc_free(writes);
3502
3503 return removed;
3504 }
3505
3506 /* Merges temporary registers together where possible to reduce the number of
3507 * registers needed to run a program.
3508 *
3509 * Produces optimal code only after copy propagation and dead code elimination
3510 * have been run. */
3511 void
3512 glsl_to_tgsi_visitor::merge_registers(void)
3513 {
3514 int *last_reads = rzalloc_array(mem_ctx, int, this->next_temp);
3515 int *first_writes = rzalloc_array(mem_ctx, int, this->next_temp);
3516 int i, j;
3517
3518 /* Read the indices of the last read and first write to each temp register
3519 * into an array so that we don't have to traverse the instruction list as
3520 * much. */
3521 for (i=0; i < this->next_temp; i++) {
3522 last_reads[i] = get_last_temp_read(i);
3523 first_writes[i] = get_first_temp_write(i);
3524 }
3525
3526 /* Start looking for registers with non-overlapping usages that can be
3527 * merged together. */
3528 for (i=0; i < this->next_temp; i++) {
3529 /* Don't touch unused registers. */
3530 if (last_reads[i] < 0 || first_writes[i] < 0) continue;
3531
3532 for (j=0; j < this->next_temp; j++) {
3533 /* Don't touch unused registers. */
3534 if (last_reads[j] < 0 || first_writes[j] < 0) continue;
3535
3536 /* We can merge the two registers if the first write to j is after or
3537 * in the same instruction as the last read from i. Note that the
3538 * register at index i will always be used earlier or at the same time
3539 * as the register at index j. */
3540 if (first_writes[i] <= first_writes[j] &&
3541 last_reads[i] <= first_writes[j])
3542 {
3543 rename_temp_register(j, i); /* Replace all references to j with i.*/
3544
3545 /* Update the first_writes and last_reads arrays with the new
3546 * values for the merged register index, and mark the newly unused
3547 * register index as such. */
3548 last_reads[i] = last_reads[j];
3549 first_writes[j] = -1;
3550 last_reads[j] = -1;
3551 }
3552 }
3553 }
3554
3555 ralloc_free(last_reads);
3556 ralloc_free(first_writes);
3557 }
3558
3559 /* Reassign indices to temporary registers by reusing unused indices created
3560 * by optimization passes. */
3561 void
3562 glsl_to_tgsi_visitor::renumber_registers(void)
3563 {
3564 int i = 0;
3565 int new_index = 0;
3566
3567 for (i=0; i < this->next_temp; i++) {
3568 if (get_first_temp_read(i) < 0) continue;
3569 if (i != new_index)
3570 rename_temp_register(i, new_index);
3571 new_index++;
3572 }
3573
3574 this->next_temp = new_index;
3575 }
3576
3577 /**
3578 * Returns a fragment program which implements the current pixel transfer ops.
3579 * Based on get_pixel_transfer_program in st_atom_pixeltransfer.c.
3580 */
3581 extern "C" void
3582 get_pixel_transfer_visitor(struct st_fragment_program *fp,
3583 glsl_to_tgsi_visitor *original,
3584 int scale_and_bias, int pixel_maps)
3585 {
3586 glsl_to_tgsi_visitor *v = new glsl_to_tgsi_visitor();
3587 struct st_context *st = st_context(original->ctx);
3588 struct gl_program *prog = &fp->Base.Base;
3589 struct gl_program_parameter_list *params = _mesa_new_parameter_list();
3590 st_src_reg coord, src0;
3591 st_dst_reg dst0;
3592 glsl_to_tgsi_instruction *inst;
3593
3594 /* Copy attributes of the glsl_to_tgsi_visitor in the original shader. */
3595 v->ctx = original->ctx;
3596 v->prog = prog;
3597 v->glsl_version = original->glsl_version;
3598 v->options = original->options;
3599 v->next_temp = original->next_temp;
3600 v->num_address_regs = original->num_address_regs;
3601 v->samplers_used = prog->SamplersUsed = original->samplers_used;
3602 v->indirect_addr_temps = original->indirect_addr_temps;
3603 v->indirect_addr_consts = original->indirect_addr_consts;
3604 memcpy(&v->immediates, &original->immediates, sizeof(v->immediates));
3605
3606 /*
3607 * Get initial pixel color from the texture.
3608 * TEX colorTemp, fragment.texcoord[0], texture[0], 2D;
3609 */
3610 coord = st_src_reg(PROGRAM_INPUT, FRAG_ATTRIB_TEX0, glsl_type::vec2_type);
3611 src0 = v->get_temp(glsl_type::vec4_type);
3612 dst0 = st_dst_reg(src0);
3613 inst = v->emit(NULL, TGSI_OPCODE_TEX, dst0, coord);
3614 inst->sampler = 0;
3615 inst->tex_target = TEXTURE_2D_INDEX;
3616
3617 prog->InputsRead |= (1 << FRAG_ATTRIB_TEX0);
3618 prog->SamplersUsed |= (1 << 0); /* mark sampler 0 as used */
3619 v->samplers_used |= (1 << 0);
3620
3621 if (scale_and_bias) {
3622 static const gl_state_index scale_state[STATE_LENGTH] =
3623 { STATE_INTERNAL, STATE_PT_SCALE,
3624 (gl_state_index) 0, (gl_state_index) 0, (gl_state_index) 0 };
3625 static const gl_state_index bias_state[STATE_LENGTH] =
3626 { STATE_INTERNAL, STATE_PT_BIAS,
3627 (gl_state_index) 0, (gl_state_index) 0, (gl_state_index) 0 };
3628 GLint scale_p, bias_p;
3629 st_src_reg scale, bias;
3630
3631 scale_p = _mesa_add_state_reference(params, scale_state);
3632 bias_p = _mesa_add_state_reference(params, bias_state);
3633
3634 /* MAD colorTemp, colorTemp, scale, bias; */
3635 scale = st_src_reg(PROGRAM_STATE_VAR, scale_p, GLSL_TYPE_FLOAT);
3636 bias = st_src_reg(PROGRAM_STATE_VAR, bias_p, GLSL_TYPE_FLOAT);
3637 inst = v->emit(NULL, TGSI_OPCODE_MAD, dst0, src0, scale, bias);
3638 }
3639
3640 if (pixel_maps) {
3641 st_src_reg temp = v->get_temp(glsl_type::vec4_type);
3642 st_dst_reg temp_dst = st_dst_reg(temp);
3643
3644 assert(st->pixel_xfer.pixelmap_texture);
3645
3646 /* With a little effort, we can do four pixel map look-ups with
3647 * two TEX instructions:
3648 */
3649
3650 /* TEX temp.rg, colorTemp.rgba, texture[1], 2D; */
3651 temp_dst.writemask = WRITEMASK_XY; /* write R,G */
3652 inst = v->emit(NULL, TGSI_OPCODE_TEX, temp_dst, src0);
3653 inst->sampler = 1;
3654 inst->tex_target = TEXTURE_2D_INDEX;
3655
3656 /* TEX temp.ba, colorTemp.baba, texture[1], 2D; */
3657 src0.swizzle = MAKE_SWIZZLE4(SWIZZLE_Z, SWIZZLE_W, SWIZZLE_Z, SWIZZLE_W);
3658 temp_dst.writemask = WRITEMASK_ZW; /* write B,A */
3659 inst = v->emit(NULL, TGSI_OPCODE_TEX, temp_dst, src0);
3660 inst->sampler = 1;
3661 inst->tex_target = TEXTURE_2D_INDEX;
3662
3663 prog->SamplersUsed |= (1 << 1); /* mark sampler 1 as used */
3664 v->samplers_used |= (1 << 1);
3665
3666 /* MOV colorTemp, temp; */
3667 inst = v->emit(NULL, TGSI_OPCODE_MOV, dst0, temp);
3668 }
3669
3670 /* Now copy the instructions from the original glsl_to_tgsi_visitor into the
3671 * new visitor. */
3672 foreach_iter(exec_list_iterator, iter, original->instructions) {
3673 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3674 st_src_reg src_regs[3];
3675
3676 if (inst->dst.file == PROGRAM_OUTPUT)
3677 prog->OutputsWritten |= BITFIELD64_BIT(inst->dst.index);
3678
3679 for (int i=0; i<3; i++) {
3680 src_regs[i] = inst->src[i];
3681 if (src_regs[i].file == PROGRAM_INPUT &&
3682 src_regs[i].index == FRAG_ATTRIB_COL0)
3683 {
3684 src_regs[i].file = PROGRAM_TEMPORARY;
3685 src_regs[i].index = src0.index;
3686 }
3687 else if (src_regs[i].file == PROGRAM_INPUT)
3688 prog->InputsRead |= (1 << src_regs[i].index);
3689 }
3690
3691 v->emit(NULL, inst->op, inst->dst, src_regs[0], src_regs[1], src_regs[2]);
3692 }
3693
3694 /* Make modifications to fragment program info. */
3695 prog->Parameters = _mesa_combine_parameter_lists(params,
3696 original->prog->Parameters);
3697 prog->Attributes = _mesa_clone_parameter_list(original->prog->Attributes);
3698 prog->Varying = _mesa_clone_parameter_list(original->prog->Varying);
3699 _mesa_free_parameter_list(params);
3700 count_resources(v, prog);
3701 fp->glsl_to_tgsi = v;
3702 }
3703
3704 /**
3705 * Make fragment program for glBitmap:
3706 * Sample the texture and kill the fragment if the bit is 0.
