mesa: Simplify calling Driver.ProgramStringNotify after previous refactors
[mesa.git] / src / mesa / state_tracker / st_glsl_to_tgsi.cpp
1 /*
2 * Copyright (C) 2005-2007 Brian Paul All Rights Reserved.
3 * Copyright (C) 2008 VMware, Inc. All Rights Reserved.
4 * Copyright © 2010 Intel Corporation
5 * Copyright © 2011 Bryan Cain
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the next
15 * paragraph) shall be included in all copies or substantial portions of the
16 * Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
23 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
24 * DEALINGS IN THE SOFTWARE.
25 */
26
27 /**
28 * \file glsl_to_tgsi.cpp
29 *
30 * Translate GLSL IR to TGSI.
31 */
32
33 #include <stdio.h>
34 #include "main/compiler.h"
35 #include "ir.h"
36 #include "ir_visitor.h"
37 #include "ir_print_visitor.h"
38 #include "ir_expression_flattening.h"
39 #include "glsl_types.h"
40 #include "glsl_parser_extras.h"
41 #include "../glsl/program.h"
42 #include "ir_optimization.h"
43 #include "ast.h"
44
45 extern "C" {
46 #include "main/mtypes.h"
47 #include "main/shaderapi.h"
48 #include "main/shaderobj.h"
49 #include "main/uniforms.h"
50 #include "program/hash_table.h"
51 #include "program/prog_instruction.h"
52 #include "program/prog_optimize.h"
53 #include "program/prog_print.h"
54 #include "program/program.h"
55 #include "program/prog_uniform.h"
56 #include "program/prog_parameter.h"
57 #include "program/sampler.h"
58
59 #include "pipe/p_compiler.h"
60 #include "pipe/p_context.h"
61 #include "pipe/p_screen.h"
62 #include "pipe/p_shader_tokens.h"
63 #include "pipe/p_state.h"
64 #include "util/u_math.h"
65 #include "tgsi/tgsi_ureg.h"
66 #include "tgsi/tgsi_info.h"
67 #include "st_context.h"
68 #include "st_program.h"
69 #include "st_glsl_to_tgsi.h"
70 #include "st_mesa_to_tgsi.h"
71 }
72
73 #define PROGRAM_IMMEDIATE PROGRAM_FILE_MAX
74 #define PROGRAM_ANY_CONST ((1 << PROGRAM_LOCAL_PARAM) | \
75 (1 << PROGRAM_ENV_PARAM) | \
76 (1 << PROGRAM_STATE_VAR) | \
77 (1 << PROGRAM_NAMED_PARAM) | \
78 (1 << PROGRAM_CONSTANT) | \
79 (1 << PROGRAM_UNIFORM))
80
81 #define MAX_TEMPS 4096
82
83 /* will be 4 for GLSL 4.00 */
84 #define MAX_GLSL_TEXTURE_OFFSET 1
85
86 class st_src_reg;
87 class st_dst_reg;
88
89 static int swizzle_for_size(int size);
90
91 /**
92 * This struct is a corresponding struct to TGSI ureg_src.
93 */
94 class st_src_reg {
95 public:
96 st_src_reg(gl_register_file file, int index, const glsl_type *type)
97 {
98 this->file = file;
99 this->index = index;
100 if (type && (type->is_scalar() || type->is_vector() || type->is_matrix()))
101 this->swizzle = swizzle_for_size(type->vector_elements);
102 else
103 this->swizzle = SWIZZLE_XYZW;
104 this->negate = 0;
105 this->type = type ? type->base_type : GLSL_TYPE_ERROR;
106 this->reladdr = NULL;
107 }
108
109 st_src_reg(gl_register_file file, int index, int type)
110 {
111 this->type = type;
112 this->file = file;
113 this->index = index;
114 this->swizzle = SWIZZLE_XYZW;
115 this->negate = 0;
116 this->reladdr = NULL;
117 }
118
119 st_src_reg()
120 {
121 this->type = GLSL_TYPE_ERROR;
122 this->file = PROGRAM_UNDEFINED;
123 this->index = 0;
124 this->swizzle = 0;
125 this->negate = 0;
126 this->reladdr = NULL;
127 }
128
129 explicit st_src_reg(st_dst_reg reg);
130
131 gl_register_file file; /**< PROGRAM_* from Mesa */
132 int index; /**< temporary index, VERT_ATTRIB_*, FRAG_ATTRIB_*, etc. */
133 GLuint swizzle; /**< SWIZZLE_XYZWONEZERO swizzles from Mesa. */
134 int negate; /**< NEGATE_XYZW mask from mesa */
135 int type; /** GLSL_TYPE_* from GLSL IR (enum glsl_base_type) */
136 /** Register index should be offset by the integer in this reg. */
137 st_src_reg *reladdr;
138 };
139
140 class st_dst_reg {
141 public:
142 st_dst_reg(gl_register_file file, int writemask, int type)
143 {
144 this->file = file;
145 this->index = 0;
146 this->writemask = writemask;
147 this->cond_mask = COND_TR;
148 this->reladdr = NULL;
149 this->type = type;
150 }
151
152 st_dst_reg()
153 {
154 this->type = GLSL_TYPE_ERROR;
155 this->file = PROGRAM_UNDEFINED;
156 this->index = 0;
157 this->writemask = 0;
158 this->cond_mask = COND_TR;
159 this->reladdr = NULL;
160 }
161
162 explicit st_dst_reg(st_src_reg reg);
163
164 gl_register_file file; /**< PROGRAM_* from Mesa */
165 int index; /**< temporary index, VERT_ATTRIB_*, FRAG_ATTRIB_*, etc. */
166 int writemask; /**< Bitfield of WRITEMASK_[XYZW] */
167 GLuint cond_mask:4;
168 int type; /** GLSL_TYPE_* from GLSL IR (enum glsl_base_type) */
169 /** Register index should be offset by the integer in this reg. */
170 st_src_reg *reladdr;
171 };
172
173 st_src_reg::st_src_reg(st_dst_reg reg)
174 {
175 this->type = reg.type;
176 this->file = reg.file;
177 this->index = reg.index;
178 this->swizzle = SWIZZLE_XYZW;
179 this->negate = 0;
180 this->reladdr = reg.reladdr;
181 }
182
183 st_dst_reg::st_dst_reg(st_src_reg reg)
184 {
185 this->type = reg.type;
186 this->file = reg.file;
187 this->index = reg.index;
188 this->writemask = WRITEMASK_XYZW;
189 this->cond_mask = COND_TR;
190 this->reladdr = reg.reladdr;
191 }
192
193 class glsl_to_tgsi_instruction : public exec_node {
194 public:
195 /* Callers of this ralloc-based new need not call delete. It's
196 * easier to just ralloc_free 'ctx' (or any of its ancestors). */
197 static void* operator new(size_t size, void *ctx)
198 {
199 void *node;
200
201 node = rzalloc_size(ctx, size);
202 assert(node != NULL);
203
204 return node;
205 }
206
207 unsigned op;
208 st_dst_reg dst;
209 st_src_reg src[3];
210 /** Pointer to the ir source this tree came from for debugging */
211 ir_instruction *ir;
212 GLboolean cond_update;
213 bool saturate;
214 int sampler; /**< sampler index */
215 int tex_target; /**< One of TEXTURE_*_INDEX */
216 GLboolean tex_shadow;
217 struct tgsi_texture_offset tex_offsets[MAX_GLSL_TEXTURE_OFFSET];
218 unsigned tex_offset_num_offset;
219 int dead_mask; /**< Used in dead code elimination */
220
221 class function_entry *function; /* Set on TGSI_OPCODE_CAL or TGSI_OPCODE_BGNSUB */
222 };
223
224 class variable_storage : public exec_node {
225 public:
226 variable_storage(ir_variable *var, gl_register_file file, int index)
227 : file(file), index(index), var(var)
228 {
229 /* empty */
230 }
231
232 gl_register_file file;
233 int index;
234 ir_variable *var; /* variable that maps to this, if any */
235 };
236
237 class immediate_storage : public exec_node {
238 public:
239 immediate_storage(gl_constant_value *values, int size, int type)
240 {
241 memcpy(this->values, values, size * sizeof(gl_constant_value));
242 this->size = size;
243 this->type = type;
244 }
245
246 gl_constant_value values[4];
247 int size; /**< Number of components (1-4) */
248 int type; /**< GL_FLOAT, GL_INT, GL_BOOL, or GL_UNSIGNED_INT */
249 };
250
251 class function_entry : public exec_node {
252 public:
253 ir_function_signature *sig;
254
255 /**
256 * identifier of this function signature used by the program.
257 *
258 * At the point that TGSI instructions for function calls are
259 * generated, we don't know the address of the first instruction of
260 * the function body. So we make the BranchTarget that is called a
261 * small integer and rewrite them during set_branchtargets().
262 */
263 int sig_id;
264
265 /**
266 * Pointer to first instruction of the function body.
267 *
268 * Set during function body emits after main() is processed.
269 */
270 glsl_to_tgsi_instruction *bgn_inst;
271
272 /**
273 * Index of the first instruction of the function body in actual TGSI.
274 *
275 * Set after conversion from glsl_to_tgsi_instruction to TGSI.
276 */
277 int inst;
278
279 /** Storage for the return value. */
280 st_src_reg return_reg;
281 };
282
283 class glsl_to_tgsi_visitor : public ir_visitor {
284 public:
285 glsl_to_tgsi_visitor();
286 ~glsl_to_tgsi_visitor();
287
288 function_entry *current_function;
289
290 struct gl_context *ctx;
291 struct gl_program *prog;
292 struct gl_shader_program *shader_program;
293 struct gl_shader_compiler_options *options;
294
295 int next_temp;
296
297 int num_address_regs;
298 int samplers_used;
299 bool indirect_addr_temps;
300 bool indirect_addr_consts;
301
302 int glsl_version;
303 bool native_integers;
304
305 variable_storage *find_variable_storage(ir_variable *var);
306
307 int add_constant(gl_register_file file, gl_constant_value values[4],
308 int size, int datatype, GLuint *swizzle_out);
309
310 function_entry *get_function_signature(ir_function_signature *sig);
311
312 st_src_reg get_temp(const glsl_type *type);
313 void reladdr_to_temp(ir_instruction *ir, st_src_reg *reg, int *num_reladdr);
314
315 st_src_reg st_src_reg_for_float(float val);
316 st_src_reg st_src_reg_for_int(int val);
317 st_src_reg st_src_reg_for_type(int type, int val);
318
319 /**
320 * \name Visit methods
321 *
322 * As typical for the visitor pattern, there must be one \c visit method for
323 * each concrete subclass of \c ir_instruction. Virtual base classes within
324 * the hierarchy should not have \c visit methods.
325 */
326 /*@{*/
327 virtual void visit(ir_variable *);
328 virtual void visit(ir_loop *);
329 virtual void visit(ir_loop_jump *);
330 virtual void visit(ir_function_signature *);
331 virtual void visit(ir_function *);
332 virtual void visit(ir_expression *);
333 virtual void visit(ir_swizzle *);
334 virtual void visit(ir_dereference_variable *);
335 virtual void visit(ir_dereference_array *);
336 virtual void visit(ir_dereference_record *);
337 virtual void visit(ir_assignment *);
338 virtual void visit(ir_constant *);
339 virtual void visit(ir_call *);
340 virtual void visit(ir_return *);
341 virtual void visit(ir_discard *);
342 virtual void visit(ir_texture *);
343 virtual void visit(ir_if *);
344 /*@}*/
345
346 st_src_reg result;
347
348 /** List of variable_storage */
349 exec_list variables;
350
351 /** List of immediate_storage */
352 exec_list immediates;
353 int num_immediates;
354
355 /** List of function_entry */
356 exec_list function_signatures;
357 int next_signature_id;
358
359 /** List of glsl_to_tgsi_instruction */
360 exec_list instructions;
361
362 glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op);
363
364 glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op,
365 st_dst_reg dst, st_src_reg src0);
366
367 glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op,
368 st_dst_reg dst, st_src_reg src0, st_src_reg src1);
369
370 glsl_to_tgsi_instruction *emit(ir_instruction *ir, unsigned op,
371 st_dst_reg dst,
372 st_src_reg src0, st_src_reg src1, st_src_reg src2);
373
374 unsigned get_opcode(ir_instruction *ir, unsigned op,
375 st_dst_reg dst,
376 st_src_reg src0, st_src_reg src1);
377
378 /**
379 * Emit the correct dot-product instruction for the type of arguments
380 */
381 glsl_to_tgsi_instruction *emit_dp(ir_instruction *ir,
382 st_dst_reg dst,
383 st_src_reg src0,
384 st_src_reg src1,
385 unsigned elements);
386
387 void emit_scalar(ir_instruction *ir, unsigned op,
388 st_dst_reg dst, st_src_reg src0);
389
390 void emit_scalar(ir_instruction *ir, unsigned op,
391 st_dst_reg dst, st_src_reg src0, st_src_reg src1);
392
393 void try_emit_float_set(ir_instruction *ir, unsigned op, st_dst_reg dst);
394
395 void emit_arl(ir_instruction *ir, st_dst_reg dst, st_src_reg src0);
396
397 void emit_scs(ir_instruction *ir, unsigned op,
398 st_dst_reg dst, const st_src_reg &src);
399
400 bool try_emit_mad(ir_expression *ir,
401 int mul_operand);
402 bool try_emit_mad_for_and_not(ir_expression *ir,
403 int mul_operand);
404 bool try_emit_sat(ir_expression *ir);
405
406 void emit_swz(ir_expression *ir);
407
408 bool process_move_condition(ir_rvalue *ir);
409
410 void remove_output_reads(gl_register_file type);
411 void simplify_cmp(void);
412
413 void rename_temp_register(int index, int new_index);
414 int get_first_temp_read(int index);
415 int get_first_temp_write(int index);
416 int get_last_temp_read(int index);
417 int get_last_temp_write(int index);
418
419 void copy_propagate(void);
420 void eliminate_dead_code(void);
421 int eliminate_dead_code_advanced(void);
422 void merge_registers(void);
423 void renumber_registers(void);
424
425 void *mem_ctx;
426 };
427
428 static st_src_reg undef_src = st_src_reg(PROGRAM_UNDEFINED, 0, GLSL_TYPE_ERROR);
429
430 static st_dst_reg undef_dst = st_dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP, GLSL_TYPE_ERROR);
431
432 static st_dst_reg address_reg = st_dst_reg(PROGRAM_ADDRESS, WRITEMASK_X, GLSL_TYPE_FLOAT);
433
434 static void
435 fail_link(struct gl_shader_program *prog, const char *fmt, ...) PRINTFLIKE(2, 3);
436
437 static void
438 fail_link(struct gl_shader_program *prog, const char *fmt, ...)
439 {
440 va_list args;
441 va_start(args, fmt);
442 ralloc_vasprintf_append(&prog->InfoLog, fmt, args);
443 va_end(args);
444
445 prog->LinkStatus = GL_FALSE;
446 }
447
448 static int
449 swizzle_for_size(int size)
450 {
451 int size_swizzles[4] = {
452 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
453 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
454 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
455 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
456 };
457
458 assert((size >= 1) && (size <= 4));
459 return size_swizzles[size - 1];
460 }
461
462 static bool
463 is_tex_instruction(unsigned opcode)
464 {
465 const tgsi_opcode_info* info = tgsi_get_opcode_info(opcode);
466 return info->is_tex;
467 }
468
469 static unsigned
470 num_inst_dst_regs(unsigned opcode)
471 {
472 const tgsi_opcode_info* info = tgsi_get_opcode_info(opcode);
473 return info->num_dst;
474 }
475
476 static unsigned
477 num_inst_src_regs(unsigned opcode)
478 {
479 const tgsi_opcode_info* info = tgsi_get_opcode_info(opcode);
480 return info->is_tex ? info->num_src - 1 : info->num_src;
481 }
482
483 glsl_to_tgsi_instruction *
484 glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op,
485 st_dst_reg dst,
486 st_src_reg src0, st_src_reg src1, st_src_reg src2)
487 {
488 glsl_to_tgsi_instruction *inst = new(mem_ctx) glsl_to_tgsi_instruction();
489 int num_reladdr = 0, i;
490
491 op = get_opcode(ir, op, dst, src0, src1);
492
493 /* If we have to do relative addressing, we want to load the ARL
494 * reg directly for one of the regs, and preload the other reladdr
495 * sources into temps.
