Merge branch 'glsl-to-tgsi'
[mesa.git] / src / mesa / state_tracker / st_glsl_to_tgsi.cpp
1 /*
2 * Copyright (C) 2005-2007 Brian Paul All Rights Reserved.
3 * Copyright (C) 2008 VMware, Inc. All Rights Reserved.
4 * Copyright © 2010 Intel Corporation
5 * Copyright © 2011 Bryan Cain
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the next
15 * paragraph) shall be included in all copies or substantial portions of the
16 * Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
23 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
24 * DEALINGS IN THE SOFTWARE.
25 */
26
27 /**
28 * \file glsl_to_tgsi.cpp
29 *
30 * Translate GLSL IR to TGSI.
31 */
32
33 #include <stdio.h>
34 #include "main/compiler.h"
35 #include "ir.h"
36 #include "ir_visitor.h"
37 #include "ir_print_visitor.h"
38 #include "ir_expression_flattening.h"
39 #include "glsl_types.h"
40 #include "glsl_parser_extras.h"
41 #include "../glsl/program.h"
42 #include "ir_optimization.h"
43 #include "ast.h"
44
45 extern "C" {
46 #include "main/mtypes.h"
47 #include "main/shaderapi.h"
48 #include "main/shaderobj.h"
49 #include "main/uniforms.h"
50 #include "program/hash_table.h"
51 #include "program/prog_instruction.h"
52 #include "program/prog_optimize.h"
53 #include "program/prog_print.h"
54 #include "program/program.h"
55 #include "program/prog_uniform.h"
56 #include "program/prog_parameter.h"
57 #include "program/sampler.h"
58
59 #include "pipe/p_compiler.h"
60 #include "pipe/p_context.h"
61 #include "pipe/p_screen.h"
62 #include "pipe/p_shader_tokens.h"
63 #include "pipe/p_state.h"
64 #include "util/u_math.h"
65 #include "tgsi/tgsi_ureg.h"
66 #include "tgsi/tgsi_info.h"
67 #include "st_context.h"
68 #include "st_program.h"
69 #include "st_glsl_to_tgsi.h"
70 #include "st_mesa_to_tgsi.h"
71 }
72
73 #define PROGRAM_IMMEDIATE PROGRAM_FILE_MAX
74 #define PROGRAM_ANY_CONST ((1 << PROGRAM_LOCAL_PARAM) | \
75 (1 << PROGRAM_ENV_PARAM) | \
76 (1 << PROGRAM_STATE_VAR) | \
77 (1 << PROGRAM_NAMED_PARAM) | \
78 (1 << PROGRAM_CONSTANT) | \
79 (1 << PROGRAM_UNIFORM))
80
81 #define MAX_TEMPS 4096
82
83 class st_src_reg;
84 class st_dst_reg;
85
86 static int swizzle_for_size(int size);
87
88 /**
89 * This struct is a corresponding struct to TGSI ureg_src.
90 */
91 class st_src_reg {
92 public:
93 st_src_reg(gl_register_file file, int index, const glsl_type *type)
94 {
95 this->file = file;
96 this->index = index;
97 if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
98 this->swizzle = swizzle_for_size(type->vector_elements);
99 else
100 this->swizzle = SWIZZLE_XYZW;
101 this->negate = 0;
102 this->type = type ? type->base_type : GLSL_TYPE_ERROR;
103 this->reladdr = NULL;
104 }
105
106 st_src_reg(gl_register_file file, int index, int type)
107 {
108 this->type = type;
109 this->file = file;
110 this->index = index;
111 this->swizzle = SWIZZLE_XYZW;
112 this->negate = 0;
113 this->reladdr = NULL;
114 }
115
116 st_src_reg()
117 {
118 this->type = GLSL_TYPE_ERROR;
119 this->file = PROGRAM_UNDEFINED;
120 this->index = 0;
121 this->swizzle = 0;
122 this->negate = 0;
123 this->reladdr = NULL;
124 }
125
126 explicit st_src_reg(st_dst_reg reg);
127
128 gl_register_file file; /**< PROGRAM_* from Mesa */
129 int index; /**< temporary index, VERT_ATTRIB_*, FRAG_ATTRIB_*, etc. */
130 GLuint swizzle; /**< SWIZZLE_XYZWONEZERO swizzles from Mesa. */
131 int negate; /**< NEGATE_XYZW mask from mesa */
132 int type; /** GLSL_TYPE_* from GLSL IR (enum glsl_base_type) */
133 /** Register index should be offset by the integer in this reg. */
134 st_src_reg *reladdr;
135 };
136
137 class st_dst_reg {
138 public:
139 st_dst_reg(gl_register_file file, int writemask, int type)
140 {
141 this->file = file;
142 this->index = 0;
143 this->writemask = writemask;
144 this->cond_mask = COND_TR;
145 this->reladdr = NULL;
146 this->type = type;
147 }
148
149 st_dst_reg()
150 {
151 this->type = GLSL_TYPE_ERROR;
152 this->file = PROGRAM_UNDEFINED;
153 this->index = 0;
154 this->writemask = 0;
155 this->cond_mask = COND_TR;
156 this->reladdr = NULL;
157 }
158
159 explicit st_dst_reg(st_src_reg reg);
160
161 gl_register_file file; /**< PROGRAM_* from Mesa */
162 int index; /**< temporary index, VERT_ATTRIB_*, FRAG_ATTRIB_*, etc. */
163 int writemask; /**< Bitfield of WRITEMASK_[XYZW] */
164 GLuint cond_mask:4;
165 int type; /** GLSL_TYPE_* from GLSL IR (enum glsl_base_type) */
166 /** Register index should be offset by the integer in this reg. */
167 st_src_reg *reladdr;
168 };
169
170 st_src_reg::st_src_reg(st_dst_reg reg)
171 {
172 this->type = reg.type;
173 this->file = reg.file;
174 this->index = reg.index;
175 this->swizzle = SWIZZLE_XYZW;
176 this->negate = 0;
177 this->reladdr = reg.reladdr;
178 }
179
180 st_dst_reg::st_dst_reg(st_src_reg reg)
181 {
182 this->type = reg.type;
183 this->file = reg.file;
184 this->index = reg.index;
185 this->writemask = WRITEMASK_XYZW;
186 this->cond_mask = COND_TR;
187 this->reladdr = reg.reladdr;
188 }
189
190 class glsl_to_tgsi_instruction : public exec_node {
191 public:
192 /* Callers of this ralloc-based new need not call delete. It's
193 * easier to just ralloc_free 'ctx' (or any of its ancestors). */
194 static void* operator new(size_t size, void *ctx)
195 {
196 void *node;
197
198 node = rzalloc_size(ctx, size);
199 assert(node != NULL);
200
201 return node;
202 }
203
204 unsigned op;
205 st_dst_reg dst;
206 st_src_reg src[3];
207 /** Pointer to the ir source this tree came from for debugging */
208 ir_instruction *ir;
209 GLboolean cond_update;
210 bool saturate;
211 int sampler; /**< sampler index */
212 int tex_target; /**< One of TEXTURE_*_INDEX */
213 GLboolean tex_shadow;
214 int dead_mask; /**< Used in dead code elimination */
215
216 class function_entry *function; /* Set on TGSI_OPCODE_CAL or TGSI_OPCODE_BGNSUB */
217 };
218
219 class variable_storage : public exec_node {
220 public:
221 variable_storage(ir_variable *var, gl_register_file file, int index)
222 : file(file), index(index), var(var)
223 {
224 /* empty */
225 }
226
227 gl_register_file file;
228 int index;
229 ir_variable *var; /* variable that maps to this, if any */
230 };
231
232 class immediate_storage : public exec_node {
233 public:
234 immediate_storage(gl_constant_value *values, int size, int type)
235 {
236 memcpy(this->values, values, size * sizeof(gl_constant_value));
237 this->size = size;
238 this->type = type;
239 }
240
241 gl_constant_value values[4];
242 int size; /**< Number of components (1-4) */
243 int type; /**< GL_FLOAT, GL_INT, GL_BOOL, or GL_UNSIGNED_INT */
244 };
245
246 class function_entry : public exec_node {
247 public:
248 ir_function_signature *sig;
249
250 /**
251 * identifier of this function signature used by the program.
252 *
253 * At the point that TGSI instructions for function calls are
254 * generated, we don't know the address of the first instruction of
255 * the function body. So we make the BranchTarget that is called a
256 * small integer and rewrite them during set_branchtargets().
257 */
258 int sig_id;
259
260 /**
261 * Pointer to first instruction of the function body.
262 *
263 * Set during function body emits after main() is processed.
264 */
265 glsl_to_tgsi_instruction *bgn_inst;
266
267 /**
268 * Index of the first instruction of the function body in actual TGSI.
269 *
270 * Set after conversion from glsl_to_tgsi_instruction to TGSI.
271 */
272 int inst;
273
274 /** Storage for the return value. */
275 st_src_reg return_reg;
276 };
277
278 class glsl_to_tgsi_visitor : public ir_visitor {
279 public:
280 glsl_to_tgsi_visitor();
281 ~glsl_to_tgsi_visitor();
282
283 function_entry *current_function;
284
285 struct gl_context *ctx;
286 struct gl_program *prog;
287 struct gl_shader_program *shader_program;
288 struct gl_shader_compiler_options *options;
289
290 int next_temp;
291
292 int num_address_regs;
293 int samplers_used;
294 bool indirect_addr_temps;
295 bool indirect_addr_consts;
296
297 int glsl_version;
298
299 variable_storage *find_variable_storage(ir_variable *var);
300
301 int add_constant(gl_register_file file, gl_constant_value values[4],
302 int size, int datatype, GLuint *swizzle_out);
303
304 function_entry *get_function_signature(ir_function_signature *sig);
305
306 st_src_reg get_temp(const glsl_type *type);
307 void reladdr_to_temp(ir_instruction *ir, st_src_reg *reg, int *num_reladdr);
308
309 st_src_reg st_src_reg_for_float(float val);
310 st_src_reg st_src_reg_for_int(int val);
311 st_src_reg st_src_reg_for_type(int type, int val);
312
313 /**
314 * \name Visit methods
315 *
316 * As typical for the visitor pattern, there must be one \c visit method for
317 * each concrete subclass of \c ir_instruction. Virtual base classes within
318 * the hierarchy should not have \c visit methods.
319 */
320 /*@{*/
321 virtual void visit(ir_variable *);
322 virtual void visit(ir_loop *);
323 virtual void visit(ir_loop_jump *);
324 virtual void visit(ir_function_signature *);
325 virtual void visit(ir_function *);
326 virtual void visit(ir_expression *);
327 virtual void visit(ir_swizzle *);
328 virtual void visit(ir_dereference_variable *);
329 virtual void visit(ir_dereference_array *);
330 virtual void visit(ir_dereference_record *);
331 virtual void visit(ir_assignment *);
332 virtual void visit(ir_constant *);
333 virtual void visit(ir_call *);
334 virtual void visit(ir_return *);
335 virtual void visit(ir_discard *);
336 virtual void visit(ir_texture *);
337 virtual void visit(ir_if *);
338 /*@}*/
339
340 st_src_reg result;
341
342 /** List of variable_storage */
343 exec_list variables;
344
345 /** List of immediate_storage */
346 exec_list immediates;
347 int num_immediates;
348
349 /** List of function_entry */
350 exec_list function_signatures;
351 int next_signature_id;
352
353 /** List of glsl_to_tgsi_instruction */
354 exec_list instructions;
355
356 glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op);
357
358 glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op,
359 st_dst_reg dst, st_src_reg src0);
360
361 glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op,
362 st_dst_reg dst, st_src_reg src0, st_src_reg src1);
363
364 glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op,
365 st_dst_reg dst,
366 st_src_reg src0, st_src_reg src1, st_src_reg src2);
367
368 unsigned get_opcode(ir_instruction *ir, unsigned op,
369 st_dst_reg dst,
370 st_src_reg src0, st_src_reg src1);
371
372 /**
373 * Emit the correct dot-product instruction for the type of arguments
374 */
375 void emit_dp(ir_instruction *ir,
376 st_dst_reg dst,
377 st_src_reg src0,
378 st_src_reg src1,
379 unsigned elements);
380
381 void emit_scalar(ir_instruction *ir, unsigned op,
382 st_dst_reg dst, st_src_reg src0);
383
384 void emit_scalar(ir_instruction *ir, unsigned op,
385 st_dst_reg dst, st_src_reg src0, st_src_reg src1);
386
387 void emit_arl(ir_instruction *ir, st_dst_reg dst, st_src_reg src0);
388
389 void emit_scs(ir_instruction *ir, unsigned op,
390 st_dst_reg dst, const st_src_reg &src);
391
392 GLboolean try_emit_mad(ir_expression *ir,
393 int mul_operand);
394 GLboolean try_emit_sat(ir_expression *ir);
395
396 void emit_swz(ir_expression *ir);
397
398 bool process_move_condition(ir_rvalue *ir);
399
400 void remove_output_reads(gl_register_file type);
401 void simplify_cmp(void);
402
403 void rename_temp_register(int index, int new_index);
404 int get_first_temp_read(int index);
405 int get_first_temp_write(int index);
406 int get_last_temp_read(int index);
407 int get_last_temp_write(int index);
408
409 void copy_propagate(void);
410 void eliminate_dead_code(void);
411 int eliminate_dead_code_advanced(void);
412 void merge_registers(void);
413 void renumber_registers(void);
414
415 void *mem_ctx;
416 };
417
418 static st_src_reg undef_src = st_src_reg(PROGRAM_UNDEFINED, 0, GLSL_TYPE_ERROR);
419
420 static st_dst_reg undef_dst = st_dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP, GLSL_TYPE_ERROR);
421
422 static st_dst_reg address_reg = st_dst_reg(PROGRAM_ADDRESS, WRITEMASK_X, GLSL_TYPE_FLOAT);
423
424 static void
425 fail_link(struct gl_shader_program *prog, const char *fmt, ...) PRINTFLIKE(2, 3);
426
427 static void
428 fail_link(struct gl_shader_program *prog, const char *fmt, ...)
429 {
430 va_list args;
431 va_start(args, fmt);
432 ralloc_vasprintf_append(&prog->InfoLog, fmt, args);
433 va_end(args);
434
435 prog->LinkStatus = GL_FALSE;
436 }
437
438 static int
439 swizzle_for_size(int size)
440 {
441 int size_swizzles[4] = {
442 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
443 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
444 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
445 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
446 };
447
448 assert((size >= 1) && (size <= 4));
449 return size_swizzles[size - 1];
450 }
451
452 static bool
453 is_tex_instruction(unsigned opcode)
454 {
455 const tgsi_opcode_info* info = tgsi_get_opcode_info(opcode);
456 return info->is_tex;
457 }
458
459 static unsigned
460 num_inst_dst_regs(unsigned opcode)
461 {
462 const tgsi_opcode_info* info = tgsi_get_opcode_info(opcode);
463 return info->num_dst;
464 }
465
466 static unsigned
467 num_inst_src_regs(unsigned opcode)
468 {
469 const tgsi_opcode_info* info = tgsi_get_opcode_info(opcode);
470 return info->is_tex ? info->num_src - 1 : info->num_src;
471 }
472
473 glsl_to_tgsi_instruction *
474 glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op,
475 st_dst_reg dst,
476 st_src_reg src0, st_src_reg src1, st_src_reg src2)
477 {
478 glsl_to_tgsi_instruction *inst = new(mem_ctx) glsl_to_tgsi_instruction();
479 int num_reladdr = 0, i;
480
481 op = get_opcode(ir, op, dst, src0, src1);
482
483 /* If we have to do relative addressing, we want to load the ARL
484 * reg directly for one of the regs, and preload the other reladdr
485 * sources into temps.
486 */
487 num_reladdr += dst.reladdr != NULL;
488 num_reladdr += src0.reladdr != NULL;
489 num_reladdr += src1.reladdr != NULL;
490 num_reladdr += src2.reladdr != NULL;
491
492 reladdr_to_temp(ir, &src2, &num_reladdr);
493 reladdr_to_temp(ir, &src1, &num_reladdr);
494 reladdr_to_temp(ir, &src0, &num_reladdr);
495
496 if (dst.reladdr) {
497 emit_arl(ir, address_reg, *dst.reladdr);
498 num_reladdr--;
499 }
500 assert(num_reladdr == 0);
501
502 inst->op = op;
503 inst->dst = dst;
504 inst->src[0] = src0;
505 inst->src[1] = src1;
506 inst->src[2] = src2;
507 inst->ir = ir;
508 inst->dead_mask = 0;
509
510 inst->function = NULL;
511
512 if (op == TGSI_OPCODE_ARL)
513 this->num_address_regs = 1;
514
515 /* Update indirect addressing status used by TGSI */
516 if (dst.reladdr) {
517 switch(dst.file) {
518 case PROGRAM_TEMPORARY:
519 this->indirect_addr_temps = true;
520 break;
521 case PROGRAM_LOCAL_PARAM:
522 case PROGRAM_ENV_PARAM:
523 case PROGRAM_STATE_VAR:
524 case PROGRAM_NAMED_PARAM:
525 case PROGRAM_CONSTANT:
526 case PROGRAM_UNIFORM:
527 this->indirect_addr_consts = true;
528 break;
529 case PROGRAM_IMMEDIATE:
530 assert(!"immediates should not have indirect addressing");
531 break;
532 default:
533 break;
534 }
535 }
536 else {
537 for (i=0; i<3; i++) {
538 if(inst->src[i].reladdr) {
539 switch(inst->src[i].file) {
540 case PROGRAM_TEMPORARY:
541 this->indirect_addr_temps = true;
542 break;
543 case PROGRAM_LOCAL_PARAM:
544 case PROGRAM_ENV_PARAM:
545 case PROGRAM_STATE_VAR:
546 case PROGRAM_NAMED_PARAM:
547 case PROGRAM_CONSTANT:
548 case PROGRAM_UNIFORM:
549 this->indirect_addr_consts = true;
550 break;
551 case PROGRAM_IMMEDIATE:
552 assert(!"immediates should not have indirect addressing");
553 break;
554 default:
555 break;
556 }
557 }
558 }
559 }
560
561 this->instructions.push_tail(inst);
562
563 return inst;
564 }
565
566
567 glsl_to_tgsi_instruction *
568 glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op,
569 st_dst_reg dst, st_src_reg src0, st_src_reg src1)
570 {
571 return emit(ir, op, dst, src0, src1, undef_src);
572 }
573
574 glsl_to_tgsi_instruction *
575 glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op,
576 st_dst_reg dst, st_src_reg src0)
577 {
578 assert(dst.writemask != 0);
579 return emit(ir, op, dst, src0, undef_src, undef_src);
580 }
581
582 glsl_to_tgsi_instruction *
583 glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op)
584 {
585 return emit(ir, op, undef_dst, undef_src, undef_src, undef_src);
586 }
587
588 /**
589 * Determines whether to use an integer, unsigned integer, or float opcode
590 * based on the operands and input opcode, then emits the result.
591 *
592 * TODO: type checking for remaining TGSI opcodes
593 */
594 unsigned
595 glsl_to_tgsi_visitor::get_opcode(ir_instruction *ir, unsigned op,
596 st_dst_reg dst,
597 st_src_reg src0, st_src_reg src1)
598 {
599 int type = GLSL_TYPE_FLOAT;
600
601 if (src0.type == GLSL_TYPE_FLOAT || src1.type == GLSL_TYPE_FLOAT)
602 type = GLSL_TYPE_FLOAT;
603 else if (glsl_version >= 130)
604 type = src0.type;
605
606 #define case4(c, f, i, u) \
607 case TGSI_OPCODE_##c: \
608 if (type == GLSL_TYPE_INT) op = TGSI_OPCODE_##i; \
609 else if (type == GLSL_TYPE_UINT) op = TGSI_OPCODE_##u; \
610 else op = TGSI_OPCODE_##f; \
611 break;
612 #define case3(f, i, u) case4(f, f, i, u)
613 #define case2fi(f, i) case4(f, f, i, i)
614 #define case2iu(i, u) case4(i, LAST, i, u)
615
616 switch(op) {
617 case2fi(ADD, UADD);
618 case2fi(MUL, UMUL);
619 case2fi(MAD, UMAD);
620 case3(DIV, IDIV, UDIV);
621 case3(MAX, IMAX, UMAX);
622 case3(MIN, IMIN, UMIN);
623 case2iu(MOD, UMOD);
624
625 case2fi(SEQ, USEQ);
626 case2fi(SNE, USNE);
627 case3(SGE, ISGE, USGE);
628 case3(SLT, ISLT, USLT);
629
630 case2iu(SHL, SHL);
631 case2iu(ISHR, USHR);
632 case2iu(NOT, NOT);
633 case2iu(AND, AND);
634 case2iu(OR, OR);
635 case2iu(XOR, XOR);
636
637 default: break;
638 }
639
640 assert(op != TGSI_OPCODE_LAST);
641 return op;
642 }
643
644 void
645 glsl_to_tgsi_visitor::emit_dp(ir_instruction *ir,
646 st_dst_reg dst, st_src_reg src0, st_src_reg src1,
647 unsigned elements)
648 {
649 static const unsigned dot_opcodes[] = {
650 TGSI_OPCODE_DP2, TGSI_OPCODE_DP3, TGSI_OPCODE_DP4
651 };
652
653 emit(ir, dot_opcodes[elements - 2], dst, src0, src1);
654 }
655
656 /**
657 * Emits TGSI scalar opcodes to produce unique answers across channels.
658 *
659 * Some TGSI opcodes are scalar-only, like ARB_fp/vp. The src X
660 * channel determines the result across all channels. So to do a vec4
661 * of this operation, we want to emit a scalar per source channel used
662 * to produce dest channels.
663 */
664 void
665 glsl_to_tgsi_visitor::emit_scalar(ir_instruction *ir, unsigned op,
666 st_dst_reg dst,
667 st_src_reg orig_src0, st_src_reg orig_src1)
668 {
669 int i, j;
670 int done_mask = ~dst.writemask;
671
672 /* TGSI RCP is a scalar operation splatting results to all channels,
673 * like ARB_fp/vp. So emit as many RCPs as necessary to cover our
674 * dst channels.
675 */
676 for (i = 0; i < 4; i++) {
677 GLuint this_mask = (1 << i);
678 glsl_to_tgsi_instruction *inst;
679 st_src_reg src0 = orig_src0;
680 st_src_reg src1 = orig_src1;
681
682 if (done_mask & this_mask)
683 continue;
684
685 GLuint src0_swiz = GET_SWZ(src0.swizzle, i);
686 GLuint src1_swiz = GET_SWZ(src1.swizzle, i);
687 for (j = i + 1; j < 4; j++) {
688 /* If there is another enabled component in the destination that is
689 * derived from the same inputs, generate its value on this pass as
690 * well.