3707 * This program will be combined with the user's fragment program.
3708 *
3709 * Based on make_bitmap_fragment_program in st_cb_bitmap.c.
3710 */
3711 extern "C" void
3712 get_bitmap_visitor(struct st_fragment_program *fp,
3713 glsl_to_tgsi_visitor *original, int samplerIndex)
3714 {
3715 glsl_to_tgsi_visitor *v = new glsl_to_tgsi_visitor();
3716 struct st_context *st = st_context(original->ctx);
3717 struct gl_program *prog = &fp->Base.Base;
3718 st_src_reg coord, src0;
3719 st_dst_reg dst0;
3720 glsl_to_tgsi_instruction *inst;
3721
3722 /* Copy attributes of the glsl_to_tgsi_visitor in the original shader. */
3723 v->ctx = original->ctx;
3724 v->prog = prog;
3725 v->glsl_version = original->glsl_version;
3726 v->options = original->options;
3727 v->next_temp = original->next_temp;
3728 v->num_address_regs = original->num_address_regs;
3729 v->samplers_used = prog->SamplersUsed = original->samplers_used;
3730 v->indirect_addr_temps = original->indirect_addr_temps;
3731 v->indirect_addr_consts = original->indirect_addr_consts;
3732 memcpy(&v->immediates, &original->immediates, sizeof(v->immediates));
3733
3734 /* TEX tmp0, fragment.texcoord[0], texture[0], 2D; */
3735 coord = st_src_reg(PROGRAM_INPUT, FRAG_ATTRIB_TEX0, glsl_type::vec2_type);
3736 src0 = v->get_temp(glsl_type::vec4_type);
3737 dst0 = st_dst_reg(src0);
3738 inst = v->emit(NULL, TGSI_OPCODE_TEX, dst0, coord);
3739 inst->sampler = samplerIndex;
3740 inst->tex_target = TEXTURE_2D_INDEX;
3741
3742 prog->InputsRead |= (1 << FRAG_ATTRIB_TEX0);
3743 prog->SamplersUsed |= (1 << samplerIndex); /* mark sampler as used */
3744 v->samplers_used |= (1 << samplerIndex);
3745
3746 /* KIL if -tmp0 < 0 # texel=0 -> keep / texel=0 -> discard */
3747 src0.negate = NEGATE_XYZW;
3748 if (st->bitmap.tex_format == PIPE_FORMAT_L8_UNORM)
3749 src0.swizzle = SWIZZLE_XXXX;
3750 inst = v->emit(NULL, TGSI_OPCODE_KIL, undef_dst, src0);
3751
3752 /* Now copy the instructions from the original glsl_to_tgsi_visitor into the
3753 * new visitor. */
3754 foreach_iter(exec_list_iterator, iter, original->instructions) {
3755 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3756 st_src_reg src_regs[3];
3757
3758 if (inst->dst.file == PROGRAM_OUTPUT)
3759 prog->OutputsWritten |= BITFIELD64_BIT(inst->dst.index);
3760
3761 for (int i=0; i<3; i++) {
3762 src_regs[i] = inst->src[i];
3763 if (src_regs[i].file == PROGRAM_INPUT)
3764 prog->InputsRead |= (1 << src_regs[i].index);
3765 }
3766
3767 v->emit(NULL, inst->op, inst->dst, src_regs[0], src_regs[1], src_regs[2]);
3768 }
3769
3770 /* Make modifications to fragment program info. */
3771 prog->Parameters = _mesa_clone_parameter_list(original->prog->Parameters);
3772 prog->Attributes = _mesa_clone_parameter_list(original->prog->Attributes);
3773 prog->Varying = _mesa_clone_parameter_list(original->prog->Varying);
3774 count_resources(v, prog);
3775 fp->glsl_to_tgsi = v;
3776 }
3777
3778 /* ------------------------- TGSI conversion stuff -------------------------- */
3779 struct label {
3780 unsigned branch_target;
3781 unsigned token;
3782 };
3783
3784 /**
3785 * Intermediate state used during shader translation.
3786 */
3787 struct st_translate {
3788 struct ureg_program *ureg;
3789
3790 struct ureg_dst temps[MAX_TEMPS];
3791 struct ureg_src *constants;
3792 struct ureg_src *immediates;
3793 struct ureg_dst outputs[PIPE_MAX_SHADER_OUTPUTS];
3794 struct ureg_src inputs[PIPE_MAX_SHADER_INPUTS];
3795 struct ureg_dst address[1];
3796 struct ureg_src samplers[PIPE_MAX_SAMPLERS];
3797 struct ureg_src systemValues[SYSTEM_VALUE_MAX];
3798
3799 /* Extra info for handling point size clamping in vertex shader */
3800 struct ureg_dst pointSizeResult; /**< Actual point size output register */
3801 struct ureg_src pointSizeConst; /**< Point size range constant register */
3802 GLint pointSizeOutIndex; /**< Temp point size output register */
3803 GLboolean prevInstWrotePointSize;
3804
3805 const GLuint *inputMapping;
3806 const GLuint *outputMapping;
3807
3808 /* For every instruction that contains a label (eg CALL), keep
3809 * details so that we can go back afterwards and emit the correct
3810 * tgsi instruction number for each label.
3811 */
3812 struct label *labels;
3813 unsigned labels_size;
3814 unsigned labels_count;
3815
3816 /* Keep a record of the tgsi instruction number that each mesa
3817 * instruction starts at, will be used to fix up labels after
3818 * translation.
