glsl_to_tgsi: improve eliminate_dead_code_advanced()
[mesa.git] / src / mesa / state_tracker / st_glsl_to_tgsi.cpp
1 /*
2 * Copyright (C) 2005-2007 Brian Paul All Rights Reserved.
3 * Copyright (C) 2008 VMware, Inc. All Rights Reserved.
4 * Copyright © 2010 Intel Corporation
5 * Copyright © 2011 Bryan Cain
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the next
15 * paragraph) shall be included in all copies or substantial portions of the
16 * Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
23 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
24 * DEALINGS IN THE SOFTWARE.
25 */
26
27 /**
28 * \file glsl_to_tgsi.cpp
29 *
30 * Translate GLSL IR to TGSI.
31 */
32
33 #include <stdio.h>
34 #include "main/compiler.h"
35 #include "ir.h"
36 #include "ir_visitor.h"
37 #include "ir_print_visitor.h"
38 #include "ir_expression_flattening.h"
39 #include "glsl_types.h"
40 #include "glsl_parser_extras.h"
41 #include "../glsl/program.h"
42 #include "ir_optimization.h"
43 #include "ast.h"
44
45 extern "C" {
46 #include "main/mtypes.h"
47 #include "main/shaderapi.h"
48 #include "main/shaderobj.h"
49 #include "main/uniforms.h"
50 #include "program/hash_table.h"
51 #include "program/prog_instruction.h"
52 #include "program/prog_optimize.h"
53 #include "program/prog_print.h"
54 #include "program/program.h"
55 #include "program/prog_uniform.h"
56 #include "program/prog_parameter.h"
57 #include "program/sampler.h"
58
59 #include "pipe/p_compiler.h"
60 #include "pipe/p_context.h"
61 #include "pipe/p_screen.h"
62 #include "pipe/p_shader_tokens.h"
63 #include "pipe/p_state.h"
64 #include "util/u_math.h"
65 #include "tgsi/tgsi_ureg.h"
66 #include "tgsi/tgsi_info.h"
67 #include "st_context.h"
68 #include "st_program.h"
69 #include "st_glsl_to_tgsi.h"
70 #include "st_mesa_to_tgsi.h"
71 }
72
73 #define PROGRAM_ANY_CONST ((1 << PROGRAM_LOCAL_PARAM) | \
74 (1 << PROGRAM_ENV_PARAM) | \
75 (1 << PROGRAM_STATE_VAR) | \
76 (1 << PROGRAM_NAMED_PARAM) | \
77 (1 << PROGRAM_CONSTANT) | \
78 (1 << PROGRAM_UNIFORM))
79
80 class st_src_reg;
81 class st_dst_reg;
82
83 static int swizzle_for_size(int size);
84
85 /**
86 * This struct is a corresponding struct to TGSI ureg_src.
87 */
88 class st_src_reg {
89 public:
90 st_src_reg(gl_register_file file, int index, const glsl_type *type)
91 {
92 this->file = file;
93 this->index = index;
94 if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
95 this->swizzle = swizzle_for_size(type->vector_elements);
96 else
97 this->swizzle = SWIZZLE_XYZW;
98 this->negate = 0;
99 this->type = type ? type->base_type : GLSL_TYPE_ERROR;
100 this->reladdr = NULL;
101 }
102
103 st_src_reg(gl_register_file file, int index, int type)
104 {
105 this->type = type;
106 this->file = file;
107 this->index = index;
108 this->swizzle = SWIZZLE_XYZW;
109 this->negate = 0;
110 this->reladdr = NULL;
111 }
112
113 st_src_reg()
114 {
115 this->type = GLSL_TYPE_ERROR;
116 this->file = PROGRAM_UNDEFINED;
117 this->index = 0;
118 this->swizzle = 0;
119 this->negate = 0;
120 this->reladdr = NULL;
121 }
122
123 explicit st_src_reg(st_dst_reg reg);
124
125 gl_register_file file; /**< PROGRAM_* from Mesa */
126 int index; /**< temporary index, VERT_ATTRIB_*, FRAG_ATTRIB_*, etc. */
127 GLuint swizzle; /**< SWIZZLE_XYZWONEZERO swizzles from Mesa. */
128 int negate; /**< NEGATE_XYZW mask from mesa */
129 int type; /** GLSL_TYPE_* from GLSL IR (enum glsl_base_type) */
130 /** Register index should be offset by the integer in this reg. */
131 st_src_reg *reladdr;
132 };
133
134 class st_dst_reg {
135 public:
136 st_dst_reg(gl_register_file file, int writemask, int type)
137 {
138 this->file = file;
139 this->index = 0;
140 this->writemask = writemask;
141 this->cond_mask = COND_TR;
142 this->reladdr = NULL;
143 this->type = type;
144 }
145
146 st_dst_reg()
147 {
148 this->type = GLSL_TYPE_ERROR;
149 this->file = PROGRAM_UNDEFINED;
150 this->index = 0;
151 this->writemask = 0;
152 this->cond_mask = COND_TR;
153 this->reladdr = NULL;
154 }
155
156 explicit st_dst_reg(st_src_reg reg);
157
158 gl_register_file file; /**< PROGRAM_* from Mesa */
159 int index; /**< temporary index, VERT_ATTRIB_*, FRAG_ATTRIB_*, etc. */
160 int writemask; /**< Bitfield of WRITEMASK_[XYZW] */
161 GLuint cond_mask:4;
162 int type; /** GLSL_TYPE_* from GLSL IR (enum glsl_base_type) */
163 /** Register index should be offset by the integer in this reg. */
164 st_src_reg *reladdr;
165 };
166
167 st_src_reg::st_src_reg(st_dst_reg reg)
168 {
169 this->type = reg.type;
170 this->file = reg.file;
171 this->index = reg.index;
172 this->swizzle = SWIZZLE_XYZW;
173 this->negate = 0;
174 this->reladdr = NULL;
175 }
176
177 st_dst_reg::st_dst_reg(st_src_reg reg)
178 {
179 this->type = reg.type;
180 this->file = reg.file;
181 this->index = reg.index;
182 this->writemask = WRITEMASK_XYZW;
183 this->cond_mask = COND_TR;
184 this->reladdr = reg.reladdr;
185 }
186
187 class glsl_to_tgsi_instruction : public exec_node {
188 public:
189 /* Callers of this ralloc-based new need not call delete. It's
190 * easier to just ralloc_free 'ctx' (or any of its ancestors). */
191 static void* operator new(size_t size, void *ctx)
192 {
193 void *node;
194
195 node = rzalloc_size(ctx, size);
196 assert(node != NULL);
197
198 return node;
199 }
200
201 unsigned op;
202 st_dst_reg dst;
203 st_src_reg src[3];
204 /** Pointer to the ir source this tree came from for debugging */
205 ir_instruction *ir;
206 GLboolean cond_update;
207 bool saturate;
208 int sampler; /**< sampler index */
209 int tex_target; /**< One of TEXTURE_*_INDEX */
210 GLboolean tex_shadow;
211 int dead_mask; /**< Used in dead code elimination */
212
213 class function_entry *function; /* Set on TGSI_OPCODE_CAL or TGSI_OPCODE_BGNSUB */
214 };
215
216 class variable_storage : public exec_node {
217 public:
218 variable_storage(ir_variable *var, gl_register_file file, int index)
219 : file(file), index(index), var(var)
220 {
221 /* empty */
222 }
223
224 gl_register_file file;
225 int index;
226 ir_variable *var; /* variable that maps to this, if any */
227 };
228
229 class function_entry : public exec_node {
230 public:
231 ir_function_signature *sig;
232
233 /**
234 * identifier of this function signature used by the program.
235 *
236 * At the point that Mesa instructions for function calls are
237 * generated, we don't know the address of the first instruction of
238 * the function body. So we make the BranchTarget that is called a
239 * small integer and rewrite them during set_branchtargets().
240 */
241 int sig_id;
242
243 /**
244 * Pointer to first instruction of the function body.
245 *
246 * Set during function body emits after main() is processed.
247 */
248 glsl_to_tgsi_instruction *bgn_inst;
249
250 /**
251 * Index of the first instruction of the function body in actual
252 * Mesa IR.
253 *
254 * Set after convertion from glsl_to_tgsi_instruction to prog_instruction.
255 */
256 int inst;
257
258 /** Storage for the return value. */
259 st_src_reg return_reg;
260 };
261
262 class glsl_to_tgsi_visitor : public ir_visitor {
263 public:
264 glsl_to_tgsi_visitor();
265 ~glsl_to_tgsi_visitor();
266
267 function_entry *current_function;
268
269 struct gl_context *ctx;
270 struct gl_program *prog;
271 struct gl_shader_program *shader_program;
272 struct gl_shader_compiler_options *options;
273
274 int next_temp;
275
276 int num_address_regs;
277 int samplers_used;
278 bool indirect_addr_temps;
279 bool indirect_addr_consts;
280
281 int glsl_version;
282
283 variable_storage *find_variable_storage(ir_variable *var);
284
285 function_entry *get_function_signature(ir_function_signature *sig);
286
287 st_src_reg get_temp(const glsl_type *type);
288 void reladdr_to_temp(ir_instruction *ir, st_src_reg *reg, int *num_reladdr);
289
290 st_src_reg st_src_reg_for_float(float val);
291 st_src_reg st_src_reg_for_int(int val);
292 st_src_reg st_src_reg_for_type(int type, int val);
293
294 /**
295 * \name Visit methods
296 *
297 * As typical for the visitor pattern, there must be one \c visit method for
298 * each concrete subclass of \c ir_instruction. Virtual base classes within
299 * the hierarchy should not have \c visit methods.
300 */
301 /*@{*/
302 virtual void visit(ir_variable *);
303 virtual void visit(ir_loop *);
304 virtual void visit(ir_loop_jump *);
305 virtual void visit(ir_function_signature *);
306 virtual void visit(ir_function *);
307 virtual void visit(ir_expression *);
308 virtual void visit(ir_swizzle *);
309 virtual void visit(ir_dereference_variable *);
310 virtual void visit(ir_dereference_array *);
311 virtual void visit(ir_dereference_record *);
312 virtual void visit(ir_assignment *);
313 virtual void visit(ir_constant *);
314 virtual void visit(ir_call *);
315 virtual void visit(ir_return *);
316 virtual void visit(ir_discard *);
317 virtual void visit(ir_texture *);
318 virtual void visit(ir_if *);
319 /*@}*/
320
321 st_src_reg result;
322
323 /** List of variable_storage */
324 exec_list variables;
325
326 /** List of function_entry */
327 exec_list function_signatures;
328 int next_signature_id;
329
330 /** List of glsl_to_tgsi_instruction */
331 exec_list instructions;
332
333 glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op);
334
335 glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op,
336 st_dst_reg dst, st_src_reg src0);
337
338 glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op,
339 st_dst_reg dst, st_src_reg src0, st_src_reg src1);
340
341 glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op,
342 st_dst_reg dst,
343 st_src_reg src0, st_src_reg src1, st_src_reg src2);
344
345 unsigned get_opcode(ir_instruction *ir, unsigned op,
346 st_dst_reg dst,
347 st_src_reg src0, st_src_reg src1);
348
349 /**
350 * Emit the correct dot-product instruction for the type of arguments
351 */
352 void emit_dp(ir_instruction *ir,
353 st_dst_reg dst,
354 st_src_reg src0,
355 st_src_reg src1,
356 unsigned elements);
357
358 void emit_scalar(ir_instruction *ir, unsigned op,
359 st_dst_reg dst, st_src_reg src0);
360
361 void emit_scalar(ir_instruction *ir, unsigned op,
362 st_dst_reg dst, st_src_reg src0, st_src_reg src1);
363
364 void emit_arl(ir_instruction *ir, st_dst_reg dst, st_src_reg src0);
365
366 void emit_scs(ir_instruction *ir, unsigned op,
367 st_dst_reg dst, const st_src_reg &src);
368
369 GLboolean try_emit_mad(ir_expression *ir,
370 int mul_operand);
371 GLboolean try_emit_sat(ir_expression *ir);
372
373 void emit_swz(ir_expression *ir);
374
375 bool process_move_condition(ir_rvalue *ir);
376
377 void remove_output_reads(gl_register_file type);
378 void simplify_cmp(void);
379
380 void rename_temp_register(int index, int new_index);
381 int get_first_temp_read(int index);
382 int get_first_temp_write(int index);
383 int get_last_temp_read(int index);
384 int get_last_temp_write(int index);
385
386 void copy_propagate(void);
387 void eliminate_dead_code(void);
388 int eliminate_dead_code_advanced(void);
389 void merge_registers(void);
390 void renumber_registers(void);
391
392 void *mem_ctx;
393 };
394
395 static st_src_reg undef_src = st_src_reg(PROGRAM_UNDEFINED, 0, GLSL_TYPE_ERROR);
396
397 static st_dst_reg undef_dst = st_dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP, GLSL_TYPE_ERROR);
398
399 static st_dst_reg address_reg = st_dst_reg(PROGRAM_ADDRESS, WRITEMASK_X, GLSL_TYPE_FLOAT);
400
401 static void
402 fail_link(struct gl_shader_program *prog, const char *fmt, ...) PRINTFLIKE(2, 3);
403
404 static void
405 fail_link(struct gl_shader_program *prog, const char *fmt, ...)
406 {
407 va_list args;
408 va_start(args, fmt);
409 ralloc_vasprintf_append(&prog->InfoLog, fmt, args);
410 va_end(args);
411
412 prog->LinkStatus = GL_FALSE;
413 }
414
415 static int
416 swizzle_for_size(int size)
417 {
418 int size_swizzles[4] = {
419 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
420 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
421 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
422 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
423 };
424
425 assert((size >= 1) && (size <= 4));
426 return size_swizzles[size - 1];
427 }
428
429 static bool
430 is_tex_instruction(unsigned opcode)
431 {
432 const tgsi_opcode_info* info = tgsi_get_opcode_info(opcode);
433 return info->is_tex;
434 }
435
436 static unsigned
437 num_inst_dst_regs(unsigned opcode)
438 {
439 const tgsi_opcode_info* info = tgsi_get_opcode_info(opcode);
440 return info->num_dst;
441 }
442
443 static unsigned
444 num_inst_src_regs(unsigned opcode)
445 {
446 const tgsi_opcode_info* info = tgsi_get_opcode_info(opcode);
447 return info->is_tex ? info->num_src - 1 : info->num_src;
448 }
449
450 glsl_to_tgsi_instruction *
451 glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op,
452 st_dst_reg dst,
453 st_src_reg src0, st_src_reg src1, st_src_reg src2)
454 {
455 glsl_to_tgsi_instruction *inst = new(mem_ctx) glsl_to_tgsi_instruction();
456 int num_reladdr = 0, i;
457
458 op = get_opcode(ir, op, dst, src0, src1);
459
460 /* If we have to do relative addressing, we want to load the ARL
461 * reg directly for one of the regs, and preload the other reladdr
462 * sources into temps.
463 */
464 num_reladdr += dst.reladdr != NULL;
465 num_reladdr += src0.reladdr != NULL;
466 num_reladdr += src1.reladdr != NULL;
467 num_reladdr += src2.reladdr != NULL;
468
469 reladdr_to_temp(ir, &src2, &num_reladdr);
470 reladdr_to_temp(ir, &src1, &num_reladdr);
471 reladdr_to_temp(ir, &src0, &num_reladdr);
472
473 if (dst.reladdr) {
474 emit_arl(ir, address_reg, *dst.reladdr);
475 num_reladdr--;
476 }
477 assert(num_reladdr == 0);
478
479 inst->op = op;
480 inst->dst = dst;
481 inst->src[0] = src0;
482 inst->src[1] = src1;
483 inst->src[2] = src2;
484 inst->ir = ir;
485 inst->dead_mask = 0;
486
487 inst->function = NULL;
488
489 if (op == TGSI_OPCODE_ARL)
490 this->num_address_regs = 1;
491
492 /* Update indirect addressing status used by TGSI */
493 if (dst.reladdr) {
494 switch(dst.file) {
495 case PROGRAM_TEMPORARY:
496 this->indirect_addr_temps = true;
497 break;
498 case PROGRAM_LOCAL_PARAM:
499 case PROGRAM_ENV_PARAM:
500 case PROGRAM_STATE_VAR:
501 case PROGRAM_NAMED_PARAM:
502 case PROGRAM_CONSTANT:
503 case PROGRAM_UNIFORM:
504 this->indirect_addr_consts = true;
505 break;
506 default:
507 break;
508 }
509 }
510 else {
511 for (i=0; i<3; i++) {
512 if(inst->src[i].reladdr) {
513 switch(inst->src[i].file) {
514 case PROGRAM_TEMPORARY:
515 this->indirect_addr_temps = true;
516 break;
517 case PROGRAM_LOCAL_PARAM:
518 case PROGRAM_ENV_PARAM:
519 case PROGRAM_STATE_VAR:
520 case PROGRAM_NAMED_PARAM:
521 case PROGRAM_CONSTANT:
522 case PROGRAM_UNIFORM:
523 this->indirect_addr_consts = true;
524 break;
525 default:
526 break;
527 }
528 }
529 }
530 }
531
532 this->instructions.push_tail(inst);
533
534 return inst;
535 }
536
537
538 glsl_to_tgsi_instruction *
539 glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op,
540 st_dst_reg dst, st_src_reg src0, st_src_reg src1)
541 {
542 return emit(ir, op, dst, src0, src1, undef_src);
543 }
544
545 glsl_to_tgsi_instruction *
546 glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op,
547 st_dst_reg dst, st_src_reg src0)
548 {
549 assert(dst.writemask != 0);
550 return emit(ir, op, dst, src0, undef_src, undef_src);
551 }
552
553 glsl_to_tgsi_instruction *
554 glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op)
555 {
556 return emit(ir, op, undef_dst, undef_src, undef_src, undef_src);
557 }
558
559 /**
560 * Determines whether to use an integer, unsigned integer, or float opcode
561 * based on the operands and input opcode, then emits the result.
562 *
563 * TODO: type checking for remaining TGSI opcodes
564 */
565 unsigned
566 glsl_to_tgsi_visitor::get_opcode(ir_instruction *ir, unsigned op,
567 st_dst_reg dst,
568 st_src_reg src0, st_src_reg src1)
569 {
570 int type = GLSL_TYPE_FLOAT;
571
572 if (src0.type == GLSL_TYPE_FLOAT || src1.type == GLSL_TYPE_FLOAT)
573 type = GLSL_TYPE_FLOAT;
574 else if (glsl_version >= 130)
575 type = src0.type;
576
577 #define case4(c, f, i, u) \
578 case TGSI_OPCODE_##c: \
579 if (type == GLSL_TYPE_INT) op = TGSI_OPCODE_##i; \
580 else if (type == GLSL_TYPE_UINT) op = TGSI_OPCODE_##u; \
581 else op = TGSI_OPCODE_##f; \
582 break;
583 #define case3(f, i, u) case4(f, f, i, u)
584 #define case2fi(f, i) case4(f, f, i, i)
585 #define case2iu(i, u) case4(i, LAST, i, u)
586
587 switch(op) {
588 case2fi(ADD, UADD);
589 case2fi(MUL, UMUL);
590 case2fi(MAD, UMAD);
591 case3(DIV, IDIV, UDIV);
592 case3(MAX, IMAX, UMAX);
593 case3(MIN, IMIN, UMIN);
594 case2iu(MOD, UMOD);
595
596 case2fi(SEQ, USEQ);
597 case2fi(SNE, USNE);
598 case3(SGE, ISGE, USGE);
599 case3(SLT, ISLT, USLT);
600
601 case2iu(SHL, SHL);
602 case2iu(ISHR, USHR);
603 case2iu(NOT, NOT);
604 case2iu(AND, AND);
605 case2iu(OR, OR);
606 case2iu(XOR, XOR);
607
608 default: break;
609 }
610
611 assert(op != TGSI_OPCODE_LAST);
612 return op;
613 }
614
615 void
616 glsl_to_tgsi_visitor::emit_dp(ir_instruction *ir,
617 st_dst_reg dst, st_src_reg src0, st_src_reg src1,
618 unsigned elements)
619 {
620 static const unsigned dot_opcodes[] = {
621 TGSI_OPCODE_DP2, TGSI_OPCODE_DP3, TGSI_OPCODE_DP4
622 };
623
624 emit(ir, dot_opcodes[elements - 2], dst, src0, src1);
625 }
626
627 /**
628 * Emits TGSI scalar opcodes to produce unique answers across channels.
629 *
630 * Some TGSI opcodes are scalar-only, like ARB_fp/vp. The src X
631 * channel determines the result across all channels. So to do a vec4
632 * of this operation, we want to emit a scalar per source channel used
633 * to produce dest channels.
634 */
635 void
636 glsl_to_tgsi_visitor::emit_scalar(ir_instruction *ir, unsigned op,
637 st_dst_reg dst,
638 st_src_reg orig_src0, st_src_reg orig_src1)
639 {
640 int i, j;
641 int done_mask = ~dst.writemask;
642
643 /* TGSI RCP is a scalar operation splatting results to all channels,
644 * like ARB_fp/vp. So emit as many RCPs as necessary to cover our
645 * dst channels.