496 */
497 num_reladdr += dst.reladdr != NULL;
498 num_reladdr += src0.reladdr != NULL;
499 num_reladdr += src1.reladdr != NULL;
500 num_reladdr += src2.reladdr != NULL;
501
502 reladdr_to_temp(ir, &src2, &num_reladdr);
503 reladdr_to_temp(ir, &src1, &num_reladdr);
504 reladdr_to_temp(ir, &src0, &num_reladdr);
505
506 if (dst.reladdr) {
507 emit_arl(ir, address_reg, *dst.reladdr);
508 num_reladdr--;
509 }
510 assert(num_reladdr == 0);
511
512 inst->op = op;
513 inst->dst = dst;
514 inst->src[0] = src0;
515 inst->src[1] = src1;
516 inst->src[2] = src2;
517 inst->ir = ir;
518 inst->dead_mask = 0;
519
520 inst->function = NULL;
521
522 if (op == TGSI_OPCODE_ARL || op == TGSI_OPCODE_UARL)
523 this->num_address_regs = 1;
524
525 /* Update indirect addressing status used by TGSI */
526 if (dst.reladdr) {
527 switch(dst.file) {
528 case PROGRAM_TEMPORARY:
529 this->indirect_addr_temps = true;
530 break;
531 case PROGRAM_LOCAL_PARAM:
532 case PROGRAM_ENV_PARAM:
533 case PROGRAM_STATE_VAR:
534 case PROGRAM_NAMED_PARAM:
535 case PROGRAM_CONSTANT:
536 case PROGRAM_UNIFORM:
537 this->indirect_addr_consts = true;
538 break;
539 case PROGRAM_IMMEDIATE:
540 assert(!"immediates should not have indirect addressing");
541 break;
542 default:
543 break;
544 }
545 }
546 else {
547 for (i=0; i<3; i++) {
548 if(inst->src[i].reladdr) {
549 switch(inst->src[i].file) {
550 case PROGRAM_TEMPORARY:
551 this->indirect_addr_temps = true;
552 break;
553 case PROGRAM_LOCAL_PARAM:
554 case PROGRAM_ENV_PARAM:
555 case PROGRAM_STATE_VAR:
556 case PROGRAM_NAMED_PARAM:
557 case PROGRAM_CONSTANT:
558 case PROGRAM_UNIFORM:
559 this->indirect_addr_consts = true;
560 break;
561 case PROGRAM_IMMEDIATE:
562 assert(!"immediates should not have indirect addressing");
563 break;
564 default:
565 break;
566 }
567 }
568 }
569 }
570
571 this->instructions.push_tail(inst);
572
573 if (native_integers)
574 try_emit_float_set(ir, op, dst);
575
576 return inst;
577 }
578
579
580 glsl_to_tgsi_instruction *
581 glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op,
582 st_dst_reg dst, st_src_reg src0, st_src_reg src1)
583 {
584 return emit(ir, op, dst, src0, src1, undef_src);
585 }
586
587 glsl_to_tgsi_instruction *
588 glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op,
589 st_dst_reg dst, st_src_reg src0)
590 {
591 assert(dst.writemask != 0);
592 return emit(ir, op, dst, src0, undef_src, undef_src);
593 }
594
595 glsl_to_tgsi_instruction *
596 glsl_to_tgsi_visitor::emit(ir_instruction *ir, unsigned op)
597 {
598 return emit(ir, op, undef_dst, undef_src, undef_src, undef_src);
599 }
600
601 /**
602 * Emits the code to convert the result of float SET instructions to integers.
603 */
604 void
605 glsl_to_tgsi_visitor::try_emit_float_set(ir_instruction *ir, unsigned op,
606 st_dst_reg dst)
607 {
608 if ((op == TGSI_OPCODE_SEQ ||
609 op == TGSI_OPCODE_SNE ||
610 op == TGSI_OPCODE_SGE ||
611 op == TGSI_OPCODE_SLT))
612 {
613 st_src_reg src = st_src_reg(dst);
614 src.negate = ~src.negate;
615 dst.type = GLSL_TYPE_FLOAT;
616 emit(ir, TGSI_OPCODE_F2I, dst, src);
617 }
618 }
619
620 /**
621 * Determines whether to use an integer, unsigned integer, or float opcode
622 * based on the operands and input opcode, then emits the result.
623 */
624 unsigned
625 glsl_to_tgsi_visitor::get_opcode(ir_instruction *ir, unsigned op,
626 st_dst_reg dst,
627 st_src_reg src0, st_src_reg src1)
628 {
629 int type = GLSL_TYPE_FLOAT;
630
631 if (src0.type == GLSL_TYPE_FLOAT || src1.type == GLSL_TYPE_FLOAT)
632 type = GLSL_TYPE_FLOAT;
633 else if (native_integers)
634 type = src0.type == GLSL_TYPE_BOOL ? GLSL_TYPE_INT : src0.type;
635
636 #define case4(c, f, i, u) \
637 case TGSI_OPCODE_##c: \
638 if (type == GLSL_TYPE_INT) op = TGSI_OPCODE_##i; \
639 else if (type == GLSL_TYPE_UINT) op = TGSI_OPCODE_##u; \
640 else op = TGSI_OPCODE_##f; \
641 break;
642 #define case3(f, i, u) case4(f, f, i, u)
643 #define case2fi(f, i) case4(f, f, i, i)
644 #define case2iu(i, u) case4(i, LAST, i, u)
645
646 switch(op) {
647 case2fi(ADD, UADD);
648 case2fi(MUL, UMUL);
649 case2fi(MAD, UMAD);
650 case3(DIV, IDIV, UDIV);
651 case3(MAX, IMAX, UMAX);
652 case3(MIN, IMIN, UMIN);
653 case2iu(MOD, UMOD);
654
655 case2fi(SEQ, USEQ);
656 case2fi(SNE, USNE);
657 case3(SGE, ISGE, USGE);
658 case3(SLT, ISLT, USLT);
659
660 case2iu(ISHR, USHR);
661
662 default: break;
663 }
664
665 assert(op != TGSI_OPCODE_LAST);
666 return op;
667 }
668
669 glsl_to_tgsi_instruction *
670 glsl_to_tgsi_visitor::emit_dp(ir_instruction *ir,
671 st_dst_reg dst, st_src_reg src0, st_src_reg src1,
672 unsigned elements)
673 {
674 static const unsigned dot_opcodes[] = {
675 TGSI_OPCODE_DP2, TGSI_OPCODE_DP3, TGSI_OPCODE_DP4
676 };
677
678 return emit(ir, dot_opcodes[elements - 2], dst, src0, src1);
679 }
680
681 /**
682 * Emits TGSI scalar opcodes to produce unique answers across channels.
683 *
684 * Some TGSI opcodes are scalar-only, like ARB_fp/vp. The src X
685 * channel determines the result across all channels. So to do a vec4
686 * of this operation, we want to emit a scalar per source channel used
687 * to produce dest channels.
688 */
689 void
690 glsl_to_tgsi_visitor::emit_scalar(ir_instruction *ir, unsigned op,
691 st_dst_reg dst,
692 st_src_reg orig_src0, st_src_reg orig_src1)
693 {
694 int i, j;
695 int done_mask = ~dst.writemask;
696
697 /* TGSI RCP is a scalar operation splatting results to all channels,
698 * like ARB_fp/vp. So emit as many RCPs as necessary to cover our
699 * dst channels.
700 */
701 for (i = 0; i < 4; i++) {
702 GLuint this_mask = (1 << i);
703 glsl_to_tgsi_instruction *inst;
704 st_src_reg src0 = orig_src0;
705 st_src_reg src1 = orig_src1;
706
707 if (done_mask & this_mask)
708 continue;
709
710 GLuint src0_swiz = GET_SWZ(src0.swizzle, i);
711 GLuint src1_swiz = GET_SWZ(src1.swizzle, i);
712 for (j = i + 1; j < 4; j++) {
713 /* If there is another enabled component in the destination that is
714 * derived from the same inputs, generate its value on this pass as
715 * well.
716 */
717 if (!(done_mask & (1 << j)) &&
718 GET_SWZ(src0.swizzle, j) == src0_swiz &&
719 GET_SWZ(src1.swizzle, j) == src1_swiz) {
720 this_mask |= (1 << j);
721 }
722 }
723 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
724 src0_swiz, src0_swiz);
725 src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz,
726 src1_swiz, src1_swiz);
727
728 inst = emit(ir, op, dst, src0, src1);
729 inst->dst.writemask = this_mask;
730 done_mask |= this_mask;
731 }
732 }
733
734 void
735 glsl_to_tgsi_visitor::emit_scalar(ir_instruction *ir, unsigned op,
736 st_dst_reg dst, st_src_reg src0)
737 {
738 st_src_reg undef = undef_src;
739
740 undef.swizzle = SWIZZLE_XXXX;
741
742 emit_scalar(ir, op, dst, src0, undef);
743 }
744
745 void
746 glsl_to_tgsi_visitor::emit_arl(ir_instruction *ir,
747 st_dst_reg dst, st_src_reg src0)
748 {
749 int op = TGSI_OPCODE_ARL;
750
751 if (src0.type == GLSL_TYPE_INT || src0.type == GLSL_TYPE_UINT)
752 op = TGSI_OPCODE_UARL;
753
754 emit(NULL, op, dst, src0);
755 }
756
757 /**
758 * Emit an TGSI_OPCODE_SCS instruction
759 *
760 * The \c SCS opcode functions a bit differently than the other TGSI opcodes.
761 * Instead of splatting its result across all four components of the
762 * destination, it writes one value to the \c x component and another value to
763 * the \c y component.
764 *
765 * \param ir IR instruction being processed
766 * \param op Either \c TGSI_OPCODE_SIN or \c TGSI_OPCODE_COS depending
767 * on which value is desired.
768 * \param dst Destination register
769 * \param src Source register
770 */
771 void
772 glsl_to_tgsi_visitor::emit_scs(ir_instruction *ir, unsigned op,
773 st_dst_reg dst,
774 const st_src_reg &src)
775 {
776 /* Vertex programs cannot use the SCS opcode.
777 */
778 if (this->prog->Target == GL_VERTEX_PROGRAM_ARB) {
779 emit_scalar(ir, op, dst, src);
780 return;
781 }
782
783 const unsigned component = (op == TGSI_OPCODE_SIN) ? 0 : 1;
784 const unsigned scs_mask = (1U << component);
785 int done_mask = ~dst.writemask;
786 st_src_reg tmp;
787
788 assert(op == TGSI_OPCODE_SIN || op == TGSI_OPCODE_COS);
789
790 /* If there are compnents in the destination that differ from the component
791 * that will be written by the SCS instrution, we'll need a temporary.
792 */
793 if (scs_mask != unsigned(dst.writemask)) {
794 tmp = get_temp(glsl_type::vec4_type);
795 }
796
797 for (unsigned i = 0; i < 4; i++) {
798 unsigned this_mask = (1U << i);
799 st_src_reg src0 = src;
800
801 if ((done_mask & this_mask) != 0)
802 continue;
803
804 /* The source swizzle specified which component of the source generates
805 * sine / cosine for the current component in the destination. The SCS
806 * instruction requires that this value be swizzle to the X component.
807 * Replace the current swizzle with a swizzle that puts the source in
808 * the X component.
809 */
810 unsigned src0_swiz = GET_SWZ(src.swizzle, i);
811
812 src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
813 src0_swiz, src0_swiz);
814 for (unsigned j = i + 1; j < 4; j++) {
815 /* If there is another enabled component in the destination that is
816 * derived from the same inputs, generate its value on this pass as
817 * well.
818 */
819 if (!(done_mask & (1 << j)) &&
820 GET_SWZ(src0.swizzle, j) == src0_swiz) {
821 this_mask |= (1 << j);
822 }
823 }
824
825 if (this_mask != scs_mask) {
826 glsl_to_tgsi_instruction *inst;
827 st_dst_reg tmp_dst = st_dst_reg(tmp);
828
829 /* Emit the SCS instruction.
830 */
831 inst = emit(ir, TGSI_OPCODE_SCS, tmp_dst, src0);
832 inst->dst.writemask = scs_mask;
833
834 /* Move the result of the SCS instruction to the desired location in
835 * the destination.
836 */
837 tmp.swizzle = MAKE_SWIZZLE4(component, component,
838 component, component);
839 inst = emit(ir, TGSI_OPCODE_SCS, dst, tmp);
840 inst->dst.writemask = this_mask;
841 } else {
842 /* Emit the SCS instruction to write directly to the destination.
843 */
844 glsl_to_tgsi_instruction *inst = emit(ir, TGSI_OPCODE_SCS, dst, src0);
845 inst->dst.writemask = scs_mask;
846 }
847
848 done_mask |= this_mask;
849 }
850 }
851
852 int
853 glsl_to_tgsi_visitor::add_constant(gl_register_file file,
854 gl_constant_value values[4], int size, int datatype,
855 GLuint *swizzle_out)
856 {
857 if (file == PROGRAM_CONSTANT) {
858 return _mesa_add_typed_unnamed_constant(this->prog->Parameters, values,
859 size, datatype, swizzle_out);
860 } else {
861 int index = 0;
862 immediate_storage *entry;
863 assert(file == PROGRAM_IMMEDIATE);
864
865 /* Search immediate storage to see if we already have an identical
866 * immediate that we can use instead of adding a duplicate entry.
867 */
868 foreach_iter(exec_list_iterator, iter, this->immediates) {
869 entry = (immediate_storage *)iter.get();
870
871 if (entry->size == size &&
872 entry->type == datatype &&
873 !memcmp(entry->values, values, size * sizeof(gl_constant_value))) {
874 return index;
875 }
876 index++;
877 }
878
879 /* Add this immediate to the list. */
880 entry = new(mem_ctx) immediate_storage(values, size, datatype);
881 this->immediates.push_tail(entry);
882 this->num_immediates++;
883 return index;
884 }
885 }
886
887 st_src_reg
888 glsl_to_tgsi_visitor::st_src_reg_for_float(float val)
889 {
890 st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_FLOAT);
891 union gl_constant_value uval;
892
893 uval.f = val;
894 src.index = add_constant(src.file, &uval, 1, GL_FLOAT, &src.swizzle);
895
896 return src;
897 }
898
899 st_src_reg
900 glsl_to_tgsi_visitor::st_src_reg_for_int(int val)
901 {
902 st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_INT);
903 union gl_constant_value uval;
904
905 assert(native_integers);
906
907 uval.i = val;
908 src.index = add_constant(src.file, &uval, 1, GL_INT, &src.swizzle);
909
910 return src;
911 }
912
913 st_src_reg
914 glsl_to_tgsi_visitor::st_src_reg_for_type(int type, int val)
915 {
916 if (native_integers)
917 return type == GLSL_TYPE_FLOAT ? st_src_reg_for_float(val) :
918 st_src_reg_for_int(val);
919 else
920 return st_src_reg_for_float(val);
921 }
922
923 static int
924 type_size(const struct glsl_type *type)
925 {
926 unsigned int i;
927 int size;
928
929 switch (type->base_type) {
930 case GLSL_TYPE_UINT:
931 case GLSL_TYPE_INT:
932 case GLSL_TYPE_FLOAT:
933 case GLSL_TYPE_BOOL:
934 if (type->is_matrix()) {
935 return type->matrix_columns;
936 } else {
937 /* Regardless of size of vector, it gets a vec4. This is bad
938 * packing for things like floats, but otherwise arrays become a
939 * mess. Hopefully a later pass over the code can pack scalars
940 * down if appropriate.
941 */
942 return 1;
943 }
944 case GLSL_TYPE_ARRAY:
945 assert(type->length > 0);
946 return type_size(type->fields.array) * type->length;
947 case GLSL_TYPE_STRUCT:
948 size = 0;
949 for (i = 0; i < type->length; i++) {
950 size += type_size(type->fields.structure[i].type);
951 }
952 return size;
953 case GLSL_TYPE_SAMPLER:
954 /* Samplers take up one slot in UNIFORMS[], but they're baked in
955 * at link time.
956 */
957 return 1;
958 default:
959 assert(0);
960 return 0;
961 }
962 }
963
964 /**
965 * In the initial pass of codegen, we assign temporary numbers to
966 * intermediate results. (not SSA -- variable assignments will reuse
967 * storage).