691 */
692 if (!(done_mask & (1 << j)) &&
693 GET_SWZ(src0.swizzle, j) == src0_swiz &&
694 GET_SWZ(src1.swizzle, j) == src1_swiz) {
695 this_mask |= (1 << j);
696 }
697 }
698 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
699 src0_swiz, src0_swiz);
700 src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz,
701 src1_swiz, src1_swiz);
702
703 inst = emit(ir, op, dst, src0, src1);
704 inst->dst.writemask = this_mask;
705 done_mask |= this_mask;
706 }
707 }
708
709 void
710 glsl_to_tgsi_visitor::emit_scalar(ir_instruction *ir, unsigned op,
711 st_dst_reg dst, st_src_reg src0)
712 {
713 st_src_reg undef = undef_src;
714
715 undef.swizzle = SWIZZLE_XXXX;
716
717 emit_scalar(ir, op, dst, src0, undef);
718 }
719
720 void
721 glsl_to_tgsi_visitor::emit_arl(ir_instruction *ir,
722 st_dst_reg dst, st_src_reg src0)
723 {
724 st_src_reg tmp = get_temp(glsl_type::float_type);
725
726 if (src0.type == GLSL_TYPE_INT)
727 emit(NULL, TGSI_OPCODE_I2F, st_dst_reg(tmp), src0);
728 else if (src0.type == GLSL_TYPE_UINT)
729 emit(NULL, TGSI_OPCODE_U2F, st_dst_reg(tmp), src0);
730 else
731 tmp = src0;
732
733 emit(NULL, TGSI_OPCODE_ARL, dst, tmp);
734 }
735
736 /**
737 * Emit an TGSI_OPCODE_SCS instruction
738 *
739 * The \c SCS opcode functions a bit differently than the other TGSI opcodes.
740 * Instead of splatting its result across all four components of the
741 * destination, it writes one value to the \c x component and another value to
742 * the \c y component.
743 *
744 * \param ir IR instruction being processed
745 * \param op Either \c TGSI_OPCODE_SIN or \c TGSI_OPCODE_COS depending
746 * on which value is desired.
747 * \param dst Destination register
748 * \param src Source register
749 */
750 void
751 glsl_to_tgsi_visitor::emit_scs(ir_instruction *ir, unsigned op,
752 st_dst_reg dst,
753 const st_src_reg &src)
754 {
755 /* Vertex programs cannot use the SCS opcode.
756 */
757 if (this->prog->Target == GL_VERTEX_PROGRAM_ARB) {
758 emit_scalar(ir, op, dst, src);
759 return;
760 }
761
762 const unsigned component = (op == TGSI_OPCODE_SIN) ? 0 : 1;
763 const unsigned scs_mask = (1U << component);
764 int done_mask = ~dst.writemask;
765 st_src_reg tmp;
766
767 assert(op == TGSI_OPCODE_SIN || op == TGSI_OPCODE_COS);
768
769 /* If there are compnents in the destination that differ from the component
770 * that will be written by the SCS instrution, we'll need a temporary.
771 */
772 if (scs_mask != unsigned(dst.writemask)) {
773 tmp = get_temp(glsl_type::vec4_type);
774 }
775
776 for (unsigned i = 0; i < 4; i++) {
777 unsigned this_mask = (1U << i);
778 st_src_reg src0 = src;
779
780 if ((done_mask & this_mask) != 0)
781 continue;
782
783 /* The source swizzle specified which component of the source generates
784 * sine / cosine for the current component in the destination. The SCS
785 * instruction requires that this value be swizzle to the X component.
786 * Replace the current swizzle with a swizzle that puts the source in
787 * the X component.
788 */
789 unsigned src0_swiz = GET_SWZ(src.swizzle, i);
790
791 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
792 src0_swiz, src0_swiz);
793 for (unsigned j = i + 1; j < 4; j++) {
794 /* If there is another enabled component in the destination that is
795 * derived from the same inputs, generate its value on this pass as
796 * well.
797 */
798 if (!(done_mask & (1 << j)) &&
799 GET_SWZ(src0.swizzle, j) == src0_swiz) {
800 this_mask |= (1 << j);
801 }
802 }
803
804 if (this_mask != scs_mask) {
805 glsl_to_tgsi_instruction *inst;
806 st_dst_reg tmp_dst = st_dst_reg(tmp);
807
808 /* Emit the SCS instruction.
809 */
810 inst = emit(ir, TGSI_OPCODE_SCS, tmp_dst, src0);
811 inst->dst.writemask = scs_mask;
812
813 /* Move the result of the SCS instruction to the desired location in
814 * the destination.
815 */
816 tmp.swizzle = MAKE_SWIZZLE4(component, component,
817 component, component);
818 inst = emit(ir, TGSI_OPCODE_SCS, dst, tmp);
819 inst->dst.writemask = this_mask;
820 } else {
821 /* Emit the SCS instruction to write directly to the destination.
822 */
823 glsl_to_tgsi_instruction *inst = emit(ir, TGSI_OPCODE_SCS, dst, src0);
824 inst->dst.writemask = scs_mask;
825 }
826
827 done_mask |= this_mask;
828 }
829 }
830
831 int
832 glsl_to_tgsi_visitor::add_constant(gl_register_file file,
833 gl_constant_value values[4], int size, int datatype,
834 GLuint *swizzle_out)
835 {
836 if (file == PROGRAM_CONSTANT) {
837 return _mesa_add_typed_unnamed_constant(this->prog->Parameters, values,
838 size, datatype, swizzle_out);
839 } else {
840 int index = 0;
841 immediate_storage *entry;
842 assert(file == PROGRAM_IMMEDIATE);
843
844 /* Search immediate storage to see if we already have an identical
845 * immediate that we can use instead of adding a duplicate entry.
846 */
847 foreach_iter(exec_list_iterator, iter, this->immediates) {
848 entry = (immediate_storage *)iter.get();
849
850 if (entry->size == size &&
851 entry->type == datatype &&
852 !memcmp(entry->values, values, size * sizeof(gl_constant_value))) {
853 return index;
854 }
855 index++;
856 }
857
858 /* Add this immediate to the list. */
859 entry = new(mem_ctx) immediate_storage(values, size, datatype);
860 this->immediates.push_tail(entry);
861 this->num_immediates++;
862 return index;
863 }
864 }
865
866 struct st_src_reg
867 glsl_to_tgsi_visitor::st_src_reg_for_float(float val)
868 {
869 st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_FLOAT);
870 union gl_constant_value uval;
871
872 uval.f = val;
873 src.index = add_constant(src.file, &uval, 1, GL_FLOAT, &src.swizzle);
874
875 return src;
876 }
877
878 struct st_src_reg
879 glsl_to_tgsi_visitor::st_src_reg_for_int(int val)
880 {
881 st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_INT);
882 union gl_constant_value uval;
883
884 assert(glsl_version >= 130);
885
886 uval.i = val;
887 src.index = add_constant(src.file, &uval, 1, GL_INT, &src.swizzle);
888
889 return src;
890 }
891
892 struct st_src_reg
893 glsl_to_tgsi_visitor::st_src_reg_for_type(int type, int val)
894 {
895 if (glsl_version >= 130)
896 return type == GLSL_TYPE_FLOAT ? st_src_reg_for_float(val) :
897 st_src_reg_for_int(val);
898 else
899 return st_src_reg_for_float(val);
900 }
901
902 static int
903 type_size(const struct glsl_type *type)
904 {
905 unsigned int i;
906 int size;
907
908 switch (type->base_type) {
909 case GLSL_TYPE_UINT:
910 case GLSL_TYPE_INT:
911 case GLSL_TYPE_FLOAT:
912 case GLSL_TYPE_BOOL:
913 if (type->is_matrix()) {
914 return type->matrix_columns;
915 } else {
916 /* Regardless of size of vector, it gets a vec4. This is bad
917 * packing for things like floats, but otherwise arrays become a
918 * mess. Hopefully a later pass over the code can pack scalars
919 * down if appropriate.
920 */
921 return 1;
922 }
923 case GLSL_TYPE_ARRAY:
924 assert(type->length > 0);
925 return type_size(type->fields.array) * type->length;
926 case GLSL_TYPE_STRUCT:
927 size = 0;
928 for (i = 0; i < type->length; i++) {
929 size += type_size(type->fields.structure[i].type);
930 }
931 return size;
932 case GLSL_TYPE_SAMPLER:
933 /* Samplers take up one slot in UNIFORMS[], but they're baked in
934 * at link time.
935 */
936 return 1;
937 default:
938 assert(0);
939 return 0;
940 }
941 }
942
943 /**
944 * In the initial pass of codegen, we assign temporary numbers to
945 * intermediate results. (not SSA -- variable assignments will reuse
946 * storage).
947 */
948 st_src_reg
949 glsl_to_tgsi_visitor::get_temp(const glsl_type *type)
950 {
951 st_src_reg src;
952 int swizzle[4];
953 int i;
954
955 src.type = glsl_version >= 130 ? type->base_type : GLSL_TYPE_FLOAT;
956 src.file = PROGRAM_TEMPORARY;
957 src.index = next_temp;
958 src.reladdr = NULL;
959 next_temp += type_size(type);
960
961 if (type->is_array() || type->is_record()) {
962 src.swizzle = SWIZZLE_NOOP;
963 } else {
964 for (i = 0; i < type->vector_elements; i++)
965 swizzle[i] = i;
966 for (; i < 4; i++)
967 swizzle[i] = type->vector_elements - 1;
968 src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1],
969 swizzle[2], swizzle[3]);
970 }
971 src.negate = 0;
972
973 return src;
974 }
975
976 variable_storage *
977 glsl_to_tgsi_visitor::find_variable_storage(ir_variable *var)
978 {
979
980 variable_storage *entry;
981
982 foreach_iter(exec_list_iterator, iter, this->variables) {
983 entry = (variable_storage *)iter.get();
984
985 if (entry->var == var)
986 return entry;
987 }
988
989 return NULL;
990 }
991
992 void
993 glsl_to_tgsi_visitor::visit(ir_variable *ir)
994 {
995 if (strcmp(ir->name, "gl_FragCoord") == 0) {
996 struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog;
997
998 fp->OriginUpperLeft = ir->origin_upper_left;
999 fp->PixelCenterInteger = ir->pixel_center_integer;
1000
1001 } else if (strcmp(ir->name, "gl_FragDepth") == 0) {
1002 struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog;
1003 switch (ir->depth_layout) {
1004 case ir_depth_layout_none:
1005 fp->FragDepthLayout = FRAG_DEPTH_LAYOUT_NONE;
1006 break;
1007 case ir_depth_layout_any:
1008 fp->FragDepthLayout = FRAG_DEPTH_LAYOUT_ANY;
1009 break;
1010 case ir_depth_layout_greater:
1011 fp->FragDepthLayout = FRAG_DEPTH_LAYOUT_GREATER;
1012 break;
1013 case ir_depth_layout_less:
1014 fp->FragDepthLayout = FRAG_DEPTH_LAYOUT_LESS;
1015 break;
1016 case ir_depth_layout_unchanged:
1017 fp->FragDepthLayout = FRAG_DEPTH_LAYOUT_UNCHANGED;
1018 break;
1019 default:
1020 assert(0);
1021 break;
1022 }
1023 }
1024
1025 if (ir->mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) {
1026 unsigned int i;
1027 const ir_state_slot *const slots = ir->state_slots;
1028 assert(ir->state_slots != NULL);
1029
1030 /* Check if this statevar's setup in the STATE file exactly
1031 * matches how we'll want to reference it as a
1032 * struct/array/whatever. If not, then we need to move it into
1033 * temporary storage and hope that it'll get copy-propagated
1034 * out.
1035 */
1036 for (i = 0; i < ir->num_state_slots; i++) {
1037 if (slots[i].swizzle != SWIZZLE_XYZW) {
1038 break;
1039 }
1040 }
1041
1042 struct variable_storage *storage;
1043 st_dst_reg dst;
1044 if (i == ir->num_state_slots) {
1045 /* We'll set the index later. */
1046 storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1);
1047 this->variables.push_tail(storage);
1048
1049 dst = undef_dst;
1050 } else {
1051 /* The variable_storage constructor allocates slots based on the size
1052 * of the type. However, this had better match the number of state
1053 * elements that we're going to copy into the new temporary.
1054 */
1055 assert((int) ir->num_state_slots == type_size(ir->type));
1056
1057 storage = new(mem_ctx) variable_storage(ir, PROGRAM_TEMPORARY,
1058 this->next_temp);
1059 this->variables.push_tail(storage);
1060 this->next_temp += type_size(ir->type);
1061
1062 dst = st_dst_reg(st_src_reg(PROGRAM_TEMPORARY, storage->index,
1063 glsl_version >= 130 ? ir->type->base_type : GLSL_TYPE_FLOAT));
1064 }
1065
1066
1067 for (unsigned int i = 0; i < ir->num_state_slots; i++) {
1068 int index = _mesa_add_state_reference(this->prog->Parameters,
1069 (gl_state_index *)slots[i].tokens);
1070
1071 if (storage->file == PROGRAM_STATE_VAR) {
1072 if (storage->index == -1) {
1073 storage->index = index;
1074 } else {
1075 assert(index == storage->index + (int)i);
1076 }
1077 } else {
1078 st_src_reg src(PROGRAM_STATE_VAR, index,
1079 glsl_version >= 130 ? ir->type->base_type : GLSL_TYPE_FLOAT);
1080 src.swizzle = slots[i].swizzle;
1081 emit(ir, TGSI_OPCODE_MOV, dst, src);
1082 /* even a float takes up a whole vec4 reg in a struct/array. */
1083 dst.index++;
1084 }
1085 }
1086
1087 if (storage->file == PROGRAM_TEMPORARY &&
1088 dst.index != storage->index + (int) ir->num_state_slots) {
1089 fail_link(this->shader_program,
1090 "failed to load builtin uniform `%s' (%d/%d regs loaded)\n",
1091 ir->name, dst.index - storage->index,
1092 type_size(ir->type));
1093 }
1094 }
1095 }
1096
1097 void
1098 glsl_to_tgsi_visitor::visit(ir_loop *ir)
1099 {
1100 ir_dereference_variable *counter = NULL;
1101
1102 if (ir->counter != NULL)
1103 counter = new(ir) ir_dereference_variable(ir->counter);
1104
1105 if (ir->from != NULL) {
1106 assert(ir->counter != NULL);
1107
1108 ir_assignment *a = new(ir) ir_assignment(counter, ir->from, NULL);
1109
1110 a->accept(this);
1111 delete a;
1112 }
1113
1114 emit(NULL, TGSI_OPCODE_BGNLOOP);
1115
1116 if (ir->to) {
1117 ir_expression *e =
1118 new(ir) ir_expression(ir->cmp, glsl_type::bool_type,
1119 counter, ir->to);
1120 ir_if *if_stmt = new(ir) ir_if(e);
1121
1122 ir_loop_jump *brk = new(ir) ir_loop_jump(ir_loop_jump::jump_break);
1123
1124 if_stmt->then_instructions.push_tail(brk);
1125
1126 if_stmt->accept(this);
1127
1128 delete if_stmt;
1129 delete e;
1130 delete brk;
1131 }
1132
1133 visit_exec_list(&ir->body_instructions, this);
1134
1135 if (ir->increment) {
1136 ir_expression *e =
1137 new(ir) ir_expression(ir_binop_add, counter->type,
1138 counter, ir->increment);
1139
1140 ir_assignment *a = new(ir) ir_assignment(counter, e, NULL);
1141
1142 a->accept(this);
1143 delete a;
1144 delete e;
1145 }
1146
1147 emit(NULL, TGSI_OPCODE_ENDLOOP);
1148 }
1149
1150 void
1151 glsl_to_tgsi_visitor::visit(ir_loop_jump *ir)
1152 {
1153 switch (ir->mode) {
1154 case ir_loop_jump::jump_break:
1155 emit(NULL, TGSI_OPCODE_BRK);
1156 break;
1157 case ir_loop_jump::jump_continue:
1158 emit(NULL, TGSI_OPCODE_CONT);
1159 break;
1160 }
1161 }
1162
1163
1164 void
1165 glsl_to_tgsi_visitor::visit(ir_function_signature *ir)
1166 {
1167 assert(0);
1168 (void)ir;
1169 }
1170
1171 void
1172 glsl_to_tgsi_visitor::visit(ir_function *ir)
1173 {
1174 /* Ignore function bodies other than main() -- we shouldn't see calls to
1175 * them since they should all be inlined before we get to glsl_to_tgsi.
1176 */
1177 if (strcmp(ir->name, "main") == 0) {
1178 const ir_function_signature *sig;
1179 exec_list empty;
1180
1181 sig = ir->matching_signature(&empty);
1182
1183 assert(sig);
1184
1185 foreach_iter(exec_list_iterator, iter, sig->body) {
1186 ir_instruction *ir = (ir_instruction *)iter.get();
1187
1188 ir->accept(this);
1189 }
1190 }
1191 }
1192
1193 GLboolean
1194 glsl_to_tgsi_visitor::try_emit_mad(ir_expression *ir, int mul_operand)
1195 {
1196 int nonmul_operand = 1 - mul_operand;
1197 st_src_reg a, b, c;
1198 st_dst_reg result_dst;
1199
1200 ir_expression *expr = ir->operands[mul_operand]->as_expression();
1201 if (!expr || expr->operation != ir_binop_mul)
1202 return false;
1203
1204 expr->operands[0]->accept(this);
1205 a = this->result;
1206 expr->operands[1]->accept(this);
1207 b = this->result;
1208 ir->operands[nonmul_operand]->accept(this);
1209 c = this->result;
1210
1211 this->result = get_temp(ir->type);
1212 result_dst = st_dst_reg(this->result);
1213 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1214 emit(ir, TGSI_OPCODE_MAD, result_dst, a, b, c);
1215
1216 return true;
1217 }
1218
1219 GLboolean
1220 glsl_to_tgsi_visitor::try_emit_sat(ir_expression *ir)
1221 {
1222 /* Saturates were only introduced to vertex programs in
1223 * NV_vertex_program3, so don't give them to drivers in the VP.
1224 */
1225 if (this->prog->Target == GL_VERTEX_PROGRAM_ARB)
1226 return false;
1227
1228 ir_rvalue *sat_src = ir->as_rvalue_to_saturate();
1229 if (!sat_src)
1230 return false;
1231
1232 sat_src->accept(this);
1233 st_src_reg src = this->result;
1234
1235 this->result = get_temp(ir->type);
1236 st_dst_reg result_dst = st_dst_reg(this->result);
1237 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1238 glsl_to_tgsi_instruction *inst;
1239 inst = emit(ir, TGSI_OPCODE_MOV, result_dst, src);
1240 inst->saturate = true;
1241
1242 return true;
1243 }
1244
1245 void
1246 glsl_to_tgsi_visitor::reladdr_to_temp(ir_instruction *ir,
1247 st_src_reg *reg, int *num_reladdr)
1248 {
1249 if (!reg->reladdr)
1250 return;
1251
1252 emit_arl(ir, address_reg, *reg->reladdr);
1253
1254 if (*num_reladdr != 1) {
1255 st_src_reg temp = get_temp(glsl_type::vec4_type);
1256
1257 emit(ir, TGSI_OPCODE_MOV, st_dst_reg(temp), *reg);
1258 *reg = temp;
1259 }
1260
1261 (*num_reladdr)--;
1262 }
1263
1264 void
1265 glsl_to_tgsi_visitor::visit(ir_expression *ir)
1266 {
1267 unsigned int operand;
1268 st_src_reg op[Elements(ir->operands)];
1269 st_src_reg result_src;
1270 st_dst_reg result_dst;
1271
1272 /* Quick peephole: Emit MAD(a, b, c) instead of ADD(MUL(a, b), c)
1273 */
1274 if (ir->operation == ir_binop_add) {
1275 if (try_emit_mad(ir, 1))
1276 return;
1277 if (try_emit_mad(ir, 0))
1278 return;
1279 }
1280 if (try_emit_sat(ir))
1281 return;
1282
1283 if (ir->operation == ir_quadop_vector)
1284 assert(!"ir_quadop_vector should have been lowered");
1285
1286 for (operand = 0; operand < ir->get_num_operands(); operand++) {
1287 this->result.file = PROGRAM_UNDEFINED;
1288 ir->operands[operand]->accept(this);
1289 if (this->result.file == PROGRAM_UNDEFINED) {
1290 ir_print_visitor v;
1291 printf("Failed to get tree for expression operand:\n");
1292 ir->operands[operand]->accept(&v);
1293 exit(1);
1294 }
1295 op[operand] = this->result;
1296
1297 /* Matrix expression operands should have been broken down to vector
1298 * operations already.
1299 */
1300 assert(!ir->operands[operand]->type->is_matrix());
1301 }
1302
1303 int vector_elements = ir->operands[0]->type->vector_elements;
1304 if (ir->operands[1]) {
1305 vector_elements = MAX2(vector_elements,
1306 ir->operands[1]->type->vector_elements);
1307 }
1308
1309 this->result.file = PROGRAM_UNDEFINED;
1310
1311 /* Storage for our result. Ideally for an assignment we'd be using
1312 * the actual storage for the result here, instead.
1313 */
1314 result_src = get_temp(ir->type);
1315 /* convenience for the emit functions below. */
1316 result_dst = st_dst_reg(result_src);
1317 /* Limit writes to the channels that will be used by result_src later.
1318 * This does limit this temp's use as a temporary for multi-instruction
1319 * sequences.
1320 */
1321 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1322
1323 switch (ir->operation) {
1324 case ir_unop_logic_not:
1325 emit(ir, TGSI_OPCODE_SEQ, result_dst, op[0], st_src_reg_for_type(result_dst.type, 0));
1326 break;
1327 case ir_unop_neg:
1328 assert(result_dst.type == GLSL_TYPE_FLOAT || result_dst.type == GLSL_TYPE_INT);
1329 if (result_dst.type == GLSL_TYPE_INT)
1330 emit(ir, TGSI_OPCODE_INEG, result_dst, op[0]);
1331 else {
1332 op[0].negate = ~op[0].negate;
1333 result_src = op[0];
1334 }
1335 break;
1336 case ir_unop_abs:
1337 assert(result_dst.type == GLSL_TYPE_FLOAT);
1338 emit(ir, TGSI_OPCODE_ABS, result_dst, op[0]);
1339 break;
1340 case ir_unop_sign:
1341 emit(ir, TGSI_OPCODE_SSG, result_dst, op[0]);
1342 break;
1343 case ir_unop_rcp:
1344 emit_scalar(ir, TGSI_OPCODE_RCP, result_dst, op[0]);
1345 break;
1346
1347 case ir_unop_exp2:
1348 emit_scalar(ir, TGSI_OPCODE_EX2, result_dst, op[0]);
1349 break;
1350 case ir_unop_exp:
1351 case ir_unop_log:
1352 assert(!"not reached: should be handled by ir_explog_to_explog2");
1353 break;
1354 case ir_unop_log2:
1355 emit_scalar(ir, TGSI_OPCODE_LG2, result_dst, op[0]);
1356 break;
1357 case ir_unop_sin:
1358 emit_scalar(ir, TGSI_OPCODE_SIN, result_dst, op[0]);
1359 break;
1360 case ir_unop_cos:
1361 emit_scalar(ir, TGSI_OPCODE_COS, result_dst, op[0]);
1362 break;
1363 case ir_unop_sin_reduced:
1364 emit_scs(ir, TGSI_OPCODE_SIN, result_dst, op[0]);
1365 break;
1366 case ir_unop_cos_reduced:
1367 emit_scs(ir, TGSI_OPCODE_COS, result_dst, op[0]);
1368 break;
1369
1370 case ir_unop_dFdx:
1371 emit(ir, TGSI_OPCODE_DDX, result_dst, op[0]);
1372 break;
1373 case ir_unop_dFdy:
1374 op[0].negate = ~op[0].negate;
1375 emit(ir, TGSI_OPCODE_DDY, result_dst, op[0]);
1376 break;
1377
1378 case ir_unop_noise: {
1379 /* At some point, a motivated person could add a better
1380 * implementation of noise. Currently not even the nvidia
1381 * binary drivers do anything more than this. In any case, the
1382 * place to do this is in the GL state tracker, not the poor
1383 * driver.