3819 */
3820 unsigned *insn;
3821 unsigned insn_size;
3822 unsigned insn_count;
3823
3824 unsigned procType; /**< TGSI_PROCESSOR_VERTEX/FRAGMENT */
3825
3826 boolean error;
3827 };
3828
3829 /** Map Mesa's SYSTEM_VALUE_x to TGSI_SEMANTIC_x */
3830 static unsigned mesa_sysval_to_semantic[SYSTEM_VALUE_MAX] = {
3831 TGSI_SEMANTIC_FACE,
3832 TGSI_SEMANTIC_INSTANCEID
3833 };
3834
3835 /**
3836 * Make note of a branch to a label in the TGSI code.
3837 * After we've emitted all instructions, we'll go over the list
3838 * of labels built here and patch the TGSI code with the actual
3839 * location of each label.
3840 */
3841 static unsigned *get_label(struct st_translate *t, unsigned branch_target)
3842 {
3843 unsigned i;
3844
3845 if (t->labels_count + 1 >= t->labels_size) {
3846 t->labels_size = 1 << (util_logbase2(t->labels_size) + 1);
3847 t->labels = (struct label *)realloc(t->labels,
3848 t->labels_size * sizeof(struct label));
3849 if (t->labels == NULL) {
3850 static unsigned dummy;
3851 t->error = TRUE;
3852 return &dummy;
3853 }
3854 }
3855
3856 i = t->labels_count++;
3857 t->labels[i].branch_target = branch_target;
3858 return &t->labels[i].token;
3859 }
3860
3861 /**
3862 * Called prior to emitting the TGSI code for each instruction.
3863 * Allocate additional space for instructions if needed.
3864 * Update the insn[] array so the next glsl_to_tgsi_instruction points to
3865 * the next TGSI instruction.
3866 */
3867 static void set_insn_start(struct st_translate *t, unsigned start)
3868 {
3869 if (t->insn_count + 1 >= t->insn_size) {
3870 t->insn_size = 1 << (util_logbase2(t->insn_size) + 1);
3871 t->insn = (unsigned *)realloc(t->insn, t->insn_size * sizeof(t->insn[0]));
3872 if (t->insn == NULL) {
3873 t->error = TRUE;
3874 return;
3875 }
3876 }
3877
3878 t->insn[t->insn_count++] = start;
3879 }
3880
3881 /**
3882 * Map a glsl_to_tgsi constant/immediate to a TGSI immediate.
3883 */
3884 static struct ureg_src
3885 emit_immediate(struct st_translate *t,
3886 gl_constant_value values[4],
3887 int type, int size)
3888 {
3889 struct ureg_program *ureg = t->ureg;
3890
3891 switch(type)
3892 {
3893 case GL_FLOAT:
3894 return ureg_DECL_immediate(ureg, &values[0].f, size);
3895 case GL_INT:
3896 return ureg_DECL_immediate_int(ureg, &values[0].i, size);
3897 case GL_UNSIGNED_INT:
3898 case GL_BOOL:
3899 return ureg_DECL_immediate_uint(ureg, &values[0].u, size);
3900 default:
3901 assert(!"should not get here - type must be float, int, uint, or bool");
3902 return ureg_src_undef();
3903 }
3904 }
3905
3906 /**
3907 * Map a glsl_to_tgsi dst register to a TGSI ureg_dst register.
3908 */
3909 static struct ureg_dst
3910 dst_register(struct st_translate *t,
3911 gl_register_file file,
3912 GLuint index)
3913 {
3914 switch(file) {
3915 case PROGRAM_UNDEFINED:
3916 return ureg_dst_undef();
3917
3918 case PROGRAM_TEMPORARY:
3919 if (ureg_dst_is_undef(t->temps[index]))
3920 t->temps[index] = ureg_DECL_temporary(t->ureg);
3921
3922 return t->temps[index];
3923
3924 case PROGRAM_OUTPUT:
3925 if (t->procType == TGSI_PROCESSOR_VERTEX && index == VERT_RESULT_PSIZ)
3926 t->prevInstWrotePointSize = GL_TRUE;
3927
3928 if (t->procType == TGSI_PROCESSOR_VERTEX)
3929 assert(index < VERT_RESULT_MAX);
3930 else if (t->procType == TGSI_PROCESSOR_FRAGMENT)
3931 assert(index < FRAG_RESULT_MAX);
3932 else
3933 assert(index < GEOM_RESULT_MAX);
3934
3935 assert(t->outputMapping[index] < Elements(t->outputs));
3936
3937 return t->outputs[t->outputMapping[index]];
3938
3939 case PROGRAM_ADDRESS:
3940 return t->address[index];
3941
3942 default:
3943 assert(!"unknown dst register file");
3944 return ureg_dst_undef();
3945 }
3946 }
3947
3948 /**
3949 * Map a glsl_to_tgsi src register to a TGSI ureg_src register.
3950 */
3951 static struct ureg_src
3952 src_register(struct st_translate *t,
3953 gl_register_file file,
3954 GLuint index)
3955 {
3956 switch(file) {
3957 case PROGRAM_UNDEFINED:
3958 return ureg_src_undef();
3959
3960 case PROGRAM_TEMPORARY:
3961 assert(index >= 0);
3962 assert(index < Elements(t->temps));
3963 if (ureg_dst_is_undef(t->temps[index]))
3964 t->temps[index] = ureg_DECL_temporary(t->ureg);
3965 return ureg_src(t->temps[index]);
3966
3967 case PROGRAM_NAMED_PARAM:
3968 case PROGRAM_ENV_PARAM:
3969 case PROGRAM_LOCAL_PARAM:
3970 case PROGRAM_UNIFORM:
3971 assert(index >= 0);
3972 return t->constants[index];
3973 case PROGRAM_STATE_VAR:
3974 case PROGRAM_CONSTANT: /* ie, immediate */
3975 if (index < 0)
3976 return ureg_DECL_constant(t->ureg, 0);
3977 else
3978 return t->constants[index];
3979
3980 case PROGRAM_IMMEDIATE:
3981 return t->immediates[index];
3982
3983 case PROGRAM_INPUT:
3984 assert(t->inputMapping[index] < Elements(t->inputs));
3985 return t->inputs[t->inputMapping[index]];
3986
3987 case PROGRAM_OUTPUT:
3988 assert(t->outputMapping[index] < Elements(t->outputs));
3989 return ureg_src(t->outputs[t->outputMapping[index]]); /* not needed? */
3990
3991 case PROGRAM_ADDRESS:
3992 return ureg_src(t->address[index]);
3993
3994 case PROGRAM_SYSTEM_VALUE:
3995 assert(index < Elements(t->systemValues));
3996 return t->systemValues[index];
3997
3998 default:
3999 assert(!"unknown src register file");
4000 return ureg_src_undef();
4001 }
4002 }
4003
4004 /**
4005 * Create a TGSI ureg_dst register from an st_dst_reg.
4006 */
4007 static struct ureg_dst
4008 translate_dst(struct st_translate *t,
4009 const st_dst_reg *dst_reg,
4010 bool saturate)
4011 {
4012 struct ureg_dst dst = dst_register(t,
4013 dst_reg->file,
4014 dst_reg->index);
4015
4016 dst = ureg_writemask(dst, dst_reg->writemask);
4017
4018 if (saturate)
4019 dst = ureg_saturate(dst);
4020
4021 if (dst_reg->reladdr != NULL)
4022 dst = ureg_dst_indirect(dst, ureg_src(t->address[0]));
4023
4024 return dst;
4025 }
4026
4027 /**
4028 * Create a TGSI ureg_src register from an st_src_reg.