968 */
969 st_src_reg
970 glsl_to_tgsi_visitor::get_temp(const glsl_type *type)
971 {
972 st_src_reg src;
973
974 src.type = native_integers ? type->base_type : GLSL_TYPE_FLOAT;
975 src.file = PROGRAM_TEMPORARY;
976 src.index = next_temp;
977 src.reladdr = NULL;
978 next_temp += type_size(type);
979
980 if (type->is_array() || type->is_record()) {
981 src.swizzle = SWIZZLE_NOOP;
982 } else {
983 src.swizzle = swizzle_for_size(type->vector_elements);
984 }
985 src.negate = 0;
986
987 return src;
988 }
989
990 variable_storage *
991 glsl_to_tgsi_visitor::find_variable_storage(ir_variable *var)
992 {
993
994 variable_storage *entry;
995
996 foreach_iter(exec_list_iterator, iter, this->variables) {
997 entry = (variable_storage *)iter.get();
998
999 if (entry->var == var)
1000 return entry;
1001 }
1002
1003 return NULL;
1004 }
1005
1006 void
1007 glsl_to_tgsi_visitor::visit(ir_variable *ir)
1008 {
1009 if (strcmp(ir->name, "gl_FragCoord") == 0) {
1010 struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog;
1011
1012 fp->OriginUpperLeft = ir->origin_upper_left;
1013 fp->PixelCenterInteger = ir->pixel_center_integer;
1014
1015 } else if (strcmp(ir->name, "gl_FragDepth") == 0) {
1016 struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog;
1017 switch (ir->depth_layout) {
1018 case ir_depth_layout_none:
1019 fp->FragDepthLayout = FRAG_DEPTH_LAYOUT_NONE;
1020 break;
1021 case ir_depth_layout_any:
1022 fp->FragDepthLayout = FRAG_DEPTH_LAYOUT_ANY;
1023 break;
1024 case ir_depth_layout_greater:
1025 fp->FragDepthLayout = FRAG_DEPTH_LAYOUT_GREATER;
1026 break;
1027 case ir_depth_layout_less:
1028 fp->FragDepthLayout = FRAG_DEPTH_LAYOUT_LESS;
1029 break;
1030 case ir_depth_layout_unchanged:
1031 fp->FragDepthLayout = FRAG_DEPTH_LAYOUT_UNCHANGED;
1032 break;
1033 default:
1034 assert(0);
1035 break;
1036 }
1037 }
1038
1039 if (ir->mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) {
1040 unsigned int i;
1041 const ir_state_slot *const slots = ir->state_slots;
1042 assert(ir->state_slots != NULL);
1043
1044 /* Check if this statevar's setup in the STATE file exactly
1045 * matches how we'll want to reference it as a
1046 * struct/array/whatever. If not, then we need to move it into
1047 * temporary storage and hope that it'll get copy-propagated
1048 * out.
1049 */
1050 for (i = 0; i < ir->num_state_slots; i++) {
1051 if (slots[i].swizzle != SWIZZLE_XYZW) {
1052 break;
1053 }
1054 }
1055
1056 variable_storage *storage;
1057 st_dst_reg dst;
1058 if (i == ir->num_state_slots) {
1059 /* We'll set the index later. */
1060 storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1);
1061 this->variables.push_tail(storage);
1062
1063 dst = undef_dst;
1064 } else {
1065 /* The variable_storage constructor allocates slots based on the size
1066 * of the type. However, this had better match the number of state
1067 * elements that we're going to copy into the new temporary.
1068 */
1069 assert((int) ir->num_state_slots == type_size(ir->type));
1070
1071 storage = new(mem_ctx) variable_storage(ir, PROGRAM_TEMPORARY,
1072 this->next_temp);
1073 this->variables.push_tail(storage);
1074 this->next_temp += type_size(ir->type);
1075
1076 dst = st_dst_reg(st_src_reg(PROGRAM_TEMPORARY, storage->index,
1077 native_integers ? ir->type->base_type : GLSL_TYPE_FLOAT));
1078 }
1079
1080
1081 for (unsigned int i = 0; i < ir->num_state_slots; i++) {
1082 int index = _mesa_add_state_reference(this->prog->Parameters,
1083 (gl_state_index *)slots[i].tokens);
1084
1085 if (storage->file == PROGRAM_STATE_VAR) {
1086 if (storage->index == -1) {
1087 storage->index = index;
1088 } else {
1089 assert(index == storage->index + (int)i);
1090 }
1091 } else {
1092 st_src_reg src(PROGRAM_STATE_VAR, index,
1093 native_integers ? ir->type->base_type : GLSL_TYPE_FLOAT);
1094 src.swizzle = slots[i].swizzle;
1095 emit(ir, TGSI_OPCODE_MOV, dst, src);
1096 /* even a float takes up a whole vec4 reg in a struct/array. */
1097 dst.index++;
1098 }
1099 }
1100
1101 if (storage->file == PROGRAM_TEMPORARY &&
1102 dst.index != storage->index + (int) ir->num_state_slots) {
1103 fail_link(this->shader_program,
1104 "failed to load builtin uniform `%s' (%d/%d regs loaded)\n",
1105 ir->name, dst.index - storage->index,
1106 type_size(ir->type));
1107 }
1108 }
1109 }
1110
1111 void
1112 glsl_to_tgsi_visitor::visit(ir_loop *ir)
1113 {
1114 ir_dereference_variable *counter = NULL;
1115
1116 if (ir->counter != NULL)
1117 counter = new(ir) ir_dereference_variable(ir->counter);
1118
1119 if (ir->from != NULL) {
1120 assert(ir->counter != NULL);
1121
1122 ir_assignment *a = new(ir) ir_assignment(counter, ir->from, NULL);
1123
1124 a->accept(this);
1125 delete a;
1126 }
1127
1128 emit(NULL, TGSI_OPCODE_BGNLOOP);
1129
1130 if (ir->to) {
1131 ir_expression *e =
1132 new(ir) ir_expression(ir->cmp, glsl_type::bool_type,
1133 counter, ir->to);
1134 ir_if *if_stmt = new(ir) ir_if(e);
1135
1136 ir_loop_jump *brk = new(ir) ir_loop_jump(ir_loop_jump::jump_break);
1137
1138 if_stmt->then_instructions.push_tail(brk);
1139
1140 if_stmt->accept(this);
1141
1142 delete if_stmt;
1143 delete e;
1144 delete brk;
1145 }
1146
1147 visit_exec_list(&ir->body_instructions, this);
1148
1149 if (ir->increment) {
1150 ir_expression *e =
1151 new(ir) ir_expression(ir_binop_add, counter->type,
1152 counter, ir->increment);
1153
1154 ir_assignment *a = new(ir) ir_assignment(counter, e, NULL);
1155
1156 a->accept(this);
1157 delete a;
1158 delete e;
1159 }
1160
1161 emit(NULL, TGSI_OPCODE_ENDLOOP);
1162 }
1163
1164 void
1165 glsl_to_tgsi_visitor::visit(ir_loop_jump *ir)
1166 {
1167 switch (ir->mode) {
1168 case ir_loop_jump::jump_break:
1169 emit(NULL, TGSI_OPCODE_BRK);
1170 break;
1171 case ir_loop_jump::jump_continue:
1172 emit(NULL, TGSI_OPCODE_CONT);
1173 break;
1174 }
1175 }
1176
1177
1178 void
1179 glsl_to_tgsi_visitor::visit(ir_function_signature *ir)
1180 {
1181 assert(0);
1182 (void)ir;
1183 }
1184
1185 void
1186 glsl_to_tgsi_visitor::visit(ir_function *ir)
1187 {
1188 /* Ignore function bodies other than main() -- we shouldn't see calls to
1189 * them since they should all be inlined before we get to glsl_to_tgsi.
1190 */
1191 if (strcmp(ir->name, "main") == 0) {
1192 const ir_function_signature *sig;
1193 exec_list empty;
1194
1195 sig = ir->matching_signature(&empty);
1196
1197 assert(sig);
1198
1199 foreach_iter(exec_list_iterator, iter, sig->body) {
1200 ir_instruction *ir = (ir_instruction *)iter.get();
1201
1202 ir->accept(this);
1203 }
1204 }
1205 }
1206
1207 bool
1208 glsl_to_tgsi_visitor::try_emit_mad(ir_expression *ir, int mul_operand)
1209 {
1210 int nonmul_operand = 1 - mul_operand;
1211 st_src_reg a, b, c;
1212 st_dst_reg result_dst;
1213
1214 ir_expression *expr = ir->operands[mul_operand]->as_expression();
1215 if (!expr || expr->operation != ir_binop_mul)
1216 return false;
1217
1218 expr->operands[0]->accept(this);
1219 a = this->result;
1220 expr->operands[1]->accept(this);
1221 b = this->result;
1222 ir->operands[nonmul_operand]->accept(this);
1223 c = this->result;
1224
1225 this->result = get_temp(ir->type);
1226 result_dst = st_dst_reg(this->result);
1227 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1228 emit(ir, TGSI_OPCODE_MAD, result_dst, a, b, c);
1229
1230 return true;
1231 }
1232
1233 /**
1234 * Emit MAD(a, -b, a) instead of AND(a, NOT(b))
1235 *
1236 * The logic values are 1.0 for true and 0.0 for false. Logical-and is
1237 * implemented using multiplication, and logical-or is implemented using
1238 * addition. Logical-not can be implemented as (true - x), or (1.0 - x).
1239 * As result, the logical expression (a & !b) can be rewritten as:
1240 *
1241 * - a * !b
1242 * - a * (1 - b)
1243 * - (a * 1) - (a * b)
1244 * - a + -(a * b)
1245 * - a + (a * -b)
1246 *
1247 * This final expression can be implemented as a single MAD(a, -b, a)
1248 * instruction.
1249 */
1250 bool
1251 glsl_to_tgsi_visitor::try_emit_mad_for_and_not(ir_expression *ir, int try_operand)
1252 {
1253 const int other_operand = 1 - try_operand;
1254 st_src_reg a, b;
1255
1256 ir_expression *expr = ir->operands[try_operand]->as_expression();
1257 if (!expr || expr->operation != ir_unop_logic_not)
1258 return false;
1259
1260 ir->operands[other_operand]->accept(this);
1261 a = this->result;
1262 expr->operands[0]->accept(this);
1263 b = this->result;
1264
1265 b.negate = ~b.negate;
1266
1267 this->result = get_temp(ir->type);
1268 emit(ir, TGSI_OPCODE_MAD, st_dst_reg(this->result), a, b, a);
1269
1270 return true;
1271 }
1272
1273 bool
1274 glsl_to_tgsi_visitor::try_emit_sat(ir_expression *ir)
1275 {
1276 /* Saturates were only introduced to vertex programs in
1277 * NV_vertex_program3, so don't give them to drivers in the VP.
1278 */
1279 if (this->prog->Target == GL_VERTEX_PROGRAM_ARB)
1280 return false;
1281
1282 ir_rvalue *sat_src = ir->as_rvalue_to_saturate();
1283 if (!sat_src)
1284 return false;
1285
1286 sat_src->accept(this);
1287 st_src_reg src = this->result;
1288
1289 /* If we generated an expression instruction into a temporary in
1290 * processing the saturate's operand, apply the saturate to that
1291 * instruction. Otherwise, generate a MOV to do the saturate.
1292 *
1293 * Note that we have to be careful to only do this optimization if
1294 * the instruction in question was what generated src->result. For
1295 * example, ir_dereference_array might generate a MUL instruction
1296 * to create the reladdr, and return us a src reg using that
1297 * reladdr. That MUL result is not the value we're trying to
1298 * saturate.
1299 */
1300 ir_expression *sat_src_expr = sat_src->as_expression();
1301 if (sat_src_expr && (sat_src_expr->operation == ir_binop_mul ||
1302 sat_src_expr->operation == ir_binop_add ||
1303 sat_src_expr->operation == ir_binop_dot)) {
1304 glsl_to_tgsi_instruction *new_inst;
1305 new_inst = (glsl_to_tgsi_instruction *)this->instructions.get_tail();
1306 new_inst->saturate = true;
1307 } else {
1308 this->result = get_temp(ir->type);
1309 st_dst_reg result_dst = st_dst_reg(this->result);
1310 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1311 glsl_to_tgsi_instruction *inst;
1312 inst = emit(ir, TGSI_OPCODE_MOV, result_dst, src);
1313 inst->saturate = true;
1314 }
1315
1316 return true;
1317 }
1318
1319 void
1320 glsl_to_tgsi_visitor::reladdr_to_temp(ir_instruction *ir,
1321 st_src_reg *reg, int *num_reladdr)
1322 {
1323 if (!reg->reladdr)
1324 return;
1325
1326 emit_arl(ir, address_reg, *reg->reladdr);
1327
1328 if (*num_reladdr != 1) {
1329 st_src_reg temp = get_temp(glsl_type::vec4_type);
1330
1331 emit(ir, TGSI_OPCODE_MOV, st_dst_reg(temp), *reg);
1332 *reg = temp;
1333 }
1334
1335 (*num_reladdr)--;
1336 }
1337
1338 void
1339 glsl_to_tgsi_visitor::visit(ir_expression *ir)
1340 {
1341 unsigned int operand;
1342 st_src_reg op[Elements(ir->operands)];
1343 st_src_reg result_src;
1344 st_dst_reg result_dst;
1345
1346 /* Quick peephole: Emit MAD(a, b, c) instead of ADD(MUL(a, b), c)
1347 */
1348 if (ir->operation == ir_binop_add) {
1349 if (try_emit_mad(ir, 1))
1350 return;
1351 if (try_emit_mad(ir, 0))
1352 return;
1353 }
1354
1355 /* Quick peephole: Emit OPCODE_MAD(-a, -b, a) instead of AND(a, NOT(b))
1356 */
1357 if (ir->operation == ir_binop_logic_and) {
1358 if (try_emit_mad_for_and_not(ir, 1))
1359 return;
1360 if (try_emit_mad_for_and_not(ir, 0))
1361 return;
1362 }
1363
1364 if (try_emit_sat(ir))
1365 return;
1366
1367 if (ir->operation == ir_quadop_vector)
1368 assert(!"ir_quadop_vector should have been lowered");
1369
1370 for (operand = 0; operand < ir->get_num_operands(); operand++) {
1371 this->result.file = PROGRAM_UNDEFINED;
1372 ir->operands[operand]->accept(this);
1373 if (this->result.file == PROGRAM_UNDEFINED) {
1374 ir_print_visitor v;
1375 printf("Failed to get tree for expression operand:\n");
1376 ir->operands[operand]->accept(&v);
1377 exit(1);
1378 }
1379 op[operand] = this->result;
1380
1381 /* Matrix expression operands should have been broken down to vector
1382 * operations already.
1383 */
1384 assert(!ir->operands[operand]->type->is_matrix());
1385 }
1386
1387 int vector_elements = ir->operands[0]->type->vector_elements;
1388 if (ir->operands[1]) {
1389 vector_elements = MAX2(vector_elements,
1390 ir->operands[1]->type->vector_elements);
1391 }
1392
1393 this->result.file = PROGRAM_UNDEFINED;
1394
1395 /* Storage for our result. Ideally for an assignment we'd be using
1396 * the actual storage for the result here, instead.
1397 */
1398 result_src = get_temp(ir->type);
1399 /* convenience for the emit functions below. */
1400 result_dst = st_dst_reg(result_src);
1401 /* Limit writes to the channels that will be used by result_src later.
1402 * This does limit this temp's use as a temporary for multi-instruction
1403 * sequences.
1404 */
1405 result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1406
1407 switch (ir->operation) {
1408 case ir_unop_logic_not:
1409 if (result_dst.type != GLSL_TYPE_FLOAT)
1410 emit(ir, TGSI_OPCODE_NOT, result_dst, op[0]);
1411 else {
1412 /* Previously 'SEQ dst, src, 0.0' was used for this. However, many
1413 * older GPUs implement SEQ using multiple instructions (i915 uses two
1414 * SGE instructions and a MUL instruction). Since our logic values are
1415 * 0.0 and 1.0, 1-x also implements !x.