1384 */
1385 emit(ir, TGSI_OPCODE_MOV, result_dst, st_src_reg_for_float(0.5));
1386 break;
1387 }
1388
1389 case ir_binop_add:
1390 emit(ir, TGSI_OPCODE_ADD, result_dst, op[0], op[1]);
1391 break;
1392 case ir_binop_sub:
1393 emit(ir, TGSI_OPCODE_SUB, result_dst, op[0], op[1]);
1394 break;
1395
1396 case ir_binop_mul:
1397 emit(ir, TGSI_OPCODE_MUL, result_dst, op[0], op[1]);
1398 break;
1399 case ir_binop_div:
1400 if (result_dst.type == GLSL_TYPE_FLOAT)
1401 assert(!"not reached: should be handled by ir_div_to_mul_rcp");
1402 else
1403 emit(ir, TGSI_OPCODE_DIV, result_dst, op[0], op[1]);
1404 break;
1405 case ir_binop_mod:
1406 if (result_dst.type == GLSL_TYPE_FLOAT)
1407 assert(!"ir_binop_mod should have been converted to b * fract(a/b)");
1408 else
1409 emit(ir, TGSI_OPCODE_MOD, result_dst, op[0], op[1]);
1410 break;
1411
1412 case ir_binop_less:
1413 emit(ir, TGSI_OPCODE_SLT, result_dst, op[0], op[1]);
1414 break;
1415 case ir_binop_greater:
1416 emit(ir, TGSI_OPCODE_SGT, result_dst, op[0], op[1]);
1417 break;
1418 case ir_binop_lequal:
1419 emit(ir, TGSI_OPCODE_SLE, result_dst, op[0], op[1]);
1420 break;
1421 case ir_binop_gequal:
1422 emit(ir, TGSI_OPCODE_SGE, result_dst, op[0], op[1]);
1423 break;
1424 case ir_binop_equal:
1425 emit(ir, TGSI_OPCODE_SEQ, result_dst, op[0], op[1]);
1426 break;
1427 case ir_binop_nequal:
1428 emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1429 break;
1430 case ir_binop_all_equal:
1431 /* "==" operator producing a scalar boolean. */
1432 if (ir->operands[0]->type->is_vector() ||
1433 ir->operands[1]->type->is_vector()) {
1434 st_src_reg temp = get_temp(glsl_version >= 130 ?
1435 glsl_type::get_instance(ir->operands[0]->type->base_type, 4, 1) :
1436 glsl_type::vec4_type);
1437 assert(ir->operands[0]->type->base_type == GLSL_TYPE_FLOAT);
1438 emit(ir, TGSI_OPCODE_SNE, st_dst_reg(temp), op[0], op[1]);
1439 emit_dp(ir, result_dst, temp, temp, vector_elements);
1440 emit(ir, TGSI_OPCODE_SEQ, result_dst, result_src, st_src_reg_for_float(0.0));
1441 } else {
1442 emit(ir, TGSI_OPCODE_SEQ, result_dst, op[0], op[1]);
1443 }
1444 break;
1445 case ir_binop_any_nequal:
1446 /* "!=" operator producing a scalar boolean. */
1447 if (ir->operands[0]->type->is_vector() ||
1448 ir->operands[1]->type->is_vector()) {
1449 st_src_reg temp = get_temp(glsl_version >= 130 ?
1450 glsl_type::get_instance(ir->operands[0]->type->base_type, 4, 1) :
1451 glsl_type::vec4_type);
1452 assert(ir->operands[0]->type->base_type == GLSL_TYPE_FLOAT);
1453 emit(ir, TGSI_OPCODE_SNE, st_dst_reg(temp), op[0], op[1]);
1454 emit_dp(ir, result_dst, temp, temp, vector_elements);
1455 emit(ir, TGSI_OPCODE_SNE, result_dst, result_src, st_src_reg_for_float(0.0));
1456 } else {
1457 emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1458 }
1459 break;
1460
1461 case ir_unop_any:
1462 assert(ir->operands[0]->type->is_vector());
1463 emit_dp(ir, result_dst, op[0], op[0],
1464 ir->operands[0]->type->vector_elements);
1465 emit(ir, TGSI_OPCODE_SNE, result_dst, result_src, st_src_reg_for_float(0.0));
1466 break;
1467
1468 case ir_binop_logic_xor:
1469 emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1470 break;
1471
1472 case ir_binop_logic_or:
1473 /* This could be a saturated add and skip the SNE. */
1474 emit(ir, TGSI_OPCODE_ADD, result_dst, op[0], op[1]);
1475 emit(ir, TGSI_OPCODE_SNE, result_dst, result_src, st_src_reg_for_float(0.0));
1476 break;
1477
1478 case ir_binop_logic_and:
1479 /* the bool args are stored as float 0.0 or 1.0, so "mul" gives us "and". */
1480 emit(ir, TGSI_OPCODE_MUL, result_dst, op[0], op[1]);
1481 break;
1482
1483 case ir_binop_dot:
1484 assert(ir->operands[0]->type->is_vector());
1485 assert(ir->operands[0]->type == ir->operands[1]->type);
1486 emit_dp(ir, result_dst, op[0], op[1],
1487 ir->operands[0]->type->vector_elements);
1488 break;
1489
1490 case ir_unop_sqrt:
1491 /* sqrt(x) = x * rsq(x). */
1492 emit_scalar(ir, TGSI_OPCODE_RSQ, result_dst, op[0]);
1493 emit(ir, TGSI_OPCODE_MUL, result_dst, result_src, op[0]);
1494 /* For incoming channels <= 0, set the result to 0. */
1495 op[0].negate = ~op[0].negate;
1496 emit(ir, TGSI_OPCODE_CMP, result_dst,
1497 op[0], result_src, st_src_reg_for_float(0.0));
1498 break;
1499 case ir_unop_rsq:
1500 emit_scalar(ir, TGSI_OPCODE_RSQ, result_dst, op[0]);
1501 break;
1502 case ir_unop_i2f:
1503 case ir_unop_b2f:
1504 if (glsl_version >= 130) {
1505 emit(ir, TGSI_OPCODE_I2F, result_dst, op[0]);
1506 break;
1507 }
1508 case ir_unop_i2u:
1509 case ir_unop_u2i:
1510 /* Converting between signed and unsigned integers is a no-op. */
1511 case ir_unop_b2i:
1512 /* Booleans are stored as integers (or floats in GLSL 1.20 and lower). */
1513 result_src = op[0];
1514 break;
1515 case ir_unop_f2i:
1516 if (glsl_version >= 130)
1517 emit(ir, TGSI_OPCODE_F2I, result_dst, op[0]);
1518 else
1519 emit(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
1520 break;
1521 case ir_unop_f2b:
1522 case ir_unop_i2b:
1523 emit(ir, TGSI_OPCODE_SNE, result_dst, op[0],
1524 st_src_reg_for_type(result_dst.type, 0));
1525 break;
1526 case ir_unop_trunc:
1527 emit(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
1528 break;
1529 case ir_unop_ceil:
1530 op[0].negate = ~op[0].negate;
1531 emit(ir, TGSI_OPCODE_FLR, result_dst, op[0]);
1532 result_src.negate = ~result_src.negate;
1533 break;
1534 case ir_unop_floor:
1535 emit(ir, TGSI_OPCODE_FLR, result_dst, op[0]);
1536 break;
1537 case ir_unop_fract:
1538 emit(ir, TGSI_OPCODE_FRC, result_dst, op[0]);
1539 break;
1540
1541 case ir_binop_min:
1542 emit(ir, TGSI_OPCODE_MIN, result_dst, op[0], op[1]);
1543 break;
1544 case ir_binop_max:
1545 emit(ir, TGSI_OPCODE_MAX, result_dst, op[0], op[1]);
1546 break;
1547 case ir_binop_pow:
1548 emit_scalar(ir, TGSI_OPCODE_POW, result_dst, op[0], op[1]);
1549 break;
1550
1551 case ir_unop_bit_not:
1552 if (glsl_version >= 130) {
1553 emit(ir, TGSI_OPCODE_NOT, result_dst, op[0]);
1554 break;
1555 }
1556 case ir_unop_u2f:
1557 if (glsl_version >= 130) {
1558 emit(ir, TGSI_OPCODE_U2F, result_dst, op[0]);
1559 break;
1560 }
1561 case ir_binop_lshift:
1562 if (glsl_version >= 130) {
1563 emit(ir, TGSI_OPCODE_SHL, result_dst, op[0]);
1564 break;
1565 }
1566 case ir_binop_rshift:
1567 if (glsl_version >= 130) {
1568 emit(ir, TGSI_OPCODE_ISHR, result_dst, op[0]);
1569 break;
1570 }
1571 case ir_binop_bit_and:
1572 if (glsl_version >= 130) {
1573 emit(ir, TGSI_OPCODE_AND, result_dst, op[0]);
1574 break;
1575 }
1576 case ir_binop_bit_xor:
1577 if (glsl_version >= 130) {
1578 emit(ir, TGSI_OPCODE_XOR, result_dst, op[0]);
1579 break;
1580 }
1581 case ir_binop_bit_or:
1582 if (glsl_version >= 130) {
1583 emit(ir, TGSI_OPCODE_OR, result_dst, op[0]);
1584 break;
1585 }
1586 case ir_unop_round_even:
1587 assert(!"GLSL 1.30 features unsupported");
1588 break;
1589
1590 case ir_quadop_vector:
1591 /* This operation should have already been handled.
1592 */
1593 assert(!"Should not get here.");
1594 break;
1595 }
1596
1597 this->result = result_src;
1598 }
1599
1600
1601 void
1602 glsl_to_tgsi_visitor::visit(ir_swizzle *ir)
1603 {
1604 st_src_reg src;
1605 int i;
1606 int swizzle[4];
1607
1608 /* Note that this is only swizzles in expressions, not those on the left
1609 * hand side of an assignment, which do write masking. See ir_assignment
1610 * for that.
1611 */
1612
1613 ir->val->accept(this);
1614 src = this->result;
1615 assert(src.file != PROGRAM_UNDEFINED);
1616
1617 for (i = 0; i < 4; i++) {
1618 if (i < ir->type->vector_elements) {
1619 switch (i) {
1620 case 0:
1621 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x);
1622 break;
1623 case 1:
1624 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y);
1625 break;
1626 case 2:
1627 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z);
1628 break;
1629 case 3:
1630 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w);
1631 break;
1632 }
1633 } else {
1634 /* If the type is smaller than a vec4, replicate the last
1635 * channel out.
1636 */
1637 swizzle[i] = swizzle[ir->type->vector_elements - 1];
1638 }
1639 }
1640
1641 src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
1642
1643 this->result = src;
1644 }
1645
1646 void
1647 glsl_to_tgsi_visitor::visit(ir_dereference_variable *ir)
1648 {
1649 variable_storage *entry = find_variable_storage(ir->var);
1650 ir_variable *var = ir->var;
1651
1652 if (!entry) {
1653 switch (var->mode) {
1654 case ir_var_uniform:
1655 entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM,
1656 var->location);
1657 this->variables.push_tail(entry);
1658 break;
1659 case ir_var_in:
1660 case ir_var_inout:
1661 /* The linker assigns locations for varyings and attributes,
1662 * including deprecated builtins (like gl_Color), user-assign
1663 * generic attributes (glBindVertexLocation), and
1664 * user-defined varyings.
1665 *
1666 * FINISHME: We would hit this path for function arguments. Fix!
1667 */
1668 assert(var->location != -1);
1669 entry = new(mem_ctx) variable_storage(var,
1670 PROGRAM_INPUT,
1671 var->location);
1672 if (this->prog->Target == GL_VERTEX_PROGRAM_ARB &&
1673 var->location >= VERT_ATTRIB_GENERIC0) {
1674 _mesa_add_attribute(this->prog->Attributes,
1675 var->name,
1676 _mesa_sizeof_glsl_type(var->type->gl_type),
1677 var->type->gl_type,
1678 var->location - VERT_ATTRIB_GENERIC0);
1679 }
1680 break;
1681 case ir_var_out:
1682 assert(var->location != -1);
1683 entry = new(mem_ctx) variable_storage(var,
1684 PROGRAM_OUTPUT,
1685 var->location);
1686 break;
1687 case ir_var_system_value:
1688 entry = new(mem_ctx) variable_storage(var,
1689 PROGRAM_SYSTEM_VALUE,
1690 var->location);
1691 break;
1692 case ir_var_auto:
1693 case ir_var_temporary:
1694 entry = new(mem_ctx) variable_storage(var, PROGRAM_TEMPORARY,
1695 this->next_temp);
1696 this->variables.push_tail(entry);
1697
1698 next_temp += type_size(var->type);
1699 break;
1700 }
1701
1702 if (!entry) {
1703 printf("Failed to make storage for %s\n", var->name);
1704 exit(1);
1705 }
1706 }
1707
1708 this->result = st_src_reg(entry->file, entry->index, var->type);
1709 if (glsl_version <= 120)
1710 this->result.type = GLSL_TYPE_FLOAT;
1711 }
1712
1713 void
1714 glsl_to_tgsi_visitor::visit(ir_dereference_array *ir)
1715 {
1716 ir_constant *index;
1717 st_src_reg src;
1718 int element_size = type_size(ir->type);
1719
1720 index = ir->array_index->constant_expression_value();
1721
1722 ir->array->accept(this);
1723 src = this->result;
1724
1725 if (index) {
1726 src.index += index->value.i[0] * element_size;
1727 } else {
1728 st_src_reg array_base = this->result;
1729 /* Variable index array dereference. It eats the "vec4" of the
1730 * base of the array and an index that offsets the TGSI register
1731 * index.
1732 */
1733 ir->array_index->accept(this);
1734
1735 st_src_reg index_reg;
1736
1737 if (element_size == 1) {
1738 index_reg = this->result;
1739 } else {
1740 index_reg = get_temp(glsl_type::float_type);
1741
1742 emit(ir, TGSI_OPCODE_MUL, st_dst_reg(index_reg),
1743 this->result, st_src_reg_for_float(element_size));
1744 }
1745
1746 /* If there was already a relative address register involved, add the
1747 * new and the old together to get the new offset.
1748 */
1749 if (src.reladdr != NULL) {
1750 st_src_reg accum_reg = get_temp(glsl_type::float_type);
1751
1752 emit(ir, TGSI_OPCODE_ADD, st_dst_reg(accum_reg),
1753 index_reg, *src.reladdr);
1754
1755 index_reg = accum_reg;
1756 }
1757
1758 src.reladdr = ralloc(mem_ctx, st_src_reg);
1759 memcpy(src.reladdr, &index_reg, sizeof(index_reg));
1760 }
1761
1762 /* If the type is smaller than a vec4, replicate the last channel out. */
1763 if (ir->type->is_scalar() || ir->type->is_vector())
1764 src.swizzle = swizzle_for_size(ir->type->vector_elements);
1765 else
1766 src.swizzle = SWIZZLE_NOOP;
1767
1768 this->result = src;
1769 }
1770
1771 void
1772 glsl_to_tgsi_visitor::visit(ir_dereference_record *ir)
1773 {
1774 unsigned int i;
1775 const glsl_type *struct_type = ir->record->type;
1776 int offset = 0;
1777
1778 ir->record->accept(this);
1779
1780 for (i = 0; i < struct_type->length; i++) {
1781 if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
1782 break;
1783 offset += type_size(struct_type->fields.structure[i].type);
1784 }
1785
1786 /* If the type is smaller than a vec4, replicate the last channel out. */
1787 if (ir->type->is_scalar() || ir->type->is_vector())
1788 this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
1789 else
1790 this->result.swizzle = SWIZZLE_NOOP;
1791
1792 this->result.index += offset;
1793 }
1794
1795 /**
1796 * We want to be careful in assignment setup to hit the actual storage
1797 * instead of potentially using a temporary like we might with the
1798 * ir_dereference handler.
1799 */
1800 static st_dst_reg
1801 get_assignment_lhs(ir_dereference *ir, glsl_to_tgsi_visitor *v)
1802 {
1803 /* The LHS must be a dereference. If the LHS is a variable indexed array
1804 * access of a vector, it must be separated into a series conditional moves
1805 * before reaching this point (see ir_vec_index_to_cond_assign).
1806 */
1807 assert(ir->as_dereference());
1808 ir_dereference_array *deref_array = ir->as_dereference_array();
1809 if (deref_array) {
1810 assert(!deref_array->array->type->is_vector());
1811 }
1812
1813 /* Use the rvalue deref handler for the most part. We'll ignore
1814 * swizzles in it and write swizzles using writemask, though.
1815 */
1816 ir->accept(v);
1817 return st_dst_reg(v->result);
1818 }
1819
1820 /**
1821 * Process the condition of a conditional assignment
1822 *
1823 * Examines the condition of a conditional assignment to generate the optimal
1824 * first operand of a \c CMP instruction. If the condition is a relational
1825 * operator with 0 (e.g., \c ir_binop_less), the value being compared will be
1826 * used as the source for the \c CMP instruction. Otherwise the comparison
1827 * is processed to a boolean result, and the boolean result is used as the
1828 * operand to the CMP instruction.
1829 */
1830 bool
1831 glsl_to_tgsi_visitor::process_move_condition(ir_rvalue *ir)
1832 {
1833 ir_rvalue *src_ir = ir;
1834 bool negate = true;
1835 bool switch_order = false;
1836
1837 ir_expression *const expr = ir->as_expression();
1838 if ((expr != NULL) && (expr->get_num_operands() == 2)) {
1839 bool zero_on_left = false;
1840
1841 if (expr->operands[0]->is_zero()) {
1842 src_ir = expr->operands[1];
1843 zero_on_left = true;
1844 } else if (expr->operands[1]->is_zero()) {
1845 src_ir = expr->operands[0];
1846 zero_on_left = false;
1847 }
1848
1849 /* a is - 0 + - 0 +
1850 * (a < 0) T F F ( a < 0) T F F
1851 * (0 < a) F F T (-a < 0) F F T
1852 * (a <= 0) T T F (-a < 0) F F T (swap order of other operands)
1853 * (0 <= a) F T T ( a < 0) T F F (swap order of other operands)
1854 * (a > 0) F F T (-a < 0) F F T
1855 * (0 > a) T F F ( a < 0) T F F
1856 * (a >= 0) F T T ( a < 0) T F F (swap order of other operands)
1857 * (0 >= a) T T F (-a < 0) F F T (swap order of other operands)
1858 *
1859 * Note that exchanging the order of 0 and 'a' in the comparison simply
1860 * means that the value of 'a' should be negated.
1861 */
1862 if (src_ir != ir) {
1863 switch (expr->operation) {
1864 case ir_binop_less:
1865 switch_order = false;
1866 negate = zero_on_left;
1867 break;
1868
1869 case ir_binop_greater:
1870 switch_order = false;
1871 negate = !zero_on_left;
1872 break;
1873
1874 case ir_binop_lequal:
1875 switch_order = true;
1876 negate = !zero_on_left;
1877 break;
1878
1879 case ir_binop_gequal:
1880 switch_order = true;
1881 negate = zero_on_left;
1882 break;
1883
1884 default:
1885 /* This isn't the right kind of comparison afterall, so make sure
1886 * the whole condition is visited.
1887 */
1888 src_ir = ir;
1889 break;
1890 }
1891 }
1892 }
1893
1894 src_ir->accept(this);
1895
1896 /* We use the TGSI_OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the
1897 * condition we produced is 0.0 or 1.0. By flipping the sign, we can
1898 * choose which value TGSI_OPCODE_CMP produces without an extra instruction
1899 * computing the condition.
1900 */
1901 if (negate)
1902 this->result.negate = ~this->result.negate;
1903
1904 return switch_order;
1905 }
1906
1907 void
1908 glsl_to_tgsi_visitor::visit(ir_assignment *ir)
1909 {
1910 st_dst_reg l;
1911 st_src_reg r;
1912 int i;
1913
1914 ir->rhs->accept(this);
1915 r = this->result;
1916
1917 l = get_assignment_lhs(ir->lhs, this);
1918
1919 /* FINISHME: This should really set to the correct maximal writemask for each
1920 * FINISHME: component written (in the loops below). This case can only
1921 * FINISHME: occur for matrices, arrays, and structures.
1922 */
1923 if (ir->write_mask == 0) {
1924 assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
1925 l.writemask = WRITEMASK_XYZW;
1926 } else if (ir->lhs->type->is_scalar() &&
1927 ir->lhs->variable_referenced()->mode == ir_var_out) {
1928 /* FINISHME: This hack makes writing to gl_FragDepth, which lives in the
1929 * FINISHME: W component of fragment shader output zero, work correctly.
1930 */
1931 l.writemask = WRITEMASK_XYZW;
1932 } else {
1933 int swizzles[4];
1934 int first_enabled_chan = 0;
1935 int rhs_chan = 0;
1936
1937 l.writemask = ir->write_mask;
1938
1939 for (int i = 0; i < 4; i++) {
1940 if (l.writemask & (1 << i)) {
1941 first_enabled_chan = GET_SWZ(r.swizzle, i);
1942 break;
1943 }
1944 }
1945
1946 /* Swizzle a small RHS vector into the channels being written.
1947 *
1948 * glsl ir treats write_mask as dictating how many channels are
1949 * present on the RHS while TGSI treats write_mask as just
1950 * showing which channels of the vec4 RHS get written.