4029 */
4030 static struct ureg_src
4031 translate_src(struct st_translate *t, const st_src_reg *src_reg)
4032 {
4033 struct ureg_src src = src_register(t, src_reg->file, src_reg->index);
4034
4035 src = ureg_swizzle(src,
4036 GET_SWZ(src_reg->swizzle, 0) & 0x3,
4037 GET_SWZ(src_reg->swizzle, 1) & 0x3,
4038 GET_SWZ(src_reg->swizzle, 2) & 0x3,
4039 GET_SWZ(src_reg->swizzle, 3) & 0x3);
4040
4041 if ((src_reg->negate & 0xf) == NEGATE_XYZW)
4042 src = ureg_negate(src);
4043
4044 if (src_reg->reladdr != NULL) {
4045 /* Normally ureg_src_indirect() would be used here, but a stupid compiler
4046 * bug in g++ makes ureg_src_indirect (an inline C function) erroneously
4047 * set the bit for src.Negate. So we have to do the operation manually
4048 * here to work around the compiler's problems. */
4049 /*src = ureg_src_indirect(src, ureg_src(t->address[0]));*/
4050 struct ureg_src addr = ureg_src(t->address[0]);
4051 src.Indirect = 1;
4052 src.IndirectFile = addr.File;
4053 src.IndirectIndex = addr.Index;
4054 src.IndirectSwizzle = addr.SwizzleX;
4055
4056 if (src_reg->file != PROGRAM_INPUT &&
4057 src_reg->file != PROGRAM_OUTPUT) {
4058 /* If src_reg->index was negative, it was set to zero in
4059 * src_register(). Reassign it now. But don't do this
4060 * for input/output regs since they get remapped while
4061 * const buffers don't.
4062 */
4063 src.Index = src_reg->index;
4064 }
4065 }
4066
4067 return src;
4068 }
4069
4070 static void
4071 compile_tgsi_instruction(struct st_translate *t,
4072 const struct glsl_to_tgsi_instruction *inst)
4073 {
4074 struct ureg_program *ureg = t->ureg;
4075 GLuint i;
4076 struct ureg_dst dst[1];
4077 struct ureg_src src[4];
4078 unsigned num_dst;
4079 unsigned num_src;
4080
4081 num_dst = num_inst_dst_regs(inst->op);
4082 num_src = num_inst_src_regs(inst->op);
4083
4084 if (num_dst)
4085 dst[0] = translate_dst(t,
4086 &inst->dst,
4087 inst->saturate);
4088
4089 for (i = 0; i < num_src; i++)
4090 src[i] = translate_src(t, &inst->src[i]);
4091
4092 switch(inst->op) {
4093 case TGSI_OPCODE_BGNLOOP:
4094 case TGSI_OPCODE_CAL:
4095 case TGSI_OPCODE_ELSE:
4096 case TGSI_OPCODE_ENDLOOP:
4097 case TGSI_OPCODE_IF:
4098 assert(num_dst == 0);
4099 ureg_label_insn(ureg,
4100 inst->op,
4101 src, num_src,
4102 get_label(t,
4103 inst->op == TGSI_OPCODE_CAL ? inst->function->sig_id : 0));
4104 return;
4105
4106 case TGSI_OPCODE_TEX:
4107 case TGSI_OPCODE_TXB:
4108 case TGSI_OPCODE_TXD:
4109 case TGSI_OPCODE_TXL:
4110 case TGSI_OPCODE_TXP:
4111 src[num_src++] = t->samplers[inst->sampler];
4112 ureg_tex_insn(ureg,
4113 inst->op,
4114 dst, num_dst,
4115 translate_texture_target(inst->tex_target, inst->tex_shadow),
4116 src, num_src);
4117 return;
4118
4119 case TGSI_OPCODE_SCS:
4120 dst[0] = ureg_writemask(dst[0], TGSI_WRITEMASK_XY);
4121 ureg_insn(ureg, inst->op, dst, num_dst, src, num_src);
4122 break;
4123
4124 default:
4125 ureg_insn(ureg,
4126 inst->op,
4127 dst, num_dst,
4128 src, num_src);
4129 break;
4130 }
4131 }
4132
4133 /**
4134 * Emit the TGSI instructions to adjust the WPOS pixel center convention
4135 * Basically, add (adjX, adjY) to the fragment position.
4136 */
4137 static void
4138 emit_adjusted_wpos(struct st_translate *t,
4139 const struct gl_program *program,
4140 float adjX, float adjY)
4141 {
4142 struct ureg_program *ureg = t->ureg;
4143 struct ureg_dst wpos_temp = ureg_DECL_temporary(ureg);
4144 struct ureg_src wpos_input = t->inputs[t->inputMapping[FRAG_ATTRIB_WPOS]];
4145
4146 /* Note that we bias X and Y and pass Z and W through unchanged.
4147 * The shader might also use gl_FragCoord.w and .z.
4148 */
4149 ureg_ADD(ureg, wpos_temp, wpos_input,
4150 ureg_imm4f(ureg, adjX, adjY, 0.0f, 0.0f));
4151
4152 t->inputs[t->inputMapping[FRAG_ATTRIB_WPOS]] = ureg_src(wpos_temp);
4153 }
4154
4155
4156 /**
4157 * Emit the TGSI instructions for inverting the WPOS y coordinate.
4158 * This code is unavoidable because it also depends on whether
4159 * a FBO is bound (STATE_FB_WPOS_Y_TRANSFORM).
4160 */
4161 static void
4162 emit_wpos_inversion(struct st_translate *t,
4163 const struct gl_program *program,
4164 bool invert)
4165 {
4166 struct ureg_program *ureg = t->ureg;
4167
4168 /* Fragment program uses fragment position input.
4169 * Need to replace instances of INPUT[WPOS] with temp T
4170 * where T = INPUT[WPOS] by y is inverted.
4171 */
4172 static const gl_state_index wposTransformState[STATE_LENGTH]
4173 = { STATE_INTERNAL, STATE_FB_WPOS_Y_TRANSFORM,
4174 (gl_state_index)0, (gl_state_index)0, (gl_state_index)0 };
4175
4176 /* XXX: note we are modifying the incoming shader here! Need to
4177 * do this before emitting the constant decls below, or this
4178 * will be missed:
4179 */
4180 unsigned wposTransConst = _mesa_add_state_reference(program->Parameters,
4181 wposTransformState);
4182
4183 struct ureg_src wpostrans = ureg_DECL_constant(ureg, wposTransConst);
4184 struct ureg_dst wpos_temp;
4185 struct ureg_src wpos_input = t->inputs[t->inputMapping[FRAG_ATTRIB_WPOS]];
4186
4187 /* MOV wpos_temp, input[wpos]
4188 */
4189 if (wpos_input.File == TGSI_FILE_TEMPORARY)
4190 wpos_temp = ureg_dst(wpos_input);
4191 else {
4192 wpos_temp = ureg_DECL_temporary(ureg);
4193 ureg_MOV(ureg, wpos_temp, wpos_input);
4194 }
4195
4196 if (invert) {
4197 /* MAD wpos_temp.y, wpos_input, wpostrans.xxxx, wpostrans.yyyy
4198 */
4199 ureg_MAD(ureg,
4200 ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y),
4201 wpos_input,
4202 ureg_scalar(wpostrans, 0),
4203 ureg_scalar(wpostrans, 1));
4204 } else {
4205 /* MAD wpos_temp.y, wpos_input, wpostrans.zzzz, wpostrans.wwww
4206 */
4207 ureg_MAD(ureg,
4208 ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y),
4209 wpos_input,
4210 ureg_scalar(wpostrans, 2),
4211 ureg_scalar(wpostrans, 3));
4212 }
4213
4214 /* Use wpos_temp as position input from here on:
4215 */
4216 t->inputs[t->inputMapping[FRAG_ATTRIB_WPOS]] = ureg_src(wpos_temp);
4217 }
4218
4219
4220 /**
4221 * Emit fragment position/ooordinate code.