646 */
647 for (i = 0; i < 4; i++) {
648 GLuint this_mask = (1 << i);
649 glsl_to_tgsi_instruction *inst;
650 st_src_reg src0 = orig_src0;
651 st_src_reg src1 = orig_src1;
652
653 if (done_mask & this_mask)
654 continue;
655
656 GLuint src0_swiz = GET_SWZ(src0.swizzle, i);
657 GLuint src1_swiz = GET_SWZ(src1.swizzle, i);
658 for (j = i + 1; j < 4; j++) {
659 /* If there is another enabled component in the destination that is
660 * derived from the same inputs, generate its value on this pass as
661 * well.
662 */
663 if (!(done_mask & (1 << j)) &&
664 GET_SWZ(src0.swizzle, j) == src0_swiz &&
665 GET_SWZ(src1.swizzle, j) == src1_swiz) {
666 this_mask |= (1 << j);
667 }
668 }
669 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
670 src0_swiz, src0_swiz);
671 src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz,
672 src1_swiz, src1_swiz);
673
674 inst = emit(ir, op, dst, src0, src1);
675 inst->dst.writemask = this_mask;
676 done_mask |= this_mask;
677 }
678 }
679
680 void
681 glsl_to_tgsi_visitor::emit_scalar(ir_instruction *ir, unsigned op,
682 st_dst_reg dst, st_src_reg src0)
683 {
684 st_src_reg undef = undef_src;
685
686 undef.swizzle = SWIZZLE_XXXX;
687
688 emit_scalar(ir, op, dst, src0, undef);
689 }
690
691 void
692 glsl_to_tgsi_visitor::emit_arl(ir_instruction *ir,
693 st_dst_reg dst, st_src_reg src0)
694 {
695 st_src_reg tmp = get_temp(glsl_type::float_type);
696
697 if (src0.type == GLSL_TYPE_INT)
698 emit(ir, TGSI_OPCODE_I2F, st_dst_reg(tmp), src0);
699 else if (src0.type == GLSL_TYPE_UINT)
700 emit(ir, TGSI_OPCODE_U2F, st_dst_reg(tmp), src0);
701 else
702 tmp = src0;
703
704 emit(ir, TGSI_OPCODE_ARL, dst, tmp);
705 }
706
707 /**
708 * Emit an TGSI_OPCODE_SCS instruction
709 *
710 * The \c SCS opcode functions a bit differently than the other TGSI opcodes.
711 * Instead of splatting its result across all four components of the
712 * destination, it writes one value to the \c x component and another value to
713 * the \c y component.
714 *
715 * \param ir IR instruction being processed
716 * \param op Either \c TGSI_OPCODE_SIN or \c TGSI_OPCODE_COS depending
717 * on which value is desired.
718 * \param dst Destination register
719 * \param src Source register
720 */
721 void
722 glsl_to_tgsi_visitor::emit_scs(ir_instruction *ir, unsigned op,
723 st_dst_reg dst,
724 const st_src_reg &src)
725 {
726 /* Vertex programs cannot use the SCS opcode.
727 */
728 if (this->prog->Target == GL_VERTEX_PROGRAM_ARB) {
729 emit_scalar(ir, op, dst, src);
730 return;
731 }
732
733 const unsigned component = (op == TGSI_OPCODE_SIN) ? 0 : 1;
734 const unsigned scs_mask = (1U << component);
735 int done_mask = ~dst.writemask;
736 st_src_reg tmp;
737
738 assert(op == TGSI_OPCODE_SIN || op == TGSI_OPCODE_COS);
739
740 /* If there are compnents in the destination that differ from the component
741 * that will be written by the SCS instrution, we'll need a temporary.
742 */
743 if (scs_mask != unsigned(dst.writemask)) {
744 tmp = get_temp(glsl_type::vec4_type);
745 }
746
747 for (unsigned i = 0; i < 4; i++) {
748 unsigned this_mask = (1U << i);
749 st_src_reg src0 = src;
750
751 if ((done_mask & this_mask) != 0)
752 continue;
753
754 /* The source swizzle specified which component of the source generates
755 * sine / cosine for the current component in the destination. The SCS
756 * instruction requires that this value be swizzle to the X component.
757 * Replace the current swizzle with a swizzle that puts the source in
758 * the X component.
759 */
760 unsigned src0_swiz = GET_SWZ(src.swizzle, i);
761
762 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
763 src0_swiz, src0_swiz);
764 for (unsigned j = i + 1; j < 4; j++) {
765 /* If there is another enabled component in the destination that is
766 * derived from the same inputs, generate its value on this pass as
767 * well.
768 */
769 if (!(done_mask & (1 << j)) &&
770 GET_SWZ(src0.swizzle, j) == src0_swiz) {
771 this_mask |= (1 << j);
772 }
773 }
774
775 if (this_mask != scs_mask) {
776 glsl_to_tgsi_instruction *inst;
777 st_dst_reg tmp_dst = st_dst_reg(tmp);
778
779 /* Emit the SCS instruction.
780 */
781 inst = emit(ir, TGSI_OPCODE_SCS, tmp_dst, src0);
782 inst->dst.writemask = scs_mask;
783
784 /* Move the result of the SCS instruction to the desired location in
785 * the destination.
786 */
787 tmp.swizzle = MAKE_SWIZZLE4(component, component,
788 component, component);
789 inst = emit(ir, TGSI_OPCODE_SCS, dst, tmp);
790 inst->dst.writemask = this_mask;
791 } else {
792 /* Emit the SCS instruction to write directly to the destination.
793 */
794 glsl_to_tgsi_instruction *inst = emit(ir, TGSI_OPCODE_SCS, dst, src0);
795 inst->dst.writemask = scs_mask;
796 }
797
798 done_mask |= this_mask;
799 }
800 }
801
802 struct st_src_reg
803 glsl_to_tgsi_visitor::st_src_reg_for_float(float val)
804 {
805 st_src_reg src(PROGRAM_CONSTANT, -1, GLSL_TYPE_FLOAT);
806 union gl_constant_value uval;
807
808 uval.f = val;
809 src.index = _mesa_add_typed_unnamed_constant(this->prog->Parameters,
810 &uval, 1, GL_FLOAT, &src.swizzle);
811
812 return src;
813 }
814
815 struct st_src_reg
816 glsl_to_tgsi_visitor::st_src_reg_for_int(int val)
817 {
818 st_src_reg src(PROGRAM_CONSTANT, -1, GLSL_TYPE_INT);
819 union gl_constant_value uval;
820
821 assert(glsl_version >= 130);
822
823 uval.i = val;
824 src.index = _mesa_add_typed_unnamed_constant(this->prog->Parameters,
825 &uval, 1, GL_INT, &src.swizzle);
826
827 return src;
828 }
829
830 struct st_src_reg
831 glsl_to_tgsi_visitor::st_src_reg_for_type(int type, int val)
832 {
833 if (glsl_version >= 130)
834 return type == GLSL_TYPE_FLOAT ? st_src_reg_for_float(val) :
835 st_src_reg_for_int(val);
836 else
837 return st_src_reg_for_float(val);
838 }
839
840 static int
841 type_size(const struct glsl_type *type)
842 {
843 unsigned int i;
844 int size;
845
846 switch (type->base_type) {
847 case GLSL_TYPE_UINT:
848 case GLSL_TYPE_INT:
849 case GLSL_TYPE_FLOAT:
850 case GLSL_TYPE_BOOL:
851 if (type->is_matrix()) {
852 return type->matrix_columns;
853 } else {
854 /* Regardless of size of vector, it gets a vec4. This is bad
855 * packing for things like floats, but otherwise arrays become a
856 * mess. Hopefully a later pass over the code can pack scalars
857 * down if appropriate.
858 */
859 return 1;
860 }
861 case GLSL_TYPE_ARRAY:
862 assert(type->length > 0);
863 return type_size(type->fields.array) * type->length;
864 case GLSL_TYPE_STRUCT:
865 size = 0;
866 for (i = 0; i < type->length; i++) {
867 size += type_size(type->fields.structure[i].type);
868 }
869 return size;
870 case GLSL_TYPE_SAMPLER:
871 /* Samplers take up one slot in UNIFORMS[], but they're baked in
872 * at link time.
873 */
874 return 1;
875 default:
876 assert(0);
877 return 0;
878 }
879 }
880
881 /**
882 * In the initial pass of codegen, we assign temporary numbers to
883 * intermediate results. (not SSA -- variable assignments will reuse
884 * storage).
885 */
886 st_src_reg
887 glsl_to_tgsi_visitor::get_temp(const glsl_type *type)
888 {
889 st_src_reg src;
890 int swizzle[4];
891 int i;
892
893 src.type = glsl_version >= 130 ? type->base_type : GLSL_TYPE_FLOAT;
894 src.file = PROGRAM_TEMPORARY;
895 src.index = next_temp;
896 src.reladdr = NULL;
897 next_temp += type_size(type);
898
899 if (type->is_array() || type->is_record()) {
900 src.swizzle = SWIZZLE_NOOP;
901 } else {
902 for (i = 0; i < type->vector_elements; i++)
903 swizzle[i] = i;
904 for (; i < 4; i++)
905 swizzle[i] = type->vector_elements - 1;
906 src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1],
907 swizzle[2], swizzle[3]);
908 }
909 src.negate = 0;
910
911 return src;
912 }
913
914 variable_storage *
915 glsl_to_tgsi_visitor::find_variable_storage(ir_variable *var)
916 {
917
918 variable_storage *entry;
919
920 foreach_iter(exec_list_iterator, iter, this->variables) {
921 entry = (variable_storage *)iter.get();
922
923 if (entry->var == var)
924 return entry;
925 }
926
927 return NULL;
928 }
929
930 void
931 glsl_to_tgsi_visitor::visit(ir_variable *ir)
932 {
933 if (strcmp(ir->name, "gl_FragCoord") == 0) {
934 struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog;
935
936 fp->OriginUpperLeft = ir->origin_upper_left;
937 fp->PixelCenterInteger = ir->pixel_center_integer;
938
939 } else if (strcmp(ir->name, "gl_FragDepth") == 0) {
940 struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog;
941 switch (ir->depth_layout) {
942 case ir_depth_layout_none:
943 fp->FragDepthLayout = FRAG_DEPTH_LAYOUT_NONE;
944 break;
945 case ir_depth_layout_any:
946 fp->FragDepthLayout = FRAG_DEPTH_LAYOUT_ANY;
947 break;
948 case ir_depth_layout_greater:
949 fp->FragDepthLayout = FRAG_DEPTH_LAYOUT_GREATER;
950 break;
951 case ir_depth_layout_less:
952 fp->FragDepthLayout = FRAG_DEPTH_LAYOUT_LESS;
953 break;
954 case ir_depth_layout_unchanged:
955 fp->FragDepthLayout = FRAG_DEPTH_LAYOUT_UNCHANGED;
956 break;
957 default:
958 assert(0);
959 break;
960 }
961 }
962
963 if (ir->mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) {
964 unsigned int i;
965 const ir_state_slot *const slots = ir->state_slots;
966 assert(ir->state_slots != NULL);
967
968 /* Check if this statevar's setup in the STATE file exactly
969 * matches how we'll want to reference it as a
970 * struct/array/whatever. If not, then we need to move it into
971 * temporary storage and hope that it'll get copy-propagated
972 * out.
973 */
974 for (i = 0; i < ir->num_state_slots; i++) {
975 if (slots[i].swizzle != SWIZZLE_XYZW) {
976 break;
977 }
978 }
979
980 struct variable_storage *storage;
981 st_dst_reg dst;
982 if (i == ir->num_state_slots) {
983 /* We'll set the index later. */
984 storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1);
985 this->variables.push_tail(storage);
986
987 dst = undef_dst;
988 } else {
989 /* The variable_storage constructor allocates slots based on the size
990 * of the type. However, this had better match the number of state
991 * elements that we're going to copy into the new temporary.
992 */
993 assert((int) ir->num_state_slots == type_size(ir->type));
994
995 storage = new(mem_ctx) variable_storage(ir, PROGRAM_TEMPORARY,
996 this->next_temp);
997 this->variables.push_tail(storage);
998 this->next_temp += type_size(ir->type);
999
1000 dst = st_dst_reg(st_src_reg(PROGRAM_TEMPORARY, storage->index,
1001 glsl_version >= 130 ? ir->type->base_type : GLSL_TYPE_FLOAT));
1002 }
1003
1004
1005 for (unsigned int i = 0; i < ir->num_state_slots; i++) {
1006 int index = _mesa_add_state_reference(this->prog->Parameters,
1007 (gl_state_index *)slots[i].tokens);
1008
1009 if (storage->file == PROGRAM_STATE_VAR) {
1010 if (storage->index == -1) {
1011 storage->index = index;
1012 } else {
1013 assert(index == storage->index + (int)i);
1014 }
1015 } else {
1016 st_src_reg src(PROGRAM_STATE_VAR, index,
1017 glsl_version >= 130 ? ir->type->base_type : GLSL_TYPE_FLOAT);
1018 src.swizzle = slots[i].swizzle;
1019 emit(ir, TGSI_OPCODE_MOV, dst, src);
1020 /* even a float takes up a whole vec4 reg in a struct/array. */
1021 dst.index++;
1022 }
1023 }
1024
1025 if (storage->file == PROGRAM_TEMPORARY &&
1026 dst.index != storage->index + (int) ir->num_state_slots) {
1027 fail_link(this->shader_program,
1028 "failed to load builtin uniform `%s' (%d/%d regs loaded)\n",
1029 ir->name, dst.index - storage->index,
1030 type_size(ir->type));
1031 }
1032 }
1033 }
1034
1035 void
1036 glsl_to_tgsi_visitor::visit(ir_loop *ir)
1037 {
1038 ir_dereference_variable *counter = NULL;
1039
1040 if (ir->counter != NULL)
1041 counter = new(ir) ir_dereference_variable(ir->counter);
1042
1043 if (ir->from != NULL) {
1044 assert(ir->counter != NULL);
1045
1046 ir_assignment *a = new(ir) ir_assignment(counter, ir->from, NULL);
1047
1048 a->accept(this);
1049 delete a;
1050 }
1051
1052 emit(NULL, TGSI_OPCODE_BGNLOOP);
1053
1054 if (ir->to) {
1055 ir_expression *e =
1056 new(ir) ir_expression(ir->cmp, glsl_type::bool_type,
1057 counter, ir->to);
1058 ir_if *if_stmt = new(ir) ir_if(e);
1059
1060 ir_loop_jump *brk = new(ir) ir_loop_jump(ir_loop_jump::jump_break);
1061
1062 if_stmt->then_instructions.push_tail(brk);
1063
1064 if_stmt->accept(this);
1065
1066 delete if_stmt;
1067 delete e;
1068 delete brk;
1069 }
1070
1071 visit_exec_list(&ir->body_instructions, this);
1072
1073 if (ir->increment) {
1074 ir_expression *e =
1075 new(ir) ir_expression(ir_binop_add, counter->type,
1076 counter, ir->increment);
1077
1078 ir_assignment *a = new(ir) ir_assignment(counter, e, NULL);
1079
1080 a->accept(this);
1081 delete a;
1082 delete e;
1083 }
1084
1085 emit(NULL, TGSI_OPCODE_ENDLOOP);
1086 }
1087
1088 void
1089 glsl_to_tgsi_visitor::visit(ir_loop_jump *ir)
1090 {
1091 switch (ir->mode) {
1092 case ir_loop_jump::jump_break:
1093 emit(NULL, TGSI_OPCODE_BRK);
1094 break;
1095 case ir_loop_jump::jump_continue:
1096 emit(NULL, TGSI_OPCODE_CONT);
1097 break;
1098 }
1099 }
1100
1101
1102 void
1103 glsl_to_tgsi_visitor::visit(ir_function_signature *ir)
1104 {
1105 assert(0);
1106 (void)ir;
1107 }
1108
1109 void
1110 glsl_to_tgsi_visitor::visit(ir_function *ir)
1111 {
1112 /* Ignore function bodies other than main() -- we shouldn't see calls to
1113 * them since they should all be inlined before we get to glsl_to_tgsi.
1114 */
1115 if (strcmp(ir->name, "main") == 0) {
1116 const ir_function_signature *sig;
1117 exec_list empty;
1118
1119 sig = ir->matching_signature(&empty);
1120
1121 assert(sig);
1122
1123 foreach_iter(exec_list_iterator, iter, sig->body) {
1124 ir_instruction *ir = (ir_instruction *)iter.get();
1125
1126 ir->accept(this);
1127 }
1128 }
1129 }
1130
1131 GLboolean
1132 glsl_to_tgsi_visitor::try_emit_mad(ir_expression *ir, int mul_operand)
1133 {
1134 int nonmul_operand = 1 - mul_operand;
1135 st_src_reg a, b, c;
1136 st_dst_reg result_dst;
1137
1138 ir_expression *expr = ir->operands[mul_operand]->as_expression();
1139 if (!expr || expr->operation != ir_binop_mul)
1140 return false;
1141
1142 expr->operands[0]->accept(this);
1143 a = this->result;
1144 expr->operands[1]->accept(this);
1145 b = this->result;
1146 ir->operands[nonmul_operand]->accept(this);
1147 c = this->result;
1148
1149 this->result = get_temp(ir->type);
1150 result_dst = st_dst_reg(this->result);
1151 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1152 emit(ir, TGSI_OPCODE_MAD, result_dst, a, b, c);
1153
1154 return true;
1155 }
1156
1157 GLboolean
1158 glsl_to_tgsi_visitor::try_emit_sat(ir_expression *ir)
1159 {
1160 /* Saturates were only introduced to vertex programs in
1161 * NV_vertex_program3, so don't give them to drivers in the VP.
1162 */
1163 if (this->prog->Target == GL_VERTEX_PROGRAM_ARB)
1164 return false;
1165
1166 ir_rvalue *sat_src = ir->as_rvalue_to_saturate();
1167 if (!sat_src)
1168 return false;
1169
1170 sat_src->accept(this);
1171 st_src_reg src = this->result;
1172
1173 this->result = get_temp(ir->type);
1174 st_dst_reg result_dst = st_dst_reg(this->result);
1175 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1176 glsl_to_tgsi_instruction *inst;
1177 inst = emit(ir, TGSI_OPCODE_MOV, result_dst, src);
1178 inst->saturate = true;
1179
1180 return true;
1181 }
1182
1183 void
1184 glsl_to_tgsi_visitor::reladdr_to_temp(ir_instruction *ir,
1185 st_src_reg *reg, int *num_reladdr)
1186 {
1187 if (!reg->reladdr)
1188 return;
1189
1190 emit_arl(ir, address_reg, *reg->reladdr);
1191
1192 if (*num_reladdr != 1) {
1193 st_src_reg temp = get_temp(glsl_type::vec4_type);
1194
1195 emit(ir, TGSI_OPCODE_MOV, st_dst_reg(temp), *reg);
1196 *reg = temp;
1197 }
1198
1199 (*num_reladdr)--;
1200 }
1201
1202 void
1203 glsl_to_tgsi_visitor::visit(ir_expression *ir)
1204 {
1205 unsigned int operand;
1206 st_src_reg op[Elements(ir->operands)];
1207 st_src_reg result_src;
1208 st_dst_reg result_dst;
1209
1210 /* Quick peephole: Emit MAD(a, b, c) instead of ADD(MUL(a, b), c)
1211 */
1212 if (ir->operation == ir_binop_add) {
1213 if (try_emit_mad(ir, 1))
1214 return;
1215 if (try_emit_mad(ir, 0))
1216 return;
1217 }
1218 if (try_emit_sat(ir))
1219 return;
1220
1221 if (ir->operation == ir_quadop_vector)
1222 assert(!"ir_quadop_vector should have been lowered");
1223
1224 for (operand = 0; operand < ir->get_num_operands(); operand++) {
1225 this->result.file = PROGRAM_UNDEFINED;
1226 ir->operands[operand]->accept(this);
1227 if (this->result.file == PROGRAM_UNDEFINED) {
1228 ir_print_visitor v;
1229 printf("Failed to get tree for expression operand:\n");
1230 ir->operands[operand]->accept(&v);
1231 exit(1);
1232 }
1233 op[operand] = this->result;
1234
1235 /* Matrix expression operands should have been broken down to vector
1236 * operations already.
1237 */
1238 assert(!ir->operands[operand]->type->is_matrix());
1239 }
1240
1241 int vector_elements = ir->operands[0]->type->vector_elements;
1242 if (ir->operands[1]) {
1243 vector_elements = MAX2(vector_elements,
1244 ir->operands[1]->type->vector_elements);
1245 }
1246
1247 this->result.file = PROGRAM_UNDEFINED;
1248
1249 /* Storage for our result. Ideally for an assignment we'd be using
1250 * the actual storage for the result here, instead.
1251 */
1252 result_src = get_temp(ir->type);
1253 /* convenience for the emit functions below. */
1254 result_dst = st_dst_reg(result_src);
1255 /* Limit writes to the channels that will be used by result_src later.
1256 * This does limit this temp's use as a temporary for multi-instruction
1257 * sequences.