1951 */
1952 for (int i = 0; i < 4; i++) {
1953 if (l.writemask & (1 << i))
1954 swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++);
1955 else
1956 swizzles[i] = first_enabled_chan;
1957 }
1958 r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1],
1959 swizzles[2], swizzles[3]);
1960 }
1961
1962 assert(l.file != PROGRAM_UNDEFINED);
1963 assert(r.file != PROGRAM_UNDEFINED);
1964
1965 if (ir->condition) {
1966 const bool switch_order = this->process_move_condition(ir->condition);
1967 st_src_reg condition = this->result;
1968
1969 for (i = 0; i < type_size(ir->lhs->type); i++) {
1970 st_src_reg l_src = st_src_reg(l);
1971 l_src.swizzle = swizzle_for_size(ir->lhs->type->vector_elements);
1972
1973 if (switch_order) {
1974 emit(ir, TGSI_OPCODE_CMP, l, condition, l_src, r);
1975 } else {
1976 emit(ir, TGSI_OPCODE_CMP, l, condition, r, l_src);
1977 }
1978
1979 l.index++;
1980 r.index++;
1981 }
1982 } else if (ir->rhs->as_expression() &&
1983 this->instructions.get_tail() &&
1984 ir->rhs == ((glsl_to_tgsi_instruction *)this->instructions.get_tail())->ir &&
1985 type_size(ir->lhs->type) == 1) {
1986 /* To avoid emitting an extra MOV when assigning an expression to a
1987 * variable, emit the last instruction of the expression again, but
1988 * replace the destination register with the target of the assignment.
1989 * Dead code elimination will remove the original instruction.
1990 */
1991 glsl_to_tgsi_instruction *inst;
1992 inst = (glsl_to_tgsi_instruction *)this->instructions.get_tail();
1993 emit(ir, inst->op, l, inst->src[0], inst->src[1], inst->src[2]);
1994 } else {
1995 for (i = 0; i < type_size(ir->lhs->type); i++) {
1996 emit(ir, TGSI_OPCODE_MOV, l, r);
1997 l.index++;
1998 r.index++;
1999 }
2000 }
2001 }
2002
2003
2004 void
2005 glsl_to_tgsi_visitor::visit(ir_constant *ir)
2006 {
2007 st_src_reg src;
2008 GLfloat stack_vals[4] = { 0 };
2009 gl_constant_value *values = (gl_constant_value *) stack_vals;
2010 GLenum gl_type = GL_NONE;
2011 unsigned int i;
2012 static int in_array = 0;
2013 gl_register_file file = in_array ? PROGRAM_CONSTANT : PROGRAM_IMMEDIATE;
2014
2015 /* Unfortunately, 4 floats is all we can get into
2016 * _mesa_add_typed_unnamed_constant. So, make a temp to store an
2017 * aggregate constant and move each constant value into it. If we
2018 * get lucky, copy propagation will eliminate the extra moves.
2019 */
2020 if (ir->type->base_type == GLSL_TYPE_STRUCT) {
2021 st_src_reg temp_base = get_temp(ir->type);
2022 st_dst_reg temp = st_dst_reg(temp_base);
2023
2024 foreach_iter(exec_list_iterator, iter, ir->components) {
2025 ir_constant *field_value = (ir_constant *)iter.get();
2026 int size = type_size(field_value->type);
2027
2028 assert(size > 0);
2029
2030 field_value->accept(this);
2031 src = this->result;
2032
2033 for (i = 0; i < (unsigned int)size; i++) {
2034 emit(ir, TGSI_OPCODE_MOV, temp, src);
2035
2036 src.index++;
2037 temp.index++;
2038 }
2039 }
2040 this->result = temp_base;
2041 return;
2042 }
2043
2044 if (ir->type->is_array()) {
2045 st_src_reg temp_base = get_temp(ir->type);
2046 st_dst_reg temp = st_dst_reg(temp_base);
2047 int size = type_size(ir->type->fields.array);
2048
2049 assert(size > 0);
2050 in_array++;
2051
2052 for (i = 0; i < ir->type->length; i++) {
2053 ir->array_elements[i]->accept(this);
2054 src = this->result;
2055 for (int j = 0; j < size; j++) {
2056 emit(ir, TGSI_OPCODE_MOV, temp, src);
2057
2058 src.index++;
2059 temp.index++;
2060 }
2061 }
2062 this->result = temp_base;
2063 in_array--;
2064 return;
2065 }
2066
2067 if (ir->type->is_matrix()) {
2068 st_src_reg mat = get_temp(ir->type);
2069 st_dst_reg mat_column = st_dst_reg(mat);
2070
2071 for (i = 0; i < ir->type->matrix_columns; i++) {
2072 assert(ir->type->base_type == GLSL_TYPE_FLOAT);
2073 values = (gl_constant_value *) &ir->value.f[i * ir->type->vector_elements];
2074
2075 src = st_src_reg(file, -1, ir->type->base_type);
2076 src.index = add_constant(file,
2077 values,
2078 ir->type->vector_elements,
2079 GL_FLOAT,
2080 &src.swizzle);
2081 emit(ir, TGSI_OPCODE_MOV, mat_column, src);
2082
2083 mat_column.index++;
2084 }
2085
2086 this->result = mat;
2087 return;
2088 }
2089
2090 switch (ir->type->base_type) {
2091 case GLSL_TYPE_FLOAT:
2092 gl_type = GL_FLOAT;
2093 for (i = 0; i < ir->type->vector_elements; i++) {
2094 values[i].f = ir->value.f[i];
2095 }
2096 break;
2097 case GLSL_TYPE_UINT:
2098 gl_type = glsl_version >= 130 ? GL_UNSIGNED_INT : GL_FLOAT;
2099 for (i = 0; i < ir->type->vector_elements; i++) {
2100 if (glsl_version >= 130)
2101 values[i].u = ir->value.u[i];
2102 else
2103 values[i].f = ir->value.u[i];
2104 }
2105 break;
2106 case GLSL_TYPE_INT:
2107 gl_type = glsl_version >= 130 ? GL_INT : GL_FLOAT;
2108 for (i = 0; i < ir->type->vector_elements; i++) {
2109 if (glsl_version >= 130)
2110 values[i].i = ir->value.i[i];
2111 else
2112 values[i].f = ir->value.i[i];
2113 }
2114 break;
2115 case GLSL_TYPE_BOOL:
2116 gl_type = glsl_version >= 130 ? GL_BOOL : GL_FLOAT;
2117 for (i = 0; i < ir->type->vector_elements; i++) {
2118 if (glsl_version >= 130)
2119 values[i].b = ir->value.b[i];
2120 else
2121 values[i].f = ir->value.b[i];
2122 }
2123 break;
2124 default:
2125 assert(!"Non-float/uint/int/bool constant");
2126 }
2127
2128 this->result = st_src_reg(file, -1, ir->type);
2129 this->result.index = add_constant(file,
2130 values,
2131 ir->type->vector_elements,
2132 gl_type,
2133 &this->result.swizzle);
2134 }
2135
2136 function_entry *
2137 glsl_to_tgsi_visitor::get_function_signature(ir_function_signature *sig)
2138 {
2139 function_entry *entry;
2140
2141 foreach_iter(exec_list_iterator, iter, this->function_signatures) {
2142 entry = (function_entry *)iter.get();
2143
2144 if (entry->sig == sig)
2145 return entry;
2146 }
2147
2148 entry = ralloc(mem_ctx, function_entry);
2149 entry->sig = sig;
2150 entry->sig_id = this->next_signature_id++;
2151 entry->bgn_inst = NULL;
2152
2153 /* Allocate storage for all the parameters. */
2154 foreach_iter(exec_list_iterator, iter, sig->parameters) {
2155 ir_variable *param = (ir_variable *)iter.get();
2156 variable_storage *storage;
2157
2158 storage = find_variable_storage(param);
2159 assert(!storage);
2160
2161 storage = new(mem_ctx) variable_storage(param, PROGRAM_TEMPORARY,
2162 this->next_temp);
2163 this->variables.push_tail(storage);
2164
2165 this->next_temp += type_size(param->type);
2166 }
2167
2168 if (!sig->return_type->is_void()) {
2169 entry->return_reg = get_temp(sig->return_type);
2170 } else {
2171 entry->return_reg = undef_src;
2172 }
2173
2174 this->function_signatures.push_tail(entry);
2175 return entry;
2176 }
2177
2178 void
2179 glsl_to_tgsi_visitor::visit(ir_call *ir)
2180 {
2181 glsl_to_tgsi_instruction *call_inst;
2182 ir_function_signature *sig = ir->get_callee();
2183 function_entry *entry = get_function_signature(sig);
2184 int i;
2185
2186 /* Process in parameters. */
2187 exec_list_iterator sig_iter = sig->parameters.iterator();
2188 foreach_iter(exec_list_iterator, iter, *ir) {
2189 ir_rvalue *param_rval = (ir_rvalue *)iter.get();
2190 ir_variable *param = (ir_variable *)sig_iter.get();
2191
2192 if (param->mode == ir_var_in ||
2193 param->mode == ir_var_inout) {
2194 variable_storage *storage = find_variable_storage(param);
2195 assert(storage);
2196
2197 param_rval->accept(this);
2198 st_src_reg r = this->result;
2199
2200 st_dst_reg l;
2201 l.file = storage->file;
2202 l.index = storage->index;
2203 l.reladdr = NULL;
2204 l.writemask = WRITEMASK_XYZW;
2205 l.cond_mask = COND_TR;
2206
2207 for (i = 0; i < type_size(param->type); i++) {
2208 emit(ir, TGSI_OPCODE_MOV, l, r);
2209 l.index++;
2210 r.index++;
2211 }
2212 }
2213
2214 sig_iter.next();
2215 }
2216 assert(!sig_iter.has_next());
2217
2218 /* Emit call instruction */
2219 call_inst = emit(ir, TGSI_OPCODE_CAL);
2220 call_inst->function = entry;
2221
2222 /* Process out parameters. */
2223 sig_iter = sig->parameters.iterator();
2224 foreach_iter(exec_list_iterator, iter, *ir) {
2225 ir_rvalue *param_rval = (ir_rvalue *)iter.get();
2226 ir_variable *param = (ir_variable *)sig_iter.get();
2227
2228 if (param->mode == ir_var_out ||
2229 param->mode == ir_var_inout) {
2230 variable_storage *storage = find_variable_storage(param);
2231 assert(storage);
2232
2233 st_src_reg r;
2234 r.file = storage->file;
2235 r.index = storage->index;
2236 r.reladdr = NULL;
2237 r.swizzle = SWIZZLE_NOOP;
2238 r.negate = 0;
2239
2240 param_rval->accept(this);
2241 st_dst_reg l = st_dst_reg(this->result);
2242
2243 for (i = 0; i < type_size(param->type); i++) {
2244 emit(ir, TGSI_OPCODE_MOV, l, r);
2245 l.index++;
2246 r.index++;
2247 }
2248 }
2249
2250 sig_iter.next();
2251 }
2252 assert(!sig_iter.has_next());
2253
2254 /* Process return value. */
2255 this->result = entry->return_reg;
2256 }
2257
2258 void
2259 glsl_to_tgsi_visitor::visit(ir_texture *ir)
2260 {
2261 st_src_reg result_src, coord, lod_info, projector, dx, dy;
2262 st_dst_reg result_dst, coord_dst;
2263 glsl_to_tgsi_instruction *inst = NULL;
2264 unsigned opcode = TGSI_OPCODE_NOP;
2265
2266 ir->coordinate->accept(this);
2267
2268 /* Put our coords in a temp. We'll need to modify them for shadow,
2269 * projection, or LOD, so the only case we'd use it as is is if
2270 * we're doing plain old texturing. The optimization passes on
2271 * glsl_to_tgsi_visitor should handle cleaning up our mess in that case.
2272 */
2273 coord = get_temp(glsl_type::vec4_type);
2274 coord_dst = st_dst_reg(coord);
2275 emit(ir, TGSI_OPCODE_MOV, coord_dst, this->result);
2276
2277 if (ir->projector) {
2278 ir->projector->accept(this);
2279 projector = this->result;
2280 }
2281
2282 /* Storage for our result. Ideally for an assignment we'd be using
2283 * the actual storage for the result here, instead.
2284 */
2285 result_src = get_temp(glsl_type::vec4_type);
2286 result_dst = st_dst_reg(result_src);
2287
2288 switch (ir->op) {
2289 case ir_tex:
2290 opcode = TGSI_OPCODE_TEX;
2291 break;
2292 case ir_txb:
2293 opcode = TGSI_OPCODE_TXB;
2294 ir->lod_info.bias->accept(this);
2295 lod_info = this->result;
2296 break;
2297 case ir_txl:
2298 opcode = TGSI_OPCODE_TXL;
2299 ir->lod_info.lod->accept(this);
2300 lod_info = this->result;
2301 break;
2302 case ir_txd:
2303 opcode = TGSI_OPCODE_TXD;
2304 ir->lod_info.grad.dPdx->accept(this);
2305 dx = this->result;
2306 ir->lod_info.grad.dPdy->accept(this);
2307 dy = this->result;
2308 break;
2309 case ir_txf: /* TODO: use TGSI_OPCODE_TXF here */
2310 assert(!"GLSL 1.30 features unsupported");
2311 break;
2312 }
2313
2314 if (ir->projector) {
2315 if (opcode == TGSI_OPCODE_TEX) {
2316 /* Slot the projector in as the last component of the coord. */
2317 coord_dst.writemask = WRITEMASK_W;
2318 emit(ir, TGSI_OPCODE_MOV, coord_dst, projector);
2319 coord_dst.writemask = WRITEMASK_XYZW;
2320 opcode = TGSI_OPCODE_TXP;
2321 } else {
2322 st_src_reg coord_w = coord;
2323 coord_w.swizzle = SWIZZLE_WWWW;
2324
2325 /* For the other TEX opcodes there's no projective version
2326 * since the last slot is taken up by LOD info. Do the
2327 * projective divide now.
2328 */
2329 coord_dst.writemask = WRITEMASK_W;
2330 emit(ir, TGSI_OPCODE_RCP, coord_dst, projector);
2331
2332 /* In the case where we have to project the coordinates "by hand,"
2333 * the shadow comparator value must also be projected.
2334 */
2335 st_src_reg tmp_src = coord;
2336 if (ir->shadow_comparitor) {
2337 /* Slot the shadow value in as the second to last component of the
2338 * coord.
2339 */
2340 ir->shadow_comparitor->accept(this);
2341
2342 tmp_src = get_temp(glsl_type::vec4_type);
2343 st_dst_reg tmp_dst = st_dst_reg(tmp_src);
2344
2345 tmp_dst.writemask = WRITEMASK_Z;
2346 emit(ir, TGSI_OPCODE_MOV, tmp_dst, this->result);
2347
2348 tmp_dst.writemask = WRITEMASK_XY;
2349 emit(ir, TGSI_OPCODE_MOV, tmp_dst, coord);
2350 }
2351
2352 coord_dst.writemask = WRITEMASK_XYZ;
2353 emit(ir, TGSI_OPCODE_MUL, coord_dst, tmp_src, coord_w);
2354
2355 coord_dst.writemask = WRITEMASK_XYZW;
2356 coord.swizzle = SWIZZLE_XYZW;
2357 }
2358 }
2359
2360 /* If projection is done and the opcode is not TGSI_OPCODE_TXP, then the shadow
2361 * comparator was put in the correct place (and projected) by the code,
2362 * above, that handles by-hand projection.
2363 */
2364 if (ir->shadow_comparitor && (!ir->projector || opcode == TGSI_OPCODE_TXP)) {
2365 /* Slot the shadow value in as the second to last component of the
2366 * coord.
2367 */
2368 ir->shadow_comparitor->accept(this);
2369 coord_dst.writemask = WRITEMASK_Z;
2370 emit(ir, TGSI_OPCODE_MOV, coord_dst, this->result);
2371 coord_dst.writemask = WRITEMASK_XYZW;
2372 }
2373
2374 if (opcode == TGSI_OPCODE_TXL || opcode == TGSI_OPCODE_TXB) {
2375 /* TGSI stores LOD or LOD bias in the last channel of the coords. */
2376 coord_dst.writemask = WRITEMASK_W;
2377 emit(ir, TGSI_OPCODE_MOV, coord_dst, lod_info);
2378 coord_dst.writemask = WRITEMASK_XYZW;
2379 }
2380
2381 if (opcode == TGSI_OPCODE_TXD)
2382 inst = emit(ir, opcode, result_dst, coord, dx, dy);
2383 else
2384 inst = emit(ir, opcode, result_dst, coord);
2385
2386 if (ir->shadow_comparitor)
2387 inst->tex_shadow = GL_TRUE;
2388
2389 inst->sampler = _mesa_get_sampler_uniform_value(ir->sampler,
2390 this->shader_program,
2391 this->prog);
2392
2393 const glsl_type *sampler_type = ir->sampler->type;
2394
2395 switch (sampler_type->sampler_dimensionality) {
2396 case GLSL_SAMPLER_DIM_1D:
2397 inst->tex_target = (sampler_type->sampler_array)
2398 ? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX;
2399 break;
2400 case GLSL_SAMPLER_DIM_2D:
2401 inst->tex_target = (sampler_type->sampler_array)
2402 ? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX;
2403 break;
2404 case GLSL_SAMPLER_DIM_3D:
2405 inst->tex_target = TEXTURE_3D_INDEX;
2406 break;
2407 case GLSL_SAMPLER_DIM_CUBE:
2408 inst->tex_target = TEXTURE_CUBE_INDEX;
2409 break;
2410 case GLSL_SAMPLER_DIM_RECT:
2411 inst->tex_target = TEXTURE_RECT_INDEX;
2412 break;
2413 case GLSL_SAMPLER_DIM_BUF:
2414 assert(!"FINISHME: Implement ARB_texture_buffer_object");
2415 break;
2416 default:
2417 assert(!"Should not get here.");
2418 }
2419
2420 this->result = result_src;
2421 }
2422
2423 void
2424 glsl_to_tgsi_visitor::visit(ir_return *ir)
2425 {
2426 if (ir->get_value()) {
2427 st_dst_reg l;
2428 int i;
2429
2430 assert(current_function);
2431
2432 ir->get_value()->accept(this);
2433 st_src_reg r = this->result;
2434
2435 l = st_dst_reg(current_function->return_reg);
2436
2437 for (i = 0; i < type_size(current_function->sig->return_type); i++) {
2438 emit(ir, TGSI_OPCODE_MOV, l, r);
2439 l.index++;
2440 r.index++;
2441 }
2442 }
2443
2444 emit(ir, TGSI_OPCODE_RET);
2445 }
2446
2447 void
2448 glsl_to_tgsi_visitor::visit(ir_discard *ir)
2449 {
2450 struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog;
2451
2452 if (ir->condition) {
2453 ir->condition->accept(this);
2454 this->result.negate = ~this->result.negate;
2455 emit(ir, TGSI_OPCODE_KIL, undef_dst, this->result);
2456 } else {
2457 emit(ir, TGSI_OPCODE_KILP);
2458 }
2459
2460 fp->UsesKill = GL_TRUE;
2461 }
2462
2463 void
2464 glsl_to_tgsi_visitor::visit(ir_if *ir)
2465 {
2466 glsl_to_tgsi_instruction *cond_inst, *if_inst, *else_inst = NULL;
2467 glsl_to_tgsi_instruction *prev_inst;
2468
2469 prev_inst = (glsl_to_tgsi_instruction *)this->instructions.get_tail();
2470
2471 ir->condition->accept(this);
2472 assert(this->result.file != PROGRAM_UNDEFINED);
2473
2474 if (this->options->EmitCondCodes) {
2475 cond_inst = (glsl_to_tgsi_instruction *)this->instructions.get_tail();
2476
2477 /* See if we actually generated any instruction for generating
2478 * the condition. If not, then cook up a move to a temp so we
2479 * have something to set cond_update on.
2480 */
2481 if (cond_inst == prev_inst) {
2482 st_src_reg temp = get_temp(glsl_type::bool_type);
2483 cond_inst = emit(ir->condition, TGSI_OPCODE_MOV, st_dst_reg(temp), result);
2484 }
2485 cond_inst->cond_update = GL_TRUE;
2486
2487 if_inst = emit(ir->condition, TGSI_OPCODE_IF);
2488 if_inst->dst.cond_mask = COND_NE;
2489 } else {
2490 if_inst = emit(ir->condition, TGSI_OPCODE_IF, undef_dst, this->result);
2491 }
2492
2493 this->instructions.push_tail(if_inst);
2494
2495 visit_exec_list(&ir->then_instructions, this);
2496
2497 if (!ir->else_instructions.is_empty()) {
2498 else_inst = emit(ir->condition, TGSI_OPCODE_ELSE);
2499 visit_exec_list(&ir->else_instructions, this);
2500 }
2501
2502 if_inst = emit(ir->condition, TGSI_OPCODE_ENDIF);
2503 }
2504
2505 glsl_to_tgsi_visitor::glsl_to_tgsi_visitor()
2506 {
2507 result.file = PROGRAM_UNDEFINED;
2508 next_temp = 1;
2509 next_signature_id = 1;
2510 num_immediates = 0;
2511 current_function = NULL;
2512 num_address_regs = 0;
2513 indirect_addr_temps = false;
2514 indirect_addr_consts = false;
2515 mem_ctx = ralloc_context(NULL);
2516 }
2517
2518 glsl_to_tgsi_visitor::~glsl_to_tgsi_visitor()
2519 {
2520 ralloc_free(mem_ctx);
2521 }
2522
2523 extern "C" void free_glsl_to_tgsi_visitor(glsl_to_tgsi_visitor *v)
2524 {
2525 delete v;
2526 }
2527
2528
2529 /**
2530 * Count resources used by the given gpu program (number of texture
2531 * samplers, etc).
2532 */
2533 static void
2534 count_resources(glsl_to_tgsi_visitor *v, gl_program *prog)
2535 {
2536 v->samplers_used = 0;
2537
2538 foreach_iter(exec_list_iterator, iter, v->instructions) {
2539 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
2540
2541 if (is_tex_instruction(inst->op)) {
2542 v->samplers_used |= 1 << inst->sampler;
2543
2544 prog->SamplerTargets[inst->sampler] =
2545 (gl_texture_index)inst->tex_target;
2546 if (inst->tex_shadow) {
2547 prog->ShadowSamplers |= 1 << inst->sampler;
2548 }
2549 }
2550 }
2551
2552 prog->SamplersUsed = v->samplers_used;
2553 _mesa_update_shader_textures_used(prog);
2554 }
2555
2556
2557 /**
2558 * Check if the given vertex/fragment/shader program is within the
2559 * resource limits of the context (number of texture units, etc).
2560 * If any of those checks fail, record a linker error.
2561 *
2562 * XXX more checks are needed...