1416 */
1417 op[0].negate = ~op[0].negate;
1418 emit(ir, TGSI_OPCODE_ADD, result_dst, op[0], st_src_reg_for_float(1.0));
1419 }
1420 break;
1421 case ir_unop_neg:
1422 assert(result_dst.type == GLSL_TYPE_FLOAT || result_dst.type == GLSL_TYPE_INT);
1423 if (result_dst.type == GLSL_TYPE_INT)
1424 emit(ir, TGSI_OPCODE_INEG, result_dst, op[0]);
1425 else {
1426 op[0].negate = ~op[0].negate;
1427 result_src = op[0];
1428 }
1429 break;
1430 case ir_unop_abs:
1431 assert(result_dst.type == GLSL_TYPE_FLOAT);
1432 emit(ir, TGSI_OPCODE_ABS, result_dst, op[0]);
1433 break;
1434 case ir_unop_sign:
1435 emit(ir, TGSI_OPCODE_SSG, result_dst, op[0]);
1436 break;
1437 case ir_unop_rcp:
1438 emit_scalar(ir, TGSI_OPCODE_RCP, result_dst, op[0]);
1439 break;
1440
1441 case ir_unop_exp2:
1442 emit_scalar(ir, TGSI_OPCODE_EX2, result_dst, op[0]);
1443 break;
1444 case ir_unop_exp:
1445 case ir_unop_log:
1446 assert(!"not reached: should be handled by ir_explog_to_explog2");
1447 break;
1448 case ir_unop_log2:
1449 emit_scalar(ir, TGSI_OPCODE_LG2, result_dst, op[0]);
1450 break;
1451 case ir_unop_sin:
1452 emit_scalar(ir, TGSI_OPCODE_SIN, result_dst, op[0]);
1453 break;
1454 case ir_unop_cos:
1455 emit_scalar(ir, TGSI_OPCODE_COS, result_dst, op[0]);
1456 break;
1457 case ir_unop_sin_reduced:
1458 emit_scs(ir, TGSI_OPCODE_SIN, result_dst, op[0]);
1459 break;
1460 case ir_unop_cos_reduced:
1461 emit_scs(ir, TGSI_OPCODE_COS, result_dst, op[0]);
1462 break;
1463
1464 case ir_unop_dFdx:
1465 emit(ir, TGSI_OPCODE_DDX, result_dst, op[0]);
1466 break;
1467 case ir_unop_dFdy:
1468 op[0].negate = ~op[0].negate;
1469 emit(ir, TGSI_OPCODE_DDY, result_dst, op[0]);
1470 break;
1471
1472 case ir_unop_noise: {
1473 /* At some point, a motivated person could add a better
1474 * implementation of noise. Currently not even the nvidia
1475 * binary drivers do anything more than this. In any case, the
1476 * place to do this is in the GL state tracker, not the poor
1477 * driver.
1478 */
1479 emit(ir, TGSI_OPCODE_MOV, result_dst, st_src_reg_for_float(0.5));
1480 break;
1481 }
1482
1483 case ir_binop_add:
1484 emit(ir, TGSI_OPCODE_ADD, result_dst, op[0], op[1]);
1485 break;
1486 case ir_binop_sub:
1487 emit(ir, TGSI_OPCODE_SUB, result_dst, op[0], op[1]);
1488 break;
1489
1490 case ir_binop_mul:
1491 emit(ir, TGSI_OPCODE_MUL, result_dst, op[0], op[1]);
1492 break;
1493 case ir_binop_div:
1494 if (result_dst.type == GLSL_TYPE_FLOAT)
1495 assert(!"not reached: should be handled by ir_div_to_mul_rcp");
1496 else
1497 emit(ir, TGSI_OPCODE_DIV, result_dst, op[0], op[1]);
1498 break;
1499 case ir_binop_mod:
1500 if (result_dst.type == GLSL_TYPE_FLOAT)
1501 assert(!"ir_binop_mod should have been converted to b * fract(a/b)");
1502 else
1503 emit(ir, TGSI_OPCODE_MOD, result_dst, op[0], op[1]);
1504 break;
1505
1506 case ir_binop_less:
1507 emit(ir, TGSI_OPCODE_SLT, result_dst, op[0], op[1]);
1508 break;
1509 case ir_binop_greater:
1510 emit(ir, TGSI_OPCODE_SLT, result_dst, op[1], op[0]);
1511 break;
1512 case ir_binop_lequal:
1513 emit(ir, TGSI_OPCODE_SGE, result_dst, op[1], op[0]);
1514 break;
1515 case ir_binop_gequal:
1516 emit(ir, TGSI_OPCODE_SGE, result_dst, op[0], op[1]);
1517 break;
1518 case ir_binop_equal:
1519 emit(ir, TGSI_OPCODE_SEQ, result_dst, op[0], op[1]);
1520 break;
1521 case ir_binop_nequal:
1522 emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1523 break;
1524 case ir_binop_all_equal:
1525 /* "==" operator producing a scalar boolean. */
1526 if (ir->operands[0]->type->is_vector() ||
1527 ir->operands[1]->type->is_vector()) {
1528 st_src_reg temp = get_temp(native_integers ?
1529 glsl_type::get_instance(ir->operands[0]->type->base_type, 4, 1) :
1530 glsl_type::vec4_type);
1531
1532 if (native_integers) {
1533 st_dst_reg temp_dst = st_dst_reg(temp);
1534 st_src_reg temp1 = st_src_reg(temp), temp2 = st_src_reg(temp);
1535
1536 emit(ir, TGSI_OPCODE_SEQ, st_dst_reg(temp), op[0], op[1]);
1537
1538 /* Emit 1-3 AND operations to combine the SEQ results. */
1539 switch (ir->operands[0]->type->vector_elements) {
1540 case 2:
1541 break;
1542 case 3:
1543 temp_dst.writemask = WRITEMASK_Y;
1544 temp1.swizzle = SWIZZLE_YYYY;
1545 temp2.swizzle = SWIZZLE_ZZZZ;
1546 emit(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
1547 break;
1548 case 4:
1549 temp_dst.writemask = WRITEMASK_X;
1550 temp1.swizzle = SWIZZLE_XXXX;
1551 temp2.swizzle = SWIZZLE_YYYY;
1552 emit(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
1553 temp_dst.writemask = WRITEMASK_Y;
1554 temp1.swizzle = SWIZZLE_ZZZZ;
1555 temp2.swizzle = SWIZZLE_WWWW;
1556 emit(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
1557 }
1558
1559 temp1.swizzle = SWIZZLE_XXXX;
1560 temp2.swizzle = SWIZZLE_YYYY;
1561 emit(ir, TGSI_OPCODE_AND, result_dst, temp1, temp2);
1562 } else {
1563 emit(ir, TGSI_OPCODE_SNE, st_dst_reg(temp), op[0], op[1]);
1564
1565 /* After the dot-product, the value will be an integer on the
1566 * range [0,4]. Zero becomes 1.0, and positive values become zero.
1567 */
1568 emit_dp(ir, result_dst, temp, temp, vector_elements);
1569
1570 /* Negating the result of the dot-product gives values on the range
1571 * [-4, 0]. Zero becomes 1.0, and negative values become zero.
1572 * This is achieved using SGE.
1573 */
1574 st_src_reg sge_src = result_src;
1575 sge_src.negate = ~sge_src.negate;
1576 emit(ir, TGSI_OPCODE_SGE, result_dst, sge_src, st_src_reg_for_float(0.0));
1577 }
1578 } else {
1579 emit(ir, TGSI_OPCODE_SEQ, result_dst, op[0], op[1]);
1580 }
1581 break;
1582 case ir_binop_any_nequal:
1583 /* "!=" operator producing a scalar boolean. */
1584 if (ir->operands[0]->type->is_vector() ||
1585 ir->operands[1]->type->is_vector()) {
1586 st_src_reg temp = get_temp(native_integers ?
1587 glsl_type::get_instance(ir->operands[0]->type->base_type, 4, 1) :
1588 glsl_type::vec4_type);
1589 emit(ir, TGSI_OPCODE_SNE, st_dst_reg(temp), op[0], op[1]);
1590
1591 if (native_integers) {
1592 st_dst_reg temp_dst = st_dst_reg(temp);
1593 st_src_reg temp1 = st_src_reg(temp), temp2 = st_src_reg(temp);
1594
1595 /* Emit 1-3 OR operations to combine the SNE results. */
1596 switch (ir->operands[0]->type->vector_elements) {
1597 case 2:
1598 break;
1599 case 3:
1600 temp_dst.writemask = WRITEMASK_Y;
1601 temp1.swizzle = SWIZZLE_YYYY;
1602 temp2.swizzle = SWIZZLE_ZZZZ;
1603 emit(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
1604 break;
1605 case 4:
1606 temp_dst.writemask = WRITEMASK_X;
1607 temp1.swizzle = SWIZZLE_XXXX;
1608 temp2.swizzle = SWIZZLE_YYYY;
1609 emit(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
1610 temp_dst.writemask = WRITEMASK_Y;
1611 temp1.swizzle = SWIZZLE_ZZZZ;
1612 temp2.swizzle = SWIZZLE_WWWW;
1613 emit(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
1614 }
1615
1616 temp1.swizzle = SWIZZLE_XXXX;
1617 temp2.swizzle = SWIZZLE_YYYY;
1618 emit(ir, TGSI_OPCODE_OR, result_dst, temp1, temp2);
1619 } else {
1620 /* After the dot-product, the value will be an integer on the
1621 * range [0,4]. Zero stays zero, and positive values become 1.0.
1622 */
1623 glsl_to_tgsi_instruction *const dp =
1624 emit_dp(ir, result_dst, temp, temp, vector_elements);
1625 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1626 /* The clamping to [0,1] can be done for free in the fragment
1627 * shader with a saturate.
1628 */
1629 dp->saturate = true;
1630 } else {
1631 /* Negating the result of the dot-product gives values on the range
1632 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1633 * achieved using SLT.
1634 */
1635 st_src_reg slt_src = result_src;
1636 slt_src.negate = ~slt_src.negate;
1637 emit(ir, TGSI_OPCODE_SLT, result_dst, slt_src, st_src_reg_for_float(0.0));
1638 }
1639 }
1640 } else {
1641 emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1642 }
1643 break;
1644
1645 case ir_unop_any: {
1646 assert(ir->operands[0]->type->is_vector());
1647
1648 /* After the dot-product, the value will be an integer on the
1649 * range [0,4]. Zero stays zero, and positive values become 1.0.
1650 */
1651 glsl_to_tgsi_instruction *const dp =
1652 emit_dp(ir, result_dst, op[0], op[0],
1653 ir->operands[0]->type->vector_elements);
1654 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB &&
1655 result_dst.type == GLSL_TYPE_FLOAT) {
1656 /* The clamping to [0,1] can be done for free in the fragment
1657 * shader with a saturate.
1658 */
1659 dp->saturate = true;
1660 } else if (result_dst.type == GLSL_TYPE_FLOAT) {
1661 /* Negating the result of the dot-product gives values on the range
1662 * [-4, 0]. Zero stays zero, and negative values become 1.0. This
1663 * is achieved using SLT.
1664 */
1665 st_src_reg slt_src = result_src;
1666 slt_src.negate = ~slt_src.negate;
1667 emit(ir, TGSI_OPCODE_SLT, result_dst, slt_src, st_src_reg_for_float(0.0));
1668 }
1669 else {
1670 /* Use SNE 0 if integers are being used as boolean values. */
1671 emit(ir, TGSI_OPCODE_SNE, result_dst, result_src, st_src_reg_for_int(0));
1672 }
1673 break;
1674 }
1675
1676 case ir_binop_logic_xor:
1677 if (native_integers)
1678 emit(ir, TGSI_OPCODE_XOR, result_dst, op[0], op[1]);
1679 else
1680 emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1681 break;
1682
1683 case ir_binop_logic_or: {
1684 if (native_integers) {
1685 /* If integers are used as booleans, we can use an actual "or"
1686 * instruction.
1687 */
1688 assert(native_integers);
1689 emit(ir, TGSI_OPCODE_OR, result_dst, op[0], op[1]);
1690 } else {
1691 /* After the addition, the value will be an integer on the
1692 * range [0,2]. Zero stays zero, and positive values become 1.0.
1693 */
1694 glsl_to_tgsi_instruction *add =
1695 emit(ir, TGSI_OPCODE_ADD, result_dst, op[0], op[1]);
1696 if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1697 /* The clamping to [0,1] can be done for free in the fragment
1698 * shader with a saturate if floats are being used as boolean values.
1699 */
1700 add->saturate = true;
1701 } else {
1702 /* Negating the result of the addition gives values on the range
1703 * [-2, 0]. Zero stays zero, and negative values become 1.0. This
1704 * is achieved using SLT.
1705 */
1706 st_src_reg slt_src = result_src;
1707 slt_src.negate = ~slt_src.negate;
1708 emit(ir, TGSI_OPCODE_SLT, result_dst, slt_src, st_src_reg_for_float(0.0));
1709 }
1710 }
1711 break;
1712 }
1713
1714 case ir_binop_logic_and:
1715 /* If native integers are disabled, the bool args are stored as float 0.0
1716 * or 1.0, so "mul" gives us "and". If they're enabled, just use the
1717 * actual AND opcode.
1718 */
1719 if (native_integers)
1720 emit(ir, TGSI_OPCODE_AND, result_dst, op[0], op[1]);
1721 else
1722 emit(ir, TGSI_OPCODE_MUL, result_dst, op[0], op[1]);
1723 break;
1724
1725 case ir_binop_dot:
1726 assert(ir->operands[0]->type->is_vector());
1727 assert(ir->operands[0]->type == ir->operands[1]->type);
1728 emit_dp(ir, result_dst, op[0], op[1],
1729 ir->operands[0]->type->vector_elements);
1730 break;
1731
1732 case ir_unop_sqrt:
1733 /* sqrt(x) = x * rsq(x). */
1734 emit_scalar(ir, TGSI_OPCODE_RSQ, result_dst, op[0]);
1735 emit(ir, TGSI_OPCODE_MUL, result_dst, result_src, op[0]);
1736 /* For incoming channels <= 0, set the result to 0. */
1737 op[0].negate = ~op[0].negate;
1738 emit(ir, TGSI_OPCODE_CMP, result_dst,
1739 op[0], result_src, st_src_reg_for_float(0.0));
1740 break;
1741 case ir_unop_rsq:
1742 emit_scalar(ir, TGSI_OPCODE_RSQ, result_dst, op[0]);
1743 break;
1744 case ir_unop_i2f:
1745 if (native_integers) {
1746 emit(ir, TGSI_OPCODE_I2F, result_dst, op[0]);
1747 break;
1748 }
1749 /* fallthrough to next case otherwise */
1750 case ir_unop_b2f:
1751 if (native_integers) {
1752 emit(ir, TGSI_OPCODE_AND, result_dst, op[0], st_src_reg_for_float(1.0));
1753 break;
1754 }
1755 /* fallthrough to next case otherwise */
1756 case ir_unop_i2u:
1757 case ir_unop_u2i:
1758 /* Converting between signed and unsigned integers is a no-op. */
1759 result_src = op[0];
1760 break;
1761 case ir_unop_b2i:
1762 if (native_integers) {
1763 /* Booleans are stored as integers using ~0 for true and 0 for false.
1764 * GLSL requires that int(bool) return 1 for true and 0 for false.
1765 * This conversion is done with AND, but it could be done with NEG.
1766 */
1767 emit(ir, TGSI_OPCODE_AND, result_dst, op[0], st_src_reg_for_int(1));
1768 } else {
1769 /* Booleans and integers are both stored as floats when native
1770 * integers are disabled.