1258 */
1259 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1260
1261 switch (ir->operation) {
1262 case ir_unop_logic_not:
1263 emit(ir, TGSI_OPCODE_SEQ, result_dst, op[0], st_src_reg_for_type(result_dst.type, 0));
1264 break;
1265 case ir_unop_neg:
1266 assert(result_dst.type == GLSL_TYPE_FLOAT || result_dst.type == GLSL_TYPE_INT);
1267 if (result_dst.type == GLSL_TYPE_INT)
1268 emit(ir, TGSI_OPCODE_INEG, result_dst, op[0]);
1269 else {
1270 op[0].negate = ~op[0].negate;
1271 result_src = op[0];
1272 }
1273 break;
1274 case ir_unop_abs:
1275 assert(result_dst.type == GLSL_TYPE_FLOAT);
1276 emit(ir, TGSI_OPCODE_ABS, result_dst, op[0]);
1277 break;
1278 case ir_unop_sign:
1279 emit(ir, TGSI_OPCODE_SSG, result_dst, op[0]);
1280 break;
1281 case ir_unop_rcp:
1282 emit_scalar(ir, TGSI_OPCODE_RCP, result_dst, op[0]);
1283 break;
1284
1285 case ir_unop_exp2:
1286 emit_scalar(ir, TGSI_OPCODE_EX2, result_dst, op[0]);
1287 break;
1288 case ir_unop_exp:
1289 case ir_unop_log:
1290 assert(!"not reached: should be handled by ir_explog_to_explog2");
1291 break;
1292 case ir_unop_log2:
1293 emit_scalar(ir, TGSI_OPCODE_LG2, result_dst, op[0]);
1294 break;
1295 case ir_unop_sin:
1296 emit_scalar(ir, TGSI_OPCODE_SIN, result_dst, op[0]);
1297 break;
1298 case ir_unop_cos:
1299 emit_scalar(ir, TGSI_OPCODE_COS, result_dst, op[0]);
1300 break;
1301 case ir_unop_sin_reduced:
1302 emit_scs(ir, TGSI_OPCODE_SIN, result_dst, op[0]);
1303 break;
1304 case ir_unop_cos_reduced:
1305 emit_scs(ir, TGSI_OPCODE_COS, result_dst, op[0]);
1306 break;
1307
1308 case ir_unop_dFdx:
1309 emit(ir, TGSI_OPCODE_DDX, result_dst, op[0]);
1310 break;
1311 case ir_unop_dFdy:
1312 op[0].negate = ~op[0].negate;
1313 emit(ir, TGSI_OPCODE_DDY, result_dst, op[0]);
1314 break;
1315
1316 case ir_unop_noise: {
1317 /* At some point, a motivated person could add a better
1318 * implementation of noise. Currently not even the nvidia
1319 * binary drivers do anything more than this. In any case, the
1320 * place to do this is in the GL state tracker, not the poor
1321 * driver.
1322 */
1323 emit(ir, TGSI_OPCODE_MOV, result_dst, st_src_reg_for_float(0.5));
1324 break;
1325 }
1326
1327 case ir_binop_add:
1328 emit(ir, TGSI_OPCODE_ADD, result_dst, op[0], op[1]);
1329 break;
1330 case ir_binop_sub:
1331 emit(ir, TGSI_OPCODE_SUB, result_dst, op[0], op[1]);
1332 break;
1333
1334 case ir_binop_mul:
1335 emit(ir, TGSI_OPCODE_MUL, result_dst, op[0], op[1]);
1336 break;
1337 case ir_binop_div:
1338 if (result_dst.type == GLSL_TYPE_FLOAT)
1339 assert(!"not reached: should be handled by ir_div_to_mul_rcp");
1340 else
1341 emit(ir, TGSI_OPCODE_DIV, result_dst, op[0], op[1]);
1342 break;
1343 case ir_binop_mod:
1344 if (result_dst.type == GLSL_TYPE_FLOAT)
1345 assert(!"ir_binop_mod should have been converted to b * fract(a/b)");
1346 else
1347 emit(ir, TGSI_OPCODE_MOD, result_dst, op[0], op[1]);
1348 break;
1349
1350 case ir_binop_less:
1351 emit(ir, TGSI_OPCODE_SLT, result_dst, op[0], op[1]);
1352 break;
1353 case ir_binop_greater:
1354 emit(ir, TGSI_OPCODE_SGT, result_dst, op[0], op[1]);
1355 break;
1356 case ir_binop_lequal:
1357 emit(ir, TGSI_OPCODE_SLE, result_dst, op[0], op[1]);
1358 break;
1359 case ir_binop_gequal:
1360 emit(ir, TGSI_OPCODE_SGE, result_dst, op[0], op[1]);
1361 break;
1362 case ir_binop_equal:
1363 emit(ir, TGSI_OPCODE_SEQ, result_dst, op[0], op[1]);
1364 break;
1365 case ir_binop_nequal:
1366 emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1367 break;
1368 case ir_binop_all_equal:
1369 /* "==" operator producing a scalar boolean. */
1370 if (ir->operands[0]->type->is_vector() ||
1371 ir->operands[1]->type->is_vector()) {
1372 st_src_reg temp = get_temp(glsl_version >= 130 ?
1373 glsl_type::get_instance(ir->operands[0]->type->base_type, 4, 1) :
1374 glsl_type::vec4_type);
1375 assert(ir->operands[0]->type->base_type == GLSL_TYPE_FLOAT);
1376 emit(ir, TGSI_OPCODE_SNE, st_dst_reg(temp), op[0], op[1]);
1377 emit_dp(ir, result_dst, temp, temp, vector_elements);
1378 emit(ir, TGSI_OPCODE_SEQ, result_dst, result_src, st_src_reg_for_float(0.0));
1379 } else {
1380 emit(ir, TGSI_OPCODE_SEQ, result_dst, op[0], op[1]);
1381 }
1382 break;
1383 case ir_binop_any_nequal:
1384 /* "!=" operator producing a scalar boolean. */
1385 if (ir->operands[0]->type->is_vector() ||
1386 ir->operands[1]->type->is_vector()) {
1387 st_src_reg temp = get_temp(glsl_version >= 130 ?
1388 glsl_type::get_instance(ir->operands[0]->type->base_type, 4, 1) :
1389 glsl_type::vec4_type);
1390 assert(ir->operands[0]->type->base_type == GLSL_TYPE_FLOAT);
1391 emit(ir, TGSI_OPCODE_SNE, st_dst_reg(temp), op[0], op[1]);
1392 emit_dp(ir, result_dst, temp, temp, vector_elements);
1393 emit(ir, TGSI_OPCODE_SNE, result_dst, result_src, st_src_reg_for_float(0.0));
1394 } else {
1395 emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1396 }
1397 break;
1398
1399 case ir_unop_any:
1400 assert(ir->operands[0]->type->is_vector());
1401 emit_dp(ir, result_dst, op[0], op[0],
1402 ir->operands[0]->type->vector_elements);
1403 emit(ir, TGSI_OPCODE_SNE, result_dst, result_src, st_src_reg_for_float(0.0));
1404 break;
1405
1406 case ir_binop_logic_xor:
1407 emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1408 break;
1409
1410 case ir_binop_logic_or:
1411 /* This could be a saturated add and skip the SNE. */
1412 emit(ir, TGSI_OPCODE_ADD, result_dst, op[0], op[1]);
1413 emit(ir, TGSI_OPCODE_SNE, result_dst, result_src, st_src_reg_for_float(0.0));
1414 break;
1415
1416 case ir_binop_logic_and:
1417 /* the bool args are stored as float 0.0 or 1.0, so "mul" gives us "and". */
1418 emit(ir, TGSI_OPCODE_MUL, result_dst, op[0], op[1]);
1419 break;
1420
1421 case ir_binop_dot:
1422 assert(ir->operands[0]->type->is_vector());
1423 assert(ir->operands[0]->type == ir->operands[1]->type);
1424 emit_dp(ir, result_dst, op[0], op[1],
1425 ir->operands[0]->type->vector_elements);
1426 break;
1427
1428 case ir_unop_sqrt:
1429 /* sqrt(x) = x * rsq(x). */
1430 emit_scalar(ir, TGSI_OPCODE_RSQ, result_dst, op[0]);
1431 emit(ir, TGSI_OPCODE_MUL, result_dst, result_src, op[0]);
1432 /* For incoming channels <= 0, set the result to 0. */
1433 op[0].negate = ~op[0].negate;
1434 emit(ir, TGSI_OPCODE_CMP, result_dst,
1435 op[0], result_src, st_src_reg_for_float(0.0));
1436 break;
1437 case ir_unop_rsq:
1438 emit_scalar(ir, TGSI_OPCODE_RSQ, result_dst, op[0]);
1439 break;
1440 case ir_unop_i2f:
1441 case ir_unop_b2f:
1442 if (glsl_version >= 130) {
1443 emit(ir, TGSI_OPCODE_I2F, result_dst, op[0]);
1444 break;
1445 }
1446 case ir_unop_b2i:
1447 /* Booleans are stored as integers (or floats in GLSL 1.20 and lower). */
1448 result_src = op[0];
1449 break;
1450 case ir_unop_f2i:
1451 if (glsl_version >= 130)
1452 emit(ir, TGSI_OPCODE_F2I, result_dst, op[0]);
1453 else
1454 emit(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
1455 break;
1456 case ir_unop_f2b:
1457 case ir_unop_i2b:
1458 emit(ir, TGSI_OPCODE_SNE, result_dst, op[0],
1459 st_src_reg_for_type(result_dst.type, 0));
1460 break;
1461 case ir_unop_trunc:
1462 emit(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
1463 break;
1464 case ir_unop_ceil:
1465 op[0].negate = ~op[0].negate;
1466 emit(ir, TGSI_OPCODE_FLR, result_dst, op[0]);
1467 result_src.negate = ~result_src.negate;
1468 break;
1469 case ir_unop_floor:
1470 emit(ir, TGSI_OPCODE_FLR, result_dst, op[0]);
1471 break;
1472 case ir_unop_fract:
1473 emit(ir, TGSI_OPCODE_FRC, result_dst, op[0]);
1474 break;
1475
1476 case ir_binop_min:
1477 emit(ir, TGSI_OPCODE_MIN, result_dst, op[0], op[1]);
1478 break;
1479 case ir_binop_max:
1480 emit(ir, TGSI_OPCODE_MAX, result_dst, op[0], op[1]);
1481 break;
1482 case ir_binop_pow:
1483 emit_scalar(ir, TGSI_OPCODE_POW, result_dst, op[0], op[1]);
1484 break;
1485
1486 case ir_unop_bit_not:
1487 if (glsl_version >= 130) {
1488 emit(ir, TGSI_OPCODE_NOT, result_dst, op[0]);
1489 break;
1490 }
1491 case ir_unop_u2f:
1492 if (glsl_version >= 130) {
1493 emit(ir, TGSI_OPCODE_U2F, result_dst, op[0]);
1494 break;
1495 }
1496 case ir_binop_lshift:
1497 if (glsl_version >= 130) {
1498 emit(ir, TGSI_OPCODE_SHL, result_dst, op[0]);
1499 break;
1500 }
1501 case ir_binop_rshift:
1502 if (glsl_version >= 130) {
1503 emit(ir, TGSI_OPCODE_ISHR, result_dst, op[0]);
1504 break;
1505 }
1506 case ir_binop_bit_and:
1507 if (glsl_version >= 130) {
1508 emit(ir, TGSI_OPCODE_AND, result_dst, op[0]);
1509 break;
1510 }
1511 case ir_binop_bit_xor:
1512 if (glsl_version >= 130) {
1513 emit(ir, TGSI_OPCODE_XOR, result_dst, op[0]);
1514 break;
1515 }
1516 case ir_binop_bit_or:
1517 if (glsl_version >= 130) {
1518 emit(ir, TGSI_OPCODE_OR, result_dst, op[0]);
1519 break;
1520 }
1521 case ir_unop_round_even:
1522 assert(!"GLSL 1.30 features unsupported");
1523 break;
1524
1525 case ir_quadop_vector:
1526 /* This operation should have already been handled.
1527 */
1528 assert(!"Should not get here.");
1529 break;
1530 }
1531
1532 this->result = result_src;
1533 }
1534
1535
1536 void
1537 glsl_to_tgsi_visitor::visit(ir_swizzle *ir)
1538 {
1539 st_src_reg src;
1540 int i;
1541 int swizzle[4];
1542
1543 /* Note that this is only swizzles in expressions, not those on the left
1544 * hand side of an assignment, which do write masking. See ir_assignment
1545 * for that.
1546 */
1547
1548 ir->val->accept(this);
1549 src = this->result;
1550 assert(src.file != PROGRAM_UNDEFINED);
1551
1552 for (i = 0; i < 4; i++) {
1553 if (i < ir->type->vector_elements) {
1554 switch (i) {
1555 case 0:
1556 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x);
1557 break;
1558 case 1:
1559 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y);
1560 break;
1561 case 2:
1562 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z);
1563 break;
1564 case 3:
1565 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w);
1566 break;
1567 }
1568 } else {
1569 /* If the type is smaller than a vec4, replicate the last
1570 * channel out.
1571 */
1572 swizzle[i] = swizzle[ir->type->vector_elements - 1];
1573 }
1574 }
1575
1576 src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
1577
1578 this->result = src;
1579 }
1580
1581 void
1582 glsl_to_tgsi_visitor::visit(ir_dereference_variable *ir)
1583 {
1584 variable_storage *entry = find_variable_storage(ir->var);
1585 ir_variable *var = ir->var;
1586
1587 if (!entry) {
1588 switch (var->mode) {
1589 case ir_var_uniform:
1590 entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM,
1591 var->location);
1592 this->variables.push_tail(entry);
1593 break;
1594 case ir_var_in:
1595 case ir_var_inout:
1596 /* The linker assigns locations for varyings and attributes,
1597 * including deprecated builtins (like gl_Color), user-assign
1598 * generic attributes (glBindVertexLocation), and
1599 * user-defined varyings.
1600 *
1601 * FINISHME: We would hit this path for function arguments. Fix!
1602 */
1603 assert(var->location != -1);
1604 entry = new(mem_ctx) variable_storage(var,
1605 PROGRAM_INPUT,
1606 var->location);
1607 if (this->prog->Target == GL_VERTEX_PROGRAM_ARB &&
1608 var->location >= VERT_ATTRIB_GENERIC0) {
1609 _mesa_add_attribute(this->prog->Attributes,
1610 var->name,
1611 _mesa_sizeof_glsl_type(var->type->gl_type),
1612 var->type->gl_type,
1613 var->location - VERT_ATTRIB_GENERIC0);
1614 }
1615 break;
1616 case ir_var_out:
1617 assert(var->location != -1);
1618 entry = new(mem_ctx) variable_storage(var,
1619 PROGRAM_OUTPUT,
1620 var->location);
1621 break;
1622 case ir_var_system_value:
1623 entry = new(mem_ctx) variable_storage(var,
1624 PROGRAM_SYSTEM_VALUE,
1625 var->location);
1626 break;
1627 case ir_var_auto:
1628 case ir_var_temporary:
1629 entry = new(mem_ctx) variable_storage(var, PROGRAM_TEMPORARY,
1630 this->next_temp);
1631 this->variables.push_tail(entry);
1632
1633 next_temp += type_size(var->type);
1634 break;
1635 }
1636
1637 if (!entry) {
1638 printf("Failed to make storage for %s\n", var->name);
1639 exit(1);
1640 }
1641 }
1642
1643 this->result = st_src_reg(entry->file, entry->index, var->type);
1644 if (glsl_version <= 120)
1645 this->result.type = GLSL_TYPE_FLOAT;
1646 }
1647
1648 void
1649 glsl_to_tgsi_visitor::visit(ir_dereference_array *ir)
1650 {
1651 ir_constant *index;
1652 st_src_reg src;
1653 int element_size = type_size(ir->type);
1654
1655 index = ir->array_index->constant_expression_value();
1656
1657 ir->array->accept(this);
1658 src = this->result;
1659
1660 if (index) {
1661 src.index += index->value.i[0] * element_size;
1662 } else {
1663 st_src_reg array_base = this->result;
1664 /* Variable index array dereference. It eats the "vec4" of the
1665 * base of the array and an index that offsets the Mesa register
1666 * index.
1667 */
1668 ir->array_index->accept(this);
1669
1670 st_src_reg index_reg;
1671
1672 if (element_size == 1) {
1673 index_reg = this->result;
1674 } else {
1675 index_reg = get_temp(glsl_type::float_type);
1676
1677 emit(ir, TGSI_OPCODE_MUL, st_dst_reg(index_reg),
1678 this->result, st_src_reg_for_float(element_size));
1679 }
1680
1681 src.reladdr = ralloc(mem_ctx, st_src_reg);
1682 memcpy(src.reladdr, &index_reg, sizeof(index_reg));
1683 }
1684
1685 /* If the type is smaller than a vec4, replicate the last channel out. */
1686 if (ir->type->is_scalar() || ir->type->is_vector())
1687 src.swizzle = swizzle_for_size(ir->type->vector_elements);
1688 else
1689 src.swizzle = SWIZZLE_NOOP;
1690
1691 this->result = src;
1692 }
1693
1694 void
1695 glsl_to_tgsi_visitor::visit(ir_dereference_record *ir)
1696 {
1697 unsigned int i;
1698 const glsl_type *struct_type = ir->record->type;
1699 int offset = 0;
1700
1701 ir->record->accept(this);
1702
1703 for (i = 0; i < struct_type->length; i++) {
1704 if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
1705 break;
1706 offset += type_size(struct_type->fields.structure[i].type);
1707 }
1708
1709 /* If the type is smaller than a vec4, replicate the last channel out. */
1710 if (ir->type->is_scalar() || ir->type->is_vector())
1711 this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
1712 else
1713 this->result.swizzle = SWIZZLE_NOOP;
1714
1715 this->result.index += offset;
1716 }
1717
1718 /**
1719 * We want to be careful in assignment setup to hit the actual storage
1720 * instead of potentially using a temporary like we might with the
1721 * ir_dereference handler.
1722 */
1723 static st_dst_reg
1724 get_assignment_lhs(ir_dereference *ir, glsl_to_tgsi_visitor *v)
1725 {
1726 /* The LHS must be a dereference. If the LHS is a variable indexed array
1727 * access of a vector, it must be separated into a series conditional moves
1728 * before reaching this point (see ir_vec_index_to_cond_assign).
1729 */
1730 assert(ir->as_dereference());
1731 ir_dereference_array *deref_array = ir->as_dereference_array();
1732 if (deref_array) {
1733 assert(!deref_array->array->type->is_vector());
1734 }
1735
1736 /* Use the rvalue deref handler for the most part. We'll ignore
1737 * swizzles in it and write swizzles using writemask, though.
1738 */
1739 ir->accept(v);
1740 return st_dst_reg(v->result);
1741 }
1742
1743 /**
1744 * Process the condition of a conditional assignment
1745 *
1746 * Examines the condition of a conditional assignment to generate the optimal
1747 * first operand of a \c CMP instruction. If the condition is a relational
1748 * operator with 0 (e.g., \c ir_binop_less), the value being compared will be
1749 * used as the source for the \c CMP instruction. Otherwise the comparison
1750 * is processed to a boolean result, and the boolean result is used as the
1751 * operand to the CMP instruction.
1752 */
1753 bool
1754 glsl_to_tgsi_visitor::process_move_condition(ir_rvalue *ir)
1755 {
1756 ir_rvalue *src_ir = ir;
1757 bool negate = true;
1758 bool switch_order = false;
1759
1760 ir_expression *const expr = ir->as_expression();
1761 if ((expr != NULL) && (expr->get_num_operands() == 2)) {
1762 bool zero_on_left = false;
1763
1764 if (expr->operands[0]->is_zero()) {
1765 src_ir = expr->operands[1];
1766 zero_on_left = true;
1767 } else if (expr->operands[1]->is_zero()) {
1768 src_ir = expr->operands[0];
1769 zero_on_left = false;
1770 }
1771
1772 /* a is - 0 + - 0 +
1773 * (a < 0) T F F ( a < 0) T F F
1774 * (0 < a) F F T (-a < 0) F F T
1775 * (a <= 0) T T F (-a < 0) F F T (swap order of other operands)
1776 * (0 <= a) F T T ( a < 0) T F F (swap order of other operands)
1777 * (a > 0) F F T (-a < 0) F F T
1778 * (0 > a) T F F ( a < 0) T F F
1779 * (a >= 0) F T T ( a < 0) T F F (swap order of other operands)
1780 * (0 >= a) T T F (-a < 0) F F T (swap order of other operands)
1781 *
1782 * Note that exchanging the order of 0 and 'a' in the comparison simply
1783 * means that the value of 'a' should be negated.
1784 */
1785 if (src_ir != ir) {
1786 switch (expr->operation) {
1787 case ir_binop_less:
1788 switch_order = false;
1789 negate = zero_on_left;
1790 break;
1791
1792 case ir_binop_greater:
1793 switch_order = false;
1794 negate = !zero_on_left;
1795 break;
1796
1797 case ir_binop_lequal:
1798 switch_order = true;
1799 negate = !zero_on_left;
1800 break;
1801
1802 case ir_binop_gequal:
1803 switch_order = true;
1804 negate = zero_on_left;
1805 break;
1806
1807 default:
1808 /* This isn't the right kind of comparison afterall, so make sure
1809 * the whole condition is visited.
1810 */
1811 src_ir = ir;
1812 break;
1813 }
1814 }
1815 }
1816
1817 src_ir->accept(this);
1818
1819 /* We use the TGSI_OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the
1820 * condition we produced is 0.0 or 1.0. By flipping the sign, we can
1821 * choose which value TGSI_OPCODE_CMP produces without an extra instruction
1822 * computing the condition.