4222 */
4223 static void
4224 emit_wpos(struct st_context *st,
4225 struct st_translate *t,
4226 const struct gl_program *program,
4227 struct ureg_program *ureg)
4228 {
4229 const struct gl_fragment_program *fp =
4230 (const struct gl_fragment_program *) program;
4231 struct pipe_screen *pscreen = st->pipe->screen;
4232 boolean invert = FALSE;
4233
4234 if (fp->OriginUpperLeft) {
4235 /* Fragment shader wants origin in upper-left */
4236 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT)) {
4237 /* the driver supports upper-left origin */
4238 }
4239 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT)) {
4240 /* the driver supports lower-left origin, need to invert Y */
4241 ureg_property_fs_coord_origin(ureg, TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
4242 invert = TRUE;
4243 }
4244 else
4245 assert(0);
4246 }
4247 else {
4248 /* Fragment shader wants origin in lower-left */
4249 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT))
4250 /* the driver supports lower-left origin */
4251 ureg_property_fs_coord_origin(ureg, TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
4252 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT))
4253 /* the driver supports upper-left origin, need to invert Y */
4254 invert = TRUE;
4255 else
4256 assert(0);
4257 }
4258
4259 if (fp->PixelCenterInteger) {
4260 /* Fragment shader wants pixel center integer */
4261 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER))
4262 /* the driver supports pixel center integer */
4263 ureg_property_fs_coord_pixel_center(ureg, TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
4264 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER))
4265 /* the driver supports pixel center half integer, need to bias X,Y */
4266 emit_adjusted_wpos(t, program, 0.5f, invert ? 0.5f : -0.5f);
4267 else
4268 assert(0);
4269 }
4270 else {
4271 /* Fragment shader wants pixel center half integer */
4272 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
4273 /* the driver supports pixel center half integer */
4274 }
4275 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
4276 /* the driver supports pixel center integer, need to bias X,Y */
4277 ureg_property_fs_coord_pixel_center(ureg, TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
4278 emit_adjusted_wpos(t, program, 0.5f, invert ? -0.5f : 0.5f);
4279 }
4280 else
4281 assert(0);
4282 }
4283
4284 /* we invert after adjustment so that we avoid the MOV to temporary,
4285 * and reuse the adjustment ADD instead */
4286 emit_wpos_inversion(t, program, invert);
4287 }
4288
4289 /**
4290 * OpenGL's fragment gl_FrontFace input is 1 for front-facing, 0 for back.
4291 * TGSI uses +1 for front, -1 for back.
4292 * This function converts the TGSI value to the GL value. Simply clamping/
4293 * saturating the value to [0,1] does the job.
4294 */
4295 static void
4296 emit_face_var(struct st_translate *t)
4297 {
4298 struct ureg_program *ureg = t->ureg;
4299 struct ureg_dst face_temp = ureg_DECL_temporary(ureg);
4300 struct ureg_src face_input = t->inputs[t->inputMapping[FRAG_ATTRIB_FACE]];
4301
4302 /* MOV_SAT face_temp, input[face] */
4303 face_temp = ureg_saturate(face_temp);
4304 ureg_MOV(ureg, face_temp, face_input);
4305
4306 /* Use face_temp as face input from here on: */
4307 t->inputs[t->inputMapping[FRAG_ATTRIB_FACE]] = ureg_src(face_temp);
4308 }
4309
4310 static void
4311 emit_edgeflags(struct st_translate *t)
4312 {
4313 struct ureg_program *ureg = t->ureg;
4314 struct ureg_dst edge_dst = t->outputs[t->outputMapping[VERT_RESULT_EDGE]];
4315 struct ureg_src edge_src = t->inputs[t->inputMapping[VERT_ATTRIB_EDGEFLAG]];
4316
4317 ureg_MOV(ureg, edge_dst, edge_src);
4318 }
4319
4320 /**
4321 * Translate intermediate IR (glsl_to_tgsi_instruction) to TGSI format.
4322 * \param program the program to translate
4323 * \param numInputs number of input registers used
4324 * \param inputMapping maps Mesa fragment program inputs to TGSI generic
4325 * input indexes
4326 * \param inputSemanticName the TGSI_SEMANTIC flag for each input
4327 * \param inputSemanticIndex the semantic index (ex: which texcoord) for
4328 * each input
4329 * \param interpMode the TGSI_INTERPOLATE_LINEAR/PERSP mode for each input
4330 * \param numOutputs number of output registers used
4331 * \param outputMapping maps Mesa fragment program outputs to TGSI
4332 * generic outputs
4333 * \param outputSemanticName the TGSI_SEMANTIC flag for each output
4334 * \param outputSemanticIndex the semantic index (ex: which texcoord) for
4335 * each output
4336 *
4337 * \return PIPE_OK or PIPE_ERROR_OUT_OF_MEMORY
4338 */
4339 extern "C" enum pipe_error
4340 st_translate_program(
4341 struct gl_context *ctx,
4342 uint procType,
4343 struct ureg_program *ureg,
4344 glsl_to_tgsi_visitor *program,
4345 const struct gl_program *proginfo,
4346 GLuint numInputs,
4347 const GLuint inputMapping[],
4348 const ubyte inputSemanticName[],
4349 const ubyte inputSemanticIndex[],
4350 const GLuint interpMode[],
4351 GLuint numOutputs,
4352 const GLuint outputMapping[],
4353 const ubyte outputSemanticName[],
4354 const ubyte outputSemanticIndex[],
4355 boolean passthrough_edgeflags)
4356 {
4357 struct st_translate translate, *t;
4358 unsigned i;
4359 enum pipe_error ret = PIPE_OK;
4360
4361 assert(numInputs <= Elements(t->inputs));
4362 assert(numOutputs <= Elements(t->outputs));
4363
4364 t = &translate;
4365 memset(t, 0, sizeof *t);
4366
4367 t->procType = procType;
4368 t->inputMapping = inputMapping;
4369 t->outputMapping = outputMapping;
4370 t->ureg = ureg;
4371 t->pointSizeOutIndex = -1;
4372 t->prevInstWrotePointSize = GL_FALSE;
4373
4374 /*
4375 * Declare input attributes.
4376 */
4377 if (procType == TGSI_PROCESSOR_FRAGMENT) {
4378 for (i = 0; i < numInputs; i++) {
4379 t->inputs[i] = ureg_DECL_fs_input(ureg,
4380 inputSemanticName[i],
4381 inputSemanticIndex[i],
4382 interpMode[i]);
4383 }
4384
4385 if (proginfo->InputsRead & FRAG_BIT_WPOS) {
4386 /* Must do this after setting up t->inputs, and before
4387 * emitting constant references, below:
4388 */
4389 emit_wpos(st_context(ctx), t, proginfo, ureg);
4390 }
4391
4392 if (proginfo->InputsRead & FRAG_BIT_FACE)
4393 emit_face_var(t);
4394
4395 /*
4396 * Declare output attributes.