2563 */
2564 static void
2565 check_resources(const struct gl_context *ctx,
2566 struct gl_shader_program *shader_program,
2567 glsl_to_tgsi_visitor *prog,
2568 struct gl_program *proginfo)
2569 {
2570 switch (proginfo->Target) {
2571 case GL_VERTEX_PROGRAM_ARB:
2572 if (_mesa_bitcount(prog->samplers_used) >
2573 ctx->Const.MaxVertexTextureImageUnits) {
2574 fail_link(shader_program, "Too many vertex shader texture samplers");
2575 }
2576 if (proginfo->Parameters->NumParameters > MAX_UNIFORMS) {
2577 fail_link(shader_program, "Too many vertex shader constants");
2578 }
2579 break;
2580 case MESA_GEOMETRY_PROGRAM:
2581 if (_mesa_bitcount(prog->samplers_used) >
2582 ctx->Const.MaxGeometryTextureImageUnits) {
2583 fail_link(shader_program, "Too many geometry shader texture samplers");
2584 }
2585 if (proginfo->Parameters->NumParameters >
2586 MAX_GEOMETRY_UNIFORM_COMPONENTS / 4) {
2587 fail_link(shader_program, "Too many geometry shader constants");
2588 }
2589 break;
2590 case GL_FRAGMENT_PROGRAM_ARB:
2591 if (_mesa_bitcount(prog->samplers_used) >
2592 ctx->Const.MaxTextureImageUnits) {
2593 fail_link(shader_program, "Too many fragment shader texture samplers");
2594 }
2595 if (proginfo->Parameters->NumParameters > MAX_UNIFORMS) {
2596 fail_link(shader_program, "Too many fragment shader constants");
2597 }
2598 break;
2599 default:
2600 _mesa_problem(ctx, "unexpected program type in check_resources()");
2601 }
2602 }
2603
2604
2605
2606 struct uniform_sort {
2607 struct gl_uniform *u;
2608 int pos;
2609 };
2610
2611 /* The shader_program->Uniforms list is almost sorted in increasing
2612 * uniform->{Frag,Vert}Pos locations, but not quite when there are
2613 * uniforms shared between targets. We need to add parameters in
2614 * increasing order for the targets.
2615 */
2616 static int
2617 sort_uniforms(const void *a, const void *b)
2618 {
2619 struct uniform_sort *u1 = (struct uniform_sort *)a;
2620 struct uniform_sort *u2 = (struct uniform_sort *)b;
2621
2622 return u1->pos - u2->pos;
2623 }
2624
2625 /* Add the uniforms to the parameters. The linker chose locations
2626 * in our parameters lists (which weren't created yet), which the
2627 * uniforms code will use to poke values into our parameters list
2628 * when uniforms are updated.
2629 */
2630 static void
2631 add_uniforms_to_parameters_list(struct gl_shader_program *shader_program,
2632 struct gl_shader *shader,
2633 struct gl_program *prog)
2634 {
2635 unsigned int i;
2636 unsigned int next_sampler = 0, num_uniforms = 0;
2637 struct uniform_sort *sorted_uniforms;
2638
2639 sorted_uniforms = ralloc_array(NULL, struct uniform_sort,
2640 shader_program->Uniforms->NumUniforms);
2641
2642 for (i = 0; i < shader_program->Uniforms->NumUniforms; i++) {
2643 struct gl_uniform *uniform = shader_program->Uniforms->Uniforms + i;
2644 int parameter_index = -1;
2645
2646 switch (shader->Type) {
2647 case GL_VERTEX_SHADER:
2648 parameter_index = uniform->VertPos;
2649 break;
2650 case GL_FRAGMENT_SHADER:
2651 parameter_index = uniform->FragPos;
2652 break;
2653 case GL_GEOMETRY_SHADER:
2654 parameter_index = uniform->GeomPos;
2655 break;
2656 }
2657
2658 /* Only add uniforms used in our target. */
2659 if (parameter_index != -1) {
2660 sorted_uniforms[num_uniforms].pos = parameter_index;
2661 sorted_uniforms[num_uniforms].u = uniform;
2662 num_uniforms++;
2663 }
2664 }
2665
2666 qsort(sorted_uniforms, num_uniforms, sizeof(struct uniform_sort),
2667 sort_uniforms);
2668
2669 for (i = 0; i < num_uniforms; i++) {
2670 struct gl_uniform *uniform = sorted_uniforms[i].u;
2671 int parameter_index = sorted_uniforms[i].pos;
2672 const glsl_type *type = uniform->Type;
2673 unsigned int size;
2674
2675 if (type->is_vector() ||
2676 type->is_scalar()) {
2677 size = type->vector_elements;
2678 } else {
2679 size = type_size(type) * 4;
2680 }
2681
2682 gl_register_file file;
2683 if (type->is_sampler() ||
2684 (type->is_array() && type->fields.array->is_sampler())) {
2685 file = PROGRAM_SAMPLER;
2686 } else {
2687 file = PROGRAM_UNIFORM;
2688 }
2689
2690 GLint index = _mesa_lookup_parameter_index(prog->Parameters, -1,
2691 uniform->Name);
2692
2693 if (index < 0) {
2694 index = _mesa_add_parameter(prog->Parameters, file,
2695 uniform->Name, size, type->gl_type,
2696 NULL, NULL, 0x0);
2697
2698 /* Sampler uniform values are stored in prog->SamplerUnits,
2699 * and the entry in that array is selected by this index we
2700 * store in ParameterValues[].
2701 */
2702 if (file == PROGRAM_SAMPLER) {
2703 for (unsigned int j = 0; j < size / 4; j++)
2704 prog->Parameters->ParameterValues[index + j][0].f = next_sampler++;
2705 }
2706
2707 /* The location chosen in the Parameters list here (returned
2708 * from _mesa_add_uniform) has to match what the linker chose.
2709 */
2710 if (index != parameter_index) {
2711 fail_link(shader_program, "Allocation of uniform `%s' to target "
2712 "failed (%d vs %d)\n",
2713 uniform->Name, index, parameter_index);
2714 }
2715 }
2716 }
2717
2718 ralloc_free(sorted_uniforms);
2719 }
2720
2721 static void
2722 set_uniform_initializer(struct gl_context *ctx, void *mem_ctx,
2723 struct gl_shader_program *shader_program,
2724 const char *name, const glsl_type *type,
2725 ir_constant *val)
2726 {
2727 if (type->is_record()) {
2728 ir_constant *field_constant;
2729
2730 field_constant = (ir_constant *)val->components.get_head();
2731
2732 for (unsigned int i = 0; i < type->length; i++) {
2733 const glsl_type *field_type = type->fields.structure[i].type;
2734 const char *field_name = ralloc_asprintf(mem_ctx, "%s.%s", name,
2735 type->fields.structure[i].name);
2736 set_uniform_initializer(ctx, mem_ctx, shader_program, field_name,
2737 field_type, field_constant);
2738 field_constant = (ir_constant *)field_constant->next;
2739 }
2740 return;
2741 }
2742
2743 int loc = _mesa_get_uniform_location(ctx, shader_program, name);
2744
2745 if (loc == -1) {
2746 fail_link(shader_program,
2747 "Couldn't find uniform for initializer %s\n", name);
2748 return;
2749 }
2750
2751 for (unsigned int i = 0; i < (type->is_array() ? type->length : 1); i++) {
2752 ir_constant *element;
2753 const glsl_type *element_type;
2754 if (type->is_array()) {
2755 element = val->array_elements[i];
2756 element_type = type->fields.array;
2757 } else {
2758 element = val;
2759 element_type = type;
2760 }
2761
2762 void *values;
2763
2764 if (element_type->base_type == GLSL_TYPE_BOOL) {
2765 int *conv = ralloc_array(mem_ctx, int, element_type->components());
2766 for (unsigned int j = 0; j < element_type->components(); j++) {
2767 conv[j] = element->value.b[j];
2768 }
2769 values = (void *)conv;
2770 element_type = glsl_type::get_instance(GLSL_TYPE_INT,
2771 element_type->vector_elements,
2772 1);
2773 } else {
2774 values = &element->value;
2775 }
2776
2777 if (element_type->is_matrix()) {
2778 _mesa_uniform_matrix(ctx, shader_program,
2779 element_type->matrix_columns,
2780 element_type->vector_elements,
2781 loc, 1, GL_FALSE, (GLfloat *)values);
2782 loc += element_type->matrix_columns;
2783 } else {
2784 _mesa_uniform(ctx, shader_program, loc, element_type->matrix_columns,
2785 values, element_type->gl_type);
2786 loc += type_size(element_type);
2787 }
2788 }
2789 }
2790
2791 static void
2792 set_uniform_initializers(struct gl_context *ctx,
2793 struct gl_shader_program *shader_program)
2794 {
2795 void *mem_ctx = NULL;
2796
2797 for (unsigned int i = 0; i < MESA_SHADER_TYPES; i++) {
2798 struct gl_shader *shader = shader_program->_LinkedShaders[i];
2799
2800 if (shader == NULL)
2801 continue;
2802
2803 foreach_iter(exec_list_iterator, iter, *shader->ir) {
2804 ir_instruction *ir = (ir_instruction *)iter.get();
2805 ir_variable *var = ir->as_variable();
2806
2807 if (!var || var->mode != ir_var_uniform || !var->constant_value)
2808 continue;
2809
2810 if (!mem_ctx)
2811 mem_ctx = ralloc_context(NULL);
2812
2813 set_uniform_initializer(ctx, mem_ctx, shader_program, var->name,
2814 var->type, var->constant_value);
2815 }
2816 }
2817
2818 ralloc_free(mem_ctx);
2819 }
2820
2821 /*
2822 * Scan/rewrite program to remove reads of custom (output) registers.
2823 * The passed type has to be either PROGRAM_OUTPUT or PROGRAM_VARYING
2824 * (for vertex shaders).
2825 * In GLSL shaders, varying vars can be read and written.
2826 * On some hardware, trying to read an output register causes trouble.
2827 * So, rewrite the program to use a temporary register in this case.
2828 *
2829 * Based on _mesa_remove_output_reads from programopt.c.
2830 */
2831 void
2832 glsl_to_tgsi_visitor::remove_output_reads(gl_register_file type)
2833 {
2834 GLuint i;
2835 GLint outputMap[VERT_RESULT_MAX];
2836 GLint outputTypes[VERT_RESULT_MAX];
2837 GLuint numVaryingReads = 0;
2838 GLboolean usedTemps[MAX_TEMPS];
2839 GLuint firstTemp = 0;
2840
2841 _mesa_find_used_registers(prog, PROGRAM_TEMPORARY,
2842 usedTemps, MAX_TEMPS);
2843
2844 assert(type == PROGRAM_VARYING || type == PROGRAM_OUTPUT);
2845 assert(prog->Target == GL_VERTEX_PROGRAM_ARB || type != PROGRAM_VARYING);
2846
2847 for (i = 0; i < VERT_RESULT_MAX; i++)
2848 outputMap[i] = -1;
2849
2850 /* look for instructions which read from varying vars */
2851 foreach_iter(exec_list_iterator, iter, this->instructions) {
2852 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
2853 const GLuint numSrc = num_inst_src_regs(inst->op);
2854 GLuint j;
2855 for (j = 0; j < numSrc; j++) {
2856 if (inst->src[j].file == type) {
2857 /* replace the read with a temp reg */
2858 const GLuint var = inst->src[j].index;
2859 if (outputMap[var] == -1) {
2860 numVaryingReads++;
2861 outputMap[var] = _mesa_find_free_register(usedTemps,
2862 MAX_TEMPS,
2863 firstTemp);
2864 outputTypes[var] = inst->src[j].type;
2865 firstTemp = outputMap[var] + 1;
2866 }
2867 inst->src[j].file = PROGRAM_TEMPORARY;
2868 inst->src[j].index = outputMap[var];
2869 }
2870 }
2871 }
2872
2873 if (numVaryingReads == 0)
2874 return; /* nothing to be done */
2875
2876 /* look for instructions which write to the varying vars identified above */
2877 foreach_iter(exec_list_iterator, iter, this->instructions) {
2878 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
2879 if (inst->dst.file == type && outputMap[inst->dst.index] >= 0) {
2880 /* change inst to write to the temp reg, instead of the varying */
2881 inst->dst.file = PROGRAM_TEMPORARY;
2882 inst->dst.index = outputMap[inst->dst.index];
2883 }
2884 }
2885
2886 /* insert new MOV instructions at the end */
2887 for (i = 0; i < VERT_RESULT_MAX; i++) {
2888 if (outputMap[i] >= 0) {
2889 /* MOV VAR[i], TEMP[tmp]; */
2890 st_src_reg src = st_src_reg(PROGRAM_TEMPORARY, outputMap[i], outputTypes[i]);
2891 st_dst_reg dst = st_dst_reg(type, WRITEMASK_XYZW, outputTypes[i]);
2892 dst.index = i;
2893 this->emit(NULL, TGSI_OPCODE_MOV, dst, src);
2894 }
2895 }
2896 }
2897
2898 /**
2899 * Returns the mask of channels (bitmask of WRITEMASK_X,Y,Z,W) which
2900 * are read from the given src in this instruction
2901 */
2902 static int
2903 get_src_arg_mask(st_dst_reg dst, st_src_reg src)
2904 {
2905 int read_mask = 0, comp;
2906
2907 /* Now, given the src swizzle and the written channels, find which
2908 * components are actually read
2909 */
2910 for (comp = 0; comp < 4; ++comp) {
2911 const unsigned coord = GET_SWZ(src.swizzle, comp);
2912 ASSERT(coord < 4);
2913 if (dst.writemask & (1 << comp) && coord <= SWIZZLE_W)
2914 read_mask |= 1 << coord;
2915 }
2916
2917 return read_mask;
2918 }
2919
2920 /**
2921 * This pass replaces CMP T0, T1 T2 T0 with MOV T0, T2 when the CMP
2922 * instruction is the first instruction to write to register T0. There are
2923 * several lowering passes done in GLSL IR (e.g. branches and
2924 * relative addressing) that create a large number of conditional assignments
2925 * that ir_to_mesa converts to CMP instructions like the one mentioned above.
2926 *
2927 * Here is why this conversion is safe:
2928 * CMP T0, T1 T2 T0 can be expanded to:
2929 * if (T1 < 0.0)
2930 * MOV T0, T2;
2931 * else
2932 * MOV T0, T0;
2933 *
2934 * If (T1 < 0.0) evaluates to true then our replacement MOV T0, T2 is the same
2935 * as the original program. If (T1 < 0.0) evaluates to false, executing
2936 * MOV T0, T0 will store a garbage value in T0 since T0 is uninitialized.
2937 * Therefore, it doesn't matter that we are replacing MOV T0, T0 with MOV T0, T2
2938 * because any instruction that was going to read from T0 after this was going
2939 * to read a garbage value anyway.
2940 */
2941 void
2942 glsl_to_tgsi_visitor::simplify_cmp(void)
2943 {
2944 unsigned tempWrites[MAX_TEMPS];
2945 unsigned outputWrites[MAX_PROGRAM_OUTPUTS];
2946
2947 memset(tempWrites, 0, sizeof(tempWrites));
2948 memset(outputWrites, 0, sizeof(outputWrites));
2949
2950 foreach_iter(exec_list_iterator, iter, this->instructions) {
2951 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
2952 unsigned prevWriteMask = 0;
2953
2954 /* Give up if we encounter relative addressing or flow control. */
2955 if (inst->dst.reladdr ||
2956 tgsi_get_opcode_info(inst->op)->is_branch ||
2957 inst->op == TGSI_OPCODE_BGNSUB ||
2958 inst->op == TGSI_OPCODE_CONT ||
2959 inst->op == TGSI_OPCODE_END ||
2960 inst->op == TGSI_OPCODE_ENDSUB ||
2961 inst->op == TGSI_OPCODE_RET) {
2962 return;
2963 }
2964
2965 if (inst->dst.file == PROGRAM_OUTPUT) {
2966 assert(inst->dst.index < MAX_PROGRAM_OUTPUTS);
2967 prevWriteMask = outputWrites[inst->dst.index];
2968 outputWrites[inst->dst.index] |= inst->dst.writemask;
2969 } else if (inst->dst.file == PROGRAM_TEMPORARY) {
2970 assert(inst->dst.index < MAX_TEMPS);
2971 prevWriteMask = tempWrites[inst->dst.index];
2972 tempWrites[inst->dst.index] |= inst->dst.writemask;
2973 }
2974
2975 /* For a CMP to be considered a conditional write, the destination
2976 * register and source register two must be the same. */
2977 if (inst->op == TGSI_OPCODE_CMP
2978 && !(inst->dst.writemask & prevWriteMask)
2979 && inst->src[2].file == inst->dst.file
2980 && inst->src[2].index == inst->dst.index
2981 && inst->dst.writemask == get_src_arg_mask(inst->dst, inst->src[2])) {
2982
2983 inst->op = TGSI_OPCODE_MOV;
2984 inst->src[0] = inst->src[1];
2985 }
2986 }
2987 }
2988
2989 /* Replaces all references to a temporary register index with another index. */
2990 void
2991 glsl_to_tgsi_visitor::rename_temp_register(int index, int new_index)
2992 {
2993 foreach_iter(exec_list_iterator, iter, this->instructions) {
2994 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
2995 unsigned j;
2996
2997 for (j=0; j < num_inst_src_regs(inst->op); j++) {
2998 if (inst->src[j].file == PROGRAM_TEMPORARY &&
2999 inst->src[j].index == index) {
3000 inst->src[j].index = new_index;
3001 }
3002 }
3003
3004 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.index == index) {
3005 inst->dst.index = new_index;
3006 }
3007 }
3008 }
3009
3010 int
3011 glsl_to_tgsi_visitor::get_first_temp_read(int index)
3012 {
3013 int depth = 0; /* loop depth */
3014 int loop_start = -1; /* index of the first active BGNLOOP (if any) */
3015 unsigned i = 0, j;
3016
3017 foreach_iter(exec_list_iterator, iter, this->instructions) {
3018 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3019
3020 for (j=0; j < num_inst_src_regs(inst->op); j++) {
3021 if (inst->src[j].file == PROGRAM_TEMPORARY &&
3022 inst->src[j].index == index) {
3023 return (depth == 0) ? i : loop_start;
3024 }
3025 }
3026
3027 if (inst->op == TGSI_OPCODE_BGNLOOP) {
3028 if(depth++ == 0)
3029 loop_start = i;
3030 } else if (inst->op == TGSI_OPCODE_ENDLOOP) {
3031 if (--depth == 0)
3032 loop_start = -1;
3033 }
3034 assert(depth >= 0);
3035
3036 i++;
3037 }
3038
3039 return -1;
3040 }
3041
3042 int
3043 glsl_to_tgsi_visitor::get_first_temp_write(int index)
3044 {
3045 int depth = 0; /* loop depth */
3046 int loop_start = -1; /* index of the first active BGNLOOP (if any) */
3047 int i = 0;
3048
3049 foreach_iter(exec_list_iterator, iter, this->instructions) {
3050 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3051
3052 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.index == index) {
3053 return (depth == 0) ? i : loop_start;
3054 }
3055
3056 if (inst->op == TGSI_OPCODE_BGNLOOP) {
3057 if(depth++ == 0)
3058 loop_start = i;
3059 } else if (inst->op == TGSI_OPCODE_ENDLOOP) {
3060 if (--depth == 0)
3061 loop_start = -1;
3062 }
3063 assert(depth >= 0);
3064
3065 i++;
3066 }
3067
3068 return -1;
3069 }
3070
3071 int
3072 glsl_to_tgsi_visitor::get_last_temp_read(int index)
3073 {
3074 int depth = 0; /* loop depth */
3075 int last = -1; /* index of last instruction that reads the temporary */
3076 unsigned i = 0, j;
3077
3078 foreach_iter(exec_list_iterator, iter, this->instructions) {
3079 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3080
3081 for (j=0; j < num_inst_src_regs(inst->op); j++) {
3082 if (inst->src[j].file == PROGRAM_TEMPORARY &&
3083 inst->src[j].index == index) {
3084 last = (depth == 0) ? i : -2;
3085 }
3086 }
3087
3088 if (inst->op == TGSI_OPCODE_BGNLOOP)
3089 depth++;
3090 else if (inst->op == TGSI_OPCODE_ENDLOOP)
3091 if (--depth == 0 && last == -2)
3092 last = i;
3093 assert(depth >= 0);
3094
3095 i++;
3096 }
3097
3098 assert(last >= -1);
3099 return last;
3100 }
3101
3102 int
3103 glsl_to_tgsi_visitor::get_last_temp_write(int index)
3104 {
3105 int depth = 0; /* loop depth */
3106 int last = -1; /* index of last instruction that writes to the temporary */
3107 int i = 0;
3108
3109 foreach_iter(exec_list_iterator, iter, this->instructions) {
3110 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3111
3112 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.index == index)
3113 last = (depth == 0) ? i : -2;
3114
3115 if (inst->op == TGSI_OPCODE_BGNLOOP)
3116 depth++;
3117 else if (inst->op == TGSI_OPCODE_ENDLOOP)
3118 if (--depth == 0 && last == -2)
3119 last = i;
3120 assert(depth >= 0);
3121
3122 i++;
3123 }
3124
3125 assert(last >= -1);
3126 return last;
3127 }
3128
3129 /*
3130 * On a basic block basis, tracks available PROGRAM_TEMPORARY register
3131 * channels for copy propagation and updates following instructions to
3132 * use the original versions.
3133 *
3134 * The glsl_to_tgsi_visitor lazily produces code assuming that this pass
3135 * will occur. As an example, a TXP production before this pass:
3136 *
3137 * 0: MOV TEMP[1], INPUT[4].xyyy;
3138 * 1: MOV TEMP[1].w, INPUT[4].wwww;
3139 * 2: TXP TEMP[2], TEMP[1], texture[0], 2D;
3140 *
3141 * and after:
3142 *
3143 * 0: MOV TEMP[1], INPUT[4].xyyy;
3144 * 1: MOV TEMP[1].w, INPUT[4].wwww;
3145 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
3146 *
3147 * which allows for dead code elimination on TEMP[1]'s writes.
3148 */
3149 void
3150 glsl_to_tgsi_visitor::copy_propagate(void)
3151 {
3152 glsl_to_tgsi_instruction **acp = rzalloc_array(mem_ctx,
3153 glsl_to_tgsi_instruction *,
3154 this->next_temp * 4);
3155 int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
3156 int level = 0;
3157
3158 foreach_iter(exec_list_iterator, iter, this->instructions) {
3159 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3160
3161 assert(inst->dst.file != PROGRAM_TEMPORARY
3162 || inst->dst.index < this->next_temp);
3163
3164 /* First, do any copy propagation possible into the src regs. */
3165 for (int r = 0; r < 3; r++) {
3166 glsl_to_tgsi_instruction *first = NULL;
3167 bool good = true;
3168 int acp_base = inst->src[r].index * 4;
3169
3170 if (inst->src[r].file != PROGRAM_TEMPORARY ||
3171 inst->src[r].reladdr)
3172 continue;
3173
3174 /* See if we can find entries in the ACP consisting of MOVs
3175 * from the same src register for all the swizzled channels
3176 * of this src register reference.
3177 */
3178 for (int i = 0; i < 4; i++) {
3179 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
3180 glsl_to_tgsi_instruction *copy_chan = acp[acp_base + src_chan];
3181
3182 if (!copy_chan) {
3183 good = false;
3184 break;
3185 }
3186
3187 assert(acp_level[acp_base + src_chan] <= level);
3188
3189 if (!first) {
3190 first = copy_chan;
3191 } else {
3192 if (first->src[0].file != copy_chan->src[0].file ||
3193 first->src[0].index != copy_chan->src[0].index) {
3194 good = false;
3195 break;
3196 }
3197 }
3198 }
3199
3200 if (good) {
3201 /* We've now validated that we can copy-propagate to
3202 * replace this src register reference. Do it.