1823 */
1824 if (negate)
1825 this->result.negate = ~this->result.negate;
1826
1827 return switch_order;
1828 }
1829
1830 void
1831 glsl_to_tgsi_visitor::visit(ir_assignment *ir)
1832 {
1833 st_dst_reg l;
1834 st_src_reg r;
1835 int i;
1836
1837 ir->rhs->accept(this);
1838 r = this->result;
1839
1840 l = get_assignment_lhs(ir->lhs, this);
1841
1842 /* FINISHME: This should really set to the correct maximal writemask for each
1843 * FINISHME: component written (in the loops below). This case can only
1844 * FINISHME: occur for matrices, arrays, and structures.
1845 */
1846 if (ir->write_mask == 0) {
1847 assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
1848 l.writemask = WRITEMASK_XYZW;
1849 } else if (ir->lhs->type->is_scalar() &&
1850 ir->lhs->variable_referenced()->mode == ir_var_out) {
1851 /* FINISHME: This hack makes writing to gl_FragDepth, which lives in the
1852 * FINISHME: W component of fragment shader output zero, work correctly.
1853 */
1854 l.writemask = WRITEMASK_XYZW;
1855 } else {
1856 int swizzles[4];
1857 int first_enabled_chan = 0;
1858 int rhs_chan = 0;
1859
1860 l.writemask = ir->write_mask;
1861
1862 for (int i = 0; i < 4; i++) {
1863 if (l.writemask & (1 << i)) {
1864 first_enabled_chan = GET_SWZ(r.swizzle, i);
1865 break;
1866 }
1867 }
1868
1869 /* Swizzle a small RHS vector into the channels being written.
1870 *
1871 * glsl ir treats write_mask as dictating how many channels are
1872 * present on the RHS while Mesa IR treats write_mask as just
1873 * showing which channels of the vec4 RHS get written.
1874 */
1875 for (int i = 0; i < 4; i++) {
1876 if (l.writemask & (1 << i))
1877 swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++);
1878 else
1879 swizzles[i] = first_enabled_chan;
1880 }
1881 r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1],
1882 swizzles[2], swizzles[3]);
1883 }
1884
1885 assert(l.file != PROGRAM_UNDEFINED);
1886 assert(r.file != PROGRAM_UNDEFINED);
1887
1888 if (ir->condition) {
1889 const bool switch_order = this->process_move_condition(ir->condition);
1890 st_src_reg condition = this->result;
1891
1892 for (i = 0; i < type_size(ir->lhs->type); i++) {
1893 st_src_reg l_src = st_src_reg(l);
1894 l_src.swizzle = swizzle_for_size(ir->lhs->type->vector_elements);
1895
1896 if (switch_order) {
1897 emit(ir, TGSI_OPCODE_CMP, l, condition, l_src, r);
1898 } else {
1899 emit(ir, TGSI_OPCODE_CMP, l, condition, r, l_src);
1900 }
1901
1902 l.index++;
1903 r.index++;
1904 }
1905 } else {
1906 for (i = 0; i < type_size(ir->lhs->type); i++) {
1907 emit(ir, TGSI_OPCODE_MOV, l, r);
1908 l.index++;
1909 r.index++;
1910 }
1911 }
1912 }
1913
1914
1915 void
1916 glsl_to_tgsi_visitor::visit(ir_constant *ir)
1917 {
1918 st_src_reg src;
1919 GLfloat stack_vals[4] = { 0 };
1920 gl_constant_value *values = (gl_constant_value *) stack_vals;
1921 GLenum gl_type = GL_NONE;
1922 unsigned int i;
1923
1924 /* Unfortunately, 4 floats is all we can get into
1925 * _mesa_add_unnamed_constant. So, make a temp to store an
1926 * aggregate constant and move each constant value into it. If we
1927 * get lucky, copy propagation will eliminate the extra moves.
1928 */
1929 if (ir->type->base_type == GLSL_TYPE_STRUCT) {
1930 st_src_reg temp_base = get_temp(ir->type);
1931 st_dst_reg temp = st_dst_reg(temp_base);
1932
1933 foreach_iter(exec_list_iterator, iter, ir->components) {
1934 ir_constant *field_value = (ir_constant *)iter.get();
1935 int size = type_size(field_value->type);
1936
1937 assert(size > 0);
1938
1939 field_value->accept(this);
1940 src = this->result;
1941
1942 for (i = 0; i < (unsigned int)size; i++) {
1943 emit(ir, TGSI_OPCODE_MOV, temp, src);
1944
1945 src.index++;
1946 temp.index++;
1947 }
1948 }
1949 this->result = temp_base;
1950 return;
1951 }
1952
1953 if (ir->type->is_array()) {
1954 st_src_reg temp_base = get_temp(ir->type);
1955 st_dst_reg temp = st_dst_reg(temp_base);
1956 int size = type_size(ir->type->fields.array);
1957
1958 assert(size > 0);
1959
1960 for (i = 0; i < ir->type->length; i++) {
1961 ir->array_elements[i]->accept(this);
1962 src = this->result;
1963 for (int j = 0; j < size; j++) {
1964 emit(ir, TGSI_OPCODE_MOV, temp, src);
1965
1966 src.index++;
1967 temp.index++;
1968 }
1969 }
1970 this->result = temp_base;
1971 return;
1972 }
1973
1974 if (ir->type->is_matrix()) {
1975 st_src_reg mat = get_temp(ir->type);
1976 st_dst_reg mat_column = st_dst_reg(mat);
1977
1978 for (i = 0; i < ir->type->matrix_columns; i++) {
1979 assert(ir->type->base_type == GLSL_TYPE_FLOAT);
1980 values = (gl_constant_value *) &ir->value.f[i * ir->type->vector_elements];
1981
1982 src = st_src_reg(PROGRAM_CONSTANT, -1, ir->type->base_type);
1983 src.index = _mesa_add_typed_unnamed_constant(this->prog->Parameters,
1984 values,
1985 ir->type->vector_elements,
1986 GL_FLOAT,
1987 &src.swizzle);
1988 emit(ir, TGSI_OPCODE_MOV, mat_column, src);
1989
1990 mat_column.index++;
1991 }
1992
1993 this->result = mat;
1994 return;
1995 }
1996
1997 src.file = PROGRAM_CONSTANT;
1998 switch (ir->type->base_type) {
1999 case GLSL_TYPE_FLOAT:
2000 gl_type = GL_FLOAT;
2001 for (i = 0; i < ir->type->vector_elements; i++) {
2002 values[i].f = ir->value.f[i];
2003 }
2004 break;
2005 case GLSL_TYPE_UINT:
2006 gl_type = glsl_version >= 130 ? GL_UNSIGNED_INT : GL_FLOAT;
2007 for (i = 0; i < ir->type->vector_elements; i++) {
2008 if (glsl_version >= 130)
2009 values[i].u = ir->value.u[i];
2010 else
2011 values[i].f = ir->value.u[i];
2012 }
2013 break;
2014 case GLSL_TYPE_INT:
2015 gl_type = glsl_version >= 130 ? GL_INT : GL_FLOAT;
2016 for (i = 0; i < ir->type->vector_elements; i++) {
2017 if (glsl_version >= 130)
2018 values[i].i = ir->value.i[i];
2019 else
2020 values[i].f = ir->value.i[i];
2021 }
2022 break;
2023 case GLSL_TYPE_BOOL:
2024 gl_type = glsl_version >= 130 ? GL_BOOL : GL_FLOAT;
2025 for (i = 0; i < ir->type->vector_elements; i++) {
2026 if (glsl_version >= 130)
2027 values[i].b = ir->value.b[i];
2028 else
2029 values[i].f = ir->value.b[i];
2030 }
2031 break;
2032 default:
2033 assert(!"Non-float/uint/int/bool constant");
2034 }
2035
2036 this->result = st_src_reg(PROGRAM_CONSTANT, -1, ir->type);
2037 this->result.index = _mesa_add_typed_unnamed_constant(this->prog->Parameters,
2038 values, ir->type->vector_elements, gl_type,
2039 &this->result.swizzle);
2040 }
2041
2042 function_entry *
2043 glsl_to_tgsi_visitor::get_function_signature(ir_function_signature *sig)
2044 {
2045 function_entry *entry;
2046
2047 foreach_iter(exec_list_iterator, iter, this->function_signatures) {
2048 entry = (function_entry *)iter.get();
2049
2050 if (entry->sig == sig)
2051 return entry;
2052 }
2053
2054 entry = ralloc(mem_ctx, function_entry);
2055 entry->sig = sig;
2056 entry->sig_id = this->next_signature_id++;
2057 entry->bgn_inst = NULL;
2058
2059 /* Allocate storage for all the parameters. */
2060 foreach_iter(exec_list_iterator, iter, sig->parameters) {
2061 ir_variable *param = (ir_variable *)iter.get();
2062 variable_storage *storage;
2063
2064 storage = find_variable_storage(param);
2065 assert(!storage);
2066
2067 storage = new(mem_ctx) variable_storage(param, PROGRAM_TEMPORARY,
2068 this->next_temp);
2069 this->variables.push_tail(storage);
2070
2071 this->next_temp += type_size(param->type);
2072 }
2073
2074 if (!sig->return_type->is_void()) {
2075 entry->return_reg = get_temp(sig->return_type);
2076 } else {
2077 entry->return_reg = undef_src;
2078 }
2079
2080 this->function_signatures.push_tail(entry);
2081 return entry;
2082 }
2083
2084 void
2085 glsl_to_tgsi_visitor::visit(ir_call *ir)
2086 {
2087 glsl_to_tgsi_instruction *call_inst;
2088 ir_function_signature *sig = ir->get_callee();
2089 function_entry *entry = get_function_signature(sig);
2090 int i;
2091
2092 /* Process in parameters. */
2093 exec_list_iterator sig_iter = sig->parameters.iterator();
2094 foreach_iter(exec_list_iterator, iter, *ir) {
2095 ir_rvalue *param_rval = (ir_rvalue *)iter.get();
2096 ir_variable *param = (ir_variable *)sig_iter.get();
2097
2098 if (param->mode == ir_var_in ||
2099 param->mode == ir_var_inout) {
2100 variable_storage *storage = find_variable_storage(param);
2101 assert(storage);
2102
2103 param_rval->accept(this);
2104 st_src_reg r = this->result;
2105
2106 st_dst_reg l;
2107 l.file = storage->file;
2108 l.index = storage->index;
2109 l.reladdr = NULL;
2110 l.writemask = WRITEMASK_XYZW;
2111 l.cond_mask = COND_TR;
2112
2113 for (i = 0; i < type_size(param->type); i++) {
2114 emit(ir, TGSI_OPCODE_MOV, l, r);
2115 l.index++;
2116 r.index++;
2117 }
2118 }
2119
2120 sig_iter.next();
2121 }
2122 assert(!sig_iter.has_next());
2123
2124 /* Emit call instruction */
2125 call_inst = emit(ir, TGSI_OPCODE_CAL);
2126 call_inst->function = entry;
2127
2128 /* Process out parameters. */
2129 sig_iter = sig->parameters.iterator();
2130 foreach_iter(exec_list_iterator, iter, *ir) {
2131 ir_rvalue *param_rval = (ir_rvalue *)iter.get();
2132 ir_variable *param = (ir_variable *)sig_iter.get();
2133
2134 if (param->mode == ir_var_out ||
2135 param->mode == ir_var_inout) {
2136 variable_storage *storage = find_variable_storage(param);
2137 assert(storage);
2138
2139 st_src_reg r;
2140 r.file = storage->file;
2141 r.index = storage->index;
2142 r.reladdr = NULL;
2143 r.swizzle = SWIZZLE_NOOP;
2144 r.negate = 0;
2145
2146 param_rval->accept(this);
2147 st_dst_reg l = st_dst_reg(this->result);
2148
2149 for (i = 0; i < type_size(param->type); i++) {
2150 emit(ir, TGSI_OPCODE_MOV, l, r);
2151 l.index++;
2152 r.index++;
2153 }
2154 }
2155
2156 sig_iter.next();
2157 }
2158 assert(!sig_iter.has_next());
2159
2160 /* Process return value. */
2161 this->result = entry->return_reg;
2162 }
2163
2164 void
2165 glsl_to_tgsi_visitor::visit(ir_texture *ir)
2166 {
2167 st_src_reg result_src, coord, lod_info, projector, dx, dy;
2168 st_dst_reg result_dst, coord_dst;
2169 glsl_to_tgsi_instruction *inst = NULL;
2170 unsigned opcode = TGSI_OPCODE_NOP;
2171
2172 ir->coordinate->accept(this);
2173
2174 /* Put our coords in a temp. We'll need to modify them for shadow,
2175 * projection, or LOD, so the only case we'd use it as is is if
2176 * we're doing plain old texturing. Mesa IR optimization should
2177 * handle cleaning up our mess in that case.
2178 */
2179 coord = get_temp(glsl_type::vec4_type);
2180 coord_dst = st_dst_reg(coord);
2181 emit(ir, TGSI_OPCODE_MOV, coord_dst, this->result);
2182
2183 if (ir->projector) {
2184 ir->projector->accept(this);
2185 projector = this->result;
2186 }
2187
2188 /* Storage for our result. Ideally for an assignment we'd be using
2189 * the actual storage for the result here, instead.
2190 */
2191 result_src = get_temp(glsl_type::vec4_type);
2192 result_dst = st_dst_reg(result_src);
2193
2194 switch (ir->op) {
2195 case ir_tex:
2196 opcode = TGSI_OPCODE_TEX;
2197 break;
2198 case ir_txb:
2199 opcode = TGSI_OPCODE_TXB;
2200 ir->lod_info.bias->accept(this);
2201 lod_info = this->result;
2202 break;
2203 case ir_txl:
2204 opcode = TGSI_OPCODE_TXL;
2205 ir->lod_info.lod->accept(this);
2206 lod_info = this->result;
2207 break;
2208 case ir_txd:
2209 opcode = TGSI_OPCODE_TXD;
2210 ir->lod_info.grad.dPdx->accept(this);
2211 dx = this->result;
2212 ir->lod_info.grad.dPdy->accept(this);
2213 dy = this->result;
2214 break;
2215 case ir_txf: /* TODO: use TGSI_OPCODE_TXF here */
2216 assert(!"GLSL 1.30 features unsupported");
2217 break;
2218 }
2219
2220 if (ir->projector) {
2221 if (opcode == TGSI_OPCODE_TEX) {
2222 /* Slot the projector in as the last component of the coord. */
2223 coord_dst.writemask = WRITEMASK_W;
2224 emit(ir, TGSI_OPCODE_MOV, coord_dst, projector);
2225 coord_dst.writemask = WRITEMASK_XYZW;
2226 opcode = TGSI_OPCODE_TXP;
2227 } else {
2228 st_src_reg coord_w = coord;
2229 coord_w.swizzle = SWIZZLE_WWWW;
2230
2231 /* For the other TEX opcodes there's no projective version
2232 * since the last slot is taken up by LOD info. Do the
2233 * projective divide now.
2234 */
2235 coord_dst.writemask = WRITEMASK_W;
2236 emit(ir, TGSI_OPCODE_RCP, coord_dst, projector);
2237
2238 /* In the case where we have to project the coordinates "by hand,"
2239 * the shadow comparator value must also be projected.
2240 */
2241 st_src_reg tmp_src = coord;
2242 if (ir->shadow_comparitor) {
2243 /* Slot the shadow value in as the second to last component of the
2244 * coord.
2245 */
2246 ir->shadow_comparitor->accept(this);
2247
2248 tmp_src = get_temp(glsl_type::vec4_type);
2249 st_dst_reg tmp_dst = st_dst_reg(tmp_src);
2250
2251 tmp_dst.writemask = WRITEMASK_Z;
2252 emit(ir, TGSI_OPCODE_MOV, tmp_dst, this->result);
2253
2254 tmp_dst.writemask = WRITEMASK_XY;
2255 emit(ir, TGSI_OPCODE_MOV, tmp_dst, coord);
2256 }
2257
2258 coord_dst.writemask = WRITEMASK_XYZ;
2259 emit(ir, TGSI_OPCODE_MUL, coord_dst, tmp_src, coord_w);
2260
2261 coord_dst.writemask = WRITEMASK_XYZW;
2262 coord.swizzle = SWIZZLE_XYZW;
2263 }
2264 }
2265
2266 /* If projection is done and the opcode is not TGSI_OPCODE_TXP, then the shadow
2267 * comparator was put in the correct place (and projected) by the code,
2268 * above, that handles by-hand projection.
2269 */
2270 if (ir->shadow_comparitor && (!ir->projector || opcode == TGSI_OPCODE_TXP)) {
2271 /* Slot the shadow value in as the second to last component of the
2272 * coord.
2273 */
2274 ir->shadow_comparitor->accept(this);
2275 coord_dst.writemask = WRITEMASK_Z;
2276 emit(ir, TGSI_OPCODE_MOV, coord_dst, this->result);
2277 coord_dst.writemask = WRITEMASK_XYZW;
2278 }
2279
2280 if (opcode == TGSI_OPCODE_TXL || opcode == TGSI_OPCODE_TXB) {
2281 /* TGSI stores LOD or LOD bias in the last channel of the coords. */
2282 coord_dst.writemask = WRITEMASK_W;
2283 emit(ir, TGSI_OPCODE_MOV, coord_dst, lod_info);
2284 coord_dst.writemask = WRITEMASK_XYZW;
2285 }
2286
2287 if (opcode == TGSI_OPCODE_TXD)
2288 inst = emit(ir, opcode, result_dst, coord, dx, dy);
2289 else
2290 inst = emit(ir, opcode, result_dst, coord);
2291
2292 if (ir->shadow_comparitor)
2293 inst->tex_shadow = GL_TRUE;
2294
2295 inst->sampler = _mesa_get_sampler_uniform_value(ir->sampler,
2296 this->shader_program,
2297 this->prog);
2298
2299 const glsl_type *sampler_type = ir->sampler->type;
2300
2301 switch (sampler_type->sampler_dimensionality) {
2302 case GLSL_SAMPLER_DIM_1D:
2303 inst->tex_target = (sampler_type->sampler_array)
2304 ? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX;
2305 break;
2306 case GLSL_SAMPLER_DIM_2D:
2307 inst->tex_target = (sampler_type->sampler_array)
2308 ? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX;
2309 break;
2310 case GLSL_SAMPLER_DIM_3D:
2311 inst->tex_target = TEXTURE_3D_INDEX;
2312 break;
2313 case GLSL_SAMPLER_DIM_CUBE:
2314 inst->tex_target = TEXTURE_CUBE_INDEX;
2315 break;
2316 case GLSL_SAMPLER_DIM_RECT:
2317 inst->tex_target = TEXTURE_RECT_INDEX;
2318 break;
2319 case GLSL_SAMPLER_DIM_BUF:
2320 assert(!"FINISHME: Implement ARB_texture_buffer_object");
2321 break;
2322 default:
2323 assert(!"Should not get here.");
2324 }
2325
2326 this->result = result_src;
2327 }
2328
2329 void
2330 glsl_to_tgsi_visitor::visit(ir_return *ir)
2331 {
2332 if (ir->get_value()) {
2333 st_dst_reg l;
2334 int i;
2335
2336 assert(current_function);
2337
2338 ir->get_value()->accept(this);
2339 st_src_reg r = this->result;
2340
2341 l = st_dst_reg(current_function->return_reg);
2342
2343 for (i = 0; i < type_size(current_function->sig->return_type); i++) {
2344 emit(ir, TGSI_OPCODE_MOV, l, r);
2345 l.index++;
2346 r.index++;
2347 }
2348 }
2349
2350 emit(ir, TGSI_OPCODE_RET);
2351 }
2352
2353 void
2354 glsl_to_tgsi_visitor::visit(ir_discard *ir)
2355 {
2356 struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog;
2357
2358 if (ir->condition) {
2359 ir->condition->accept(this);
2360 this->result.negate = ~this->result.negate;
2361 emit(ir, TGSI_OPCODE_KIL, undef_dst, this->result);
2362 } else {
2363 emit(ir, TGSI_OPCODE_KILP);
2364 }
2365
2366 fp->UsesKill = GL_TRUE;
2367 }
2368
2369 void
2370 glsl_to_tgsi_visitor::visit(ir_if *ir)
2371 {
2372 glsl_to_tgsi_instruction *cond_inst, *if_inst, *else_inst = NULL;
2373 glsl_to_tgsi_instruction *prev_inst;
2374
2375 prev_inst = (glsl_to_tgsi_instruction *)this->instructions.get_tail();
2376
2377 ir->condition->accept(this);
2378 assert(this->result.file != PROGRAM_UNDEFINED);
2379
2380 if (this->options->EmitCondCodes) {
2381 cond_inst = (glsl_to_tgsi_instruction *)this->instructions.get_tail();
2382
2383 /* See if we actually generated any instruction for generating
2384 * the condition. If not, then cook up a move to a temp so we
2385 * have something to set cond_update on.