4397 */
4398 for (i = 0; i < numOutputs; i++) {
4399 switch (outputSemanticName[i]) {
4400 case TGSI_SEMANTIC_POSITION:
4401 t->outputs[i] = ureg_DECL_output(ureg,
4402 TGSI_SEMANTIC_POSITION, /* Z/Depth */
4403 outputSemanticIndex[i]);
4404 t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_Z);
4405 break;
4406 case TGSI_SEMANTIC_STENCIL:
4407 t->outputs[i] = ureg_DECL_output(ureg,
4408 TGSI_SEMANTIC_STENCIL, /* Stencil */
4409 outputSemanticIndex[i]);
4410 t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_Y);
4411 break;
4412 case TGSI_SEMANTIC_COLOR:
4413 t->outputs[i] = ureg_DECL_output(ureg,
4414 TGSI_SEMANTIC_COLOR,
4415 outputSemanticIndex[i]);
4416 break;
4417 default:
4418 assert(!"fragment shader outputs must be POSITION/STENCIL/COLOR");
4419 return PIPE_ERROR_BAD_INPUT;
4420 }
4421 }
4422 }
4423 else if (procType == TGSI_PROCESSOR_GEOMETRY) {
4424 for (i = 0; i < numInputs; i++) {
4425 t->inputs[i] = ureg_DECL_gs_input(ureg,
4426 i,
4427 inputSemanticName[i],
4428 inputSemanticIndex[i]);
4429 }
4430
4431 for (i = 0; i < numOutputs; i++) {
4432 t->outputs[i] = ureg_DECL_output(ureg,
4433 outputSemanticName[i],
4434 outputSemanticIndex[i]);
4435 }
4436 }
4437 else {
4438 assert(procType == TGSI_PROCESSOR_VERTEX);
4439
4440 for (i = 0; i < numInputs; i++) {
4441 t->inputs[i] = ureg_DECL_vs_input(ureg, i);
4442 }
4443
4444 for (i = 0; i < numOutputs; i++) {
4445 t->outputs[i] = ureg_DECL_output(ureg,
4446 outputSemanticName[i],
4447 outputSemanticIndex[i]);
4448 if ((outputSemanticName[i] == TGSI_SEMANTIC_PSIZE) && proginfo->Id) {
4449 /* Writing to the point size result register requires special
4450 * handling to implement clamping.
4451 */
4452 static const gl_state_index pointSizeClampState[STATE_LENGTH]
4453 = { STATE_INTERNAL, STATE_POINT_SIZE_IMPL_CLAMP, (gl_state_index)0, (gl_state_index)0, (gl_state_index)0 };
4454 /* XXX: note we are modifying the incoming shader here! Need to
4455 * do this before emitting the constant decls below, or this
4456 * will be missed.
4457 */
4458 unsigned pointSizeClampConst =
4459 _mesa_add_state_reference(proginfo->Parameters,
4460 pointSizeClampState);
4461 struct ureg_dst psizregtemp = ureg_DECL_temporary(ureg);
4462 t->pointSizeConst = ureg_DECL_constant(ureg, pointSizeClampConst);
4463 t->pointSizeResult = t->outputs[i];
4464 t->pointSizeOutIndex = i;
4465 t->outputs[i] = psizregtemp;
4466 }
4467 }
4468 if (passthrough_edgeflags)
4469 emit_edgeflags(t);
4470 }
4471
4472 /* Declare address register.
4473 */
4474 if (program->num_address_regs > 0) {
4475 assert(program->num_address_regs == 1);
4476 t->address[0] = ureg_DECL_address(ureg);
4477 }
4478
4479 /* Declare misc input registers
4480 */
4481 {
4482 GLbitfield sysInputs = proginfo->SystemValuesRead;
4483 unsigned numSys = 0;
4484 for (i = 0; sysInputs; i++) {
4485 if (sysInputs & (1 << i)) {
4486 unsigned semName = mesa_sysval_to_semantic[i];
4487 t->systemValues[i] = ureg_DECL_system_value(ureg, numSys, semName, 0);
4488 numSys++;
4489 sysInputs &= ~(1 << i);
4490 }
4491 }
4492 }
4493
4494 if (program->indirect_addr_temps) {
4495 /* If temps are accessed with indirect addressing, declare temporaries
4496 * in sequential order. Else, we declare them on demand elsewhere.
4497 * (Note: the number of temporaries is equal to program->next_temp)
4498 */
4499 for (i = 0; i < (unsigned)program->next_temp; i++) {
4500 /* XXX use TGSI_FILE_TEMPORARY_ARRAY when it's supported by ureg */
4501 t->temps[i] = ureg_DECL_temporary(t->ureg);
4502 }
4503 }
4504
4505 /* Emit constants and uniforms. TGSI uses a single index space for these,
4506 * so we put all the translated regs in t->constants.
4507 */
4508 if (proginfo->Parameters) {
4509 t->constants = (struct ureg_src *)CALLOC(proginfo->Parameters->NumParameters * sizeof(t->constants[0]));
4510 if (t->constants == NULL) {
4511 ret = PIPE_ERROR_OUT_OF_MEMORY;
4512 goto out;
4513 }
4514
4515 for (i = 0; i < proginfo->Parameters->NumParameters; i++) {
4516 switch (proginfo->Parameters->Parameters[i].Type) {
4517 case PROGRAM_ENV_PARAM:
4518 case PROGRAM_LOCAL_PARAM:
4519 case PROGRAM_STATE_VAR:
4520 case PROGRAM_NAMED_PARAM:
4521 case PROGRAM_UNIFORM:
4522 t->constants[i] = ureg_DECL_constant(ureg, i);
4523 break;
4524
4525 /* Emit immediates for PROGRAM_CONSTANT only when there's no indirect
4526 * addressing of the const buffer.
4527 * FIXME: Be smarter and recognize param arrays:
4528 * indirect addressing is only valid within the referenced
4529 * array.
4530 */
4531 case PROGRAM_CONSTANT:
4532 if (program->indirect_addr_consts)
4533 t->constants[i] = ureg_DECL_constant(ureg, i);
4534 else
4535 t->constants[i] = emit_immediate(t,
4536 proginfo->Parameters->ParameterValues[i],
4537 proginfo->Parameters->Parameters[i].DataType,
4538 4);
4539 break;
4540 default:
4541 break;
4542 }
4543 }
4544 }
4545
4546 /* Emit immediate values.
4547 */
4548 t->immediates = (struct ureg_src *)CALLOC(program->num_immediates * sizeof(struct ureg_src));
4549 if (t->immediates == NULL) {
4550 ret = PIPE_ERROR_OUT_OF_MEMORY;
4551 goto out;
4552 }
4553 i = 0;
4554 foreach_iter(exec_list_iterator, iter, program->immediates) {
4555 immediate_storage *imm = (immediate_storage *)iter.get();
4556 t->immediates[i++] = emit_immediate(t, imm->values, imm->type, imm->size);
4557 }
4558
4559 /* texture samplers */
4560 for (i = 0; i < ctx->Const.MaxTextureImageUnits; i++) {
4561 if (program->samplers_used & (1 << i)) {
4562 t->samplers[i] = ureg_DECL_sampler(ureg, i);
4563 }
4564 }
4565
4566 /* Emit each instruction in turn:
4567 */
4568 foreach_iter(exec_list_iterator, iter, program->instructions) {
4569 set_insn_start(t, ureg_get_instruction_number(ureg));
4570 compile_tgsi_instruction(t, (glsl_to_tgsi_instruction *)iter.get());
4571
4572 if (t->prevInstWrotePointSize && proginfo->Id) {
4573 /* The previous instruction wrote to the (fake) vertex point size
4574 * result register. Now we need to clamp that value to the min/max
4575 * point size range, putting the result into the real point size
4576 * register.