3203 */
3204 inst->src[r].file = first->src[0].file;
3205 inst->src[r].index = first->src[0].index;
3206
3207 int swizzle = 0;
3208 for (int i = 0; i < 4; i++) {
3209 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
3210 glsl_to_tgsi_instruction *copy_inst = acp[acp_base + src_chan];
3211 swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) <<
3212 (3 * i));
3213 }
3214 inst->src[r].swizzle = swizzle;
3215 }
3216 }
3217
3218 switch (inst->op) {
3219 case TGSI_OPCODE_BGNLOOP:
3220 case TGSI_OPCODE_ENDLOOP:
3221 /* End of a basic block, clear the ACP entirely. */
3222 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
3223 break;
3224
3225 case TGSI_OPCODE_IF:
3226 ++level;
3227 break;
3228
3229 case TGSI_OPCODE_ENDIF:
3230 case TGSI_OPCODE_ELSE:
3231 /* Clear all channels written inside the block from the ACP, but
3232 * leaving those that were not touched.
3233 */
3234 for (int r = 0; r < this->next_temp; r++) {
3235 for (int c = 0; c < 4; c++) {
3236 if (!acp[4 * r + c])
3237 continue;
3238
3239 if (acp_level[4 * r + c] >= level)
3240 acp[4 * r + c] = NULL;
3241 }
3242 }
3243 if (inst->op == TGSI_OPCODE_ENDIF)
3244 --level;
3245 break;
3246
3247 default:
3248 /* Continuing the block, clear any written channels from
3249 * the ACP.
3250 */
3251 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.reladdr) {
3252 /* Any temporary might be written, so no copy propagation
3253 * across this instruction.
3254 */
3255 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
3256 } else if (inst->dst.file == PROGRAM_OUTPUT &&
3257 inst->dst.reladdr) {
3258 /* Any output might be written, so no copy propagation
3259 * from outputs across this instruction.
3260 */
3261 for (int r = 0; r < this->next_temp; r++) {
3262 for (int c = 0; c < 4; c++) {
3263 if (!acp[4 * r + c])
3264 continue;
3265
3266 if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT)
3267 acp[4 * r + c] = NULL;
3268 }
3269 }
3270 } else if (inst->dst.file == PROGRAM_TEMPORARY ||
3271 inst->dst.file == PROGRAM_OUTPUT) {
3272 /* Clear where it's used as dst. */
3273 if (inst->dst.file == PROGRAM_TEMPORARY) {
3274 for (int c = 0; c < 4; c++) {
3275 if (inst->dst.writemask & (1 << c)) {
3276 acp[4 * inst->dst.index + c] = NULL;
3277 }
3278 }
3279 }
3280
3281 /* Clear where it's used as src. */
3282 for (int r = 0; r < this->next_temp; r++) {
3283 for (int c = 0; c < 4; c++) {
3284 if (!acp[4 * r + c])
3285 continue;
3286
3287 int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c);
3288
3289 if (acp[4 * r + c]->src[0].file == inst->dst.file &&
3290 acp[4 * r + c]->src[0].index == inst->dst.index &&
3291 inst->dst.writemask & (1 << src_chan))
3292 {
3293 acp[4 * r + c] = NULL;
3294 }
3295 }
3296 }
3297 }
3298 break;
3299 }
3300
3301 /* If this is a copy, add it to the ACP. */
3302 if (inst->op == TGSI_OPCODE_MOV &&
3303 inst->dst.file == PROGRAM_TEMPORARY &&
3304 !inst->dst.reladdr &&
3305 !inst->saturate &&
3306 !inst->src[0].reladdr &&
3307 !inst->src[0].negate) {
3308 for (int i = 0; i < 4; i++) {
3309 if (inst->dst.writemask & (1 << i)) {
3310 acp[4 * inst->dst.index + i] = inst;
3311 acp_level[4 * inst->dst.index + i] = level;
3312 }
3313 }
3314 }
3315 }
3316
3317 ralloc_free(acp_level);
3318 ralloc_free(acp);
3319 }
3320
3321 /*
3322 * Tracks available PROGRAM_TEMPORARY registers for dead code elimination.
3323 *
3324 * The glsl_to_tgsi_visitor lazily produces code assuming that this pass
3325 * will occur. As an example, a TXP production after copy propagation but
3326 * before this pass:
3327 *
3328 * 0: MOV TEMP[1], INPUT[4].xyyy;
3329 * 1: MOV TEMP[1].w, INPUT[4].wwww;
3330 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
3331 *
3332 * and after this pass:
3333 *
3334 * 0: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
3335 *
3336 * FIXME: assumes that all functions are inlined (no support for BGNSUB/ENDSUB)
3337 * FIXME: doesn't eliminate all dead code inside of loops; it steps around them
3338 */
3339 void
3340 glsl_to_tgsi_visitor::eliminate_dead_code(void)
3341 {
3342 int i;
3343
3344 for (i=0; i < this->next_temp; i++) {
3345 int last_read = get_last_temp_read(i);
3346 int j = 0;
3347
3348 foreach_iter(exec_list_iterator, iter, this->instructions) {
3349 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3350
3351 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.index == i &&
3352 j > last_read)
3353 {
3354 iter.remove();
3355 delete inst;
3356 }
3357
3358 j++;
3359 }
3360 }
3361 }
3362
3363 /*
3364 * On a basic block basis, tracks available PROGRAM_TEMPORARY registers for dead
3365 * code elimination. This is less primitive than eliminate_dead_code(), as it
3366 * is per-channel and can detect consecutive writes without a read between them
3367 * as dead code. However, there is some dead code that can be eliminated by
3368 * eliminate_dead_code() but not this function - for example, this function
3369 * cannot eliminate an instruction writing to a register that is never read and
3370 * is the only instruction writing to that register.
3371 *
3372 * The glsl_to_tgsi_visitor lazily produces code assuming that this pass
3373 * will occur.
3374 */
3375 int
3376 glsl_to_tgsi_visitor::eliminate_dead_code_advanced(void)
3377 {
3378 glsl_to_tgsi_instruction **writes = rzalloc_array(mem_ctx,
3379 glsl_to_tgsi_instruction *,
3380 this->next_temp * 4);
3381 int *write_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
3382 int level = 0;
3383 int removed = 0;
3384
3385 foreach_iter(exec_list_iterator, iter, this->instructions) {
3386 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3387
3388 assert(inst->dst.file != PROGRAM_TEMPORARY
3389 || inst->dst.index < this->next_temp);
3390
3391 switch (inst->op) {
3392 case TGSI_OPCODE_BGNLOOP:
3393 case TGSI_OPCODE_ENDLOOP:
3394 /* End of a basic block, clear the write array entirely.
3395 * FIXME: This keeps us from killing dead code when the writes are
3396 * on either side of a loop, even when the register isn't touched
3397 * inside the loop.
3398 */
3399 memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
3400 break;
3401
3402 case TGSI_OPCODE_ENDIF:
3403 --level;
3404 break;
3405
3406 case TGSI_OPCODE_ELSE:
3407 /* Clear all channels written inside the preceding if block from the
3408 * write array, but leave those that were not touched.
3409 *
3410 * FIXME: This destroys opportunities to remove dead code inside of
3411 * IF blocks that are followed by an ELSE block.
3412 */
3413 for (int r = 0; r < this->next_temp; r++) {
3414 for (int c = 0; c < 4; c++) {
3415 if (!writes[4 * r + c])
3416 continue;
3417
3418 if (write_level[4 * r + c] >= level)
3419 writes[4 * r + c] = NULL;
3420 }
3421 }
3422 break;
3423
3424 case TGSI_OPCODE_IF:
3425 ++level;
3426 /* fallthrough to default case to mark the condition as read */
3427
3428 default:
3429 /* Continuing the block, clear any channels from the write array that
3430 * are read by this instruction.
3431 */
3432 for (int i = 0; i < 4; i++) {
3433 if (inst->src[i].file == PROGRAM_TEMPORARY && inst->src[i].reladdr){
3434 /* Any temporary might be read, so no dead code elimination
3435 * across this instruction.
3436 */
3437 memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
3438 } else if (inst->src[i].file == PROGRAM_TEMPORARY) {
3439 /* Clear where it's used as src. */
3440 int src_chans = 1 << GET_SWZ(inst->src[i].swizzle, 0);
3441 src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 1);
3442 src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 2);
3443 src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 3);
3444
3445 for (int c = 0; c < 4; c++) {
3446 if (src_chans & (1 << c)) {
3447 writes[4 * inst->src[i].index + c] = NULL;
3448 }
3449 }
3450 }
3451 }
3452 break;
3453 }
3454
3455 /* If this instruction writes to a temporary, add it to the write array.
3456 * If there is already an instruction in the write array for one or more
3457 * of the channels, flag that channel write as dead.
3458 */
3459 if (inst->dst.file == PROGRAM_TEMPORARY &&
3460 !inst->dst.reladdr &&
3461 !inst->saturate) {
3462 for (int c = 0; c < 4; c++) {
3463 if (inst->dst.writemask & (1 << c)) {
3464 if (writes[4 * inst->dst.index + c]) {
3465 if (write_level[4 * inst->dst.index + c] < level)
3466 continue;
3467 else
3468 writes[4 * inst->dst.index + c]->dead_mask |= (1 << c);
3469 }
3470 writes[4 * inst->dst.index + c] = inst;
3471 write_level[4 * inst->dst.index + c] = level;
3472 }
3473 }
3474 }
3475 }
3476
3477 /* Anything still in the write array at this point is dead code. */
3478 for (int r = 0; r < this->next_temp; r++) {
3479 for (int c = 0; c < 4; c++) {
3480 glsl_to_tgsi_instruction *inst = writes[4 * r + c];
3481 if (inst)
3482 inst->dead_mask |= (1 << c);
3483 }
3484 }
3485
3486 /* Now actually remove the instructions that are completely dead and update
3487 * the writemask of other instructions with dead channels.
3488 */
3489 foreach_iter(exec_list_iterator, iter, this->instructions) {
3490 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3491
3492 if (!inst->dead_mask || !inst->dst.writemask)
3493 continue;
3494 else if (inst->dead_mask == inst->dst.writemask) {
3495 iter.remove();
3496 delete inst;
3497 removed++;
3498 } else
3499 inst->dst.writemask &= ~(inst->dead_mask);
3500 }
3501
3502 ralloc_free(write_level);
3503 ralloc_free(writes);
3504
3505 return removed;
3506 }
3507
3508 /* Merges temporary registers together where possible to reduce the number of
3509 * registers needed to run a program.
3510 *
3511 * Produces optimal code only after copy propagation and dead code elimination
3512 * have been run. */
3513 void
3514 glsl_to_tgsi_visitor::merge_registers(void)
3515 {
3516 int *last_reads = rzalloc_array(mem_ctx, int, this->next_temp);
3517 int *first_writes = rzalloc_array(mem_ctx, int, this->next_temp);
3518 int i, j;
3519
3520 /* Read the indices of the last read and first write to each temp register
3521 * into an array so that we don't have to traverse the instruction list as
3522 * much. */
3523 for (i=0; i < this->next_temp; i++) {
3524 last_reads[i] = get_last_temp_read(i);
3525 first_writes[i] = get_first_temp_write(i);
3526 }
3527
3528 /* Start looking for registers with non-overlapping usages that can be
3529 * merged together. */
3530 for (i=0; i < this->next_temp; i++) {
3531 /* Don't touch unused registers. */
3532 if (last_reads[i] < 0 || first_writes[i] < 0) continue;
3533
3534 for (j=0; j < this->next_temp; j++) {
3535 /* Don't touch unused registers. */
3536 if (last_reads[j] < 0 || first_writes[j] < 0) continue;
3537
3538 /* We can merge the two registers if the first write to j is after or
3539 * in the same instruction as the last read from i. Note that the
3540 * register at index i will always be used earlier or at the same time
3541 * as the register at index j. */
3542 if (first_writes[i] <= first_writes[j] &&
3543 last_reads[i] <= first_writes[j])
3544 {
3545 rename_temp_register(j, i); /* Replace all references to j with i.*/
3546
3547 /* Update the first_writes and last_reads arrays with the new
3548 * values for the merged register index, and mark the newly unused
3549 * register index as such. */
3550 last_reads[i] = last_reads[j];
3551 first_writes[j] = -1;
3552 last_reads[j] = -1;
3553 }
3554 }
3555 }
3556
3557 ralloc_free(last_reads);
3558 ralloc_free(first_writes);
3559 }
3560
3561 /* Reassign indices to temporary registers by reusing unused indices created
3562 * by optimization passes. */
3563 void
3564 glsl_to_tgsi_visitor::renumber_registers(void)
3565 {
3566 int i = 0;
3567 int new_index = 0;
3568
3569 for (i=0; i < this->next_temp; i++) {
3570 if (get_first_temp_read(i) < 0) continue;
3571 if (i != new_index)
3572 rename_temp_register(i, new_index);
3573 new_index++;
3574 }
3575
3576 this->next_temp = new_index;
3577 }
3578
3579 /**
3580 * Returns a fragment program which implements the current pixel transfer ops.
3581 * Based on get_pixel_transfer_program in st_atom_pixeltransfer.c.
3582 */
3583 extern "C" void
3584 get_pixel_transfer_visitor(struct st_fragment_program *fp,
3585 glsl_to_tgsi_visitor *original,
3586 int scale_and_bias, int pixel_maps)
3587 {
3588 glsl_to_tgsi_visitor *v = new glsl_to_tgsi_visitor();
3589 struct st_context *st = st_context(original->ctx);
3590 struct gl_program *prog = &fp->Base.Base;
3591 struct gl_program_parameter_list *params = _mesa_new_parameter_list();
3592 st_src_reg coord, src0;
3593 st_dst_reg dst0;
3594 glsl_to_tgsi_instruction *inst;
3595
3596 /* Copy attributes of the glsl_to_tgsi_visitor in the original shader. */
3597 v->ctx = original->ctx;
3598 v->prog = prog;
3599 v->glsl_version = original->glsl_version;
3600 v->options = original->options;
3601 v->next_temp = original->next_temp;
3602 v->num_address_regs = original->num_address_regs;
3603 v->samplers_used = prog->SamplersUsed = original->samplers_used;
3604 v->indirect_addr_temps = original->indirect_addr_temps;
3605 v->indirect_addr_consts = original->indirect_addr_consts;
3606 memcpy(&v->immediates, &original->immediates, sizeof(v->immediates));
3607
3608 /*
3609 * Get initial pixel color from the texture.
3610 * TEX colorTemp, fragment.texcoord[0], texture[0], 2D;
3611 */
3612 coord = st_src_reg(PROGRAM_INPUT, FRAG_ATTRIB_TEX0, glsl_type::vec2_type);
3613 src0 = v->get_temp(glsl_type::vec4_type);
3614 dst0 = st_dst_reg(src0);
3615 inst = v->emit(NULL, TGSI_OPCODE_TEX, dst0, coord);
3616 inst->sampler = 0;
3617 inst->tex_target = TEXTURE_2D_INDEX;
3618
3619 prog->InputsRead |= (1 << FRAG_ATTRIB_TEX0);
3620 prog->SamplersUsed |= (1 << 0); /* mark sampler 0 as used */
3621 v->samplers_used |= (1 << 0);
3622
3623 if (scale_and_bias) {
3624 static const gl_state_index scale_state[STATE_LENGTH] =
3625 { STATE_INTERNAL, STATE_PT_SCALE,
3626 (gl_state_index) 0, (gl_state_index) 0, (gl_state_index) 0 };
3627 static const gl_state_index bias_state[STATE_LENGTH] =
3628 { STATE_INTERNAL, STATE_PT_BIAS,
3629 (gl_state_index) 0, (gl_state_index) 0, (gl_state_index) 0 };
3630 GLint scale_p, bias_p;
3631 st_src_reg scale, bias;
3632
3633 scale_p = _mesa_add_state_reference(params, scale_state);
3634 bias_p = _mesa_add_state_reference(params, bias_state);
3635
3636 /* MAD colorTemp, colorTemp, scale, bias; */
3637 scale = st_src_reg(PROGRAM_STATE_VAR, scale_p, GLSL_TYPE_FLOAT);
3638 bias = st_src_reg(PROGRAM_STATE_VAR, bias_p, GLSL_TYPE_FLOAT);
3639 inst = v->emit(NULL, TGSI_OPCODE_MAD, dst0, src0, scale, bias);
3640 }
3641
3642 if (pixel_maps) {
3643 st_src_reg temp = v->get_temp(glsl_type::vec4_type);
3644 st_dst_reg temp_dst = st_dst_reg(temp);
3645
3646 assert(st->pixel_xfer.pixelmap_texture);
3647
3648 /* With a little effort, we can do four pixel map look-ups with
3649 * two TEX instructions:
3650 */
3651
3652 /* TEX temp.rg, colorTemp.rgba, texture[1], 2D; */
3653 temp_dst.writemask = WRITEMASK_XY; /* write R,G */
3654 inst = v->emit(NULL, TGSI_OPCODE_TEX, temp_dst, src0);
3655 inst->sampler = 1;
3656 inst->tex_target = TEXTURE_2D_INDEX;
3657
3658 /* TEX temp.ba, colorTemp.baba, texture[1], 2D; */
3659 src0.swizzle = MAKE_SWIZZLE4(SWIZZLE_Z, SWIZZLE_W, SWIZZLE_Z, SWIZZLE_W);
3660 temp_dst.writemask = WRITEMASK_ZW; /* write B,A */
3661 inst = v->emit(NULL, TGSI_OPCODE_TEX, temp_dst, src0);
3662 inst->sampler = 1;
3663 inst->tex_target = TEXTURE_2D_INDEX;
3664
3665 prog->SamplersUsed |= (1 << 1); /* mark sampler 1 as used */
3666 v->samplers_used |= (1 << 1);
3667
3668 /* MOV colorTemp, temp; */
3669 inst = v->emit(NULL, TGSI_OPCODE_MOV, dst0, temp);
3670 }
3671
3672 /* Now copy the instructions from the original glsl_to_tgsi_visitor into the
3673 * new visitor. */
3674 foreach_iter(exec_list_iterator, iter, original->instructions) {
3675 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3676 st_src_reg src_regs[3];
3677
3678 if (inst->dst.file == PROGRAM_OUTPUT)
3679 prog->OutputsWritten |= BITFIELD64_BIT(inst->dst.index);
3680
3681 for (int i=0; i<3; i++) {
3682 src_regs[i] = inst->src[i];
3683 if (src_regs[i].file == PROGRAM_INPUT &&
3684 src_regs[i].index == FRAG_ATTRIB_COL0)
3685 {
3686 src_regs[i].file = PROGRAM_TEMPORARY;
3687 src_regs[i].index = src0.index;
3688 }
3689 else if (src_regs[i].file == PROGRAM_INPUT)
3690 prog->InputsRead |= (1 << src_regs[i].index);
3691 }
3692
3693 v->emit(NULL, inst->op, inst->dst, src_regs[0], src_regs[1], src_regs[2]);
3694 }
3695
3696 /* Make modifications to fragment program info. */
3697 prog->Parameters = _mesa_combine_parameter_lists(params,
3698 original->prog->Parameters);
3699 prog->Attributes = _mesa_clone_parameter_list(original->prog->Attributes);
3700 prog->Varying = _mesa_clone_parameter_list(original->prog->Varying);
3701 _mesa_free_parameter_list(params);
3702 count_resources(v, prog);
3703 fp->glsl_to_tgsi = v;
3704 }
3705
3706 /**
3707 * Make fragment program for glBitmap:
3708 * Sample the texture and kill the fragment if the bit is 0.
3709 * This program will be combined with the user's fragment program.
3710 *
3711 * Based on make_bitmap_fragment_program in st_cb_bitmap.c.
3712 */
3713 extern "C" void
3714 get_bitmap_visitor(struct st_fragment_program *fp,
3715 glsl_to_tgsi_visitor *original, int samplerIndex)
3716 {
3717 glsl_to_tgsi_visitor *v = new glsl_to_tgsi_visitor();
3718 struct st_context *st = st_context(original->ctx);
3719 struct gl_program *prog = &fp->Base.Base;
3720 st_src_reg coord, src0;
3721 st_dst_reg dst0;
3722 glsl_to_tgsi_instruction *inst;
3723
3724 /* Copy attributes of the glsl_to_tgsi_visitor in the original shader. */
3725 v->ctx = original->ctx;
3726 v->prog = prog;
3727 v->glsl_version = original->glsl_version;
3728 v->options = original->options;
3729 v->next_temp = original->next_temp;
3730 v->num_address_regs = original->num_address_regs;
3731 v->samplers_used = prog->SamplersUsed = original->samplers_used;
3732 v->indirect_addr_temps = original->indirect_addr_temps;
3733 v->indirect_addr_consts = original->indirect_addr_consts;
3734 memcpy(&v->immediates, &original->immediates, sizeof(v->immediates));
3735
3736 /* TEX tmp0, fragment.texcoord[0], texture[0], 2D; */
3737 coord = st_src_reg(PROGRAM_INPUT, FRAG_ATTRIB_TEX0, glsl_type::vec2_type);
3738 src0 = v->get_temp(glsl_type::vec4_type);
3739 dst0 = st_dst_reg(src0);
3740 inst = v->emit(NULL, TGSI_OPCODE_TEX, dst0, coord);
3741 inst->sampler = samplerIndex;
3742 inst->tex_target = TEXTURE_2D_INDEX;
3743
3744 prog->InputsRead |= (1 << FRAG_ATTRIB_TEX0);
3745 prog->SamplersUsed |= (1 << samplerIndex); /* mark sampler as used */
3746 v->samplers_used |= (1 << samplerIndex);
3747
3748 /* KIL if -tmp0 < 0 # texel=0 -> keep / texel=0 -> discard */
3749 src0.negate = NEGATE_XYZW;
3750 if (st->bitmap.tex_format == PIPE_FORMAT_L8_UNORM)
3751 src0.swizzle = SWIZZLE_XXXX;
3752 inst = v->emit(NULL, TGSI_OPCODE_KIL, undef_dst, src0);
3753
3754 /* Now copy the instructions from the original glsl_to_tgsi_visitor into the
3755 * new visitor. */
3756 foreach_iter(exec_list_iterator, iter, original->instructions) {
3757 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3758 st_src_reg src_regs[3];
3759
3760 if (inst->dst.file == PROGRAM_OUTPUT)
3761 prog->OutputsWritten |= BITFIELD64_BIT(inst->dst.index);
3762
3763 for (int i=0; i<3; i++) {
3764 src_regs[i] = inst->src[i];
3765 if (src_regs[i].file == PROGRAM_INPUT)
3766 prog->InputsRead |= (1 << src_regs[i].index);
3767 }
3768
3769 v->emit(NULL, inst->op, inst->dst, src_regs[0], src_regs[1], src_regs[2]);
3770 }
3771
3772 /* Make modifications to fragment program info. */
3773 prog->Parameters = _mesa_clone_parameter_list(original->prog->Parameters);
3774 prog->Attributes = _mesa_clone_parameter_list(original->prog->Attributes);
3775 prog->Varying = _mesa_clone_parameter_list(original->prog->Varying);
3776 count_resources(v, prog);
3777 fp->glsl_to_tgsi = v;
3778 }
3779
3780 /* ------------------------- TGSI conversion stuff -------------------------- */
3781 struct label {
3782 unsigned branch_target;
3783 unsigned token;
3784 };
3785
3786 /**
3787 * Intermediate state used during shader translation.