2386 */
2387 if (cond_inst == prev_inst) {
2388 st_src_reg temp = get_temp(glsl_type::bool_type);
2389 cond_inst = emit(ir->condition, TGSI_OPCODE_MOV, st_dst_reg(temp), result);
2390 }
2391 cond_inst->cond_update = GL_TRUE;
2392
2393 if_inst = emit(ir->condition, TGSI_OPCODE_IF);
2394 if_inst->dst.cond_mask = COND_NE;
2395 } else {
2396 if_inst = emit(ir->condition, TGSI_OPCODE_IF, undef_dst, this->result);
2397 }
2398
2399 this->instructions.push_tail(if_inst);
2400
2401 visit_exec_list(&ir->then_instructions, this);
2402
2403 if (!ir->else_instructions.is_empty()) {
2404 else_inst = emit(ir->condition, TGSI_OPCODE_ELSE);
2405 visit_exec_list(&ir->else_instructions, this);
2406 }
2407
2408 if_inst = emit(ir->condition, TGSI_OPCODE_ENDIF);
2409 }
2410
2411 glsl_to_tgsi_visitor::glsl_to_tgsi_visitor()
2412 {
2413 result.file = PROGRAM_UNDEFINED;
2414 next_temp = 1;
2415 next_signature_id = 1;
2416 current_function = NULL;
2417 num_address_regs = 0;
2418 indirect_addr_temps = false;
2419 indirect_addr_consts = false;
2420 mem_ctx = ralloc_context(NULL);
2421 }
2422
2423 glsl_to_tgsi_visitor::~glsl_to_tgsi_visitor()
2424 {
2425 ralloc_free(mem_ctx);
2426 }
2427
2428 extern "C" void free_glsl_to_tgsi_visitor(glsl_to_tgsi_visitor *v)
2429 {
2430 delete v;
2431 }
2432
2433
2434 /**
2435 * Count resources used by the given gpu program (number of texture
2436 * samplers, etc).
2437 */
2438 static void
2439 count_resources(glsl_to_tgsi_visitor *v, gl_program *prog)
2440 {
2441 v->samplers_used = 0;
2442
2443 foreach_iter(exec_list_iterator, iter, v->instructions) {
2444 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
2445
2446 if (is_tex_instruction(inst->op)) {
2447 v->samplers_used |= 1 << inst->sampler;
2448
2449 prog->SamplerTargets[inst->sampler] =
2450 (gl_texture_index)inst->tex_target;
2451 if (inst->tex_shadow) {
2452 prog->ShadowSamplers |= 1 << inst->sampler;
2453 }
2454 }
2455 }
2456
2457 prog->SamplersUsed = v->samplers_used;
2458 _mesa_update_shader_textures_used(prog);
2459 }
2460
2461
2462 /**
2463 * Check if the given vertex/fragment/shader program is within the
2464 * resource limits of the context (number of texture units, etc).
2465 * If any of those checks fail, record a linker error.
2466 *
2467 * XXX more checks are needed...
2468 */
2469 static void
2470 check_resources(const struct gl_context *ctx,
2471 struct gl_shader_program *shader_program,
2472 glsl_to_tgsi_visitor *prog,
2473 struct gl_program *proginfo)
2474 {
2475 switch (proginfo->Target) {
2476 case GL_VERTEX_PROGRAM_ARB:
2477 if (_mesa_bitcount(prog->samplers_used) >
2478 ctx->Const.MaxVertexTextureImageUnits) {
2479 fail_link(shader_program, "Too many vertex shader texture samplers");
2480 }
2481 if (proginfo->Parameters->NumParameters > MAX_UNIFORMS) {
2482 fail_link(shader_program, "Too many vertex shader constants");
2483 }
2484 break;
2485 case MESA_GEOMETRY_PROGRAM:
2486 if (_mesa_bitcount(prog->samplers_used) >
2487 ctx->Const.MaxGeometryTextureImageUnits) {
2488 fail_link(shader_program, "Too many geometry shader texture samplers");
2489 }
2490 if (proginfo->Parameters->NumParameters >
2491 MAX_GEOMETRY_UNIFORM_COMPONENTS / 4) {
2492 fail_link(shader_program, "Too many geometry shader constants");
2493 }
2494 break;
2495 case GL_FRAGMENT_PROGRAM_ARB:
2496 if (_mesa_bitcount(prog->samplers_used) >
2497 ctx->Const.MaxTextureImageUnits) {
2498 fail_link(shader_program, "Too many fragment shader texture samplers");
2499 }
2500 if (proginfo->Parameters->NumParameters > MAX_UNIFORMS) {
2501 fail_link(shader_program, "Too many fragment shader constants");
2502 }
2503 break;
2504 default:
2505 _mesa_problem(ctx, "unexpected program type in check_resources()");
2506 }
2507 }
2508
2509
2510
2511 struct uniform_sort {
2512 struct gl_uniform *u;
2513 int pos;
2514 };
2515
2516 /* The shader_program->Uniforms list is almost sorted in increasing
2517 * uniform->{Frag,Vert}Pos locations, but not quite when there are
2518 * uniforms shared between targets. We need to add parameters in
2519 * increasing order for the targets.
2520 */
2521 static int
2522 sort_uniforms(const void *a, const void *b)
2523 {
2524 struct uniform_sort *u1 = (struct uniform_sort *)a;
2525 struct uniform_sort *u2 = (struct uniform_sort *)b;
2526
2527 return u1->pos - u2->pos;
2528 }
2529
2530 /* Add the uniforms to the parameters. The linker chose locations
2531 * in our parameters lists (which weren't created yet), which the
2532 * uniforms code will use to poke values into our parameters list
2533 * when uniforms are updated.
2534 */
2535 static void
2536 add_uniforms_to_parameters_list(struct gl_shader_program *shader_program,
2537 struct gl_shader *shader,
2538 struct gl_program *prog)
2539 {
2540 unsigned int i;
2541 unsigned int next_sampler = 0, num_uniforms = 0;
2542 struct uniform_sort *sorted_uniforms;
2543
2544 sorted_uniforms = ralloc_array(NULL, struct uniform_sort,
2545 shader_program->Uniforms->NumUniforms);
2546
2547 for (i = 0; i < shader_program->Uniforms->NumUniforms; i++) {
2548 struct gl_uniform *uniform = shader_program->Uniforms->Uniforms + i;
2549 int parameter_index = -1;
2550
2551 switch (shader->Type) {
2552 case GL_VERTEX_SHADER:
2553 parameter_index = uniform->VertPos;
2554 break;
2555 case GL_FRAGMENT_SHADER:
2556 parameter_index = uniform->FragPos;
2557 break;
2558 case GL_GEOMETRY_SHADER:
2559 parameter_index = uniform->GeomPos;
2560 break;
2561 }
2562
2563 /* Only add uniforms used in our target. */
2564 if (parameter_index != -1) {
2565 sorted_uniforms[num_uniforms].pos = parameter_index;
2566 sorted_uniforms[num_uniforms].u = uniform;
2567 num_uniforms++;
2568 }
2569 }
2570
2571 qsort(sorted_uniforms, num_uniforms, sizeof(struct uniform_sort),
2572 sort_uniforms);
2573
2574 for (i = 0; i < num_uniforms; i++) {
2575 struct gl_uniform *uniform = sorted_uniforms[i].u;
2576 int parameter_index = sorted_uniforms[i].pos;
2577 const glsl_type *type = uniform->Type;
2578 unsigned int size;
2579
2580 if (type->is_vector() ||
2581 type->is_scalar()) {
2582 size = type->vector_elements;
2583 } else {
2584 size = type_size(type) * 4;
2585 }
2586
2587 gl_register_file file;
2588 if (type->is_sampler() ||
2589 (type->is_array() && type->fields.array->is_sampler())) {
2590 file = PROGRAM_SAMPLER;
2591 } else {
2592 file = PROGRAM_UNIFORM;
2593 }
2594
2595 GLint index = _mesa_lookup_parameter_index(prog->Parameters, -1,
2596 uniform->Name);
2597
2598 if (index < 0) {
2599 index = _mesa_add_parameter(prog->Parameters, file,
2600 uniform->Name, size, type->gl_type,
2601 NULL, NULL, 0x0);
2602
2603 /* Sampler uniform values are stored in prog->SamplerUnits,
2604 * and the entry in that array is selected by this index we
2605 * store in ParameterValues[].
2606 */
2607 if (file == PROGRAM_SAMPLER) {
2608 for (unsigned int j = 0; j < size / 4; j++)
2609 prog->Parameters->ParameterValues[index + j][0].f = next_sampler++;
2610 }
2611
2612 /* The location chosen in the Parameters list here (returned
2613 * from _mesa_add_uniform) has to match what the linker chose.
2614 */
2615 if (index != parameter_index) {
2616 fail_link(shader_program, "Allocation of uniform `%s' to target "
2617 "failed (%d vs %d)\n",
2618 uniform->Name, index, parameter_index);
2619 }
2620 }
2621 }
2622
2623 ralloc_free(sorted_uniforms);
2624 }
2625
2626 static void
2627 set_uniform_initializer(struct gl_context *ctx, void *mem_ctx,
2628 struct gl_shader_program *shader_program,
2629 const char *name, const glsl_type *type,
2630 ir_constant *val)
2631 {
2632 if (type->is_record()) {
2633 ir_constant *field_constant;
2634
2635 field_constant = (ir_constant *)val->components.get_head();
2636
2637 for (unsigned int i = 0; i < type->length; i++) {
2638 const glsl_type *field_type = type->fields.structure[i].type;
2639 const char *field_name = ralloc_asprintf(mem_ctx, "%s.%s", name,
2640 type->fields.structure[i].name);
2641 set_uniform_initializer(ctx, mem_ctx, shader_program, field_name,
2642 field_type, field_constant);
2643 field_constant = (ir_constant *)field_constant->next;
2644 }
2645 return;
2646 }
2647
2648 int loc = _mesa_get_uniform_location(ctx, shader_program, name);
2649
2650 if (loc == -1) {
2651 fail_link(shader_program,
2652 "Couldn't find uniform for initializer %s\n", name);
2653 return;
2654 }
2655
2656 for (unsigned int i = 0; i < (type->is_array() ? type->length : 1); i++) {
2657 ir_constant *element;
2658 const glsl_type *element_type;
2659 if (type->is_array()) {
2660 element = val->array_elements[i];
2661 element_type = type->fields.array;
2662 } else {
2663 element = val;
2664 element_type = type;
2665 }
2666
2667 void *values;
2668
2669 if (element_type->base_type == GLSL_TYPE_BOOL) {
2670 int *conv = ralloc_array(mem_ctx, int, element_type->components());
2671 for (unsigned int j = 0; j < element_type->components(); j++) {
2672 conv[j] = element->value.b[j];
2673 }
2674 values = (void *)conv;
2675 element_type = glsl_type::get_instance(GLSL_TYPE_INT,
2676 element_type->vector_elements,
2677 1);
2678 } else {
2679 values = &element->value;
2680 }
2681
2682 if (element_type->is_matrix()) {
2683 _mesa_uniform_matrix(ctx, shader_program,
2684 element_type->matrix_columns,
2685 element_type->vector_elements,
2686 loc, 1, GL_FALSE, (GLfloat *)values);
2687 loc += element_type->matrix_columns;
2688 } else {
2689 _mesa_uniform(ctx, shader_program, loc, element_type->matrix_columns,
2690 values, element_type->gl_type);
2691 loc += type_size(element_type);
2692 }
2693 }
2694 }
2695
2696 static void
2697 set_uniform_initializers(struct gl_context *ctx,
2698 struct gl_shader_program *shader_program)
2699 {
2700 void *mem_ctx = NULL;
2701
2702 for (unsigned int i = 0; i < MESA_SHADER_TYPES; i++) {
2703 struct gl_shader *shader = shader_program->_LinkedShaders[i];
2704
2705 if (shader == NULL)
2706 continue;
2707
2708 foreach_iter(exec_list_iterator, iter, *shader->ir) {
2709 ir_instruction *ir = (ir_instruction *)iter.get();
2710 ir_variable *var = ir->as_variable();
2711
2712 if (!var || var->mode != ir_var_uniform || !var->constant_value)
2713 continue;
2714
2715 if (!mem_ctx)
2716 mem_ctx = ralloc_context(NULL);
2717
2718 set_uniform_initializer(ctx, mem_ctx, shader_program, var->name,
2719 var->type, var->constant_value);
2720 }
2721 }
2722
2723 ralloc_free(mem_ctx);
2724 }
2725
2726 /*
2727 * Scan/rewrite program to remove reads of custom (output) registers.
2728 * The passed type has to be either PROGRAM_OUTPUT or PROGRAM_VARYING
2729 * (for vertex shaders).
2730 * In GLSL shaders, varying vars can be read and written.
2731 * On some hardware, trying to read an output register causes trouble.
2732 * So, rewrite the program to use a temporary register in this case.
2733 *
2734 * Based on _mesa_remove_output_reads from programopt.c.
2735 */
2736 void
2737 glsl_to_tgsi_visitor::remove_output_reads(gl_register_file type)
2738 {
2739 GLuint i;
2740 GLint outputMap[VERT_RESULT_MAX];
2741 GLint outputTypes[VERT_RESULT_MAX];
2742 GLuint numVaryingReads = 0;
2743 GLboolean usedTemps[MAX_PROGRAM_TEMPS];
2744 GLuint firstTemp = 0;
2745
2746 _mesa_find_used_registers(prog, PROGRAM_TEMPORARY,
2747 usedTemps, MAX_PROGRAM_TEMPS);
2748
2749 assert(type == PROGRAM_VARYING || type == PROGRAM_OUTPUT);
2750 assert(prog->Target == GL_VERTEX_PROGRAM_ARB || type != PROGRAM_VARYING);
2751
2752 for (i = 0; i < VERT_RESULT_MAX; i++)
2753 outputMap[i] = -1;
2754
2755 /* look for instructions which read from varying vars */
2756 foreach_iter(exec_list_iterator, iter, this->instructions) {
2757 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
2758 const GLuint numSrc = num_inst_src_regs(inst->op);
2759 GLuint j;
2760 for (j = 0; j < numSrc; j++) {
2761 if (inst->src[j].file == type) {
2762 /* replace the read with a temp reg */
2763 const GLuint var = inst->src[j].index;
2764 if (outputMap[var] == -1) {
2765 numVaryingReads++;
2766 outputMap[var] = _mesa_find_free_register(usedTemps,
2767 MAX_PROGRAM_TEMPS,
2768 firstTemp);
2769 outputTypes[var] = inst->src[j].type;
2770 firstTemp = outputMap[var] + 1;
2771 }
2772 inst->src[j].file = PROGRAM_TEMPORARY;
2773 inst->src[j].index = outputMap[var];
2774 }
2775 }
2776 }
2777
2778 if (numVaryingReads == 0)
2779 return; /* nothing to be done */
2780
2781 /* look for instructions which write to the varying vars identified above */
2782 foreach_iter(exec_list_iterator, iter, this->instructions) {
2783 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
2784 if (inst->dst.file == type && outputMap[inst->dst.index] >= 0) {
2785 /* change inst to write to the temp reg, instead of the varying */
2786 inst->dst.file = PROGRAM_TEMPORARY;
2787 inst->dst.index = outputMap[inst->dst.index];
2788 }
2789 }
2790
2791 /* insert new MOV instructions at the end */
2792 for (i = 0; i < VERT_RESULT_MAX; i++) {
2793 if (outputMap[i] >= 0) {
2794 /* MOV VAR[i], TEMP[tmp]; */
2795 st_src_reg src = st_src_reg(PROGRAM_TEMPORARY, outputMap[i], outputTypes[i]);
2796 st_dst_reg dst = st_dst_reg(type, WRITEMASK_XYZW, outputTypes[i]);
2797 dst.index = i;
2798 this->emit(NULL, TGSI_OPCODE_MOV, dst, src);
2799 }
2800 }
2801 }
2802
2803 /**
2804 * Returns the mask of channels (bitmask of WRITEMASK_X,Y,Z,W) which
2805 * are read from the given src in this instruction
2806 */
2807 static int
2808 get_src_arg_mask(st_dst_reg dst, st_src_reg src)
2809 {
2810 int read_mask = 0, comp;
2811
2812 /* Now, given the src swizzle and the written channels, find which
2813 * components are actually read
2814 */
2815 for (comp = 0; comp < 4; ++comp) {
2816 const unsigned coord = GET_SWZ(src.swizzle, comp);
2817 ASSERT(coord < 4);
2818 if (dst.writemask & (1 << comp) && coord <= SWIZZLE_W)
2819 read_mask |= 1 << coord;
2820 }
2821
2822 return read_mask;
2823 }
2824
2825 /**
2826 * This pass replaces CMP T0, T1 T2 T0 with MOV T0, T2 when the CMP
2827 * instruction is the first instruction to write to register T0. There are
2828 * several lowering passes done in GLSL IR (e.g. branches and
2829 * relative addressing) that create a large number of conditional assignments
2830 * that ir_to_mesa converts to CMP instructions like the one mentioned above.
2831 *
2832 * Here is why this conversion is safe:
2833 * CMP T0, T1 T2 T0 can be expanded to:
2834 * if (T1 < 0.0)
2835 * MOV T0, T2;
2836 * else
2837 * MOV T0, T0;
2838 *
2839 * If (T1 < 0.0) evaluates to true then our replacement MOV T0, T2 is the same
2840 * as the original program. If (T1 < 0.0) evaluates to false, executing
2841 * MOV T0, T0 will store a garbage value in T0 since T0 is uninitialized.
2842 * Therefore, it doesn't matter that we are replacing MOV T0, T0 with MOV T0, T2
2843 * because any instruction that was going to read from T0 after this was going
2844 * to read a garbage value anyway.
2845 */
2846 void
2847 glsl_to_tgsi_visitor::simplify_cmp(void)
2848 {
2849 unsigned tempWrites[MAX_PROGRAM_TEMPS];
2850 unsigned outputWrites[MAX_PROGRAM_OUTPUTS];
2851
2852 memset(tempWrites, 0, sizeof(tempWrites));
2853 memset(outputWrites, 0, sizeof(outputWrites));
2854
2855 foreach_iter(exec_list_iterator, iter, this->instructions) {
2856 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
2857 unsigned prevWriteMask = 0;
2858
2859 /* Give up if we encounter relative addressing or flow control. */
2860 if (inst->dst.reladdr ||
2861 tgsi_get_opcode_info(inst->op)->is_branch ||
2862 inst->op == TGSI_OPCODE_BGNSUB ||
2863 inst->op == TGSI_OPCODE_CONT ||
2864 inst->op == TGSI_OPCODE_END ||
2865 inst->op == TGSI_OPCODE_ENDSUB ||
2866 inst->op == TGSI_OPCODE_RET) {
2867 return;
2868 }
2869
2870 if (inst->dst.file == PROGRAM_OUTPUT) {
2871 assert(inst->dst.index < MAX_PROGRAM_OUTPUTS);
2872 prevWriteMask = outputWrites[inst->dst.index];
2873 outputWrites[inst->dst.index] |= inst->dst.writemask;
2874 } else if (inst->dst.file == PROGRAM_TEMPORARY) {
2875 assert(inst->dst.index < MAX_PROGRAM_TEMPS);
2876 prevWriteMask = tempWrites[inst->dst.index];
2877 tempWrites[inst->dst.index] |= inst->dst.writemask;
2878 }
2879
2880 /* For a CMP to be considered a conditional write, the destination
2881 * register and source register two must be the same. */
2882 if (inst->op == TGSI_OPCODE_CMP
2883 && !(inst->dst.writemask & prevWriteMask)
2884 && inst->src[2].file == inst->dst.file
2885 && inst->src[2].index == inst->dst.index
2886 && inst->dst.writemask == get_src_arg_mask(inst->dst, inst->src[2])) {
2887
2888 inst->op = TGSI_OPCODE_MOV;
2889 inst->src[0] = inst->src[1];
2890 }
2891 }
2892 }
2893
2894 /* Replaces all references to a temporary register index with another index. */
2895 void
2896 glsl_to_tgsi_visitor::rename_temp_register(int index, int new_index)
2897 {
2898 foreach_iter(exec_list_iterator, iter, this->instructions) {
2899 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
2900 unsigned j;
2901
2902 for (j=0; j < num_inst_src_regs(inst->op); j++) {
2903 if (inst->src[j].file == PROGRAM_TEMPORARY &&
2904 inst->src[j].index == index) {
2905 inst->src[j].index = new_index;
2906 }
2907 }
2908
2909 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.index == index) {
2910 inst->dst.index = new_index;
2911 }
2912 }
2913 }
2914
2915 int
2916 glsl_to_tgsi_visitor::get_first_temp_read(int index)
2917 {
2918 int depth = 0; /* loop depth */
2919 int loop_start = -1; /* index of the first active BGNLOOP (if any) */
2920 unsigned i = 0, j;
2921
2922 foreach_iter(exec_list_iterator, iter, this->instructions) {
2923 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
2924
2925 for (j=0; j < num_inst_src_regs(inst->op); j++) {
2926 if (inst->src[j].file == PROGRAM_TEMPORARY &&
2927 inst->src[j].index == index) {
2928 return (depth == 0) ? i : loop_start;
2929 }
2930 }
2931
2932 if (inst->op == TGSI_OPCODE_BGNLOOP) {
2933 if(depth++ == 0)
2934 loop_start = i;
2935 } else if (inst->op == TGSI_OPCODE_ENDLOOP) {
2936 if (--depth == 0)
2937 loop_start = -1;
2938 }
2939 assert(depth >= 0);
2940
2941 i++;
2942 }
2943
2944 return -1;
2945 }
2946
2947 int
2948 glsl_to_tgsi_visitor::get_first_temp_write(int index)
2949 {
2950 int depth = 0; /* loop depth */
2951 int loop_start = -1; /* index of the first active BGNLOOP (if any) */
2952 int i = 0;
2953
2954 foreach_iter(exec_list_iterator, iter, this->instructions) {
2955 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
2956
2957 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.index == index) {
2958 return (depth == 0) ? i : loop_start;
2959 }
2960
2961 if (inst->op == TGSI_OPCODE_BGNLOOP) {
2962 if(depth++ == 0)
2963 loop_start = i;
2964 } else if (inst->op == TGSI_OPCODE_ENDLOOP) {
2965 if (--depth == 0)
2966 loop_start = -1;
2967 }
2968 assert(depth >= 0);
2969
2970 i++;
2971 }
2972
2973 return -1;
2974 }
2975
2976 int
2977 glsl_to_tgsi_visitor::get_last_temp_read(int index)
2978 {
2979 int depth = 0; /* loop depth */
2980 int last = -1; /* index of last instruction that reads the temporary */
2981 unsigned i = 0, j;
2982
2983 foreach_iter(exec_list_iterator, iter, this->instructions) {
2984 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
2985
2986 for (j=0; j < num_inst_src_regs(inst->op); j++) {
2987 if (inst->src[j].file == PROGRAM_TEMPORARY &&
2988 inst->src[j].index == index) {
2989 last = (depth == 0) ? i : -2;
2990 }
2991 }
2992
2993 if (inst->op == TGSI_OPCODE_BGNLOOP)
2994 depth++;
2995 else if (inst->op == TGSI_OPCODE_ENDLOOP)
2996 if (--depth == 0 && last == -2)
2997 last = i;
2998 assert(depth >= 0);
2999
3000 i++;
3001 }
3002
3003 assert(last >= -1);
3004 return last;
3005 }
3006
3007 int
3008 glsl_to_tgsi_visitor::get_last_temp_write(int index)
3009 {
3010 int depth = 0; /* loop depth */
3011 int last = -1; /* index of last instruction that writes to the temporary */
3012 int i = 0;
3013
3014 foreach_iter(exec_list_iterator, iter, this->instructions) {
3015 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3016
3017 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.index == index)
3018 last = (depth == 0) ? i : -2;
3019
3020 if (inst->op == TGSI_OPCODE_BGNLOOP)
3021 depth++;
3022 else if (inst->op == TGSI_OPCODE_ENDLOOP)
3023 if (--depth == 0 && last == -2)
3024 last = i;
3025 assert(depth >= 0);
3026
3027 i++;
3028 }
3029
3030 assert(last >= -1);
3031 return last;
3032 }
3033
3034 /*
3035 * On a basic block basis, tracks available PROGRAM_TEMPORARY register
3036 * channels for copy propagation and updates following instructions to
3037 * use the original versions.