4577 * Note that we can't do this easily at the end of program due to
4578 * possible early return.
4579 */
4580 set_insn_start(t, ureg_get_instruction_number(ureg));
4581 ureg_MAX(t->ureg,
4582 ureg_writemask(t->outputs[t->pointSizeOutIndex], WRITEMASK_X),
4583 ureg_src(t->outputs[t->pointSizeOutIndex]),
4584 ureg_swizzle(t->pointSizeConst, 1,1,1,1));
4585 ureg_MIN(t->ureg, ureg_writemask(t->pointSizeResult, WRITEMASK_X),
4586 ureg_src(t->outputs[t->pointSizeOutIndex]),
4587 ureg_swizzle(t->pointSizeConst, 2,2,2,2));
4588 }
4589 t->prevInstWrotePointSize = GL_FALSE;
4590 }
4591
4592 /* Fix up all emitted labels:
4593 */
4594 for (i = 0; i < t->labels_count; i++) {
4595 ureg_fixup_label(ureg, t->labels[i].token,
4596 t->insn[t->labels[i].branch_target]);
4597 }
4598
4599 out:
4600 FREE(t->insn);
4601 FREE(t->labels);
4602 FREE(t->constants);
4603 FREE(t->immediates);
4604
4605 if (t->error) {
4606 debug_printf("%s: translate error flag set\n", __FUNCTION__);
4607 }
4608
4609 return ret;
4610 }
4611 /* ----------------------------- End TGSI code ------------------------------ */
4612
4613 /**
4614 * Convert a shader's GLSL IR into a Mesa gl_program, although without
4615 * generating Mesa IR.
4616 */
4617 static struct gl_program *
4618 get_mesa_program(struct gl_context *ctx,
4619 struct gl_shader_program *shader_program,
4620 struct gl_shader *shader)
4621 {
4622 glsl_to_tgsi_visitor* v = new glsl_to_tgsi_visitor();
4623 struct gl_program *prog;
4624 GLenum target;
4625 const char *target_string;
4626 bool progress;
4627 struct gl_shader_compiler_options *options =
4628 &ctx->ShaderCompilerOptions[_mesa_shader_type_to_index(shader->Type)];
4629
4630 switch (shader->Type) {
4631 case GL_VERTEX_SHADER:
4632 target = GL_VERTEX_PROGRAM_ARB;
4633 target_string = "vertex";
4634 break;
4635 case GL_FRAGMENT_SHADER:
4636 target = GL_FRAGMENT_PROGRAM_ARB;
4637 target_string = "fragment";
4638 break;
4639 case GL_GEOMETRY_SHADER:
4640 target = GL_GEOMETRY_PROGRAM_NV;
4641 target_string = "geometry";
4642 break;
4643 default:
4644 assert(!"should not be reached");
4645 return NULL;
4646 }
4647
4648 validate_ir_tree(shader->ir);
4649
4650 prog = ctx->Driver.NewProgram(ctx, target, shader_program->Name);
4651 if (!prog)
4652 return NULL;
4653 prog->Parameters = _mesa_new_parameter_list();
4654 prog->Varying = _mesa_new_parameter_list();
4655 prog->Attributes = _mesa_new_parameter_list();
4656 v->ctx = ctx;
4657 v->prog = prog;
4658 v->shader_program = shader_program;
4659 v->options = options;
4660 v->glsl_version = ctx->Const.GLSLVersion;
4661
4662 add_uniforms_to_parameters_list(shader_program, shader, prog);
4663
4664 /* Emit intermediate IR for main(). */
4665 visit_exec_list(shader->ir, v);
4666
4667 /* Now emit bodies for any functions that were used. */
4668 do {
4669 progress = GL_FALSE;
4670
4671 foreach_iter(exec_list_iterator, iter, v->function_signatures) {
4672 function_entry *entry = (function_entry *)iter.get();
4673
4674 if (!entry->bgn_inst) {
4675 v->current_function = entry;
4676
4677 entry->bgn_inst = v->emit(NULL, TGSI_OPCODE_BGNSUB);
4678 entry->bgn_inst->function = entry;
4679
4680 visit_exec_list(&entry->sig->body, v);
4681
4682 glsl_to_tgsi_instruction *last;
4683 last = (glsl_to_tgsi_instruction *)v->instructions.get_tail();
4684 if (last->op != TGSI_OPCODE_RET)
4685 v->emit(NULL, TGSI_OPCODE_RET);
4686
4687 glsl_to_tgsi_instruction *end;
4688 end = v->emit(NULL, TGSI_OPCODE_ENDSUB);
4689 end->function = entry;
4690
4691 progress = GL_TRUE;
4692 }
4693 }
4694 } while (progress);
4695
4696 #if 0
4697 /* Print out some information (for debugging purposes) used by the
4698 * optimization passes. */
4699 for (i=0; i < v->next_temp; i++) {
4700 int fr = v->get_first_temp_read(i);
4701 int fw = v->get_first_temp_write(i);
4702 int lr = v->get_last_temp_read(i);
4703 int lw = v->get_last_temp_write(i);
4704
4705 printf("Temp %d: FR=%3d FW=%3d LR=%3d LW=%3d\n", i, fr, fw, lr, lw);
4706 assert(fw <= fr);
4707 }
4708 #endif
4709
4710 /* Remove reads to output registers, and to varyings in vertex shaders. */
4711 v->remove_output_reads(PROGRAM_OUTPUT);
4712 if (target == GL_VERTEX_PROGRAM_ARB)
4713 v->remove_output_reads(PROGRAM_VARYING);
4714
4715 /* Perform optimizations on the instructions in the glsl_to_tgsi_visitor. */
4716 v->simplify_cmp();
4717 v->copy_propagate();
4718 while (v->eliminate_dead_code_advanced());
4719
4720 /* FIXME: These passes to optimize temporary registers don't work when there
4721 * is indirect addressing of the temporary register space. We need proper
4722 * array support so that we don't have to give up these passes in every
4723 * shader that uses arrays.