1771 */
1772 result_src = op[0];
1773 }
1774 break;
1775 case ir_unop_f2i:
1776 if (native_integers)
1777 emit(ir, TGSI_OPCODE_F2I, result_dst, op[0]);
1778 else
1779 emit(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
1780 break;
1781 case ir_unop_f2b:
1782 emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], st_src_reg_for_float(0.0));
1783 break;
1784 case ir_unop_i2b:
1785 if (native_integers)
1786 emit(ir, TGSI_OPCODE_INEG, result_dst, op[0]);
1787 else
1788 emit(ir, TGSI_OPCODE_SNE, result_dst, op[0], st_src_reg_for_float(0.0));
1789 break;
1790 case ir_unop_trunc:
1791 emit(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
1792 break;
1793 case ir_unop_ceil:
1794 op[0].negate = ~op[0].negate;
1795 emit(ir, TGSI_OPCODE_FLR, result_dst, op[0]);
1796 result_src.negate = ~result_src.negate;
1797 break;
1798 case ir_unop_floor:
1799 emit(ir, TGSI_OPCODE_FLR, result_dst, op[0]);
1800 break;
1801 case ir_unop_fract:
1802 emit(ir, TGSI_OPCODE_FRC, result_dst, op[0]);
1803 break;
1804
1805 case ir_binop_min:
1806 emit(ir, TGSI_OPCODE_MIN, result_dst, op[0], op[1]);
1807 break;
1808 case ir_binop_max:
1809 emit(ir, TGSI_OPCODE_MAX, result_dst, op[0], op[1]);
1810 break;
1811 case ir_binop_pow:
1812 emit_scalar(ir, TGSI_OPCODE_POW, result_dst, op[0], op[1]);
1813 break;
1814
1815 case ir_unop_bit_not:
1816 if (native_integers) {
1817 emit(ir, TGSI_OPCODE_NOT, result_dst, op[0]);
1818 break;
1819 }
1820 case ir_unop_u2f:
1821 if (native_integers) {
1822 emit(ir, TGSI_OPCODE_U2F, result_dst, op[0]);
1823 break;
1824 }
1825 case ir_binop_lshift:
1826 if (native_integers) {
1827 emit(ir, TGSI_OPCODE_SHL, result_dst, op[0]);
1828 break;
1829 }
1830 case ir_binop_rshift:
1831 if (native_integers) {
1832 emit(ir, TGSI_OPCODE_ISHR, result_dst, op[0]);
1833 break;
1834 }
1835 case ir_binop_bit_and:
1836 if (native_integers) {
1837 emit(ir, TGSI_OPCODE_AND, result_dst, op[0]);
1838 break;
1839 }
1840 case ir_binop_bit_xor:
1841 if (native_integers) {
1842 emit(ir, TGSI_OPCODE_XOR, result_dst, op[0]);
1843 break;
1844 }
1845 case ir_binop_bit_or:
1846 if (native_integers) {
1847 emit(ir, TGSI_OPCODE_OR, result_dst, op[0]);
1848 break;
1849 }
1850 case ir_unop_round_even:
1851 assert(!"GLSL 1.30 features unsupported");
1852 break;
1853
1854 case ir_quadop_vector:
1855 /* This operation should have already been handled.
1856 */
1857 assert(!"Should not get here.");
1858 break;
1859 }
1860
1861 this->result = result_src;
1862 }
1863
1864
1865 void
1866 glsl_to_tgsi_visitor::visit(ir_swizzle *ir)
1867 {
1868 st_src_reg src;
1869 int i;
1870 int swizzle[4];
1871
1872 /* Note that this is only swizzles in expressions, not those on the left
1873 * hand side of an assignment, which do write masking. See ir_assignment
1874 * for that.
1875 */
1876
1877 ir->val->accept(this);
1878 src = this->result;
1879 assert(src.file != PROGRAM_UNDEFINED);
1880
1881 for (i = 0; i < 4; i++) {
1882 if (i < ir->type->vector_elements) {
1883 switch (i) {
1884 case 0:
1885 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x);
1886 break;
1887 case 1:
1888 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y);
1889 break;
1890 case 2:
1891 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z);
1892 break;
1893 case 3:
1894 swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w);
1895 break;
1896 }
1897 } else {
1898 /* If the type is smaller than a vec4, replicate the last
1899 * channel out.
1900 */
1901 swizzle[i] = swizzle[ir->type->vector_elements - 1];
1902 }
1903 }
1904
1905 src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
1906
1907 this->result = src;
1908 }
1909
1910 void
1911 glsl_to_tgsi_visitor::visit(ir_dereference_variable *ir)
1912 {
1913 variable_storage *entry = find_variable_storage(ir->var);
1914 ir_variable *var = ir->var;
1915
1916 if (!entry) {
1917 switch (var->mode) {
1918 case ir_var_uniform:
1919 entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM,
1920 var->location);
1921 this->variables.push_tail(entry);
1922 break;
1923 case ir_var_in:
1924 case ir_var_inout:
1925 /* The linker assigns locations for varyings and attributes,
1926 * including deprecated builtins (like gl_Color), user-assign
1927 * generic attributes (glBindVertexLocation), and
1928 * user-defined varyings.
1929 *
1930 * FINISHME: We would hit this path for function arguments. Fix!
1931 */
1932 assert(var->location != -1);
1933 entry = new(mem_ctx) variable_storage(var,
1934 PROGRAM_INPUT,
1935 var->location);
1936 break;
1937 case ir_var_out:
1938 assert(var->location != -1);
1939 entry = new(mem_ctx) variable_storage(var,
1940 PROGRAM_OUTPUT,
1941 var->location);
1942 break;
1943 case ir_var_system_value:
1944 entry = new(mem_ctx) variable_storage(var,
1945 PROGRAM_SYSTEM_VALUE,
1946 var->location);
1947 break;
1948 case ir_var_auto:
1949 case ir_var_temporary:
1950 entry = new(mem_ctx) variable_storage(var, PROGRAM_TEMPORARY,
1951 this->next_temp);
1952 this->variables.push_tail(entry);
1953
1954 next_temp += type_size(var->type);
1955 break;
1956 }
1957
1958 if (!entry) {
1959 printf("Failed to make storage for %s\n", var->name);
1960 exit(1);
1961 }
1962 }
1963
1964 this->result = st_src_reg(entry->file, entry->index, var->type);
1965 if (!native_integers)
1966 this->result.type = GLSL_TYPE_FLOAT;
1967 }
1968
1969 void
1970 glsl_to_tgsi_visitor::visit(ir_dereference_array *ir)
1971 {
1972 ir_constant *index;
1973 st_src_reg src;
1974 int element_size = type_size(ir->type);
1975
1976 index = ir->array_index->constant_expression_value();
1977
1978 ir->array->accept(this);
1979 src = this->result;
1980
1981 if (index) {
1982 src.index += index->value.i[0] * element_size;
1983 } else {
1984 /* Variable index array dereference. It eats the "vec4" of the
1985 * base of the array and an index that offsets the TGSI register
1986 * index.
1987 */
1988 ir->array_index->accept(this);
1989
1990 st_src_reg index_reg;
1991
1992 if (element_size == 1) {
1993 index_reg = this->result;
1994 } else {
1995 index_reg = get_temp(native_integers ?
1996 glsl_type::int_type : glsl_type::float_type);
1997
1998 emit(ir, TGSI_OPCODE_MUL, st_dst_reg(index_reg),
1999 this->result, st_src_reg_for_type(index_reg.type, element_size));
2000 }
2001
2002 /* If there was already a relative address register involved, add the
2003 * new and the old together to get the new offset.
2004 */
2005 if (src.reladdr != NULL) {
2006 st_src_reg accum_reg = get_temp(native_integers ?
2007 glsl_type::int_type : glsl_type::float_type);
2008
2009 emit(ir, TGSI_OPCODE_ADD, st_dst_reg(accum_reg),
2010 index_reg, *src.reladdr);
2011
2012 index_reg = accum_reg;
2013 }
2014
2015 src.reladdr = ralloc(mem_ctx, st_src_reg);
2016 memcpy(src.reladdr, &index_reg, sizeof(index_reg));
2017 }
2018
2019 /* If the type is smaller than a vec4, replicate the last channel out. */
2020 if (ir->type->is_scalar() || ir->type->is_vector())
2021 src.swizzle = swizzle_for_size(ir->type->vector_elements);
2022 else
2023 src.swizzle = SWIZZLE_NOOP;
2024
2025 this->result = src;
2026 }
2027
2028 void
2029 glsl_to_tgsi_visitor::visit(ir_dereference_record *ir)
2030 {
2031 unsigned int i;
2032 const glsl_type *struct_type = ir->record->type;
2033 int offset = 0;
2034
2035 ir->record->accept(this);
2036
2037 for (i = 0; i < struct_type->length; i++) {
2038 if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
2039 break;
2040 offset += type_size(struct_type->fields.structure[i].type);
2041 }
2042
2043 /* If the type is smaller than a vec4, replicate the last channel out. */
2044 if (ir->type->is_scalar() || ir->type->is_vector())
2045 this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
2046 else
2047 this->result.swizzle = SWIZZLE_NOOP;
2048
2049 this->result.index += offset;
2050 }
2051
2052 /**
2053 * We want to be careful in assignment setup to hit the actual storage
2054 * instead of potentially using a temporary like we might with the
2055 * ir_dereference handler.
2056 */
2057 static st_dst_reg
2058 get_assignment_lhs(ir_dereference *ir, glsl_to_tgsi_visitor *v)
2059 {
2060 /* The LHS must be a dereference. If the LHS is a variable indexed array
2061 * access of a vector, it must be separated into a series conditional moves
2062 * before reaching this point (see ir_vec_index_to_cond_assign).
2063 */
2064 assert(ir->as_dereference());
2065 ir_dereference_array *deref_array = ir->as_dereference_array();
2066 if (deref_array) {
2067 assert(!deref_array->array->type->is_vector());
2068 }
2069
2070 /* Use the rvalue deref handler for the most part. We'll ignore
2071 * swizzles in it and write swizzles using writemask, though.
2072 */
2073 ir->accept(v);
2074 return st_dst_reg(v->result);
2075 }
2076
2077 /**
2078 * Process the condition of a conditional assignment
2079 *
2080 * Examines the condition of a conditional assignment to generate the optimal
2081 * first operand of a \c CMP instruction. If the condition is a relational
2082 * operator with 0 (e.g., \c ir_binop_less), the value being compared will be
2083 * used as the source for the \c CMP instruction. Otherwise the comparison
2084 * is processed to a boolean result, and the boolean result is used as the
2085 * operand to the CMP instruction.
2086 */
2087 bool
2088 glsl_to_tgsi_visitor::process_move_condition(ir_rvalue *ir)
2089 {
2090 ir_rvalue *src_ir = ir;
2091 bool negate = true;
2092 bool switch_order = false;
2093
2094 ir_expression *const expr = ir->as_expression();
2095 if ((expr != NULL) && (expr->get_num_operands() == 2)) {
2096 bool zero_on_left = false;
2097
2098 if (expr->operands[0]->is_zero()) {
2099 src_ir = expr->operands[1];
2100 zero_on_left = true;
2101 } else if (expr->operands[1]->is_zero()) {
2102 src_ir = expr->operands[0];
2103 zero_on_left = false;
2104 }
2105
2106 /* a is - 0 + - 0 +
2107 * (a < 0) T F F ( a < 0) T F F
2108 * (0 < a) F F T (-a < 0) F F T
2109 * (a <= 0) T T F (-a < 0) F F T (swap order of other operands)
2110 * (0 <= a) F T T ( a < 0) T F F (swap order of other operands)
2111 * (a > 0) F F T (-a < 0) F F T
2112 * (0 > a) T F F ( a < 0) T F F
2113 * (a >= 0) F T T ( a < 0) T F F (swap order of other operands)
2114 * (0 >= a) T T F (-a < 0) F F T (swap order of other operands)
2115 *
2116 * Note that exchanging the order of 0 and 'a' in the comparison simply
2117 * means that the value of 'a' should be negated.
2118 */
2119 if (src_ir != ir) {
2120 switch (expr->operation) {
2121 case ir_binop_less:
2122 switch_order = false;
2123 negate = zero_on_left;
2124 break;
2125
2126 case ir_binop_greater:
2127 switch_order = false;
2128 negate = !zero_on_left;
2129 break;
2130
2131 case ir_binop_lequal:
2132 switch_order = true;
2133 negate = !zero_on_left;
2134 break;
2135
2136 case ir_binop_gequal:
2137 switch_order = true;
2138 negate = zero_on_left;
2139 break;
2140
2141 default:
2142 /* This isn't the right kind of comparison afterall, so make sure
2143 * the whole condition is visited.
2144 */
2145 src_ir = ir;
2146 break;
2147 }
2148 }
2149 }
2150
2151 src_ir->accept(this);
2152
2153 /* We use the TGSI_OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the
2154 * condition we produced is 0.0 or 1.0. By flipping the sign, we can
2155 * choose which value TGSI_OPCODE_CMP produces without an extra instruction
2156 * computing the condition.
2157 */
2158 if (negate)
2159 this->result.negate = ~this->result.negate;
2160
2161 return switch_order;
2162 }
2163
2164 void
2165 glsl_to_tgsi_visitor::visit(ir_assignment *ir)
2166 {
2167 st_dst_reg l;
2168 st_src_reg r;
2169 int i;
2170
2171 ir->rhs->accept(this);
2172 r = this->result;
2173
2174 l = get_assignment_lhs(ir->lhs, this);
2175
2176 /* FINISHME: This should really set to the correct maximal writemask for each
2177 * FINISHME: component written (in the loops below). This case can only
2178 * FINISHME: occur for matrices, arrays, and structures.
2179 */
2180 if (ir->write_mask == 0) {
2181 assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
2182 l.writemask = WRITEMASK_XYZW;
2183 } else if (ir->lhs->type->is_scalar() &&
2184 ir->lhs->variable_referenced()->mode == ir_var_out) {
2185 /* FINISHME: This hack makes writing to gl_FragDepth, which lives in the
2186 * FINISHME: W component of fragment shader output zero, work correctly.
2187 */
2188 l.writemask = WRITEMASK_XYZW;
2189 } else {
2190 int swizzles[4];
2191 int first_enabled_chan = 0;
2192 int rhs_chan = 0;
2193
2194 l.writemask = ir->write_mask;
2195
2196 for (int i = 0; i < 4; i++) {
2197 if (l.writemask & (1 << i)) {
2198 first_enabled_chan = GET_SWZ(r.swizzle, i);
2199 break;
2200 }
2201 }
2202
2203 /* Swizzle a small RHS vector into the channels being written.
2204 *
2205 * glsl ir treats write_mask as dictating how many channels are
2206 * present on the RHS while TGSI treats write_mask as just
2207 * showing which channels of the vec4 RHS get written.
2208 */
2209 for (int i = 0; i < 4; i++) {
2210 if (l.writemask & (1 << i))
2211 swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++);
2212 else
2213 swizzles[i] = first_enabled_chan;
2214 }
2215 r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1],
2216 swizzles[2], swizzles[3]);
2217 }
2218
2219 assert(l.file != PROGRAM_UNDEFINED);
2220 assert(r.file != PROGRAM_UNDEFINED);
2221
2222 if (ir->condition) {
2223 const bool switch_order = this->process_move_condition(ir->condition);
2224 st_src_reg condition = this->result;
2225
2226 for (i = 0; i < type_size(ir->lhs->type); i++) {
2227 st_src_reg l_src = st_src_reg(l);
2228 st_src_reg condition_temp = condition;
2229 l_src.swizzle = swizzle_for_size(ir->lhs->type->vector_elements);
2230
2231 if (native_integers) {
2232 /* This is necessary because TGSI's CMP instruction expects the
2233 * condition to be a float, and we store booleans as integers.
2234 * If TGSI had a UCMP instruction or similar, this extra
2235 * instruction would not be necessary.
2236 */
2237 condition_temp = get_temp(glsl_type::vec4_type);
2238 condition.negate = 0;
2239 emit(ir, TGSI_OPCODE_I2F, st_dst_reg(condition_temp), condition);
2240 condition_temp.swizzle = condition.swizzle;
2241 }
2242
2243 if (switch_order) {
2244 emit(ir, TGSI_OPCODE_CMP, l, condition_temp, l_src, r);
2245 } else {
2246 emit(ir, TGSI_OPCODE_CMP, l, condition_temp, r, l_src);
2247 }
2248
2249 l.index++;
2250 r.index++;
2251 }
2252 } else if (ir->rhs->as_expression() &&
2253 this->instructions.get_tail() &&
2254 ir->rhs == ((glsl_to_tgsi_instruction *)this->instructions.get_tail())->ir &&
2255 type_size(ir->lhs->type) == 1 &&
2256 l.writemask == ((glsl_to_tgsi_instruction *)this->instructions.get_tail())->dst.writemask) {
2257 /* To avoid emitting an extra MOV when assigning an expression to a
2258 * variable, emit the last instruction of the expression again, but
2259 * replace the destination register with the target of the assignment.
2260 * Dead code elimination will remove the original instruction.
2261 */
2262 glsl_to_tgsi_instruction *inst, *new_inst;
2263 inst = (glsl_to_tgsi_instruction *)this->instructions.get_tail();
2264 new_inst = emit(ir, inst->op, l, inst->src[0], inst->src[1], inst->src[2]);
2265 new_inst->saturate = inst->saturate;
2266 inst->dead_mask = inst->dst.writemask;
2267 } else {
2268 for (i = 0; i < type_size(ir->lhs->type); i++) {
2269 emit(ir, TGSI_OPCODE_MOV, l, r);
2270 l.index++;
2271 r.index++;
2272 }
2273 }
2274 }
2275
2276
2277 void
2278 glsl_to_tgsi_visitor::visit(ir_constant *ir)
2279 {
2280 st_src_reg src;
2281 GLfloat stack_vals[4] = { 0 };
2282 gl_constant_value *values = (gl_constant_value *) stack_vals;
2283 GLenum gl_type = GL_NONE;
2284 unsigned int i;
2285 static int in_array = 0;
2286 gl_register_file file = in_array ? PROGRAM_CONSTANT : PROGRAM_IMMEDIATE;
2287
2288 /* Unfortunately, 4 floats is all we can get into
2289 * _mesa_add_typed_unnamed_constant. So, make a temp to store an
2290 * aggregate constant and move each constant value into it. If we
2291 * get lucky, copy propagation will eliminate the extra moves.