3038 *
3039 * The glsl_to_tgsi_visitor lazily produces code assuming that this pass
3040 * will occur. As an example, a TXP production before this pass:
3041 *
3042 * 0: MOV TEMP[1], INPUT[4].xyyy;
3043 * 1: MOV TEMP[1].w, INPUT[4].wwww;
3044 * 2: TXP TEMP[2], TEMP[1], texture[0], 2D;
3045 *
3046 * and after:
3047 *
3048 * 0: MOV TEMP[1], INPUT[4].xyyy;
3049 * 1: MOV TEMP[1].w, INPUT[4].wwww;
3050 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
3051 *
3052 * which allows for dead code elimination on TEMP[1]'s writes.
3053 */
3054 void
3055 glsl_to_tgsi_visitor::copy_propagate(void)
3056 {
3057 glsl_to_tgsi_instruction **acp = rzalloc_array(mem_ctx,
3058 glsl_to_tgsi_instruction *,
3059 this->next_temp * 4);
3060 int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
3061 int level = 0;
3062
3063 foreach_iter(exec_list_iterator, iter, this->instructions) {
3064 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3065
3066 assert(inst->dst.file != PROGRAM_TEMPORARY
3067 || inst->dst.index < this->next_temp);
3068
3069 /* First, do any copy propagation possible into the src regs. */
3070 for (int r = 0; r < 3; r++) {
3071 glsl_to_tgsi_instruction *first = NULL;
3072 bool good = true;
3073 int acp_base = inst->src[r].index * 4;
3074
3075 if (inst->src[r].file != PROGRAM_TEMPORARY ||
3076 inst->src[r].reladdr)
3077 continue;
3078
3079 /* See if we can find entries in the ACP consisting of MOVs
3080 * from the same src register for all the swizzled channels
3081 * of this src register reference.
3082 */
3083 for (int i = 0; i < 4; i++) {
3084 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
3085 glsl_to_tgsi_instruction *copy_chan = acp[acp_base + src_chan];
3086
3087 if (!copy_chan) {
3088 good = false;
3089 break;
3090 }
3091
3092 assert(acp_level[acp_base + src_chan] <= level);
3093
3094 if (!first) {
3095 first = copy_chan;
3096 } else {
3097 if (first->src[0].file != copy_chan->src[0].file ||
3098 first->src[0].index != copy_chan->src[0].index) {
3099 good = false;
3100 break;
3101 }
3102 }
3103 }
3104
3105 if (good) {
3106 /* We've now validated that we can copy-propagate to
3107 * replace this src register reference. Do it.
3108 */
3109 inst->src[r].file = first->src[0].file;
3110 inst->src[r].index = first->src[0].index;
3111
3112 int swizzle = 0;
3113 for (int i = 0; i < 4; i++) {
3114 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
3115 glsl_to_tgsi_instruction *copy_inst = acp[acp_base + src_chan];
3116 swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) <<
3117 (3 * i));
3118 }
3119 inst->src[r].swizzle = swizzle;
3120 }
3121 }
3122
3123 switch (inst->op) {
3124 case TGSI_OPCODE_BGNLOOP:
3125 case TGSI_OPCODE_ENDLOOP:
3126 /* End of a basic block, clear the ACP entirely. */
3127 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
3128 break;
3129
3130 case TGSI_OPCODE_IF:
3131 ++level;
3132 break;
3133
3134 case TGSI_OPCODE_ENDIF:
3135 case TGSI_OPCODE_ELSE:
3136 /* Clear all channels written inside the block from the ACP, but
3137 * leaving those that were not touched.
3138 */
3139 for (int r = 0; r < this->next_temp; r++) {
3140 for (int c = 0; c < 4; c++) {
3141 if (!acp[4 * r + c])
3142 continue;
3143
3144 if (acp_level[4 * r + c] >= level)
3145 acp[4 * r + c] = NULL;
3146 }
3147 }
3148 if (inst->op == TGSI_OPCODE_ENDIF)
3149 --level;
3150 break;
3151
3152 default:
3153 /* Continuing the block, clear any written channels from
3154 * the ACP.
3155 */
3156 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.reladdr) {
3157 /* Any temporary might be written, so no copy propagation
3158 * across this instruction.
3159 */
3160 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
3161 } else if (inst->dst.file == PROGRAM_OUTPUT &&
3162 inst->dst.reladdr) {
3163 /* Any output might be written, so no copy propagation
3164 * from outputs across this instruction.
3165 */
3166 for (int r = 0; r < this->next_temp; r++) {
3167 for (int c = 0; c < 4; c++) {
3168 if (!acp[4 * r + c])
3169 continue;
3170
3171 if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT)
3172 acp[4 * r + c] = NULL;
3173 }
3174 }
3175 } else if (inst->dst.file == PROGRAM_TEMPORARY ||
3176 inst->dst.file == PROGRAM_OUTPUT) {
3177 /* Clear where it's used as dst. */
3178 if (inst->dst.file == PROGRAM_TEMPORARY) {
3179 for (int c = 0; c < 4; c++) {
3180 if (inst->dst.writemask & (1 << c)) {
3181 acp[4 * inst->dst.index + c] = NULL;
3182 }
3183 }
3184 }
3185
3186 /* Clear where it's used as src. */
3187 for (int r = 0; r < this->next_temp; r++) {
3188 for (int c = 0; c < 4; c++) {
3189 if (!acp[4 * r + c])
3190 continue;
3191
3192 int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c);
3193
3194 if (acp[4 * r + c]->src[0].file == inst->dst.file &&
3195 acp[4 * r + c]->src[0].index == inst->dst.index &&
3196 inst->dst.writemask & (1 << src_chan))
3197 {
3198 acp[4 * r + c] = NULL;
3199 }
3200 }
3201 }
3202 }
3203 break;
3204 }
3205
3206 /* If this is a copy, add it to the ACP. */
3207 if (inst->op == TGSI_OPCODE_MOV &&
3208 inst->dst.file == PROGRAM_TEMPORARY &&
3209 !inst->dst.reladdr &&
3210 !inst->saturate &&
3211 !inst->src[0].reladdr &&
3212 !inst->src[0].negate) {
3213 for (int i = 0; i < 4; i++) {
3214 if (inst->dst.writemask & (1 << i)) {
3215 acp[4 * inst->dst.index + i] = inst;
3216 acp_level[4 * inst->dst.index + i] = level;
3217 }
3218 }
3219 }
3220 }
3221
3222 ralloc_free(acp_level);
3223 ralloc_free(acp);
3224 }
3225
3226 /*
3227 * Tracks available PROGRAM_TEMPORARY registers for dead code elimination.
3228 *
3229 * The glsl_to_tgsi_visitor lazily produces code assuming that this pass
3230 * will occur. As an example, a TXP production after copy propagation but
3231 * before this pass:
3232 *
3233 * 0: MOV TEMP[1], INPUT[4].xyyy;
3234 * 1: MOV TEMP[1].w, INPUT[4].wwww;
3235 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
3236 *
3237 * and after this pass:
3238 *
3239 * 0: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
3240 *
3241 * FIXME: assumes that all functions are inlined (no support for BGNSUB/ENDSUB)
3242 * FIXME: doesn't eliminate all dead code inside of loops; it steps around them
3243 */
3244 void
3245 glsl_to_tgsi_visitor::eliminate_dead_code(void)
3246 {
3247 int i;
3248
3249 for (i=0; i < this->next_temp; i++) {
3250 int last_read = get_last_temp_read(i);
3251 int j = 0;
3252
3253 foreach_iter(exec_list_iterator, iter, this->instructions) {
3254 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3255
3256 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.index == i &&
3257 j > last_read)
3258 {
3259 iter.remove();
3260 delete inst;
3261 }
3262
3263 j++;
3264 }
3265 }
3266 }
3267
3268 /*
3269 * On a basic block basis, tracks available PROGRAM_TEMPORARY registers for dead
3270 * code elimination. This is less primitive than eliminate_dead_code(), as it
3271 * is per-channel and can detect consecutive writes without a read between them
3272 * as dead code. However, there is some dead code that can be eliminated by
3273 * eliminate_dead_code() but not this function - for example, this function
3274 * cannot eliminate an instruction writing to a register that is never read and
3275 * is the only instruction writing to that register.
3276 *
3277 * The glsl_to_tgsi_visitor lazily produces code assuming that this pass
3278 * will occur.
3279 */
3280 int
3281 glsl_to_tgsi_visitor::eliminate_dead_code_advanced(void)
3282 {
3283 glsl_to_tgsi_instruction **writes = rzalloc_array(mem_ctx,
3284 glsl_to_tgsi_instruction *,
3285 this->next_temp * 4);
3286 int *write_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
3287 int level = 0;
3288 int removed = 0;
3289
3290 foreach_iter(exec_list_iterator, iter, this->instructions) {
3291 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3292
3293 assert(inst->dst.file != PROGRAM_TEMPORARY
3294 || inst->dst.index < this->next_temp);
3295
3296 switch (inst->op) {
3297 case TGSI_OPCODE_BGNLOOP:
3298 case TGSI_OPCODE_ENDLOOP:
3299 /* End of a basic block, clear the write array entirely.
3300 * FIXME: This keeps us from killing dead code when the writes are
3301 * on either side of a loop, even when the register isn't touched
3302 * inside the loop.
3303 */
3304 memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
3305 break;
3306
3307 case TGSI_OPCODE_IF:
3308 ++level;
3309 break;
3310
3311 case TGSI_OPCODE_ENDIF:
3312 --level;
3313 break;
3314
3315 case TGSI_OPCODE_ELSE:
3316 /* Clear all channels written inside the preceding if block from the
3317 * write array, but leave those that were not touched.
3318 *
3319 * FIXME: This destroys opportunities to remove dead code inside of
3320 * IF blocks that are followed by an ELSE block.
3321 */
3322 for (int r = 0; r < this->next_temp; r++) {
3323 for (int c = 0; c < 4; c++) {
3324 if (!writes[4 * r + c])
3325 continue;
3326
3327 if (write_level[4 * r + c] >= level)
3328 writes[4 * r + c] = NULL;
3329 }
3330 }
3331 break;
3332
3333 default:
3334 /* Continuing the block, clear any channels from the write array that
3335 * are read by this instruction.
3336 */
3337 for (int i = 0; i < 4; i++) {
3338 if (inst->src[i].file == PROGRAM_TEMPORARY && inst->src[i].reladdr){
3339 /* Any temporary might be read, so no dead code elimination
3340 * across this instruction.
3341 */
3342 memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
3343 } else if (inst->src[i].file == PROGRAM_TEMPORARY) {
3344 /* Clear where it's used as src. */
3345 int src_chans = 1 << GET_SWZ(inst->src[i].swizzle, 0);
3346 src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 1);
3347 src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 2);
3348 src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 3);
3349
3350 for (int c = 0; c < 4; c++) {
3351 if (src_chans & (1 << c)) {
3352 writes[4 * inst->src[i].index + c] = NULL;
3353 }
3354 }
3355 }
3356 }
3357 break;
3358 }
3359
3360 /* If this instruction writes to a temporary, add it to the write array.
3361 * If there is already an instruction in the write array for one or more
3362 * of the channels, flag that channel write as dead.
3363 */
3364 if (inst->dst.file == PROGRAM_TEMPORARY &&
3365 !inst->dst.reladdr &&
3366 !inst->saturate) {
3367 for (int c = 0; c < 4; c++) {
3368 if (inst->dst.writemask & (1 << c)) {
3369 if (writes[4 * inst->dst.index + c]) {
3370 if (write_level[4 * inst->dst.index + c] < level)
3371 continue;
3372 else
3373 writes[4 * inst->dst.index + c]->dead_mask |= (1 << c);
3374 }
3375 writes[4 * inst->dst.index + c] = inst;
3376 write_level[4 * inst->dst.index + c] = level;
3377 }
3378 }
3379 }
3380 }
3381
3382 /* Anything still in the write array at this point is dead code. */
3383 for (int r = 0; r < this->next_temp; r++) {
3384 for (int c = 0; c < 4; c++) {
3385 glsl_to_tgsi_instruction *inst = writes[4 * r + c];
3386 if (inst)
3387 inst->dead_mask |= (1 << c);
3388 }
3389 }
3390
3391 /* Now actually remove the instructions that are completely dead and update
3392 * the writemask of other instructions with dead channels.
3393 */
3394 foreach_iter(exec_list_iterator, iter, this->instructions) {
3395 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3396
3397 if (!inst->dead_mask || !inst->dst.writemask)
3398 continue;
3399 else if (inst->dead_mask == inst->dst.writemask) {
3400 iter.remove();
3401 delete inst;
3402 removed++;
3403 } else
3404 inst->dst.writemask &= ~(inst->dead_mask);
3405 }
3406
3407 ralloc_free(write_level);
3408 ralloc_free(writes);
3409
3410 return removed;
3411 }
3412
3413 /* Merges temporary registers together where possible to reduce the number of
3414 * registers needed to run a program.
3415 *
3416 * Produces optimal code only after copy propagation and dead code elimination
3417 * have been run. */
3418 void
3419 glsl_to_tgsi_visitor::merge_registers(void)
3420 {
3421 int *last_reads = rzalloc_array(mem_ctx, int, this->next_temp);
3422 int *first_writes = rzalloc_array(mem_ctx, int, this->next_temp);
3423 int i, j;
3424
3425 /* Read the indices of the last read and first write to each temp register
3426 * into an array so that we don't have to traverse the instruction list as
3427 * much. */
3428 for (i=0; i < this->next_temp; i++) {
3429 last_reads[i] = get_last_temp_read(i);
3430 first_writes[i] = get_first_temp_write(i);
3431 }
3432
3433 /* Start looking for registers with non-overlapping usages that can be
3434 * merged together. */
3435 for (i=0; i < this->next_temp; i++) {
3436 /* Don't touch unused registers. */
3437 if (last_reads[i] < 0 || first_writes[i] < 0) continue;
3438
3439 for (j=0; j < this->next_temp; j++) {
3440 /* Don't touch unused registers. */
3441 if (last_reads[j] < 0 || first_writes[j] < 0) continue;
3442
3443 /* We can merge the two registers if the first write to j is after or
3444 * in the same instruction as the last read from i. Note that the
3445 * register at index i will always be used earlier or at the same time
3446 * as the register at index j. */
3447 if (first_writes[i] <= first_writes[j] &&
3448 last_reads[i] <= first_writes[j])
3449 {
3450 rename_temp_register(j, i); /* Replace all references to j with i.*/
3451
3452 /* Update the first_writes and last_reads arrays with the new
3453 * values for the merged register index, and mark the newly unused
3454 * register index as such. */
3455 last_reads[i] = last_reads[j];
3456 first_writes[j] = -1;
3457 last_reads[j] = -1;
3458 }
3459 }
3460 }
3461
3462 ralloc_free(last_reads);
3463 ralloc_free(first_writes);
3464 }
3465
3466 /* Reassign indices to temporary registers by reusing unused indices created
3467 * by optimization passes. */
3468 void
3469 glsl_to_tgsi_visitor::renumber_registers(void)
3470 {
3471 int i = 0;
3472 int new_index = 0;
3473
3474 for (i=0; i < this->next_temp; i++) {
3475 if (get_first_temp_read(i) < 0) continue;
3476 if (i != new_index)
3477 rename_temp_register(i, new_index);
3478 new_index++;
3479 }
3480
3481 this->next_temp = new_index;
3482 }
3483
3484 /* ------------------------- TGSI conversion stuff -------------------------- */
3485 struct label {
3486 unsigned branch_target;
3487 unsigned token;
3488 };
3489
3490 /**
3491 * Intermediate state used during shader translation.
3492 */
3493 struct st_translate {
3494 struct ureg_program *ureg;
3495
3496 struct ureg_dst temps[MAX_PROGRAM_TEMPS];
3497 struct ureg_src *constants;
3498 struct ureg_dst outputs[PIPE_MAX_SHADER_OUTPUTS];
3499 struct ureg_src inputs[PIPE_MAX_SHADER_INPUTS];
3500 struct ureg_dst address[1];
3501 struct ureg_src samplers[PIPE_MAX_SAMPLERS];
3502 struct ureg_src systemValues[SYSTEM_VALUE_MAX];
3503
3504 /* Extra info for handling point size clamping in vertex shader */
3505 struct ureg_dst pointSizeResult; /**< Actual point size output register */
3506 struct ureg_src pointSizeConst; /**< Point size range constant register */
3507 GLint pointSizeOutIndex; /**< Temp point size output register */
3508 GLboolean prevInstWrotePointSize;
3509
3510 const GLuint *inputMapping;
3511 const GLuint *outputMapping;
3512
3513 /* For every instruction that contains a label (eg CALL), keep
3514 * details so that we can go back afterwards and emit the correct
3515 * tgsi instruction number for each label.
3516 */
3517 struct label *labels;
3518 unsigned labels_size;
3519 unsigned labels_count;
3520
3521 /* Keep a record of the tgsi instruction number that each mesa
3522 * instruction starts at, will be used to fix up labels after
3523 * translation.
3524 */
3525 unsigned *insn;
3526 unsigned insn_size;
3527 unsigned insn_count;
3528
3529 unsigned procType; /**< TGSI_PROCESSOR_VERTEX/FRAGMENT */
3530
3531 boolean error;
3532 };
3533
3534 /** Map Mesa's SYSTEM_VALUE_x to TGSI_SEMANTIC_x */
3535 static unsigned mesa_sysval_to_semantic[SYSTEM_VALUE_MAX] = {
3536 TGSI_SEMANTIC_FACE,
3537 TGSI_SEMANTIC_INSTANCEID
3538 };
3539
3540 /**
3541 * Make note of a branch to a label in the TGSI code.
3542 * After we've emitted all instructions, we'll go over the list
3543 * of labels built here and patch the TGSI code with the actual
3544 * location of each label.
3545 */
3546 static unsigned *get_label( struct st_translate *t,
3547 unsigned branch_target )
3548 {
3549 unsigned i;
3550
3551 if (t->labels_count + 1 >= t->labels_size) {
3552 t->labels_size = 1 << (util_logbase2(t->labels_size) + 1);
3553 t->labels = (struct label *)realloc(t->labels,
3554 t->labels_size * sizeof t->labels[0]);
3555 if (t->labels == NULL) {
3556 static unsigned dummy;
3557 t->error = TRUE;
3558 return &dummy;
3559 }
3560 }
3561
3562 i = t->labels_count++;
3563 t->labels[i].branch_target = branch_target;
3564 return &t->labels[i].token;
3565 }
3566
3567 /**
3568 * Called prior to emitting the TGSI code for each Mesa instruction.