4724 */
4725 if (!v->indirect_addr_temps) {
4726 v->eliminate_dead_code();
4727 v->merge_registers();
4728 v->renumber_registers();
4729 }
4730
4731 /* Write the END instruction. */
4732 v->emit(NULL, TGSI_OPCODE_END);
4733
4734 if (ctx->Shader.Flags & GLSL_DUMP) {
4735 printf("\n");
4736 printf("GLSL IR for linked %s program %d:\n", target_string,
4737 shader_program->Name);
4738 _mesa_print_ir(shader->ir, NULL);
4739 printf("\n");
4740 printf("\n");
4741 }
4742
4743 prog->Instructions = NULL;
4744 prog->NumInstructions = 0;
4745
4746 do_set_program_inouts(shader->ir, prog);
4747 count_resources(v, prog);
4748
4749 check_resources(ctx, shader_program, v, prog);
4750
4751 _mesa_reference_program(ctx, &shader->Program, prog);
4752
4753 struct st_vertex_program *stvp;
4754 struct st_fragment_program *stfp;
4755 struct st_geometry_program *stgp;
4756
4757 switch (shader->Type) {
4758 case GL_VERTEX_SHADER:
4759 stvp = (struct st_vertex_program *)prog;
4760 stvp->glsl_to_tgsi = v;
4761 break;
4762 case GL_FRAGMENT_SHADER:
4763 stfp = (struct st_fragment_program *)prog;
4764 stfp->glsl_to_tgsi = v;
4765 break;
4766 case GL_GEOMETRY_SHADER:
4767 stgp = (struct st_geometry_program *)prog;
4768 stgp->glsl_to_tgsi = v;
4769 break;
4770 default:
4771 assert(!"should not be reached");
4772 return NULL;
4773 }
4774
4775 return prog;
4776 }
4777
4778 extern "C" {
4779
4780 struct gl_shader *
4781 st_new_shader(struct gl_context *ctx, GLuint name, GLuint type)
4782 {
4783 struct gl_shader *shader;
4784 assert(type == GL_FRAGMENT_SHADER || type == GL_VERTEX_SHADER ||
4785 type == GL_GEOMETRY_SHADER_ARB);
4786 shader = rzalloc(NULL, struct gl_shader);
4787 if (shader) {
4788 shader->Type = type;
4789 shader->Name = name;
4790 _mesa_init_shader(ctx, shader);
4791 }
4792 return shader;
4793 }
4794
4795 struct gl_shader_program *
4796 st_new_shader_program(struct gl_context *ctx, GLuint name)
4797 {
4798 struct gl_shader_program *shProg;
4799 shProg = rzalloc(NULL, struct gl_shader_program);
4800 if (shProg) {
4801 shProg->Name = name;
4802 _mesa_init_shader_program(ctx, shProg);
4803 }
4804 return shProg;
4805 }
4806
4807 /**
4808 * Link a shader.
4809 * Called via ctx->Driver.LinkShader()
4810 * This actually involves converting GLSL IR into an intermediate TGSI-like IR
4811 * with code lowering and other optimizations.
4812 */
4813 GLboolean
4814 st_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
4815 {
4816 assert(prog->LinkStatus);
4817
4818 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
4819 if (prog->_LinkedShaders[i] == NULL)
4820 continue;
4821
4822 bool progress;
4823 exec_list *ir = prog->_LinkedShaders[i]->ir;
4824 const struct gl_shader_compiler_options *options =
4825 &ctx->ShaderCompilerOptions[_mesa_shader_type_to_index(prog->_LinkedShaders[i]->Type)];
4826
4827 do {
4828 progress = false;
4829
4830 /* Lowering */
4831 do_mat_op_to_vec(ir);
4832 lower_instructions(ir, (MOD_TO_FRACT | DIV_TO_MUL_RCP | EXP_TO_EXP2
4833 | LOG_TO_LOG2
4834 | ((options->EmitNoPow) ? POW_TO_EXP2 : 0)));
4835
4836 progress = do_lower_jumps(ir, true, true, options->EmitNoMainReturn, options->EmitNoCont, options->EmitNoLoops) || progress;
4837
4838 progress = do_common_optimization(ir, true, options->MaxUnrollIterations) || progress;
4839
4840 progress = lower_quadop_vector(ir, false) || progress;
4841
4842 if (options->EmitNoIfs) {
4843 progress = lower_discard(ir) || progress;
4844 progress = lower_if_to_cond_assign(ir) || progress;
4845 }
4846
4847 if (options->EmitNoNoise)
4848 progress = lower_noise(ir) || progress;
4849
4850 /* If there are forms of indirect addressing that the driver
4851 * cannot handle, perform the lowering pass.
4852 */
4853 if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput
4854 || options->EmitNoIndirectTemp || options->EmitNoIndirectUniform)
4855 progress =
4856 lower_variable_index_to_cond_assign(ir,
4857 options->EmitNoIndirectInput,
4858 options->EmitNoIndirectOutput,
4859 options->EmitNoIndirectTemp,
4860 options->EmitNoIndirectUniform)
4861 || progress;
4862
4863 progress = do_vec_index_to_cond_assign(ir) || progress;
4864 } while (progress);
4865
4866 validate_ir_tree(ir);
4867 }
4868
4869 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
4870 struct gl_program *linked_prog;
4871
4872 if (prog->_LinkedShaders[i] == NULL)
4873 continue;
4874
4875 linked_prog = get_mesa_program(ctx, prog, prog->_LinkedShaders[i]);
4876
4877 if (linked_prog) {
4878 bool ok = true;
4879
4880 switch (prog->_LinkedShaders[i]->Type) {
4881 case GL_VERTEX_SHADER:
4882 _mesa_reference_vertprog(ctx, &prog->VertexProgram,
4883 (struct gl_vertex_program *)linked_prog);
4884 ok = ctx->Driver.ProgramStringNotify(ctx, GL_VERTEX_PROGRAM_ARB,
4885 linked_prog);
4886 break;
4887 case GL_FRAGMENT_SHADER:
4888 _mesa_reference_fragprog(ctx, &prog->FragmentProgram,
4889 (struct gl_fragment_program *)linked_prog);
4890 ok = ctx->Driver.ProgramStringNotify(ctx, GL_FRAGMENT_PROGRAM_ARB,
4891 linked_prog);
4892 break;
4893 case GL_GEOMETRY_SHADER:
4894 _mesa_reference_geomprog(ctx, &prog->GeometryProgram,
4895 (struct gl_geometry_program *)linked_prog);
4896 ok = ctx->Driver.ProgramStringNotify(ctx, GL_GEOMETRY_PROGRAM_NV,
4897 linked_prog);
4898 break;
4899 }
4900 if (!ok) {
4901 return GL_FALSE;
4902 }
4903 }
4904
4905 _mesa_reference_program(ctx, &linked_prog, NULL);
4906 }
4907
4908 return GL_TRUE;
4909 }
4910
4911
4912 /**
4913 * Link a GLSL shader program. Called via glLinkProgram().
4914 */
4915 void
4916 st_glsl_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
4917 {
4918 unsigned int i;
4919
4920 _mesa_clear_shader_program_data(ctx, prog);
4921
4922 prog->LinkStatus = GL_TRUE;
4923
4924 for (i = 0; i < prog->NumShaders; i++) {
4925 if (!prog->Shaders[i]->CompileStatus) {
4926 fail_link(prog, "linking with uncompiled shader");
4927 prog->LinkStatus = GL_FALSE;
4928 }
4929 }
4930
4931 prog->Varying = _mesa_new_parameter_list();
4932 _mesa_reference_vertprog(ctx, &prog->VertexProgram, NULL);
4933 _mesa_reference_fragprog(ctx, &prog->FragmentProgram, NULL);
4934 _mesa_reference_geomprog(ctx, &prog->GeometryProgram, NULL);
4935
4936 if (prog->LinkStatus) {
4937 link_shaders(ctx, prog);
4938 }
4939
4940 if (prog->LinkStatus) {
4941 if (!ctx->Driver.LinkShader(ctx, prog)) {
4942 prog->LinkStatus = GL_FALSE;
4943 }
4944 }
4945
4946 set_uniform_initializers(ctx, prog);
4947
4948 if (ctx->Shader.Flags & GLSL_DUMP) {
4949 if (!prog->LinkStatus) {
4950 printf("GLSL shader program %d failed to link\n", prog->Name);
4951 }
4952
4953 if (prog->InfoLog && prog->InfoLog[0] != 0) {
4954 printf("GLSL shader program %d info log:\n", prog->Name);
4955 printf("%s\n", prog->InfoLog);
4956 }
4957 }
4958 }
4959
4960 } /* extern "C" */