2292 */
2293 if (ir->type->base_type == GLSL_TYPE_STRUCT) {
2294 st_src_reg temp_base = get_temp(ir->type);
2295 st_dst_reg temp = st_dst_reg(temp_base);
2296
2297 foreach_iter(exec_list_iterator, iter, ir->components) {
2298 ir_constant *field_value = (ir_constant *)iter.get();
2299 int size = type_size(field_value->type);
2300
2301 assert(size > 0);
2302
2303 field_value->accept(this);
2304 src = this->result;
2305
2306 for (i = 0; i < (unsigned int)size; i++) {
2307 emit(ir, TGSI_OPCODE_MOV, temp, src);
2308
2309 src.index++;
2310 temp.index++;
2311 }
2312 }
2313 this->result = temp_base;
2314 return;
2315 }
2316
2317 if (ir->type->is_array()) {
2318 st_src_reg temp_base = get_temp(ir->type);
2319 st_dst_reg temp = st_dst_reg(temp_base);
2320 int size = type_size(ir->type->fields.array);
2321
2322 assert(size > 0);
2323 in_array++;
2324
2325 for (i = 0; i < ir->type->length; i++) {
2326 ir->array_elements[i]->accept(this);
2327 src = this->result;
2328 for (int j = 0; j < size; j++) {
2329 emit(ir, TGSI_OPCODE_MOV, temp, src);
2330
2331 src.index++;
2332 temp.index++;
2333 }
2334 }
2335 this->result = temp_base;
2336 in_array--;
2337 return;
2338 }
2339
2340 if (ir->type->is_matrix()) {
2341 st_src_reg mat = get_temp(ir->type);
2342 st_dst_reg mat_column = st_dst_reg(mat);
2343
2344 for (i = 0; i < ir->type->matrix_columns; i++) {
2345 assert(ir->type->base_type == GLSL_TYPE_FLOAT);
2346 values = (gl_constant_value *) &ir->value.f[i * ir->type->vector_elements];
2347
2348 src = st_src_reg(file, -1, ir->type->base_type);
2349 src.index = add_constant(file,
2350 values,
2351 ir->type->vector_elements,
2352 GL_FLOAT,
2353 &src.swizzle);
2354 emit(ir, TGSI_OPCODE_MOV, mat_column, src);
2355
2356 mat_column.index++;
2357 }
2358
2359 this->result = mat;
2360 return;
2361 }
2362
2363 switch (ir->type->base_type) {
2364 case GLSL_TYPE_FLOAT:
2365 gl_type = GL_FLOAT;
2366 for (i = 0; i < ir->type->vector_elements; i++) {
2367 values[i].f = ir->value.f[i];
2368 }
2369 break;
2370 case GLSL_TYPE_UINT:
2371 gl_type = native_integers ? GL_UNSIGNED_INT : GL_FLOAT;
2372 for (i = 0; i < ir->type->vector_elements; i++) {
2373 if (native_integers)
2374 values[i].u = ir->value.u[i];
2375 else
2376 values[i].f = ir->value.u[i];
2377 }
2378 break;
2379 case GLSL_TYPE_INT:
2380 gl_type = native_integers ? GL_INT : GL_FLOAT;
2381 for (i = 0; i < ir->type->vector_elements; i++) {
2382 if (native_integers)
2383 values[i].i = ir->value.i[i];
2384 else
2385 values[i].f = ir->value.i[i];
2386 }
2387 break;
2388 case GLSL_TYPE_BOOL:
2389 gl_type = native_integers ? GL_BOOL : GL_FLOAT;
2390 for (i = 0; i < ir->type->vector_elements; i++) {
2391 if (native_integers)
2392 values[i].b = ir->value.b[i];
2393 else
2394 values[i].f = ir->value.b[i];
2395 }
2396 break;
2397 default:
2398 assert(!"Non-float/uint/int/bool constant");
2399 }
2400
2401 this->result = st_src_reg(file, -1, ir->type);
2402 this->result.index = add_constant(file,
2403 values,
2404 ir->type->vector_elements,
2405 gl_type,
2406 &this->result.swizzle);
2407 }
2408
2409 function_entry *
2410 glsl_to_tgsi_visitor::get_function_signature(ir_function_signature *sig)
2411 {
2412 function_entry *entry;
2413
2414 foreach_iter(exec_list_iterator, iter, this->function_signatures) {
2415 entry = (function_entry *)iter.get();
2416
2417 if (entry->sig == sig)
2418 return entry;
2419 }
2420
2421 entry = ralloc(mem_ctx, function_entry);
2422 entry->sig = sig;
2423 entry->sig_id = this->next_signature_id++;
2424 entry->bgn_inst = NULL;
2425
2426 /* Allocate storage for all the parameters. */
2427 foreach_iter(exec_list_iterator, iter, sig->parameters) {
2428 ir_variable *param = (ir_variable *)iter.get();
2429 variable_storage *storage;
2430
2431 storage = find_variable_storage(param);
2432 assert(!storage);
2433
2434 storage = new(mem_ctx) variable_storage(param, PROGRAM_TEMPORARY,
2435 this->next_temp);
2436 this->variables.push_tail(storage);
2437
2438 this->next_temp += type_size(param->type);
2439 }
2440
2441 if (!sig->return_type->is_void()) {
2442 entry->return_reg = get_temp(sig->return_type);
2443 } else {
2444 entry->return_reg = undef_src;
2445 }
2446
2447 this->function_signatures.push_tail(entry);
2448 return entry;
2449 }
2450
2451 void
2452 glsl_to_tgsi_visitor::visit(ir_call *ir)
2453 {
2454 glsl_to_tgsi_instruction *call_inst;
2455 ir_function_signature *sig = ir->get_callee();
2456 function_entry *entry = get_function_signature(sig);
2457 int i;
2458
2459 /* Process in parameters. */
2460 exec_list_iterator sig_iter = sig->parameters.iterator();
2461 foreach_iter(exec_list_iterator, iter, *ir) {
2462 ir_rvalue *param_rval = (ir_rvalue *)iter.get();
2463 ir_variable *param = (ir_variable *)sig_iter.get();
2464
2465 if (param->mode == ir_var_in ||
2466 param->mode == ir_var_inout) {
2467 variable_storage *storage = find_variable_storage(param);
2468 assert(storage);
2469
2470 param_rval->accept(this);
2471 st_src_reg r = this->result;
2472
2473 st_dst_reg l;
2474 l.file = storage->file;
2475 l.index = storage->index;
2476 l.reladdr = NULL;
2477 l.writemask = WRITEMASK_XYZW;
2478 l.cond_mask = COND_TR;
2479
2480 for (i = 0; i < type_size(param->type); i++) {
2481 emit(ir, TGSI_OPCODE_MOV, l, r);
2482 l.index++;
2483 r.index++;
2484 }
2485 }
2486
2487 sig_iter.next();
2488 }
2489 assert(!sig_iter.has_next());
2490
2491 /* Emit call instruction */
2492 call_inst = emit(ir, TGSI_OPCODE_CAL);
2493 call_inst->function = entry;
2494
2495 /* Process out parameters. */
2496 sig_iter = sig->parameters.iterator();
2497 foreach_iter(exec_list_iterator, iter, *ir) {
2498 ir_rvalue *param_rval = (ir_rvalue *)iter.get();
2499 ir_variable *param = (ir_variable *)sig_iter.get();
2500
2501 if (param->mode == ir_var_out ||
2502 param->mode == ir_var_inout) {
2503 variable_storage *storage = find_variable_storage(param);
2504 assert(storage);
2505
2506 st_src_reg r;
2507 r.file = storage->file;
2508 r.index = storage->index;
2509 r.reladdr = NULL;
2510 r.swizzle = SWIZZLE_NOOP;
2511 r.negate = 0;
2512
2513 param_rval->accept(this);
2514 st_dst_reg l = st_dst_reg(this->result);
2515
2516 for (i = 0; i < type_size(param->type); i++) {
2517 emit(ir, TGSI_OPCODE_MOV, l, r);
2518 l.index++;
2519 r.index++;
2520 }
2521 }
2522
2523 sig_iter.next();
2524 }
2525 assert(!sig_iter.has_next());
2526
2527 /* Process return value. */
2528 this->result = entry->return_reg;
2529 }
2530
2531 void
2532 glsl_to_tgsi_visitor::visit(ir_texture *ir)
2533 {
2534 st_src_reg result_src, coord, lod_info, projector, dx, dy, offset;
2535 st_dst_reg result_dst, coord_dst;
2536 glsl_to_tgsi_instruction *inst = NULL;
2537 unsigned opcode = TGSI_OPCODE_NOP;
2538
2539 if (ir->coordinate) {
2540 ir->coordinate->accept(this);
2541
2542 /* Put our coords in a temp. We'll need to modify them for shadow,
2543 * projection, or LOD, so the only case we'd use it as is is if
2544 * we're doing plain old texturing. The optimization passes on
2545 * glsl_to_tgsi_visitor should handle cleaning up our mess in that case.
2546 */
2547 coord = get_temp(glsl_type::vec4_type);
2548 coord_dst = st_dst_reg(coord);
2549 emit(ir, TGSI_OPCODE_MOV, coord_dst, this->result);
2550 }
2551
2552 if (ir->projector) {
2553 ir->projector->accept(this);
2554 projector = this->result;
2555 }
2556
2557 /* Storage for our result. Ideally for an assignment we'd be using
2558 * the actual storage for the result here, instead.
2559 */
2560 result_src = get_temp(glsl_type::vec4_type);
2561 result_dst = st_dst_reg(result_src);
2562
2563 switch (ir->op) {
2564 case ir_tex:
2565 opcode = TGSI_OPCODE_TEX;
2566 break;
2567 case ir_txb:
2568 opcode = TGSI_OPCODE_TXB;
2569 ir->lod_info.bias->accept(this);
2570 lod_info = this->result;
2571 break;
2572 case ir_txl:
2573 opcode = TGSI_OPCODE_TXL;
2574 ir->lod_info.lod->accept(this);
2575 lod_info = this->result;
2576 break;
2577 case ir_txd:
2578 opcode = TGSI_OPCODE_TXD;
2579 ir->lod_info.grad.dPdx->accept(this);
2580 dx = this->result;
2581 ir->lod_info.grad.dPdy->accept(this);
2582 dy = this->result;
2583 break;
2584 case ir_txs:
2585 opcode = TGSI_OPCODE_TXQ;
2586 ir->lod_info.lod->accept(this);
2587 lod_info = this->result;
2588 break;
2589 case ir_txf:
2590 opcode = TGSI_OPCODE_TXF;
2591 ir->lod_info.lod->accept(this);
2592 lod_info = this->result;
2593 if (ir->offset) {
2594 ir->offset->accept(this);
2595 offset = this->result;
2596 }
2597 break;
2598 }
2599
2600 const glsl_type *sampler_type = ir->sampler->type;
2601
2602 if (ir->projector) {
2603 if (opcode == TGSI_OPCODE_TEX) {
2604 /* Slot the projector in as the last component of the coord. */
2605 coord_dst.writemask = WRITEMASK_W;
2606 emit(ir, TGSI_OPCODE_MOV, coord_dst, projector);
2607 coord_dst.writemask = WRITEMASK_XYZW;
2608 opcode = TGSI_OPCODE_TXP;
2609 } else {
2610 st_src_reg coord_w = coord;
2611 coord_w.swizzle = SWIZZLE_WWWW;
2612
2613 /* For the other TEX opcodes there's no projective version
2614 * since the last slot is taken up by LOD info. Do the
2615 * projective divide now.
2616 */
2617 coord_dst.writemask = WRITEMASK_W;
2618 emit(ir, TGSI_OPCODE_RCP, coord_dst, projector);
2619
2620 /* In the case where we have to project the coordinates "by hand,"
2621 * the shadow comparator value must also be projected.
2622 */
2623 st_src_reg tmp_src = coord;
2624 if (ir->shadow_comparitor) {
2625 /* Slot the shadow value in as the second to last component of the
2626 * coord.
2627 */
2628 ir->shadow_comparitor->accept(this);
2629
2630 tmp_src = get_temp(glsl_type::vec4_type);
2631 st_dst_reg tmp_dst = st_dst_reg(tmp_src);
2632
2633 /* Projective division not allowed for array samplers. */
2634 assert(!sampler_type->sampler_array);
2635
2636 tmp_dst.writemask = WRITEMASK_Z;
2637 emit(ir, TGSI_OPCODE_MOV, tmp_dst, this->result);
2638
2639 tmp_dst.writemask = WRITEMASK_XY;
2640 emit(ir, TGSI_OPCODE_MOV, tmp_dst, coord);
2641 }
2642
2643 coord_dst.writemask = WRITEMASK_XYZ;
2644 emit(ir, TGSI_OPCODE_MUL, coord_dst, tmp_src, coord_w);
2645
2646 coord_dst.writemask = WRITEMASK_XYZW;
2647 coord.swizzle = SWIZZLE_XYZW;
2648 }
2649 }
2650
2651 /* If projection is done and the opcode is not TGSI_OPCODE_TXP, then the shadow
2652 * comparator was put in the correct place (and projected) by the code,
2653 * above, that handles by-hand projection.
2654 */
2655 if (ir->shadow_comparitor && (!ir->projector || opcode == TGSI_OPCODE_TXP)) {
2656 /* Slot the shadow value in as the second to last component of the
2657 * coord.