3788 */
3789 struct st_translate {
3790 struct ureg_program *ureg;
3791
3792 struct ureg_dst temps[MAX_TEMPS];
3793 struct ureg_src *constants;
3794 struct ureg_src *immediates;
3795 struct ureg_dst outputs[PIPE_MAX_SHADER_OUTPUTS];
3796 struct ureg_src inputs[PIPE_MAX_SHADER_INPUTS];
3797 struct ureg_dst address[1];
3798 struct ureg_src samplers[PIPE_MAX_SAMPLERS];
3799 struct ureg_src systemValues[SYSTEM_VALUE_MAX];
3800
3801 /* Extra info for handling point size clamping in vertex shader */
3802 struct ureg_dst pointSizeResult; /**< Actual point size output register */
3803 struct ureg_src pointSizeConst; /**< Point size range constant register */
3804 GLint pointSizeOutIndex; /**< Temp point size output register */
3805 GLboolean prevInstWrotePointSize;
3806
3807 const GLuint *inputMapping;
3808 const GLuint *outputMapping;
3809
3810 /* For every instruction that contains a label (eg CALL), keep
3811 * details so that we can go back afterwards and emit the correct
3812 * tgsi instruction number for each label.
3813 */
3814 struct label *labels;
3815 unsigned labels_size;
3816 unsigned labels_count;
3817
3818 /* Keep a record of the tgsi instruction number that each mesa
3819 * instruction starts at, will be used to fix up labels after
3820 * translation.
3821 */
3822 unsigned *insn;
3823 unsigned insn_size;
3824 unsigned insn_count;
3825
3826 unsigned procType; /**< TGSI_PROCESSOR_VERTEX/FRAGMENT */
3827
3828 boolean error;
3829 };
3830
3831 /** Map Mesa's SYSTEM_VALUE_x to TGSI_SEMANTIC_x */
3832 static unsigned mesa_sysval_to_semantic[SYSTEM_VALUE_MAX] = {
3833 TGSI_SEMANTIC_FACE,
3834 TGSI_SEMANTIC_INSTANCEID
3835 };
3836
3837 /**
3838 * Make note of a branch to a label in the TGSI code.
3839 * After we've emitted all instructions, we'll go over the list
3840 * of labels built here and patch the TGSI code with the actual
3841 * location of each label.
3842 */
3843 static unsigned *get_label(struct st_translate *t, unsigned branch_target)
3844 {
3845 unsigned i;
3846
3847 if (t->labels_count + 1 >= t->labels_size) {
3848 t->labels_size = 1 << (util_logbase2(t->labels_size) + 1);
3849 t->labels = (struct label *)realloc(t->labels,
3850 t->labels_size * sizeof(struct label));
3851 if (t->labels == NULL) {
3852 static unsigned dummy;
3853 t->error = TRUE;
3854 return &dummy;
3855 }
3856 }
3857
3858 i = t->labels_count++;
3859 t->labels[i].branch_target = branch_target;
3860 return &t->labels[i].token;
3861 }
3862
3863 /**
3864 * Called prior to emitting the TGSI code for each instruction.
3865 * Allocate additional space for instructions if needed.
3866 * Update the insn[] array so the next glsl_to_tgsi_instruction points to
3867 * the next TGSI instruction.
3868 */
3869 static void set_insn_start(struct st_translate *t, unsigned start)
3870 {
3871 if (t->insn_count + 1 >= t->insn_size) {
3872 t->insn_size = 1 << (util_logbase2(t->insn_size) + 1);
3873 t->insn = (unsigned *)realloc(t->insn, t->insn_size * sizeof(t->insn[0]));
3874 if (t->insn == NULL) {
3875 t->error = TRUE;
3876 return;
3877 }
3878 }
3879
3880 t->insn[t->insn_count++] = start;
3881 }
3882
3883 /**
3884 * Map a glsl_to_tgsi constant/immediate to a TGSI immediate.
3885 */
3886 static struct ureg_src
3887 emit_immediate(struct st_translate *t,
3888 gl_constant_value values[4],
3889 int type, int size)
3890 {
3891 struct ureg_program *ureg = t->ureg;
3892
3893 switch(type)
3894 {
3895 case GL_FLOAT:
3896 return ureg_DECL_immediate(ureg, &values[0].f, size);
3897 case GL_INT:
3898 return ureg_DECL_immediate_int(ureg, &values[0].i, size);
3899 case GL_UNSIGNED_INT:
3900 case GL_BOOL:
3901 return ureg_DECL_immediate_uint(ureg, &values[0].u, size);
3902 default:
3903 assert(!"should not get here - type must be float, int, uint, or bool");
3904 return ureg_src_undef();
3905 }
3906 }
3907
3908 /**
3909 * Map a glsl_to_tgsi dst register to a TGSI ureg_dst register.
3910 */
3911 static struct ureg_dst
3912 dst_register(struct st_translate *t,
3913 gl_register_file file,
3914 GLuint index)
3915 {
3916 switch(file) {
3917 case PROGRAM_UNDEFINED:
3918 return ureg_dst_undef();
3919
3920 case PROGRAM_TEMPORARY:
3921 if (ureg_dst_is_undef(t->temps[index]))
3922 t->temps[index] = ureg_DECL_temporary(t->ureg);
3923
3924 return t->temps[index];
3925
3926 case PROGRAM_OUTPUT:
3927 if (t->procType == TGSI_PROCESSOR_VERTEX && index == VERT_RESULT_PSIZ)
3928 t->prevInstWrotePointSize = GL_TRUE;
3929
3930 if (t->procType == TGSI_PROCESSOR_VERTEX)
3931 assert(index < VERT_RESULT_MAX);
3932 else if (t->procType == TGSI_PROCESSOR_FRAGMENT)
3933 assert(index < FRAG_RESULT_MAX);
3934 else
3935 assert(index < GEOM_RESULT_MAX);
3936
3937 assert(t->outputMapping[index] < Elements(t->outputs));
3938
3939 return t->outputs[t->outputMapping[index]];
3940
3941 case PROGRAM_ADDRESS:
3942 return t->address[index];
3943
3944 default:
3945 assert(!"unknown dst register file");
3946 return ureg_dst_undef();
3947 }
3948 }
3949
3950 /**
3951 * Map a glsl_to_tgsi src register to a TGSI ureg_src register.
3952 */
3953 static struct ureg_src
3954 src_register(struct st_translate *t,
3955 gl_register_file file,
3956 GLuint index)
3957 {
3958 switch(file) {
3959 case PROGRAM_UNDEFINED:
3960 return ureg_src_undef();
3961
3962 case PROGRAM_TEMPORARY:
3963 assert(index >= 0);
3964 assert(index < Elements(t->temps));
3965 if (ureg_dst_is_undef(t->temps[index]))
3966 t->temps[index] = ureg_DECL_temporary(t->ureg);
3967 return ureg_src(t->temps[index]);
3968
3969 case PROGRAM_NAMED_PARAM:
3970 case PROGRAM_ENV_PARAM:
3971 case PROGRAM_LOCAL_PARAM:
3972 case PROGRAM_UNIFORM:
3973 assert(index >= 0);
3974 return t->constants[index];
3975 case PROGRAM_STATE_VAR:
3976 case PROGRAM_CONSTANT: /* ie, immediate */
3977 if (index < 0)
3978 return ureg_DECL_constant(t->ureg, 0);
3979 else
3980 return t->constants[index];
3981
3982 case PROGRAM_IMMEDIATE:
3983 return t->immediates[index];
3984
3985 case PROGRAM_INPUT:
3986 assert(t->inputMapping[index] < Elements(t->inputs));
3987 return t->inputs[t->inputMapping[index]];
3988
3989 case PROGRAM_OUTPUT:
3990 assert(t->outputMapping[index] < Elements(t->outputs));
3991 return ureg_src(t->outputs[t->outputMapping[index]]); /* not needed? */
3992
3993 case PROGRAM_ADDRESS:
3994 return ureg_src(t->address[index]);
3995
3996 case PROGRAM_SYSTEM_VALUE:
3997 assert(index < Elements(t->systemValues));
3998 return t->systemValues[index];
3999
4000 default:
4001 assert(!"unknown src register file");
4002 return ureg_src_undef();
4003 }
4004 }
4005
4006 /**
4007 * Create a TGSI ureg_dst register from an st_dst_reg.
4008 */
4009 static struct ureg_dst
4010 translate_dst(struct st_translate *t,
4011 const st_dst_reg *dst_reg,
4012 bool saturate)
4013 {
4014 struct ureg_dst dst = dst_register(t,
4015 dst_reg->file,
4016 dst_reg->index);
4017
4018 dst = ureg_writemask(dst, dst_reg->writemask);
4019
4020 if (saturate)
4021 dst = ureg_saturate(dst);
4022
4023 if (dst_reg->reladdr != NULL)
4024 dst = ureg_dst_indirect(dst, ureg_src(t->address[0]));
4025
4026 return dst;
4027 }
4028
4029 /**
4030 * Create a TGSI ureg_src register from an st_src_reg.
4031 */
4032 static struct ureg_src
4033 translate_src(struct st_translate *t, const st_src_reg *src_reg)
4034 {
4035 struct ureg_src src = src_register(t, src_reg->file, src_reg->index);
4036
4037 src = ureg_swizzle(src,
4038 GET_SWZ(src_reg->swizzle, 0) & 0x3,
4039 GET_SWZ(src_reg->swizzle, 1) & 0x3,
4040 GET_SWZ(src_reg->swizzle, 2) & 0x3,
4041 GET_SWZ(src_reg->swizzle, 3) & 0x3);
4042
4043 if ((src_reg->negate & 0xf) == NEGATE_XYZW)
4044 src = ureg_negate(src);
4045
4046 if (src_reg->reladdr != NULL) {
4047 /* Normally ureg_src_indirect() would be used here, but a stupid compiler
4048 * bug in g++ makes ureg_src_indirect (an inline C function) erroneously
4049 * set the bit for src.Negate. So we have to do the operation manually
4050 * here to work around the compiler's problems. */
4051 /*src = ureg_src_indirect(src, ureg_src(t->address[0]));*/
4052 struct ureg_src addr = ureg_src(t->address[0]);
4053 src.Indirect = 1;
4054 src.IndirectFile = addr.File;
4055 src.IndirectIndex = addr.Index;
4056 src.IndirectSwizzle = addr.SwizzleX;
4057
4058 if (src_reg->file != PROGRAM_INPUT &&
4059 src_reg->file != PROGRAM_OUTPUT) {
4060 /* If src_reg->index was negative, it was set to zero in
4061 * src_register(). Reassign it now. But don't do this
4062 * for input/output regs since they get remapped while
4063 * const buffers don't.
4064 */
4065 src.Index = src_reg->index;
4066 }
4067 }
4068
4069 return src;
4070 }
4071
4072 static void
4073 compile_tgsi_instruction(struct st_translate *t,
4074 const struct glsl_to_tgsi_instruction *inst)
4075 {
4076 struct ureg_program *ureg = t->ureg;
4077 GLuint i;
4078 struct ureg_dst dst[1];
4079 struct ureg_src src[4];
4080 unsigned num_dst;
4081 unsigned num_src;
4082
4083 num_dst = num_inst_dst_regs(inst->op);
4084 num_src = num_inst_src_regs(inst->op);
4085
4086 if (num_dst)
4087 dst[0] = translate_dst(t,
4088 &inst->dst,
4089 inst->saturate);
4090
4091 for (i = 0; i < num_src; i++)
4092 src[i] = translate_src(t, &inst->src[i]);
4093
4094 switch(inst->op) {
4095 case TGSI_OPCODE_BGNLOOP:
4096 case TGSI_OPCODE_CAL:
4097 case TGSI_OPCODE_ELSE:
4098 case TGSI_OPCODE_ENDLOOP:
4099 case TGSI_OPCODE_IF:
4100 assert(num_dst == 0);
4101 ureg_label_insn(ureg,
4102 inst->op,
4103 src, num_src,
4104 get_label(t,
4105 inst->op == TGSI_OPCODE_CAL ? inst->function->sig_id : 0));
4106 return;
4107
4108 case TGSI_OPCODE_TEX:
4109 case TGSI_OPCODE_TXB:
4110 case TGSI_OPCODE_TXD:
4111 case TGSI_OPCODE_TXL:
4112 case TGSI_OPCODE_TXP:
4113 src[num_src++] = t->samplers[inst->sampler];
4114 ureg_tex_insn(ureg,
4115 inst->op,
4116 dst, num_dst,
4117 translate_texture_target(inst->tex_target, inst->tex_shadow),
4118 src, num_src);
4119 return;
4120
4121 case TGSI_OPCODE_SCS:
4122 dst[0] = ureg_writemask(dst[0], TGSI_WRITEMASK_XY);
4123 ureg_insn(ureg, inst->op, dst, num_dst, src, num_src);
4124 break;
4125
4126 default:
4127 ureg_insn(ureg,
4128 inst->op,
4129 dst, num_dst,
4130 src, num_src);
4131 break;
4132 }
4133 }
4134
4135 /**
4136 * Emit the TGSI instructions to adjust the WPOS pixel center convention
4137 * Basically, add (adjX, adjY) to the fragment position.
4138 */
4139 static void
4140 emit_adjusted_wpos(struct st_translate *t,
4141 const struct gl_program *program,
4142 float adjX, float adjY)
4143 {
4144 struct ureg_program *ureg = t->ureg;
4145 struct ureg_dst wpos_temp = ureg_DECL_temporary(ureg);
4146 struct ureg_src wpos_input = t->inputs[t->inputMapping[FRAG_ATTRIB_WPOS]];
4147
4148 /* Note that we bias X and Y and pass Z and W through unchanged.
4149 * The shader might also use gl_FragCoord.w and .z.
4150 */
4151 ureg_ADD(ureg, wpos_temp, wpos_input,
4152 ureg_imm4f(ureg, adjX, adjY, 0.0f, 0.0f));
4153
4154 t->inputs[t->inputMapping[FRAG_ATTRIB_WPOS]] = ureg_src(wpos_temp);
4155 }
4156
4157
4158 /**
4159 * Emit the TGSI instructions for inverting the WPOS y coordinate.
4160 * This code is unavoidable because it also depends on whether
4161 * a FBO is bound (STATE_FB_WPOS_Y_TRANSFORM).
4162 */
4163 static void
4164 emit_wpos_inversion(struct st_translate *t,
4165 const struct gl_program *program,
4166 bool invert)
4167 {
4168 struct ureg_program *ureg = t->ureg;
4169
4170 /* Fragment program uses fragment position input.
4171 * Need to replace instances of INPUT[WPOS] with temp T
4172 * where T = INPUT[WPOS] by y is inverted.
4173 */
4174 static const gl_state_index wposTransformState[STATE_LENGTH]
4175 = { STATE_INTERNAL, STATE_FB_WPOS_Y_TRANSFORM,
4176 (gl_state_index)0, (gl_state_index)0, (gl_state_index)0 };
4177
4178 /* XXX: note we are modifying the incoming shader here! Need to
4179 * do this before emitting the constant decls below, or this
4180 * will be missed:
4181 */
4182 unsigned wposTransConst = _mesa_add_state_reference(program->Parameters,
4183 wposTransformState);
4184
4185 struct ureg_src wpostrans = ureg_DECL_constant(ureg, wposTransConst);
4186 struct ureg_dst wpos_temp;
4187 struct ureg_src wpos_input = t->inputs[t->inputMapping[FRAG_ATTRIB_WPOS]];
4188
4189 /* MOV wpos_temp, input[wpos]
4190 */
4191 if (wpos_input.File == TGSI_FILE_TEMPORARY)
4192 wpos_temp = ureg_dst(wpos_input);
4193 else {
4194 wpos_temp = ureg_DECL_temporary(ureg);
4195 ureg_MOV(ureg, wpos_temp, wpos_input);
4196 }
4197
4198 if (invert) {
4199 /* MAD wpos_temp.y, wpos_input, wpostrans.xxxx, wpostrans.yyyy
4200 */
4201 ureg_MAD(ureg,
4202 ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y),
4203 wpos_input,
4204 ureg_scalar(wpostrans, 0),
4205 ureg_scalar(wpostrans, 1));
4206 } else {
4207 /* MAD wpos_temp.y, wpos_input, wpostrans.zzzz, wpostrans.wwww
4208 */
4209 ureg_MAD(ureg,
4210 ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y),
4211 wpos_input,
4212 ureg_scalar(wpostrans, 2),
4213 ureg_scalar(wpostrans, 3));
4214 }
4215
4216 /* Use wpos_temp as position input from here on:
4217 */
4218 t->inputs[t->inputMapping[FRAG_ATTRIB_WPOS]] = ureg_src(wpos_temp);
4219 }
4220
4221
4222 /**
4223 * Emit fragment position/ooordinate code.
4224 */
4225 static void
4226 emit_wpos(struct st_context *st,
4227 struct st_translate *t,
4228 const struct gl_program *program,
4229 struct ureg_program *ureg)
4230 {
4231 const struct gl_fragment_program *fp =
4232 (const struct gl_fragment_program *) program;
4233 struct pipe_screen *pscreen = st->pipe->screen;
4234 boolean invert = FALSE;
4235
4236 if (fp->OriginUpperLeft) {
4237 /* Fragment shader wants origin in upper-left */
4238 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT)) {
4239 /* the driver supports upper-left origin */
4240 }
4241 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT)) {
4242 /* the driver supports lower-left origin, need to invert Y */
4243 ureg_property_fs_coord_origin(ureg, TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
4244 invert = TRUE;
4245 }
4246 else
4247 assert(0);
4248 }
4249 else {
4250 /* Fragment shader wants origin in lower-left */
4251 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT))
4252 /* the driver supports lower-left origin */
4253 ureg_property_fs_coord_origin(ureg, TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
4254 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT))
4255 /* the driver supports upper-left origin, need to invert Y */
4256 invert = TRUE;
4257 else
4258 assert(0);
4259 }
4260
4261 if (fp->PixelCenterInteger) {
4262 /* Fragment shader wants pixel center integer */
4263 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER))
4264 /* the driver supports pixel center integer */
4265 ureg_property_fs_coord_pixel_center(ureg, TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
4266 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER))
4267 /* the driver supports pixel center half integer, need to bias X,Y */
4268 emit_adjusted_wpos(t, program, 0.5f, invert ? 0.5f : -0.5f);
4269 else
4270 assert(0);
4271 }
4272 else {
4273 /* Fragment shader wants pixel center half integer */
4274 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
4275 /* the driver supports pixel center half integer */
4276 }
4277 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
4278 /* the driver supports pixel center integer, need to bias X,Y */
4279 ureg_property_fs_coord_pixel_center(ureg, TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
4280 emit_adjusted_wpos(t, program, 0.5f, invert ? -0.5f : 0.5f);
4281 }
4282 else
4283 assert(0);
4284 }
4285
4286 /* we invert after adjustment so that we avoid the MOV to temporary,
4287 * and reuse the adjustment ADD instead */
4288 emit_wpos_inversion(t, program, invert);
4289 }
4290
4291 /**
4292 * OpenGL's fragment gl_FrontFace input is 1 for front-facing, 0 for back.
4293 * TGSI uses +1 for front, -1 for back.
4294 * This function converts the TGSI value to the GL value. Simply clamping/
4295 * saturating the value to [0,1] does the job.
4296 */
4297 static void
4298 emit_face_var(struct st_translate *t)
4299 {
4300 struct ureg_program *ureg = t->ureg;
4301 struct ureg_dst face_temp = ureg_DECL_temporary(ureg);
4302 struct ureg_src face_input = t->inputs[t->inputMapping[FRAG_ATTRIB_FACE]];
4303
4304 /* MOV_SAT face_temp, input[face] */
4305 face_temp = ureg_saturate(face_temp);
4306 ureg_MOV(ureg, face_temp, face_input);
4307
4308 /* Use face_temp as face input from here on: */
4309 t->inputs[t->inputMapping[FRAG_ATTRIB_FACE]] = ureg_src(face_temp);
4310 }
4311
4312 static void
4313 emit_edgeflags(struct st_translate *t)
4314 {
4315 struct ureg_program *ureg = t->ureg;
4316 struct ureg_dst edge_dst = t->outputs[t->outputMapping[VERT_RESULT_EDGE]];
4317 struct ureg_src edge_src = t->inputs[t->inputMapping[VERT_ATTRIB_EDGEFLAG]];
4318
4319 ureg_MOV(ureg, edge_dst, edge_src);
4320 }
4321
4322 /**
4323 * Translate intermediate IR (glsl_to_tgsi_instruction) to TGSI format.
4324 * \param program the program to translate
4325 * \param numInputs number of input registers used
4326 * \param inputMapping maps Mesa fragment program inputs to TGSI generic
4327 * input indexes
4328 * \param inputSemanticName the TGSI_SEMANTIC flag for each input
4329 * \param inputSemanticIndex the semantic index (ex: which texcoord) for
4330 * each input
4331 * \param interpMode the TGSI_INTERPOLATE_LINEAR/PERSP mode for each input
4332 * \param numOutputs number of output registers used
4333 * \param outputMapping maps Mesa fragment program outputs to TGSI
4334 * generic outputs
4335 * \param outputSemanticName the TGSI_SEMANTIC flag for each output
4336 * \param outputSemanticIndex the semantic index (ex: which texcoord) for
4337 * each output
4338 *
4339 * \return PIPE_OK or PIPE_ERROR_OUT_OF_MEMORY
4340 */
4341 extern "C" enum pipe_error
4342 st_translate_program(
4343 struct gl_context *ctx,
4344 uint procType,
4345 struct ureg_program *ureg,
4346 glsl_to_tgsi_visitor *program,
4347 const struct gl_program *proginfo,
4348 GLuint numInputs,
4349 const GLuint inputMapping[],
4350 const ubyte inputSemanticName[],
4351 const ubyte inputSemanticIndex[],
4352 const GLuint interpMode[],
4353 GLuint numOutputs,
4354 const GLuint outputMapping[],
4355 const ubyte outputSemanticName[],
4356 const ubyte outputSemanticIndex[],
4357 boolean passthrough_edgeflags)
4358 {
4359 struct st_translate translate, *t;
4360 unsigned i;
4361 enum pipe_error ret = PIPE_OK;
4362
4363 assert(numInputs <= Elements(t->inputs));
4364 assert(numOutputs <= Elements(t->outputs));
4365
4366 t = &translate;
4367 memset(t, 0, sizeof *t);
4368
4369 t->procType = procType;
4370 t->inputMapping = inputMapping;
4371 t->outputMapping = outputMapping;
4372 t->ureg = ureg;
4373 t->pointSizeOutIndex = -1;
4374 t->prevInstWrotePointSize = GL_FALSE;
4375
4376 /*
4377 * Declare input attributes.