3569 * Allocate additional space for instructions if needed.
3570 * Update the insn[] array so the next Mesa instruction points to
3571 * the next TGSI instruction.
3572 */
3573 static void set_insn_start( struct st_translate *t,
3574 unsigned start )
3575 {
3576 if (t->insn_count + 1 >= t->insn_size) {
3577 t->insn_size = 1 << (util_logbase2(t->insn_size) + 1);
3578 t->insn = (unsigned *)realloc(t->insn, t->insn_size * sizeof t->insn[0]);
3579 if (t->insn == NULL) {
3580 t->error = TRUE;
3581 return;
3582 }
3583 }
3584
3585 t->insn[t->insn_count++] = start;
3586 }
3587
3588 /**
3589 * Map a Mesa dst register to a TGSI ureg_dst register.
3590 */
3591 static struct ureg_dst
3592 dst_register( struct st_translate *t,
3593 gl_register_file file,
3594 GLuint index )
3595 {
3596 switch( file ) {
3597 case PROGRAM_UNDEFINED:
3598 return ureg_dst_undef();
3599
3600 case PROGRAM_TEMPORARY:
3601 if (ureg_dst_is_undef(t->temps[index]))
3602 t->temps[index] = ureg_DECL_temporary( t->ureg );
3603
3604 return t->temps[index];
3605
3606 case PROGRAM_OUTPUT:
3607 if (t->procType == TGSI_PROCESSOR_VERTEX && index == VERT_RESULT_PSIZ)
3608 t->prevInstWrotePointSize = GL_TRUE;
3609
3610 if (t->procType == TGSI_PROCESSOR_VERTEX)
3611 assert(index < VERT_RESULT_MAX);
3612 else if (t->procType == TGSI_PROCESSOR_FRAGMENT)
3613 assert(index < FRAG_RESULT_MAX);
3614 else
3615 assert(index < GEOM_RESULT_MAX);
3616
3617 assert(t->outputMapping[index] < Elements(t->outputs));
3618
3619 return t->outputs[t->outputMapping[index]];
3620
3621 case PROGRAM_ADDRESS:
3622 return t->address[index];
3623
3624 default:
3625 debug_assert( 0 );
3626 return ureg_dst_undef();
3627 }
3628 }
3629
3630 /**
3631 * Map a Mesa src register to a TGSI ureg_src register.
3632 */
3633 static struct ureg_src
3634 src_register( struct st_translate *t,
3635 gl_register_file file,
3636 GLuint index )
3637 {
3638 switch( file ) {
3639 case PROGRAM_UNDEFINED:
3640 return ureg_src_undef();
3641
3642 case PROGRAM_TEMPORARY:
3643 assert(index >= 0);
3644 assert(index < Elements(t->temps));
3645 if (ureg_dst_is_undef(t->temps[index]))
3646 t->temps[index] = ureg_DECL_temporary( t->ureg );
3647 return ureg_src(t->temps[index]);
3648
3649 case PROGRAM_NAMED_PARAM:
3650 case PROGRAM_ENV_PARAM:
3651 case PROGRAM_LOCAL_PARAM:
3652 case PROGRAM_UNIFORM:
3653 assert(index >= 0);
3654 return t->constants[index];
3655 case PROGRAM_STATE_VAR:
3656 case PROGRAM_CONSTANT: /* ie, immediate */
3657 if (index < 0)
3658 return ureg_DECL_constant( t->ureg, 0 );
3659 else
3660 return t->constants[index];
3661
3662 case PROGRAM_INPUT:
3663 assert(t->inputMapping[index] < Elements(t->inputs));
3664 return t->inputs[t->inputMapping[index]];
3665
3666 case PROGRAM_OUTPUT:
3667 assert(t->outputMapping[index] < Elements(t->outputs));
3668 return ureg_src(t->outputs[t->outputMapping[index]]); /* not needed? */
3669
3670 case PROGRAM_ADDRESS:
3671 return ureg_src(t->address[index]);
3672
3673 case PROGRAM_SYSTEM_VALUE:
3674 assert(index < Elements(t->systemValues));
3675 return t->systemValues[index];
3676
3677 default:
3678 debug_assert( 0 );
3679 return ureg_src_undef();
3680 }
3681 }
3682
3683 /**
3684 * Create a TGSI ureg_dst register from an st_dst_reg.
3685 */
3686 static struct ureg_dst
3687 translate_dst( struct st_translate *t,
3688 const st_dst_reg *dst_reg,
3689 boolean saturate )
3690 {
3691 struct ureg_dst dst = dst_register( t,
3692 dst_reg->file,
3693 dst_reg->index );
3694
3695 dst = ureg_writemask( dst,
3696 dst_reg->writemask );
3697
3698 if (saturate)
3699 dst = ureg_saturate( dst );
3700
3701 if (dst_reg->reladdr != NULL)
3702 dst = ureg_dst_indirect( dst, ureg_src(t->address[0]) );
3703
3704 return dst;
3705 }
3706
3707 /**
3708 * Create a TGSI ureg_src register from an st_src_reg.
3709 */
3710 static struct ureg_src
3711 translate_src( struct st_translate *t,
3712 const st_src_reg *src_reg )
3713 {
3714 struct ureg_src src = src_register( t, src_reg->file, src_reg->index );
3715
3716 src = ureg_swizzle( src,
3717 GET_SWZ( src_reg->swizzle, 0 ) & 0x3,
3718 GET_SWZ( src_reg->swizzle, 1 ) & 0x3,
3719 GET_SWZ( src_reg->swizzle, 2 ) & 0x3,
3720 GET_SWZ( src_reg->swizzle, 3 ) & 0x3);
3721
3722 if ((src_reg->negate & 0xf) == NEGATE_XYZW)
3723 src = ureg_negate(src);
3724
3725 if (src_reg->reladdr != NULL) {
3726 /* Normally ureg_src_indirect() would be used here, but a stupid compiler
3727 * bug in g++ makes ureg_src_indirect (an inline C function) erroneously
3728 * set the bit for src.Negate. So we have to do the operation manually
3729 * here to work around the compiler's problems. */
3730 /*src = ureg_src_indirect(src, ureg_src(t->address[0]));*/
3731 struct ureg_src addr = ureg_src(t->address[0]);
3732 src.Indirect = 1;
3733 src.IndirectFile = addr.File;
3734 src.IndirectIndex = addr.Index;
3735 src.IndirectSwizzle = addr.SwizzleX;
3736
3737 if (src_reg->file != PROGRAM_INPUT &&
3738 src_reg->file != PROGRAM_OUTPUT) {
3739 /* If src_reg->index was negative, it was set to zero in
3740 * src_register(). Reassign it now. But don't do this
3741 * for input/output regs since they get remapped while
3742 * const buffers don't.
3743 */
3744 src.Index = src_reg->index;
3745 }
3746 }
3747
3748 return src;
3749 }
3750
3751 static void
3752 compile_tgsi_instruction(struct st_translate *t,
3753 const struct glsl_to_tgsi_instruction *inst)
3754 {
3755 struct ureg_program *ureg = t->ureg;
3756 GLuint i;
3757 struct ureg_dst dst[1];
3758 struct ureg_src src[4];
3759 unsigned num_dst;
3760 unsigned num_src;
3761
3762 num_dst = num_inst_dst_regs( inst->op );
3763 num_src = num_inst_src_regs( inst->op );
3764
3765 if (num_dst)
3766 dst[0] = translate_dst( t,
3767 &inst->dst,
3768 inst->saturate);
3769
3770 for (i = 0; i < num_src; i++)
3771 src[i] = translate_src( t, &inst->src[i] );
3772
3773 switch( inst->op ) {
3774 case TGSI_OPCODE_BGNLOOP:
3775 case TGSI_OPCODE_CAL:
3776 case TGSI_OPCODE_ELSE:
3777 case TGSI_OPCODE_ENDLOOP:
3778 case TGSI_OPCODE_IF:
3779 debug_assert(num_dst == 0);
3780 ureg_label_insn( ureg,
3781 inst->op,
3782 src, num_src,
3783 get_label( t,
3784 inst->op == TGSI_OPCODE_CAL ? inst->function->sig_id : 0 ));
3785 return;
3786
3787 case TGSI_OPCODE_TEX:
3788 case TGSI_OPCODE_TXB:
3789 case TGSI_OPCODE_TXD:
3790 case TGSI_OPCODE_TXL:
3791 case TGSI_OPCODE_TXP:
3792 src[num_src++] = t->samplers[inst->sampler];
3793 ureg_tex_insn( ureg,
3794 inst->op,
3795 dst, num_dst,
3796 translate_texture_target( inst->tex_target,
3797 inst->tex_shadow ),
3798 src, num_src );
3799 return;
3800
3801 case TGSI_OPCODE_SCS:
3802 dst[0] = ureg_writemask(dst[0], TGSI_WRITEMASK_XY );
3803 ureg_insn( ureg,
3804 inst->op,
3805 dst, num_dst,
3806 src, num_src );
3807 break;
3808
3809 default:
3810 ureg_insn( ureg,
3811 inst->op,
3812 dst, num_dst,
3813 src, num_src );
3814 break;
3815 }
3816 }
3817
3818 /**
3819 * Emit the TGSI instructions to adjust the WPOS pixel center convention
3820 * Basically, add (adjX, adjY) to the fragment position.
3821 */
3822 static void
3823 emit_adjusted_wpos( struct st_translate *t,
3824 const struct gl_program *program,
3825 GLfloat adjX, GLfloat adjY)
3826 {
3827 struct ureg_program *ureg = t->ureg;
3828 struct ureg_dst wpos_temp = ureg_DECL_temporary(ureg);
3829 struct ureg_src wpos_input = t->inputs[t->inputMapping[FRAG_ATTRIB_WPOS]];
3830
3831 /* Note that we bias X and Y and pass Z and W through unchanged.
3832 * The shader might also use gl_FragCoord.w and .z.
3833 */
3834 ureg_ADD(ureg, wpos_temp, wpos_input,
3835 ureg_imm4f(ureg, adjX, adjY, 0.0f, 0.0f));
3836
3837 t->inputs[t->inputMapping[FRAG_ATTRIB_WPOS]] = ureg_src(wpos_temp);
3838 }
3839
3840
3841 /**
3842 * Emit the TGSI instructions for inverting the WPOS y coordinate.
3843 * This code is unavoidable because it also depends on whether
3844 * a FBO is bound (STATE_FB_WPOS_Y_TRANSFORM).
3845 */
3846 static void
3847 emit_wpos_inversion( struct st_translate *t,
3848 const struct gl_program *program,
3849 boolean invert)
3850 {
3851 struct ureg_program *ureg = t->ureg;
3852
3853 /* Fragment program uses fragment position input.
3854 * Need to replace instances of INPUT[WPOS] with temp T
3855 * where T = INPUT[WPOS] by y is inverted.
3856 */
3857 static const gl_state_index wposTransformState[STATE_LENGTH]
3858 = { STATE_INTERNAL, STATE_FB_WPOS_Y_TRANSFORM,
3859 (gl_state_index)0, (gl_state_index)0, (gl_state_index)0 };
3860
3861 /* XXX: note we are modifying the incoming shader here! Need to
3862 * do this before emitting the constant decls below, or this
3863 * will be missed:
3864 */
3865 unsigned wposTransConst = _mesa_add_state_reference(program->Parameters,
3866 wposTransformState);
3867
3868 struct ureg_src wpostrans = ureg_DECL_constant( ureg, wposTransConst );
3869 struct ureg_dst wpos_temp;
3870 struct ureg_src wpos_input = t->inputs[t->inputMapping[FRAG_ATTRIB_WPOS]];
3871
3872 /* MOV wpos_temp, input[wpos]
3873 */
3874 if (wpos_input.File == TGSI_FILE_TEMPORARY)
3875 wpos_temp = ureg_dst(wpos_input);
3876 else {
3877 wpos_temp = ureg_DECL_temporary( ureg );
3878 ureg_MOV( ureg, wpos_temp, wpos_input );
3879 }
3880
3881 if (invert) {
3882 /* MAD wpos_temp.y, wpos_input, wpostrans.xxxx, wpostrans.yyyy
3883 */
3884 ureg_MAD( ureg,
3885 ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y ),
3886 wpos_input,
3887 ureg_scalar(wpostrans, 0),
3888 ureg_scalar(wpostrans, 1));
3889 } else {
3890 /* MAD wpos_temp.y, wpos_input, wpostrans.zzzz, wpostrans.wwww
3891 */
3892 ureg_MAD( ureg,
3893 ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y ),
3894 wpos_input,
3895 ureg_scalar(wpostrans, 2),
3896 ureg_scalar(wpostrans, 3));
3897 }
3898
3899 /* Use wpos_temp as position input from here on:
3900 */
3901 t->inputs[t->inputMapping[FRAG_ATTRIB_WPOS]] = ureg_src(wpos_temp);
3902 }
3903
3904
3905 /**
3906 * Emit fragment position/ooordinate code.
3907 */
3908 static void
3909 emit_wpos(struct st_context *st,
3910 struct st_translate *t,
3911 const struct gl_program *program,
3912 struct ureg_program *ureg)
3913 {
3914 const struct gl_fragment_program *fp =
3915 (const struct gl_fragment_program *) program;
3916 struct pipe_screen *pscreen = st->pipe->screen;
3917 boolean invert = FALSE;
3918
3919 if (fp->OriginUpperLeft) {
3920 /* Fragment shader wants origin in upper-left */
3921 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT)) {
3922 /* the driver supports upper-left origin */
3923 }
3924 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT)) {
3925 /* the driver supports lower-left origin, need to invert Y */
3926 ureg_property_fs_coord_origin(ureg, TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
3927 invert = TRUE;
3928 }
3929 else
3930 assert(0);
3931 }
3932 else {
3933 /* Fragment shader wants origin in lower-left */
3934 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT))
3935 /* the driver supports lower-left origin */
3936 ureg_property_fs_coord_origin(ureg, TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
3937 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT))
3938 /* the driver supports upper-left origin, need to invert Y */
3939 invert = TRUE;
3940 else
3941 assert(0);
3942 }
3943
3944 if (fp->PixelCenterInteger) {
3945 /* Fragment shader wants pixel center integer */
3946 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER))
3947 /* the driver supports pixel center integer */
3948 ureg_property_fs_coord_pixel_center(ureg, TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
3949 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER))
3950 /* the driver supports pixel center half integer, need to bias X,Y */
3951 emit_adjusted_wpos(t, program, 0.5f, invert ? 0.5f : -0.5f);
3952 else
3953 assert(0);
3954 }
3955 else {
3956 /* Fragment shader wants pixel center half integer */
3957 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
3958 /* the driver supports pixel center half integer */
3959 }
3960 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
3961 /* the driver supports pixel center integer, need to bias X,Y */
3962 ureg_property_fs_coord_pixel_center(ureg, TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
3963 emit_adjusted_wpos(t, program, 0.5f, invert ? -0.5f : 0.5f);
3964 }
3965 else
3966 assert(0);
3967 }
3968
3969 /* we invert after adjustment so that we avoid the MOV to temporary,
3970 * and reuse the adjustment ADD instead */
3971 emit_wpos_inversion(t, program, invert);
3972 }
3973
3974 /**
3975 * OpenGL's fragment gl_FrontFace input is 1 for front-facing, 0 for back.
3976 * TGSI uses +1 for front, -1 for back.
3977 * This function converts the TGSI value to the GL value. Simply clamping/
3978 * saturating the value to [0,1] does the job.
3979 */
3980 static void
3981 emit_face_var(struct st_translate *t)
3982 {
3983 struct ureg_program *ureg = t->ureg;
3984 struct ureg_dst face_temp = ureg_DECL_temporary(ureg);
3985 struct ureg_src face_input = t->inputs[t->inputMapping[FRAG_ATTRIB_FACE]];
3986
3987 /* MOV_SAT face_temp, input[face] */
3988 face_temp = ureg_saturate(face_temp);
3989 ureg_MOV(ureg, face_temp, face_input);
3990
3991 /* Use face_temp as face input from here on: */
3992 t->inputs[t->inputMapping[FRAG_ATTRIB_FACE]] = ureg_src(face_temp);
3993 }
3994
3995 static void
3996 emit_edgeflags(struct st_translate *t)
3997 {
3998 struct ureg_program *ureg = t->ureg;
3999 struct ureg_dst edge_dst = t->outputs[t->outputMapping[VERT_RESULT_EDGE]];
4000 struct ureg_src edge_src = t->inputs[t->inputMapping[VERT_ATTRIB_EDGEFLAG]];
4001
4002 ureg_MOV(ureg, edge_dst, edge_src);
4003 }
4004
4005 /**
4006 * Translate intermediate IR (glsl_to_tgsi_instruction) to TGSI format.
4007 * \param program the program to translate
4008 * \param numInputs number of input registers used
4009 * \param inputMapping maps Mesa fragment program inputs to TGSI generic
4010 * input indexes
4011 * \param inputSemanticName the TGSI_SEMANTIC flag for each input
4012 * \param inputSemanticIndex the semantic index (ex: which texcoord) for
4013 * each input
4014 * \param interpMode the TGSI_INTERPOLATE_LINEAR/PERSP mode for each input
4015 * \param numOutputs number of output registers used
4016 * \param outputMapping maps Mesa fragment program outputs to TGSI
4017 * generic outputs
4018 * \param outputSemanticName the TGSI_SEMANTIC flag for each output
4019 * \param outputSemanticIndex the semantic index (ex: which texcoord) for
4020 * each output
4021 *
4022 * \return PIPE_OK or PIPE_ERROR_OUT_OF_MEMORY
4023 */
4024 extern "C" enum pipe_error
4025 st_translate_program(
4026 struct gl_context *ctx,
4027 uint procType,
4028 struct ureg_program *ureg,
4029 glsl_to_tgsi_visitor *program,
4030 const struct gl_program *proginfo,
4031 GLuint numInputs,
4032 const GLuint inputMapping[],
4033 const ubyte inputSemanticName[],
4034 const ubyte inputSemanticIndex[],
4035 const GLuint interpMode[],
4036 GLuint numOutputs,
4037 const GLuint outputMapping[],
4038 const ubyte outputSemanticName[],
4039 const ubyte outputSemanticIndex[],
4040 boolean passthrough_edgeflags )
4041 {
4042 struct st_translate translate, *t;
4043 unsigned i;
4044 enum pipe_error ret = PIPE_OK;
4045
4046 assert(numInputs <= Elements(t->inputs));
4047 assert(numOutputs <= Elements(t->outputs));
4048
4049 t = &translate;
4050 memset(t, 0, sizeof *t);
4051
4052 t->procType = procType;
4053 t->inputMapping = inputMapping;
4054 t->outputMapping = outputMapping;
4055 t->ureg = ureg;
4056 t->pointSizeOutIndex = -1;
4057 t->prevInstWrotePointSize = GL_FALSE;
4058
4059 /*
4060 * Declare input attributes.
4061 */
4062 if (procType == TGSI_PROCESSOR_FRAGMENT) {
4063 for (i = 0; i < numInputs; i++) {
4064 t->inputs[i] = ureg_DECL_fs_input(ureg,
4065 inputSemanticName[i],
4066 inputSemanticIndex[i],
4067 interpMode[i]);
4068 }
4069
4070 if (proginfo->InputsRead & FRAG_BIT_WPOS) {
4071 /* Must do this after setting up t->inputs, and before
4072 * emitting constant references, below:
4073 */
4074 emit_wpos(st_context(ctx), t, proginfo, ureg);
4075 }
4076
4077 if (proginfo->InputsRead & FRAG_BIT_FACE)
4078 emit_face_var(t);
4079
4080 /*
4081 * Declare output attributes.
4082 */
4083 for (i = 0; i < numOutputs; i++) {
4084 switch (outputSemanticName[i]) {
4085 case TGSI_SEMANTIC_POSITION:
4086 t->outputs[i] = ureg_DECL_output( ureg,
4087 TGSI_SEMANTIC_POSITION, /* Z / Depth */
4088 outputSemanticIndex[i] );
4089
4090 t->outputs[i] = ureg_writemask( t->outputs[i],
4091 TGSI_WRITEMASK_Z );
4092 break;
4093 case TGSI_SEMANTIC_STENCIL:
4094 t->outputs[i] = ureg_DECL_output( ureg,
4095 TGSI_SEMANTIC_STENCIL, /* Stencil */
4096 outputSemanticIndex[i] );
4097 t->outputs[i] = ureg_writemask( t->outputs[i],
4098 TGSI_WRITEMASK_Y );
4099 break;
4100 case TGSI_SEMANTIC_COLOR:
4101 t->outputs[i] = ureg_DECL_output( ureg,
4102 TGSI_SEMANTIC_COLOR,
4103 outputSemanticIndex[i] );
4104 break;
4105 default:
4106 debug_assert(0);
4107 return PIPE_ERROR_BAD_INPUT;
4108 }
4109 }
4110 }
4111 else if (procType == TGSI_PROCESSOR_GEOMETRY) {
4112 for (i = 0; i < numInputs; i++) {
4113 t->inputs[i] = ureg_DECL_gs_input(ureg,
4114 i,
4115 inputSemanticName[i],
4116 inputSemanticIndex[i]);
4117 }
4118
4119 for (i = 0; i < numOutputs; i++) {
4120 t->outputs[i] = ureg_DECL_output( ureg,
4121 outputSemanticName[i],
4122 outputSemanticIndex[i] );
4123 }
4124 }
4125 else {
4126 assert(procType == TGSI_PROCESSOR_VERTEX);
4127
4128 for (i = 0; i < numInputs; i++) {
4129 t->inputs[i] = ureg_DECL_vs_input(ureg, i);
4130 }
4131
4132 for (i = 0; i < numOutputs; i++) {
4133 t->outputs[i] = ureg_DECL_output( ureg,
4134 outputSemanticName[i],
4135 outputSemanticIndex[i] );
4136 if ((outputSemanticName[i] == TGSI_SEMANTIC_PSIZE) && proginfo->Id) {
4137 /* Writing to the point size result register requires special
4138 * handling to implement clamping.