2658 */
2659 ir->shadow_comparitor->accept(this);
2660
2661 /* XXX This will need to be updated for cubemap array samplers. */
2662 if (sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_2D &&
2663 sampler_type->sampler_array) {
2664 coord_dst.writemask = WRITEMASK_W;
2665 } else {
2666 coord_dst.writemask = WRITEMASK_Z;
2667 }
2668
2669 emit(ir, TGSI_OPCODE_MOV, coord_dst, this->result);
2670 coord_dst.writemask = WRITEMASK_XYZW;
2671 }
2672
2673 if (opcode == TGSI_OPCODE_TXL || opcode == TGSI_OPCODE_TXB ||
2674 opcode == TGSI_OPCODE_TXF) {
2675 /* TGSI stores LOD or LOD bias in the last channel of the coords. */
2676 coord_dst.writemask = WRITEMASK_W;
2677 emit(ir, TGSI_OPCODE_MOV, coord_dst, lod_info);
2678 coord_dst.writemask = WRITEMASK_XYZW;
2679 }
2680
2681 if (opcode == TGSI_OPCODE_TXD)
2682 inst = emit(ir, opcode, result_dst, coord, dx, dy);
2683 else if (opcode == TGSI_OPCODE_TXQ)
2684 inst = emit(ir, opcode, result_dst, lod_info);
2685 else if (opcode == TGSI_OPCODE_TXF) {
2686 inst = emit(ir, opcode, result_dst, coord);
2687 } else
2688 inst = emit(ir, opcode, result_dst, coord);
2689
2690 if (ir->shadow_comparitor)
2691 inst->tex_shadow = GL_TRUE;
2692
2693 inst->sampler = _mesa_get_sampler_uniform_value(ir->sampler,
2694 this->shader_program,
2695 this->prog);
2696
2697 if (ir->offset) {
2698 inst->tex_offset_num_offset = 1;
2699 inst->tex_offsets[0].Index = offset.index;
2700 inst->tex_offsets[0].File = offset.file;
2701 inst->tex_offsets[0].SwizzleX = GET_SWZ(offset.swizzle, 0);
2702 inst->tex_offsets[0].SwizzleY = GET_SWZ(offset.swizzle, 1);
2703 inst->tex_offsets[0].SwizzleZ = GET_SWZ(offset.swizzle, 2);
2704 }
2705
2706 switch (sampler_type->sampler_dimensionality) {
2707 case GLSL_SAMPLER_DIM_1D:
2708 inst->tex_target = (sampler_type->sampler_array)
2709 ? TEXTURE_1D_ARRAY_INDEX : TEXTURE_1D_INDEX;
2710 break;
2711 case GLSL_SAMPLER_DIM_2D:
2712 inst->tex_target = (sampler_type->sampler_array)
2713 ? TEXTURE_2D_ARRAY_INDEX : TEXTURE_2D_INDEX;
2714 break;
2715 case GLSL_SAMPLER_DIM_3D:
2716 inst->tex_target = TEXTURE_3D_INDEX;
2717 break;
2718 case GLSL_SAMPLER_DIM_CUBE:
2719 inst->tex_target = TEXTURE_CUBE_INDEX;
2720 break;
2721 case GLSL_SAMPLER_DIM_RECT:
2722 inst->tex_target = TEXTURE_RECT_INDEX;
2723 break;
2724 case GLSL_SAMPLER_DIM_BUF:
2725 assert(!"FINISHME: Implement ARB_texture_buffer_object");
2726 break;
2727 default:
2728 assert(!"Should not get here.");
2729 }
2730
2731 this->result = result_src;
2732 }
2733
2734 void
2735 glsl_to_tgsi_visitor::visit(ir_return *ir)
2736 {
2737 if (ir->get_value()) {
2738 st_dst_reg l;
2739 int i;
2740
2741 assert(current_function);
2742
2743 ir->get_value()->accept(this);
2744 st_src_reg r = this->result;
2745
2746 l = st_dst_reg(current_function->return_reg);
2747
2748 for (i = 0; i < type_size(current_function->sig->return_type); i++) {
2749 emit(ir, TGSI_OPCODE_MOV, l, r);
2750 l.index++;
2751 r.index++;
2752 }
2753 }
2754
2755 emit(ir, TGSI_OPCODE_RET);
2756 }
2757
2758 void
2759 glsl_to_tgsi_visitor::visit(ir_discard *ir)
2760 {
2761 struct gl_fragment_program *fp = (struct gl_fragment_program *)this->prog;
2762
2763 if (ir->condition) {
2764 ir->condition->accept(this);
2765 this->result.negate = ~this->result.negate;
2766 emit(ir, TGSI_OPCODE_KIL, undef_dst, this->result);
2767 } else {
2768 emit(ir, TGSI_OPCODE_KILP);
2769 }
2770
2771 fp->UsesKill = GL_TRUE;
2772 }
2773
2774 void
2775 glsl_to_tgsi_visitor::visit(ir_if *ir)
2776 {
2777 glsl_to_tgsi_instruction *cond_inst, *if_inst;
2778 glsl_to_tgsi_instruction *prev_inst;
2779
2780 prev_inst = (glsl_to_tgsi_instruction *)this->instructions.get_tail();
2781
2782 ir->condition->accept(this);
2783 assert(this->result.file != PROGRAM_UNDEFINED);
2784
2785 if (this->options->EmitCondCodes) {
2786 cond_inst = (glsl_to_tgsi_instruction *)this->instructions.get_tail();
2787
2788 /* See if we actually generated any instruction for generating
2789 * the condition. If not, then cook up a move to a temp so we
2790 * have something to set cond_update on.
2791 */
2792 if (cond_inst == prev_inst) {
2793 st_src_reg temp = get_temp(glsl_type::bool_type);
2794 cond_inst = emit(ir->condition, TGSI_OPCODE_MOV, st_dst_reg(temp), result);
2795 }
2796 cond_inst->cond_update = GL_TRUE;
2797
2798 if_inst = emit(ir->condition, TGSI_OPCODE_IF);
2799 if_inst->dst.cond_mask = COND_NE;
2800 } else {
2801 if_inst = emit(ir->condition, TGSI_OPCODE_IF, undef_dst, this->result);
2802 }
2803
2804 this->instructions.push_tail(if_inst);
2805
2806 visit_exec_list(&ir->then_instructions, this);
2807
2808 if (!ir->else_instructions.is_empty()) {
2809 emit(ir->condition, TGSI_OPCODE_ELSE);
2810 visit_exec_list(&ir->else_instructions, this);
2811 }
2812
2813 if_inst = emit(ir->condition, TGSI_OPCODE_ENDIF);
2814 }
2815
2816 glsl_to_tgsi_visitor::glsl_to_tgsi_visitor()
2817 {
2818 result.file = PROGRAM_UNDEFINED;
2819 next_temp = 1;
2820 next_signature_id = 1;
2821 num_immediates = 0;
2822 current_function = NULL;
2823 num_address_regs = 0;
2824 indirect_addr_temps = false;
2825 indirect_addr_consts = false;
2826 mem_ctx = ralloc_context(NULL);
2827 }
2828
2829 glsl_to_tgsi_visitor::~glsl_to_tgsi_visitor()
2830 {
2831 ralloc_free(mem_ctx);
2832 }
2833
2834 extern "C" void free_glsl_to_tgsi_visitor(glsl_to_tgsi_visitor *v)
2835 {
2836 delete v;
2837 }
2838
2839
2840 /**
2841 * Count resources used by the given gpu program (number of texture
2842 * samplers, etc).
2843 */
2844 static void
2845 count_resources(glsl_to_tgsi_visitor *v, gl_program *prog)
2846 {
2847 v->samplers_used = 0;
2848
2849 foreach_iter(exec_list_iterator, iter, v->instructions) {
2850 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
2851
2852 if (is_tex_instruction(inst->op)) {
2853 v->samplers_used |= 1 << inst->sampler;
2854
2855 prog->SamplerTargets[inst->sampler] =
2856 (gl_texture_index)inst->tex_target;
2857 if (inst->tex_shadow) {
2858 prog->ShadowSamplers |= 1 << inst->sampler;
2859 }
2860 }
2861 }
2862
2863 prog->SamplersUsed = v->samplers_used;
2864 _mesa_update_shader_textures_used(prog);
2865 }
2866
2867
2868 /**
2869 * Check if the given vertex/fragment/shader program is within the
2870 * resource limits of the context (number of texture units, etc).
2871 * If any of those checks fail, record a linker error.
2872 *
2873 * XXX more checks are needed...
2874 */
2875 static void
2876 check_resources(const struct gl_context *ctx,
2877 struct gl_shader_program *shader_program,
2878 glsl_to_tgsi_visitor *prog,
2879 struct gl_program *proginfo)
2880 {
2881 switch (proginfo->Target) {
2882 case GL_VERTEX_PROGRAM_ARB:
2883 if (_mesa_bitcount(prog->samplers_used) >
2884 ctx->Const.MaxVertexTextureImageUnits) {
2885 fail_link(shader_program, "Too many vertex shader texture samplers");
2886 }
2887 if (proginfo->Parameters->NumParameters > MAX_UNIFORMS) {
2888 fail_link(shader_program, "Too many vertex shader constants");
2889 }
2890 break;
2891 case MESA_GEOMETRY_PROGRAM:
2892 if (_mesa_bitcount(prog->samplers_used) >
2893 ctx->Const.MaxGeometryTextureImageUnits) {
2894 fail_link(shader_program, "Too many geometry shader texture samplers");
2895 }
2896 if (proginfo->Parameters->NumParameters >
2897 MAX_GEOMETRY_UNIFORM_COMPONENTS / 4) {
2898 fail_link(shader_program, "Too many geometry shader constants");
2899 }
2900 break;
2901 case GL_FRAGMENT_PROGRAM_ARB:
2902 if (_mesa_bitcount(prog->samplers_used) >
2903 ctx->Const.MaxTextureImageUnits) {
2904 fail_link(shader_program, "Too many fragment shader texture samplers");
2905 }
2906 if (proginfo->Parameters->NumParameters > MAX_UNIFORMS) {
2907 fail_link(shader_program, "Too many fragment shader constants");
2908 }
2909 break;
2910 default:
2911 _mesa_problem(ctx, "unexpected program type in check_resources()");
2912 }
2913 }
2914
2915
2916
2917 struct uniform_sort {
2918 struct gl_uniform *u;
2919 int pos;
2920 };
2921
2922 /* The shader_program->Uniforms list is almost sorted in increasing
2923 * uniform->{Frag,Vert}Pos locations, but not quite when there are
2924 * uniforms shared between targets. We need to add parameters in
2925 * increasing order for the targets.
2926 */
2927 static int
2928 sort_uniforms(const void *a, const void *b)
2929 {
2930 struct uniform_sort *u1 = (struct uniform_sort *)a;
2931 struct uniform_sort *u2 = (struct uniform_sort *)b;
2932
2933 return u1->pos - u2->pos;
2934 }
2935
2936 /* Add the uniforms to the parameters. The linker chose locations
2937 * in our parameters lists (which weren't created yet), which the
2938 * uniforms code will use to poke values into our parameters list
2939 * when uniforms are updated.
2940 */
2941 static void
2942 add_uniforms_to_parameters_list(struct gl_shader_program *shader_program,
2943 struct gl_shader *shader,
2944 struct gl_program *prog)
2945 {
2946 unsigned int i;
2947 unsigned int next_sampler = 0, num_uniforms = 0;
2948 struct uniform_sort *sorted_uniforms;
2949
2950 sorted_uniforms = ralloc_array(NULL, struct uniform_sort,
2951 shader_program->Uniforms->NumUniforms);
2952
2953 for (i = 0; i < shader_program->Uniforms->NumUniforms; i++) {
2954 struct gl_uniform *uniform = shader_program->Uniforms->Uniforms + i;
2955 int parameter_index = -1;
2956
2957 switch (shader->Type) {
2958 case GL_VERTEX_SHADER:
2959 parameter_index = uniform->VertPos;
2960 break;
2961 case GL_FRAGMENT_SHADER:
2962 parameter_index = uniform->FragPos;
2963 break;
2964 case GL_GEOMETRY_SHADER:
2965 parameter_index = uniform->GeomPos;
2966 break;
2967 }
2968
2969 /* Only add uniforms used in our target. */
2970 if (parameter_index != -1) {
2971 sorted_uniforms[num_uniforms].pos = parameter_index;
2972 sorted_uniforms[num_uniforms].u = uniform;
2973 num_uniforms++;
2974 }
2975 }
2976
2977 qsort(sorted_uniforms, num_uniforms, sizeof(struct uniform_sort),
2978 sort_uniforms);
2979
2980 for (i = 0; i < num_uniforms; i++) {
2981 struct gl_uniform *uniform = sorted_uniforms[i].u;
2982 int parameter_index = sorted_uniforms[i].pos;
2983 const glsl_type *type = uniform->Type;
2984 unsigned int size;
2985
2986 if (type->is_vector() ||
2987 type->is_scalar()) {
2988 size = type->vector_elements;
2989 } else {
2990 size = type_size(type) * 4;
2991 }
2992
2993 gl_register_file file;
2994 if (type->is_sampler() ||
2995 (type->is_array() && type->fields.array->is_sampler())) {
2996 file = PROGRAM_SAMPLER;
2997 } else {
2998 file = PROGRAM_UNIFORM;
2999 }
3000
3001 GLint index = _mesa_lookup_parameter_index(prog->Parameters, -1,
3002 uniform->Name);
3003
3004 if (index < 0) {
3005 index = _mesa_add_parameter(prog->Parameters, file,
3006 uniform->Name, size, type->gl_type,
3007 NULL, NULL, 0x0);
3008
3009 /* Sampler uniform values are stored in prog->SamplerUnits,
3010 * and the entry in that array is selected by this index we
3011 * store in ParameterValues[].
3012 */
3013 if (file == PROGRAM_SAMPLER) {
3014 for (unsigned int j = 0; j < size / 4; j++)
3015 prog->Parameters->ParameterValues[index + j][0].f = next_sampler++;
3016 }
3017
3018 /* The location chosen in the Parameters list here (returned
3019 * from _mesa_add_uniform) has to match what the linker chose.
3020 */
3021 if (index != parameter_index) {
3022 fail_link(shader_program, "Allocation of uniform `%s' to target "
3023 "failed (%d vs %d)\n",
3024 uniform->Name, index, parameter_index);
3025 }
3026 }
3027 }
3028
3029 ralloc_free(sorted_uniforms);
3030 }
3031
3032 static void
3033 set_uniform_initializer(struct gl_context *ctx, void *mem_ctx,
3034 struct gl_shader_program *shader_program,
3035 const char *name, const glsl_type *type,
3036 ir_constant *val)
3037 {
3038 if (type->is_record()) {
3039 ir_constant *field_constant;
3040
3041 field_constant = (ir_constant *)val->components.get_head();
3042
3043 for (unsigned int i = 0; i < type->length; i++) {
3044 const glsl_type *field_type = type->fields.structure[i].type;
3045 const char *field_name = ralloc_asprintf(mem_ctx, "%s.%s", name,
3046 type->fields.structure[i].name);
3047 set_uniform_initializer(ctx, mem_ctx, shader_program, field_name,
3048 field_type, field_constant);
3049 field_constant = (ir_constant *)field_constant->next;
3050 }
3051 return;
3052 }
3053
3054 int loc = _mesa_get_uniform_location(ctx, shader_program, name);
3055
3056 if (loc == -1) {
3057 fail_link(shader_program,
3058 "Couldn't find uniform for initializer %s\n", name);
3059 return;
3060 }
3061
3062 for (unsigned int i = 0; i < (type->is_array() ? type->length : 1); i++) {
3063 ir_constant *element;
3064 const glsl_type *element_type;
3065 if (type->is_array()) {
3066 element = val->array_elements[i];
3067 element_type = type->fields.array;
3068 } else {
3069 element = val;
3070 element_type = type;
3071 }
3072
3073 void *values;
3074
3075 if (element_type->base_type == GLSL_TYPE_BOOL) {
3076 int *conv = ralloc_array(mem_ctx, int, element_type->components());
3077 for (unsigned int j = 0; j < element_type->components(); j++) {
3078 conv[j] = element->value.b[j];
3079 }
3080 values = (void *)conv;
3081 element_type = glsl_type::get_instance(GLSL_TYPE_INT,
3082 element_type->vector_elements,
3083 1);
3084 } else {
3085 values = &element->value;
3086 }
3087
3088 if (element_type->is_matrix()) {
3089 _mesa_uniform_matrix(ctx, shader_program,
3090 element_type->matrix_columns,
3091 element_type->vector_elements,
3092 loc, 1, GL_FALSE, (GLfloat *)values);
3093 loc += element_type->matrix_columns;
3094 } else {
3095 _mesa_uniform(ctx, shader_program, loc, element_type->matrix_columns,
3096 values, element_type->gl_type);
3097 loc += type_size(element_type);
3098 }
3099 }
3100 }
3101
3102 /*
3103 * Scan/rewrite program to remove reads of custom (output) registers.
3104 * The passed type has to be either PROGRAM_OUTPUT or PROGRAM_VARYING
3105 * (for vertex shaders).
3106 * In GLSL shaders, varying vars can be read and written.
3107 * On some hardware, trying to read an output register causes trouble.
3108 * So, rewrite the program to use a temporary register in this case.
3109 *
3110 * Based on _mesa_remove_output_reads from programopt.c.