4378 */
4379 if (procType == TGSI_PROCESSOR_FRAGMENT) {
4380 for (i = 0; i < numInputs; i++) {
4381 t->inputs[i] = ureg_DECL_fs_input(ureg,
4382 inputSemanticName[i],
4383 inputSemanticIndex[i],
4384 interpMode[i]);
4385 }
4386
4387 if (proginfo->InputsRead & FRAG_BIT_WPOS) {
4388 /* Must do this after setting up t->inputs, and before
4389 * emitting constant references, below:
4390 */
4391 emit_wpos(st_context(ctx), t, proginfo, ureg);
4392 }
4393
4394 if (proginfo->InputsRead & FRAG_BIT_FACE)
4395 emit_face_var(t);
4396
4397 /*
4398 * Declare output attributes.
4399 */
4400 for (i = 0; i < numOutputs; i++) {
4401 switch (outputSemanticName[i]) {
4402 case TGSI_SEMANTIC_POSITION:
4403 t->outputs[i] = ureg_DECL_output(ureg,
4404 TGSI_SEMANTIC_POSITION, /* Z/Depth */
4405 outputSemanticIndex[i]);
4406 t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_Z);
4407 break;
4408 case TGSI_SEMANTIC_STENCIL:
4409 t->outputs[i] = ureg_DECL_output(ureg,
4410 TGSI_SEMANTIC_STENCIL, /* Stencil */
4411 outputSemanticIndex[i]);
4412 t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_Y);
4413 break;
4414 case TGSI_SEMANTIC_COLOR:
4415 t->outputs[i] = ureg_DECL_output(ureg,
4416 TGSI_SEMANTIC_COLOR,
4417 outputSemanticIndex[i]);
4418 break;
4419 default:
4420 assert(!"fragment shader outputs must be POSITION/STENCIL/COLOR");
4421 return PIPE_ERROR_BAD_INPUT;
4422 }
4423 }
4424 }
4425 else if (procType == TGSI_PROCESSOR_GEOMETRY) {
4426 for (i = 0; i < numInputs; i++) {
4427 t->inputs[i] = ureg_DECL_gs_input(ureg,
4428 i,
4429 inputSemanticName[i],
4430 inputSemanticIndex[i]);
4431 }
4432
4433 for (i = 0; i < numOutputs; i++) {
4434 t->outputs[i] = ureg_DECL_output(ureg,
4435 outputSemanticName[i],
4436 outputSemanticIndex[i]);
4437 }
4438 }
4439 else {
4440 assert(procType == TGSI_PROCESSOR_VERTEX);
4441
4442 for (i = 0; i < numInputs; i++) {
4443 t->inputs[i] = ureg_DECL_vs_input(ureg, i);
4444 }
4445
4446 for (i = 0; i < numOutputs; i++) {
4447 t->outputs[i] = ureg_DECL_output(ureg,
4448 outputSemanticName[i],
4449 outputSemanticIndex[i]);
4450 if ((outputSemanticName[i] == TGSI_SEMANTIC_PSIZE) && proginfo->Id) {
4451 /* Writing to the point size result register requires special
4452 * handling to implement clamping.
4453 */
4454 static const gl_state_index pointSizeClampState[STATE_LENGTH]
4455 = { STATE_INTERNAL, STATE_POINT_SIZE_IMPL_CLAMP, (gl_state_index)0, (gl_state_index)0, (gl_state_index)0 };
4456 /* XXX: note we are modifying the incoming shader here! Need to
4457 * do this before emitting the constant decls below, or this
4458 * will be missed.
4459 */
4460 unsigned pointSizeClampConst =
4461 _mesa_add_state_reference(proginfo->Parameters,
4462 pointSizeClampState);
4463 struct ureg_dst psizregtemp = ureg_DECL_temporary(ureg);
4464 t->pointSizeConst = ureg_DECL_constant(ureg, pointSizeClampConst);
4465 t->pointSizeResult = t->outputs[i];
4466 t->pointSizeOutIndex = i;
4467 t->outputs[i] = psizregtemp;
4468 }
4469 }
4470 if (passthrough_edgeflags)
4471 emit_edgeflags(t);
4472 }
4473
4474 /* Declare address register.
4475 */
4476 if (program->num_address_regs > 0) {
4477 assert(program->num_address_regs == 1);
4478 t->address[0] = ureg_DECL_address(ureg);
4479 }
4480
4481 /* Declare misc input registers
4482 */
4483 {
4484 GLbitfield sysInputs = proginfo->SystemValuesRead;
4485 unsigned numSys = 0;
4486 for (i = 0; sysInputs; i++) {
4487 if (sysInputs & (1 << i)) {
4488 unsigned semName = mesa_sysval_to_semantic[i];
4489 t->systemValues[i] = ureg_DECL_system_value(ureg, numSys, semName, 0);
4490 numSys++;
4491 sysInputs &= ~(1 << i);
4492 }
4493 }
4494 }
4495
4496 if (program->indirect_addr_temps) {
4497 /* If temps are accessed with indirect addressing, declare temporaries
4498 * in sequential order. Else, we declare them on demand elsewhere.
4499 * (Note: the number of temporaries is equal to program->next_temp)
4500 */
4501 for (i = 0; i < (unsigned)program->next_temp; i++) {
4502 /* XXX use TGSI_FILE_TEMPORARY_ARRAY when it's supported by ureg */
4503 t->temps[i] = ureg_DECL_temporary(t->ureg);
4504 }
4505 }
4506
4507 /* Emit constants and uniforms. TGSI uses a single index space for these,
4508 * so we put all the translated regs in t->constants.
4509 */
4510 if (proginfo->Parameters) {
4511 t->constants = (struct ureg_src *)CALLOC(proginfo->Parameters->NumParameters * sizeof(t->constants[0]));
4512 if (t->constants == NULL) {
4513 ret = PIPE_ERROR_OUT_OF_MEMORY;
4514 goto out;
4515 }
4516
4517 for (i = 0; i < proginfo->Parameters->NumParameters; i++) {
4518 switch (proginfo->Parameters->Parameters[i].Type) {
4519 case PROGRAM_ENV_PARAM:
4520 case PROGRAM_LOCAL_PARAM:
4521 case PROGRAM_STATE_VAR:
4522 case PROGRAM_NAMED_PARAM:
4523 case PROGRAM_UNIFORM:
4524 t->constants[i] = ureg_DECL_constant(ureg, i);
4525 break;
4526
4527 /* Emit immediates for PROGRAM_CONSTANT only when there's no indirect
4528 * addressing of the const buffer.
4529 * FIXME: Be smarter and recognize param arrays:
4530 * indirect addressing is only valid within the referenced
4531 * array.
4532 */
4533 case PROGRAM_CONSTANT:
4534 if (program->indirect_addr_consts)
4535 t->constants[i] = ureg_DECL_constant(ureg, i);
4536 else
4537 t->constants[i] = emit_immediate(t,
4538 proginfo->Parameters->ParameterValues[i],
4539 proginfo->Parameters->Parameters[i].DataType,
4540 4);
4541 break;
4542 default:
4543 break;
4544 }
4545 }
4546 }
4547
4548 /* Emit immediate values.
4549 */
4550 t->immediates = (struct ureg_src *)CALLOC(program->num_immediates * sizeof(struct ureg_src));
4551 if (t->immediates == NULL) {
4552 ret = PIPE_ERROR_OUT_OF_MEMORY;
4553 goto out;
4554 }
4555 i = 0;
4556 foreach_iter(exec_list_iterator, iter, program->immediates) {
4557 immediate_storage *imm = (immediate_storage *)iter.get();
4558 t->immediates[i++] = emit_immediate(t, imm->values, imm->type, imm->size);
4559 }
4560
4561 /* texture samplers */
4562 for (i = 0; i < ctx->Const.MaxTextureImageUnits; i++) {
4563 if (program->samplers_used & (1 << i)) {
4564 t->samplers[i] = ureg_DECL_sampler(ureg, i);
4565 }
4566 }
4567
4568 /* Emit each instruction in turn:
4569 */
4570 foreach_iter(exec_list_iterator, iter, program->instructions) {
4571 set_insn_start(t, ureg_get_instruction_number(ureg));
4572 compile_tgsi_instruction(t, (glsl_to_tgsi_instruction *)iter.get());
4573
4574 if (t->prevInstWrotePointSize && proginfo->Id) {
4575 /* The previous instruction wrote to the (fake) vertex point size
4576 * result register. Now we need to clamp that value to the min/max
4577 * point size range, putting the result into the real point size
4578 * register.
4579 * Note that we can't do this easily at the end of program due to
4580 * possible early return.
4581 */
4582 set_insn_start(t, ureg_get_instruction_number(ureg));
4583 ureg_MAX(t->ureg,
4584 ureg_writemask(t->outputs[t->pointSizeOutIndex], WRITEMASK_X),
4585 ureg_src(t->outputs[t->pointSizeOutIndex]),
4586 ureg_swizzle(t->pointSizeConst, 1,1,1,1));
4587 ureg_MIN(t->ureg, ureg_writemask(t->pointSizeResult, WRITEMASK_X),
4588 ureg_src(t->outputs[t->pointSizeOutIndex]),
4589 ureg_swizzle(t->pointSizeConst, 2,2,2,2));
4590 }
4591 t->prevInstWrotePointSize = GL_FALSE;
4592 }
4593
4594 /* Fix up all emitted labels:
4595 */
4596 for (i = 0; i < t->labels_count; i++) {
4597 ureg_fixup_label(ureg, t->labels[i].token,
4598 t->insn[t->labels[i].branch_target]);
4599 }
4600
4601 out:
4602 FREE(t->insn);
4603 FREE(t->labels);
4604 FREE(t->constants);
4605 FREE(t->immediates);
4606
4607 if (t->error) {
4608 debug_printf("%s: translate error flag set\n", __FUNCTION__);
4609 }
4610
4611 return ret;
4612 }
4613 /* ----------------------------- End TGSI code ------------------------------ */
4614
4615 /**
4616 * Convert a shader's GLSL IR into a Mesa gl_program, although without
4617 * generating Mesa IR.
4618 */
4619 static struct gl_program *
4620 get_mesa_program(struct gl_context *ctx,
4621 struct gl_shader_program *shader_program,
4622 struct gl_shader *shader)
4623 {
4624 glsl_to_tgsi_visitor* v = new glsl_to_tgsi_visitor();
4625 struct gl_program *prog;
4626 GLenum target;
4627 const char *target_string;
4628 bool progress;
4629 struct gl_shader_compiler_options *options =
4630 &ctx->ShaderCompilerOptions[_mesa_shader_type_to_index(shader->Type)];
4631
4632 switch (shader->Type) {
4633 case GL_VERTEX_SHADER:
4634 target = GL_VERTEX_PROGRAM_ARB;
4635 target_string = "vertex";
4636 break;
4637 case GL_FRAGMENT_SHADER:
4638 target = GL_FRAGMENT_PROGRAM_ARB;
4639 target_string = "fragment";
4640 break;
4641 case GL_GEOMETRY_SHADER:
4642 target = GL_GEOMETRY_PROGRAM_NV;
4643 target_string = "geometry";
4644 break;
4645 default:
4646 assert(!"should not be reached");
4647 return NULL;
4648 }
4649
4650 validate_ir_tree(shader->ir);
4651
4652 prog = ctx->Driver.NewProgram(ctx, target, shader_program->Name);
4653 if (!prog)
4654 return NULL;
4655 prog->Parameters = _mesa_new_parameter_list();
4656 prog->Varying = _mesa_new_parameter_list();
4657 prog->Attributes = _mesa_new_parameter_list();
4658 v->ctx = ctx;
4659 v->prog = prog;
4660 v->shader_program = shader_program;
4661 v->options = options;
4662 v->glsl_version = ctx->Const.GLSLVersion;
4663
4664 add_uniforms_to_parameters_list(shader_program, shader, prog);
4665
4666 /* Emit intermediate IR for main(). */
4667 visit_exec_list(shader->ir, v);
4668
4669 /* Now emit bodies for any functions that were used. */
4670 do {
4671 progress = GL_FALSE;
4672
4673 foreach_iter(exec_list_iterator, iter, v->function_signatures) {
4674 function_entry *entry = (function_entry *)iter.get();
4675
4676 if (!entry->bgn_inst) {
4677 v->current_function = entry;
4678
4679 entry->bgn_inst = v->emit(NULL, TGSI_OPCODE_BGNSUB);
4680 entry->bgn_inst->function = entry;
4681
4682 visit_exec_list(&entry->sig->body, v);
4683
4684 glsl_to_tgsi_instruction *last;
4685 last = (glsl_to_tgsi_instruction *)v->instructions.get_tail();
4686 if (last->op != TGSI_OPCODE_RET)
4687 v->emit(NULL, TGSI_OPCODE_RET);
4688
4689 glsl_to_tgsi_instruction *end;
4690 end = v->emit(NULL, TGSI_OPCODE_ENDSUB);
4691 end->function = entry;
4692
4693 progress = GL_TRUE;
4694 }
4695 }
4696 } while (progress);
4697
4698 #if 0
4699 /* Print out some information (for debugging purposes) used by the
4700 * optimization passes. */
4701 for (i=0; i < v->next_temp; i++) {
4702 int fr = v->get_first_temp_read(i);
4703 int fw = v->get_first_temp_write(i);
4704 int lr = v->get_last_temp_read(i);
4705 int lw = v->get_last_temp_write(i);
4706
4707 printf("Temp %d: FR=%3d FW=%3d LR=%3d LW=%3d\n", i, fr, fw, lr, lw);
4708 assert(fw <= fr);
4709 }
4710 #endif
4711
4712 /* Remove reads to output registers, and to varyings in vertex shaders. */
4713 v->remove_output_reads(PROGRAM_OUTPUT);
4714 if (target == GL_VERTEX_PROGRAM_ARB)
4715 v->remove_output_reads(PROGRAM_VARYING);
4716
4717 /* Perform optimizations on the instructions in the glsl_to_tgsi_visitor. */
4718 v->simplify_cmp();
4719 v->copy_propagate();
4720 while (v->eliminate_dead_code_advanced());
4721
4722 /* FIXME: These passes to optimize temporary registers don't work when there
4723 * is indirect addressing of the temporary register space. We need proper
4724 * array support so that we don't have to give up these passes in every
4725 * shader that uses arrays.
4726 */
4727 if (!v->indirect_addr_temps) {
4728 v->eliminate_dead_code();
4729 v->merge_registers();
4730 v->renumber_registers();
4731 }
4732
4733 /* Write the END instruction. */
4734 v->emit(NULL, TGSI_OPCODE_END);
4735
4736 if (ctx->Shader.Flags & GLSL_DUMP) {
4737 printf("\n");
4738 printf("GLSL IR for linked %s program %d:\n", target_string,
4739 shader_program->Name);
4740 _mesa_print_ir(shader->ir, NULL);
4741 printf("\n");
4742 printf("\n");
4743 }
4744
4745 prog->Instructions = NULL;
4746 prog->NumInstructions = 0;
4747
4748 do_set_program_inouts(shader->ir, prog);
4749 count_resources(v, prog);
4750
4751 check_resources(ctx, shader_program, v, prog);
4752
4753 _mesa_reference_program(ctx, &shader->Program, prog);
4754
4755 struct st_vertex_program *stvp;
4756 struct st_fragment_program *stfp;
4757 struct st_geometry_program *stgp;
4758
4759 switch (shader->Type) {
4760 case GL_VERTEX_SHADER:
4761 stvp = (struct st_vertex_program *)prog;
4762 stvp->glsl_to_tgsi = v;
4763 break;
4764 case GL_FRAGMENT_SHADER:
4765 stfp = (struct st_fragment_program *)prog;
4766 stfp->glsl_to_tgsi = v;
4767 break;
4768 case GL_GEOMETRY_SHADER:
4769 stgp = (struct st_geometry_program *)prog;
4770 stgp->glsl_to_tgsi = v;
4771 break;
4772 default:
4773 assert(!"should not be reached");
4774 return NULL;
4775 }
4776
4777 return prog;
4778 }
4779
4780 extern "C" {
4781
4782 struct gl_shader *
4783 st_new_shader(struct gl_context *ctx, GLuint name, GLuint type)
4784 {
4785 struct gl_shader *shader;
4786 assert(type == GL_FRAGMENT_SHADER || type == GL_VERTEX_SHADER ||
4787 type == GL_GEOMETRY_SHADER_ARB);
4788 shader = rzalloc(NULL, struct gl_shader);
4789 if (shader) {
4790 shader->Type = type;
4791 shader->Name = name;
4792 _mesa_init_shader(ctx, shader);
4793 }
4794 return shader;
4795 }
4796
4797 struct gl_shader_program *
4798 st_new_shader_program(struct gl_context *ctx, GLuint name)
4799 {
4800 struct gl_shader_program *shProg;
4801 shProg = rzalloc(NULL, struct gl_shader_program);
4802 if (shProg) {
4803 shProg->Name = name;
4804 _mesa_init_shader_program(ctx, shProg);
4805 }
4806 return shProg;
4807 }
4808
4809 /**
4810 * Link a shader.
4811 * Called via ctx->Driver.LinkShader()
4812 * This actually involves converting GLSL IR into an intermediate TGSI-like IR
4813 * with code lowering and other optimizations.
4814 */
4815 GLboolean
4816 st_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
4817 {
4818 assert(prog->LinkStatus);
4819
4820 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
4821 if (prog->_LinkedShaders[i] == NULL)
4822 continue;
4823
4824 bool progress;
4825 exec_list *ir = prog->_LinkedShaders[i]->ir;
4826 const struct gl_shader_compiler_options *options =
4827 &ctx->ShaderCompilerOptions[_mesa_shader_type_to_index(prog->_LinkedShaders[i]->Type)];
4828
4829 do {
4830 progress = false;
4831
4832 /* Lowering */
4833 do_mat_op_to_vec(ir);
4834 lower_instructions(ir, (MOD_TO_FRACT | DIV_TO_MUL_RCP | EXP_TO_EXP2
4835 | LOG_TO_LOG2
4836 | ((options->EmitNoPow) ? POW_TO_EXP2 : 0)));
4837
4838 progress = do_lower_jumps(ir, true, true, options->EmitNoMainReturn, options->EmitNoCont, options->EmitNoLoops) || progress;
4839
4840 progress = do_common_optimization(ir, true, options->MaxUnrollIterations) || progress;
4841
4842 progress = lower_quadop_vector(ir, false) || progress;
4843
4844 if (options->EmitNoIfs) {
4845 progress = lower_discard(ir) || progress;
4846 progress = lower_if_to_cond_assign(ir) || progress;
4847 }
4848
4849 if (options->EmitNoNoise)
4850 progress = lower_noise(ir) || progress;
4851
4852 /* If there are forms of indirect addressing that the driver
4853 * cannot handle, perform the lowering pass.
4854 */
4855 if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput
4856 || options->EmitNoIndirectTemp || options->EmitNoIndirectUniform)
4857 progress =
4858 lower_variable_index_to_cond_assign(ir,
4859 options->EmitNoIndirectInput,
4860 options->EmitNoIndirectOutput,
4861 options->EmitNoIndirectTemp,
4862 options->EmitNoIndirectUniform)
4863 || progress;
4864
4865 progress = do_vec_index_to_cond_assign(ir) || progress;
4866 } while (progress);
4867
4868 validate_ir_tree(ir);
4869 }
4870
4871 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
4872 struct gl_program *linked_prog;
4873
4874 if (prog->_LinkedShaders[i] == NULL)
4875 continue;
4876
4877 linked_prog = get_mesa_program(ctx, prog, prog->_LinkedShaders[i]);
4878
4879 if (linked_prog) {
4880 bool ok = true;
4881
4882 switch (prog->_LinkedShaders[i]->Type) {
4883 case GL_VERTEX_SHADER:
4884 _mesa_reference_vertprog(ctx, &prog->VertexProgram,
4885 (struct gl_vertex_program *)linked_prog);
4886 ok = ctx->Driver.ProgramStringNotify(ctx, GL_VERTEX_PROGRAM_ARB,
4887 linked_prog);
4888 break;
4889 case GL_FRAGMENT_SHADER:
4890 _mesa_reference_fragprog(ctx, &prog->FragmentProgram,
4891 (struct gl_fragment_program *)linked_prog);
4892 ok = ctx->Driver.ProgramStringNotify(ctx, GL_FRAGMENT_PROGRAM_ARB,
4893 linked_prog);
4894 break;
4895 case GL_GEOMETRY_SHADER:
4896 _mesa_reference_geomprog(ctx, &prog->GeometryProgram,
4897 (struct gl_geometry_program *)linked_prog);
4898 ok = ctx->Driver.ProgramStringNotify(ctx, GL_GEOMETRY_PROGRAM_NV,
4899 linked_prog);
4900 break;
4901 }
4902 if (!ok) {
4903 return GL_FALSE;
4904 }
4905 }
4906
4907 _mesa_reference_program(ctx, &linked_prog, NULL);
4908 }
4909
4910 return GL_TRUE;
4911 }
4912
4913
4914 /**
4915 * Link a GLSL shader program. Called via glLinkProgram().
4916 */
4917 void
4918 st_glsl_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
4919 {
4920 unsigned int i;
4921
4922 _mesa_clear_shader_program_data(ctx, prog);
4923
4924 prog->LinkStatus = GL_TRUE;
4925
4926 for (i = 0; i < prog->NumShaders; i++) {
4927 if (!prog->Shaders[i]->CompileStatus) {
4928 fail_link(prog, "linking with uncompiled shader");
4929 prog->LinkStatus = GL_FALSE;
4930 }
4931 }
4932
4933 prog->Varying = _mesa_new_parameter_list();
4934 _mesa_reference_vertprog(ctx, &prog->VertexProgram, NULL);
4935 _mesa_reference_fragprog(ctx, &prog->FragmentProgram, NULL);
4936 _mesa_reference_geomprog(ctx, &prog->GeometryProgram, NULL);
4937
4938 if (prog->LinkStatus) {
4939 link_shaders(ctx, prog);
4940 }
4941
4942 if (prog->LinkStatus) {
4943 if (!ctx->Driver.LinkShader(ctx, prog)) {
4944 prog->LinkStatus = GL_FALSE;
4945 }
4946 }
4947
4948 set_uniform_initializers(ctx, prog);
4949
4950 if (ctx->Shader.Flags & GLSL_DUMP) {
4951 if (!prog->LinkStatus) {
4952 printf("GLSL shader program %d failed to link\n", prog->Name);
4953 }
4954
4955 if (prog->InfoLog && prog->InfoLog[0] != 0) {
4956 printf("GLSL shader program %d info log:\n", prog->Name);
4957 printf("%s\n", prog->InfoLog);
4958 }
4959 }
4960 }
4961
4962 } /* extern "C" */