4139 */
4140 static const gl_state_index pointSizeClampState[STATE_LENGTH]
4141 = { STATE_INTERNAL, STATE_POINT_SIZE_IMPL_CLAMP, (gl_state_index)0, (gl_state_index)0, (gl_state_index)0 };
4142 /* XXX: note we are modifying the incoming shader here! Need to
4143 * do this before emitting the constant decls below, or this
4144 * will be missed.
4145 */
4146 unsigned pointSizeClampConst =
4147 _mesa_add_state_reference(proginfo->Parameters,
4148 pointSizeClampState);
4149 struct ureg_dst psizregtemp = ureg_DECL_temporary( ureg );
4150 t->pointSizeConst = ureg_DECL_constant( ureg, pointSizeClampConst );
4151 t->pointSizeResult = t->outputs[i];
4152 t->pointSizeOutIndex = i;
4153 t->outputs[i] = psizregtemp;
4154 }
4155 }
4156 if (passthrough_edgeflags)
4157 emit_edgeflags(t);
4158 }
4159
4160 /* Declare address register.
4161 */
4162 if (program->num_address_regs > 0) {
4163 debug_assert( program->num_address_regs == 1 );
4164 t->address[0] = ureg_DECL_address( ureg );
4165 }
4166
4167 /* Declare misc input registers
4168 */
4169 {
4170 GLbitfield sysInputs = proginfo->SystemValuesRead;
4171 unsigned numSys = 0;
4172 for (i = 0; sysInputs; i++) {
4173 if (sysInputs & (1 << i)) {
4174 unsigned semName = mesa_sysval_to_semantic[i];
4175 t->systemValues[i] = ureg_DECL_system_value(ureg, numSys, semName, 0);
4176 numSys++;
4177 sysInputs &= ~(1 << i);
4178 }
4179 }
4180 }
4181
4182 if (program->indirect_addr_temps) {
4183 /* If temps are accessed with indirect addressing, declare temporaries
4184 * in sequential order. Else, we declare them on demand elsewhere.
4185 * (Note: the number of temporaries is equal to program->next_temp)
4186 */
4187 for (i = 0; i < (unsigned)program->next_temp; i++) {
4188 /* XXX use TGSI_FILE_TEMPORARY_ARRAY when it's supported by ureg */
4189 t->temps[i] = ureg_DECL_temporary( t->ureg );
4190 }
4191 }
4192
4193 /* Emit constants and immediates. Mesa uses a single index space
4194 * for these, so we put all the translated regs in t->constants.
4195 * XXX: this entire if block depends on proginfo->Parameters from Mesa IR
4196 */
4197 if (proginfo->Parameters) {
4198 t->constants = (struct ureg_src *)CALLOC( proginfo->Parameters->NumParameters * sizeof t->constants[0] );
4199 if (t->constants == NULL) {
4200 ret = PIPE_ERROR_OUT_OF_MEMORY;
4201 goto out;
4202 }
4203
4204 for (i = 0; i < proginfo->Parameters->NumParameters; i++) {
4205 switch (proginfo->Parameters->Parameters[i].Type) {
4206 case PROGRAM_ENV_PARAM:
4207 case PROGRAM_LOCAL_PARAM:
4208 case PROGRAM_STATE_VAR:
4209 case PROGRAM_NAMED_PARAM:
4210 case PROGRAM_UNIFORM:
4211 t->constants[i] = ureg_DECL_constant( ureg, i );
4212 break;
4213
4214 /* Emit immediates only when there's no indirect addressing of
4215 * the const buffer.
4216 * FIXME: Be smarter and recognize param arrays:
4217 * indirect addressing is only valid within the referenced
4218 * array.
4219 */
4220 case PROGRAM_CONSTANT:
4221 if (program->indirect_addr_consts)
4222 t->constants[i] = ureg_DECL_constant( ureg, i );
4223 else
4224 switch(proginfo->Parameters->Parameters[i].DataType)
4225 {
4226 case GL_FLOAT:
4227 case GL_FLOAT_VEC2:
4228 case GL_FLOAT_VEC3:
4229 case GL_FLOAT_VEC4:
4230 t->constants[i] = ureg_DECL_immediate(ureg, (float *)proginfo->Parameters->ParameterValues[i], 4);
4231 break;
4232 case GL_INT:
4233 case GL_INT_VEC2:
4234 case GL_INT_VEC3:
4235 case GL_INT_VEC4:
4236 t->constants[i] = ureg_DECL_immediate_int(ureg, (int *)proginfo->Parameters->ParameterValues[i], 4);
4237 break;
4238 case GL_UNSIGNED_INT:
4239 case GL_UNSIGNED_INT_VEC2:
4240 case GL_UNSIGNED_INT_VEC3:
4241 case GL_UNSIGNED_INT_VEC4:
4242 case GL_BOOL:
4243 case GL_BOOL_VEC2:
4244 case GL_BOOL_VEC3:
4245 case GL_BOOL_VEC4:
4246 t->constants[i] = ureg_DECL_immediate_uint(ureg, (unsigned *)proginfo->Parameters->ParameterValues[i], 4);
4247 break;
4248 default:
4249 assert(!"should not get here");
4250 }
4251 break;
4252 default:
4253 break;
4254 }
4255 }
4256 }
4257
4258 /* texture samplers */
4259 for (i = 0; i < ctx->Const.MaxTextureImageUnits; i++) {
4260 if (program->samplers_used & (1 << i)) {
4261 t->samplers[i] = ureg_DECL_sampler( ureg, i );
4262 }
4263 }
4264
4265 /* Emit each instruction in turn:
4266 */
4267 foreach_iter(exec_list_iterator, iter, program->instructions) {
4268 set_insn_start( t, ureg_get_instruction_number( ureg ));
4269 compile_tgsi_instruction( t, (glsl_to_tgsi_instruction *)iter.get() );
4270
4271 if (t->prevInstWrotePointSize && proginfo->Id) {
4272 /* The previous instruction wrote to the (fake) vertex point size
4273 * result register. Now we need to clamp that value to the min/max
4274 * point size range, putting the result into the real point size
4275 * register.
4276 * Note that we can't do this easily at the end of program due to
4277 * possible early return.
4278 */
4279 set_insn_start( t, ureg_get_instruction_number( ureg ));
4280 ureg_MAX( t->ureg,
4281 ureg_writemask(t->outputs[t->pointSizeOutIndex], WRITEMASK_X),
4282 ureg_src(t->outputs[t->pointSizeOutIndex]),
4283 ureg_swizzle(t->pointSizeConst, 1,1,1,1));
4284 ureg_MIN( t->ureg, ureg_writemask(t->pointSizeResult, WRITEMASK_X),
4285 ureg_src(t->outputs[t->pointSizeOutIndex]),
4286 ureg_swizzle(t->pointSizeConst, 2,2,2,2));
4287 }
4288 t->prevInstWrotePointSize = GL_FALSE;
4289 }
4290
4291 /* Fix up all emitted labels:
4292 */
4293 for (i = 0; i < t->labels_count; i++) {
4294 ureg_fixup_label( ureg,
4295 t->labels[i].token,
4296 t->insn[t->labels[i].branch_target] );
4297 }
4298
4299 out:
4300 FREE(t->insn);
4301 FREE(t->labels);
4302 FREE(t->constants);
4303
4304 if (t->error) {
4305 debug_printf("%s: translate error flag set\n", __FUNCTION__);
4306 }
4307
4308 return ret;
4309 }
4310 /* ----------------------------- End TGSI code ------------------------------ */
4311
4312 /**
4313 * Convert a shader's GLSL IR into a Mesa gl_program, although without
4314 * generating Mesa IR.
4315 */
4316 static struct gl_program *
4317 get_mesa_program(struct gl_context *ctx,
4318 struct gl_shader_program *shader_program,
4319 struct gl_shader *shader)
4320 {
4321 glsl_to_tgsi_visitor* v = new glsl_to_tgsi_visitor();
4322 struct gl_program *prog;
4323 GLenum target;
4324 const char *target_string;
4325 GLboolean progress;
4326 struct gl_shader_compiler_options *options =
4327 &ctx->ShaderCompilerOptions[_mesa_shader_type_to_index(shader->Type)];
4328
4329 switch (shader->Type) {
4330 case GL_VERTEX_SHADER:
4331 target = GL_VERTEX_PROGRAM_ARB;
4332 target_string = "vertex";
4333 break;
4334 case GL_FRAGMENT_SHADER:
4335 target = GL_FRAGMENT_PROGRAM_ARB;
4336 target_string = "fragment";
4337 break;
4338 case GL_GEOMETRY_SHADER:
4339 target = GL_GEOMETRY_PROGRAM_NV;
4340 target_string = "geometry";
4341 break;
4342 default:
4343 assert(!"should not be reached");
4344 return NULL;
4345 }
4346
4347 validate_ir_tree(shader->ir);
4348
4349 prog = ctx->Driver.NewProgram(ctx, target, shader_program->Name);
4350 if (!prog)
4351 return NULL;
4352 prog->Parameters = _mesa_new_parameter_list();
4353 prog->Varying = _mesa_new_parameter_list();
4354 prog->Attributes = _mesa_new_parameter_list();
4355 v->ctx = ctx;
4356 v->prog = prog;
4357 v->shader_program = shader_program;
4358 v->options = options;
4359 v->glsl_version = ctx->Const.GLSLVersion;
4360
4361 add_uniforms_to_parameters_list(shader_program, shader, prog);
4362
4363 /* Emit intermediate IR for main(). */
4364 visit_exec_list(shader->ir, v);
4365
4366 /* Now emit bodies for any functions that were used. */
4367 do {
4368 progress = GL_FALSE;
4369
4370 foreach_iter(exec_list_iterator, iter, v->function_signatures) {
4371 function_entry *entry = (function_entry *)iter.get();
4372
4373 if (!entry->bgn_inst) {
4374 v->current_function = entry;
4375
4376 entry->bgn_inst = v->emit(NULL, TGSI_OPCODE_BGNSUB);
4377 entry->bgn_inst->function = entry;
4378
4379 visit_exec_list(&entry->sig->body, v);
4380
4381 glsl_to_tgsi_instruction *last;
4382 last = (glsl_to_tgsi_instruction *)v->instructions.get_tail();
4383 if (last->op != TGSI_OPCODE_RET)
4384 v->emit(NULL, TGSI_OPCODE_RET);
4385
4386 glsl_to_tgsi_instruction *end;
4387 end = v->emit(NULL, TGSI_OPCODE_ENDSUB);
4388 end->function = entry;
4389
4390 progress = GL_TRUE;
4391 }
4392 }
4393 } while (progress);
4394
4395 #if 0
4396 /* Print out some information (for debugging purposes) used by the
4397 * optimization passes. */
4398 for (i=0; i < v->next_temp; i++) {
4399 int fr = v->get_first_temp_read(i);
4400 int fw = v->get_first_temp_write(i);
4401 int lr = v->get_last_temp_read(i);
4402 int lw = v->get_last_temp_write(i);
4403
4404 printf("Temp %d: FR=%3d FW=%3d LR=%3d LW=%3d\n", i, fr, fw, lr, lw);
4405 assert(fw <= fr);
4406 }
4407 #endif
4408
4409 /* Remove reads to output registers, and to varyings in vertex shaders. */
4410 v->remove_output_reads(PROGRAM_OUTPUT);
4411 if (target == GL_VERTEX_PROGRAM_ARB)
4412 v->remove_output_reads(PROGRAM_VARYING);
4413
4414 /* Perform the simplify_cmp optimization, which is required by r300g. */
4415 v->simplify_cmp();
4416
4417 /* Perform optimizations on the instructions in the glsl_to_tgsi_visitor.
4418 * FIXME: These passes to optimize temporary registers don't work when there
4419 * is indirect addressing of the temporary register space. We need proper
4420 * array support so that we don't have to give up these passes in every
4421 * shader that uses arrays.
4422 */
4423 if (!v->indirect_addr_temps) {
4424 v->copy_propagate();
4425 while (v->eliminate_dead_code_advanced());
4426 v->eliminate_dead_code();
4427 v->merge_registers();
4428 v->renumber_registers();
4429 }
4430
4431 /* Write the END instruction. */
4432 v->emit(NULL, TGSI_OPCODE_END);
4433
4434 if (ctx->Shader.Flags & GLSL_DUMP) {
4435 printf("\n");
4436 printf("GLSL IR for linked %s program %d:\n", target_string,
4437 shader_program->Name);
4438 _mesa_print_ir(shader->ir, NULL);
4439 printf("\n");
4440 printf("\n");
4441 }
4442
4443 prog->Instructions = NULL;
4444 prog->NumInstructions = 0;
4445
4446 do_set_program_inouts(shader->ir, prog);
4447 count_resources(v, prog);
4448
4449 check_resources(ctx, shader_program, v, prog);
4450
4451 _mesa_reference_program(ctx, &shader->Program, prog);
4452
4453 struct st_vertex_program *stvp;
4454 struct st_fragment_program *stfp;
4455 struct st_geometry_program *stgp;
4456
4457 switch (shader->Type) {
4458 case GL_VERTEX_SHADER:
4459 stvp = (struct st_vertex_program *)prog;
4460 stvp->glsl_to_tgsi = v;
4461 break;
4462 case GL_FRAGMENT_SHADER:
4463 stfp = (struct st_fragment_program *)prog;
4464 stfp->glsl_to_tgsi = v;
4465 break;
4466 case GL_GEOMETRY_SHADER:
4467 stgp = (struct st_geometry_program *)prog;
4468 stgp->glsl_to_tgsi = v;
4469 break;
4470 default:
4471 assert(!"should not be reached");
4472 return NULL;
4473 }
4474
4475 return prog;
4476 }
4477
4478 extern "C" {
4479
4480 struct gl_shader *
4481 st_new_shader(struct gl_context *ctx, GLuint name, GLuint type)
4482 {
4483 struct gl_shader *shader;
4484 assert(type == GL_FRAGMENT_SHADER || type == GL_VERTEX_SHADER ||
4485 type == GL_GEOMETRY_SHADER_ARB);
4486 shader = rzalloc(NULL, struct gl_shader);
4487 if (shader) {
4488 shader->Type = type;
4489 shader->Name = name;
4490 _mesa_init_shader(ctx, shader);
4491 }
4492 return shader;
4493 }
4494
4495 struct gl_shader_program *
4496 st_new_shader_program(struct gl_context *ctx, GLuint name)
4497 {
4498 struct gl_shader_program *shProg;
4499 shProg = rzalloc(NULL, struct gl_shader_program);
4500 if (shProg) {
4501 shProg->Name = name;
4502 _mesa_init_shader_program(ctx, shProg);
4503 }
4504 return shProg;
4505 }
4506
4507 /**
4508 * Link a shader.
4509 * Called via ctx->Driver.LinkShader()
4510 * This actually involves converting GLSL IR into an intermediate TGSI-like IR
4511 * with code lowering and other optimizations.
4512 */
4513 GLboolean
4514 st_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
4515 {
4516 assert(prog->LinkStatus);
4517
4518 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
4519 if (prog->_LinkedShaders[i] == NULL)
4520 continue;
4521
4522 bool progress;
4523 exec_list *ir = prog->_LinkedShaders[i]->ir;
4524 const struct gl_shader_compiler_options *options =
4525 &ctx->ShaderCompilerOptions[_mesa_shader_type_to_index(prog->_LinkedShaders[i]->Type)];
4526
4527 do {
4528 progress = false;
4529
4530 /* Lowering */
4531 do_mat_op_to_vec(ir);
4532 lower_instructions(ir, (MOD_TO_FRACT | DIV_TO_MUL_RCP | EXP_TO_EXP2
4533 | LOG_TO_LOG2
4534 | ((options->EmitNoPow) ? POW_TO_EXP2 : 0)));
4535
4536 progress = do_lower_jumps(ir, true, true, options->EmitNoMainReturn, options->EmitNoCont, options->EmitNoLoops) || progress;
4537
4538 progress = do_common_optimization(ir, true, options->MaxUnrollIterations) || progress;
4539
4540 progress = lower_quadop_vector(ir, true) || progress;
4541
4542 if (options->EmitNoIfs) {
4543 progress = lower_discard(ir) || progress;
4544 progress = lower_if_to_cond_assign(ir) || progress;
4545 }
4546
4547 if (options->EmitNoNoise)
4548 progress = lower_noise(ir) || progress;
4549
4550 /* If there are forms of indirect addressing that the driver
4551 * cannot handle, perform the lowering pass.
4552 */
4553 if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput
4554 || options->EmitNoIndirectTemp || options->EmitNoIndirectUniform)
4555 progress =
4556 lower_variable_index_to_cond_assign(ir,
4557 options->EmitNoIndirectInput,
4558 options->EmitNoIndirectOutput,
4559 options->EmitNoIndirectTemp,
4560 options->EmitNoIndirectUniform)
4561 || progress;
4562
4563 progress = do_vec_index_to_cond_assign(ir) || progress;
4564 } while (progress);
4565
4566 validate_ir_tree(ir);
4567 }
4568
4569 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
4570 struct gl_program *linked_prog;
4571
4572 if (prog->_LinkedShaders[i] == NULL)
4573 continue;
4574
4575 linked_prog = get_mesa_program(ctx, prog, prog->_LinkedShaders[i]);
4576
4577 if (linked_prog) {
4578 bool ok = true;
4579
4580 switch (prog->_LinkedShaders[i]->Type) {
4581 case GL_VERTEX_SHADER:
4582 _mesa_reference_vertprog(ctx, &prog->VertexProgram,
4583 (struct gl_vertex_program *)linked_prog);
4584 ok = ctx->Driver.ProgramStringNotify(ctx, GL_VERTEX_PROGRAM_ARB,
4585 linked_prog);
4586 break;
4587 case GL_FRAGMENT_SHADER:
4588 _mesa_reference_fragprog(ctx, &prog->FragmentProgram,
4589 (struct gl_fragment_program *)linked_prog);
4590 ok = ctx->Driver.ProgramStringNotify(ctx, GL_FRAGMENT_PROGRAM_ARB,
4591 linked_prog);
4592 break;
4593 case GL_GEOMETRY_SHADER:
4594 _mesa_reference_geomprog(ctx, &prog->GeometryProgram,
4595 (struct gl_geometry_program *)linked_prog);
4596 ok = ctx->Driver.ProgramStringNotify(ctx, GL_GEOMETRY_PROGRAM_NV,
4597 linked_prog);
4598 break;
4599 }
4600 if (!ok) {
4601 return GL_FALSE;
4602 }
4603 }
4604
4605 _mesa_reference_program(ctx, &linked_prog, NULL);
4606 }
4607
4608 return GL_TRUE;
4609 }
4610
4611
4612 /**
4613 * Link a GLSL shader program. Called via glLinkProgram().
4614 */
4615 void
4616 st_glsl_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
4617 {
4618 unsigned int i;
4619
4620 _mesa_clear_shader_program_data(ctx, prog);
4621
4622 prog->LinkStatus = GL_TRUE;
4623
4624 for (i = 0; i < prog->NumShaders; i++) {
4625 if (!prog->Shaders[i]->CompileStatus) {
4626 fail_link(prog, "linking with uncompiled shader");
4627 prog->LinkStatus = GL_FALSE;
4628 }
4629 }
4630
4631 prog->Varying = _mesa_new_parameter_list();
4632 _mesa_reference_vertprog(ctx, &prog->VertexProgram, NULL);
4633 _mesa_reference_fragprog(ctx, &prog->FragmentProgram, NULL);
4634 _mesa_reference_geomprog(ctx, &prog->GeometryProgram, NULL);
4635
4636 if (prog->LinkStatus) {
4637 link_shaders(ctx, prog);
4638 }
4639
4640 if (prog->LinkStatus) {
4641 if (!ctx->Driver.LinkShader(ctx, prog)) {
4642 prog->LinkStatus = GL_FALSE;
4643 }
4644 }
4645
4646 set_uniform_initializers(ctx, prog);
4647
4648 if (ctx->Shader.Flags & GLSL_DUMP) {
4649 if (!prog->LinkStatus) {
4650 printf("GLSL shader program %d failed to link\n", prog->Name);
4651 }
4652
4653 if (prog->InfoLog && prog->InfoLog[0] != 0) {
4654 printf("GLSL shader program %d info log:\n", prog->Name);
4655 printf("%s\n", prog->InfoLog);
4656 }
4657 }
4658 }
4659
4660 } /* extern "C" */