3111 */
3112 void
3113 glsl_to_tgsi_visitor::remove_output_reads(gl_register_file type)
3114 {
3115 GLuint i;
3116 GLint outputMap[VERT_RESULT_MAX];
3117 GLint outputTypes[VERT_RESULT_MAX];
3118 GLuint numVaryingReads = 0;
3119 GLboolean usedTemps[MAX_TEMPS];
3120 GLuint firstTemp = 0;
3121
3122 _mesa_find_used_registers(prog, PROGRAM_TEMPORARY,
3123 usedTemps, MAX_TEMPS);
3124
3125 assert(type == PROGRAM_VARYING || type == PROGRAM_OUTPUT);
3126 assert(prog->Target == GL_VERTEX_PROGRAM_ARB || type != PROGRAM_VARYING);
3127
3128 for (i = 0; i < VERT_RESULT_MAX; i++)
3129 outputMap[i] = -1;
3130
3131 /* look for instructions which read from varying vars */
3132 foreach_iter(exec_list_iterator, iter, this->instructions) {
3133 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3134 const GLuint numSrc = num_inst_src_regs(inst->op);
3135 GLuint j;
3136 for (j = 0; j < numSrc; j++) {
3137 if (inst->src[j].file == type) {
3138 /* replace the read with a temp reg */
3139 const GLuint var = inst->src[j].index;
3140 if (outputMap[var] == -1) {
3141 numVaryingReads++;
3142 outputMap[var] = _mesa_find_free_register(usedTemps,
3143 MAX_TEMPS,
3144 firstTemp);
3145 outputTypes[var] = inst->src[j].type;
3146 firstTemp = outputMap[var] + 1;
3147 }
3148 inst->src[j].file = PROGRAM_TEMPORARY;
3149 inst->src[j].index = outputMap[var];
3150 }
3151 }
3152 }
3153
3154 if (numVaryingReads == 0)
3155 return; /* nothing to be done */
3156
3157 /* look for instructions which write to the varying vars identified above */
3158 foreach_iter(exec_list_iterator, iter, this->instructions) {
3159 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3160 if (inst->dst.file == type && outputMap[inst->dst.index] >= 0) {
3161 /* change inst to write to the temp reg, instead of the varying */
3162 inst->dst.file = PROGRAM_TEMPORARY;
3163 inst->dst.index = outputMap[inst->dst.index];
3164 }
3165 }
3166
3167 /* insert new MOV instructions at the end */
3168 for (i = 0; i < VERT_RESULT_MAX; i++) {
3169 if (outputMap[i] >= 0) {
3170 /* MOV VAR[i], TEMP[tmp]; */
3171 st_src_reg src = st_src_reg(PROGRAM_TEMPORARY, outputMap[i], outputTypes[i]);
3172 st_dst_reg dst = st_dst_reg(type, WRITEMASK_XYZW, outputTypes[i]);
3173 dst.index = i;
3174 this->emit(NULL, TGSI_OPCODE_MOV, dst, src);
3175 }
3176 }
3177 }
3178
3179 /**
3180 * Returns the mask of channels (bitmask of WRITEMASK_X,Y,Z,W) which
3181 * are read from the given src in this instruction
3182 */
3183 static int
3184 get_src_arg_mask(st_dst_reg dst, st_src_reg src)
3185 {
3186 int read_mask = 0, comp;
3187
3188 /* Now, given the src swizzle and the written channels, find which
3189 * components are actually read
3190 */
3191 for (comp = 0; comp < 4; ++comp) {
3192 const unsigned coord = GET_SWZ(src.swizzle, comp);
3193 ASSERT(coord < 4);
3194 if (dst.writemask & (1 << comp) && coord <= SWIZZLE_W)
3195 read_mask |= 1 << coord;
3196 }
3197
3198 return read_mask;
3199 }
3200
3201 /**
3202 * This pass replaces CMP T0, T1 T2 T0 with MOV T0, T2 when the CMP
3203 * instruction is the first instruction to write to register T0. There are
3204 * several lowering passes done in GLSL IR (e.g. branches and
3205 * relative addressing) that create a large number of conditional assignments
3206 * that ir_to_mesa converts to CMP instructions like the one mentioned above.
3207 *
3208 * Here is why this conversion is safe:
3209 * CMP T0, T1 T2 T0 can be expanded to:
3210 * if (T1 < 0.0)
3211 * MOV T0, T2;
3212 * else
3213 * MOV T0, T0;
3214 *
3215 * If (T1 < 0.0) evaluates to true then our replacement MOV T0, T2 is the same
3216 * as the original program. If (T1 < 0.0) evaluates to false, executing
3217 * MOV T0, T0 will store a garbage value in T0 since T0 is uninitialized.
3218 * Therefore, it doesn't matter that we are replacing MOV T0, T0 with MOV T0, T2
3219 * because any instruction that was going to read from T0 after this was going
3220 * to read a garbage value anyway.
3221 */
3222 void
3223 glsl_to_tgsi_visitor::simplify_cmp(void)
3224 {
3225 unsigned tempWrites[MAX_TEMPS];
3226 unsigned outputWrites[MAX_PROGRAM_OUTPUTS];
3227
3228 memset(tempWrites, 0, sizeof(tempWrites));
3229 memset(outputWrites, 0, sizeof(outputWrites));
3230
3231 foreach_iter(exec_list_iterator, iter, this->instructions) {
3232 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3233 unsigned prevWriteMask = 0;
3234
3235 /* Give up if we encounter relative addressing or flow control. */
3236 if (inst->dst.reladdr ||
3237 tgsi_get_opcode_info(inst->op)->is_branch ||
3238 inst->op == TGSI_OPCODE_BGNSUB ||
3239 inst->op == TGSI_OPCODE_CONT ||
3240 inst->op == TGSI_OPCODE_END ||
3241 inst->op == TGSI_OPCODE_ENDSUB ||
3242 inst->op == TGSI_OPCODE_RET) {
3243 return;
3244 }
3245
3246 if (inst->dst.file == PROGRAM_OUTPUT) {
3247 assert(inst->dst.index < MAX_PROGRAM_OUTPUTS);
3248 prevWriteMask = outputWrites[inst->dst.index];
3249 outputWrites[inst->dst.index] |= inst->dst.writemask;
3250 } else if (inst->dst.file == PROGRAM_TEMPORARY) {
3251 assert(inst->dst.index < MAX_TEMPS);
3252 prevWriteMask = tempWrites[inst->dst.index];
3253 tempWrites[inst->dst.index] |= inst->dst.writemask;
3254 }
3255
3256 /* For a CMP to be considered a conditional write, the destination
3257 * register and source register two must be the same. */
3258 if (inst->op == TGSI_OPCODE_CMP
3259 && !(inst->dst.writemask & prevWriteMask)
3260 && inst->src[2].file == inst->dst.file
3261 && inst->src[2].index == inst->dst.index
3262 && inst->dst.writemask == get_src_arg_mask(inst->dst, inst->src[2])) {
3263
3264 inst->op = TGSI_OPCODE_MOV;
3265 inst->src[0] = inst->src[1];
3266 }
3267 }
3268 }
3269
3270 /* Replaces all references to a temporary register index with another index. */
3271 void
3272 glsl_to_tgsi_visitor::rename_temp_register(int index, int new_index)
3273 {
3274 foreach_iter(exec_list_iterator, iter, this->instructions) {
3275 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3276 unsigned j;
3277
3278 for (j=0; j < num_inst_src_regs(inst->op); j++) {
3279 if (inst->src[j].file == PROGRAM_TEMPORARY &&
3280 inst->src[j].index == index) {
3281 inst->src[j].index = new_index;
3282 }
3283 }
3284
3285 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.index == index) {
3286 inst->dst.index = new_index;
3287 }
3288 }
3289 }
3290
3291 int
3292 glsl_to_tgsi_visitor::get_first_temp_read(int index)
3293 {
3294 int depth = 0; /* loop depth */
3295 int loop_start = -1; /* index of the first active BGNLOOP (if any) */
3296 unsigned i = 0, j;
3297
3298 foreach_iter(exec_list_iterator, iter, this->instructions) {
3299 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3300
3301 for (j=0; j < num_inst_src_regs(inst->op); j++) {
3302 if (inst->src[j].file == PROGRAM_TEMPORARY &&
3303 inst->src[j].index == index) {
3304 return (depth == 0) ? i : loop_start;
3305 }
3306 }
3307
3308 if (inst->op == TGSI_OPCODE_BGNLOOP) {
3309 if(depth++ == 0)
3310 loop_start = i;
3311 } else if (inst->op == TGSI_OPCODE_ENDLOOP) {
3312 if (--depth == 0)
3313 loop_start = -1;
3314 }
3315 assert(depth >= 0);
3316
3317 i++;
3318 }
3319
3320 return -1;
3321 }
3322
3323 int
3324 glsl_to_tgsi_visitor::get_first_temp_write(int index)
3325 {
3326 int depth = 0; /* loop depth */
3327 int loop_start = -1; /* index of the first active BGNLOOP (if any) */
3328 int i = 0;
3329
3330 foreach_iter(exec_list_iterator, iter, this->instructions) {
3331 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3332
3333 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.index == index) {
3334 return (depth == 0) ? i : loop_start;
3335 }
3336
3337 if (inst->op == TGSI_OPCODE_BGNLOOP) {
3338 if(depth++ == 0)
3339 loop_start = i;
3340 } else if (inst->op == TGSI_OPCODE_ENDLOOP) {
3341 if (--depth == 0)
3342 loop_start = -1;
3343 }
3344 assert(depth >= 0);
3345
3346 i++;
3347 }
3348
3349 return -1;
3350 }
3351
3352 int
3353 glsl_to_tgsi_visitor::get_last_temp_read(int index)
3354 {
3355 int depth = 0; /* loop depth */
3356 int last = -1; /* index of last instruction that reads the temporary */
3357 unsigned i = 0, j;
3358
3359 foreach_iter(exec_list_iterator, iter, this->instructions) {
3360 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3361
3362 for (j=0; j < num_inst_src_regs(inst->op); j++) {
3363 if (inst->src[j].file == PROGRAM_TEMPORARY &&
3364 inst->src[j].index == index) {
3365 last = (depth == 0) ? i : -2;
3366 }
3367 }
3368
3369 if (inst->op == TGSI_OPCODE_BGNLOOP)
3370 depth++;
3371 else if (inst->op == TGSI_OPCODE_ENDLOOP)
3372 if (--depth == 0 && last == -2)
3373 last = i;
3374 assert(depth >= 0);
3375
3376 i++;
3377 }
3378
3379 assert(last >= -1);
3380 return last;
3381 }
3382
3383 int
3384 glsl_to_tgsi_visitor::get_last_temp_write(int index)
3385 {
3386 int depth = 0; /* loop depth */
3387 int last = -1; /* index of last instruction that writes to the temporary */
3388 int i = 0;
3389
3390 foreach_iter(exec_list_iterator, iter, this->instructions) {
3391 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3392
3393 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.index == index)
3394 last = (depth == 0) ? i : -2;
3395
3396 if (inst->op == TGSI_OPCODE_BGNLOOP)
3397 depth++;
3398 else if (inst->op == TGSI_OPCODE_ENDLOOP)
3399 if (--depth == 0 && last == -2)
3400 last = i;
3401 assert(depth >= 0);
3402
3403 i++;
3404 }
3405
3406 assert(last >= -1);
3407 return last;
3408 }
3409
3410 /*
3411 * On a basic block basis, tracks available PROGRAM_TEMPORARY register
3412 * channels for copy propagation and updates following instructions to
3413 * use the original versions.
3414 *
3415 * The glsl_to_tgsi_visitor lazily produces code assuming that this pass
3416 * will occur. As an example, a TXP production before this pass:
3417 *
3418 * 0: MOV TEMP[1], INPUT[4].xyyy;
3419 * 1: MOV TEMP[1].w, INPUT[4].wwww;
3420 * 2: TXP TEMP[2], TEMP[1], texture[0], 2D;
3421 *
3422 * and after:
3423 *
3424 * 0: MOV TEMP[1], INPUT[4].xyyy;
3425 * 1: MOV TEMP[1].w, INPUT[4].wwww;
3426 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
3427 *
3428 * which allows for dead code elimination on TEMP[1]'s writes.
3429 */
3430 void
3431 glsl_to_tgsi_visitor::copy_propagate(void)
3432 {
3433 glsl_to_tgsi_instruction **acp = rzalloc_array(mem_ctx,
3434 glsl_to_tgsi_instruction *,
3435 this->next_temp * 4);
3436 int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
3437 int level = 0;
3438
3439 foreach_iter(exec_list_iterator, iter, this->instructions) {
3440 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3441
3442 assert(inst->dst.file != PROGRAM_TEMPORARY
3443 || inst->dst.index < this->next_temp);
3444
3445 /* First, do any copy propagation possible into the src regs. */
3446 for (int r = 0; r < 3; r++) {
3447 glsl_to_tgsi_instruction *first = NULL;
3448 bool good = true;
3449 int acp_base = inst->src[r].index * 4;
3450
3451 if (inst->src[r].file != PROGRAM_TEMPORARY ||
3452 inst->src[r].reladdr)
3453 continue;
3454
3455 /* See if we can find entries in the ACP consisting of MOVs
3456 * from the same src register for all the swizzled channels
3457 * of this src register reference.
3458 */
3459 for (int i = 0; i < 4; i++) {
3460 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
3461 glsl_to_tgsi_instruction *copy_chan = acp[acp_base + src_chan];
3462
3463 if (!copy_chan) {
3464 good = false;
3465 break;
3466 }
3467
3468 assert(acp_level[acp_base + src_chan] <= level);
3469
3470 if (!first) {
3471 first = copy_chan;
3472 } else {
3473 if (first->src[0].file != copy_chan->src[0].file ||
3474 first->src[0].index != copy_chan->src[0].index) {
3475 good = false;
3476 break;
3477 }
3478 }
3479 }
3480
3481 if (good) {
3482 /* We've now validated that we can copy-propagate to
3483 * replace this src register reference. Do it.
3484 */
3485 inst->src[r].file = first->src[0].file;
3486 inst->src[r].index = first->src[0].index;
3487
3488 int swizzle = 0;
3489 for (int i = 0; i < 4; i++) {
3490 int src_chan = GET_SWZ(inst->src[r].swizzle, i);
3491 glsl_to_tgsi_instruction *copy_inst = acp[acp_base + src_chan];
3492 swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) <<
3493 (3 * i));
3494 }
3495 inst->src[r].swizzle = swizzle;
3496 }
3497 }
3498
3499 switch (inst->op) {
3500 case TGSI_OPCODE_BGNLOOP:
3501 case TGSI_OPCODE_ENDLOOP:
3502 /* End of a basic block, clear the ACP entirely. */
3503 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
3504 break;
3505
3506 case TGSI_OPCODE_IF:
3507 ++level;
3508 break;
3509
3510 case TGSI_OPCODE_ENDIF:
3511 case TGSI_OPCODE_ELSE:
3512 /* Clear all channels written inside the block from the ACP, but
3513 * leaving those that were not touched.
3514 */
3515 for (int r = 0; r < this->next_temp; r++) {
3516 for (int c = 0; c < 4; c++) {
3517 if (!acp[4 * r + c])
3518 continue;
3519
3520 if (acp_level[4 * r + c] >= level)
3521 acp[4 * r + c] = NULL;
3522 }
3523 }
3524 if (inst->op == TGSI_OPCODE_ENDIF)
3525 --level;
3526 break;
3527
3528 default:
3529 /* Continuing the block, clear any written channels from
3530 * the ACP.
3531 */
3532 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.reladdr) {
3533 /* Any temporary might be written, so no copy propagation
3534 * across this instruction.
3535 */
3536 memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
3537 } else if (inst->dst.file == PROGRAM_OUTPUT &&
3538 inst->dst.reladdr) {
3539 /* Any output might be written, so no copy propagation
3540 * from outputs across this instruction.
3541 */
3542 for (int r = 0; r < this->next_temp; r++) {
3543 for (int c = 0; c < 4; c++) {
3544 if (!acp[4 * r + c])
3545 continue;
3546
3547 if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT)
3548 acp[4 * r + c] = NULL;
3549 }
3550 }
3551 } else if (inst->dst.file == PROGRAM_TEMPORARY ||
3552 inst->dst.file == PROGRAM_OUTPUT) {
3553 /* Clear where it's used as dst. */
3554 if (inst->dst.file == PROGRAM_TEMPORARY) {
3555 for (int c = 0; c < 4; c++) {
3556 if (inst->dst.writemask & (1 << c)) {
3557 acp[4 * inst->dst.index + c] = NULL;
3558 }
3559 }
3560 }
3561
3562 /* Clear where it's used as src. */
3563 for (int r = 0; r < this->next_temp; r++) {
3564 for (int c = 0; c < 4; c++) {
3565 if (!acp[4 * r + c])
3566 continue;
3567
3568 int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c);
3569
3570 if (acp[4 * r + c]->src[0].file == inst->dst.file &&
3571 acp[4 * r + c]->src[0].index == inst->dst.index &&
3572 inst->dst.writemask & (1 << src_chan))
3573 {
3574 acp[4 * r + c] = NULL;
3575 }
3576 }
3577 }
3578 }
3579 break;
3580 }
3581
3582 /* If this is a copy, add it to the ACP. */
3583 if (inst->op == TGSI_OPCODE_MOV &&
3584 inst->dst.file == PROGRAM_TEMPORARY &&
3585 !inst->dst.reladdr &&
3586 !inst->saturate &&
3587 !inst->src[0].reladdr &&
3588 !inst->src[0].negate) {
3589 for (int i = 0; i < 4; i++) {
3590 if (inst->dst.writemask & (1 << i)) {
3591 acp[4 * inst->dst.index + i] = inst;
3592 acp_level[4 * inst->dst.index + i] = level;
3593 }
3594 }
3595 }
3596 }
3597
3598 ralloc_free(acp_level);
3599 ralloc_free(acp);
3600 }
3601
3602 /*
3603 * Tracks available PROGRAM_TEMPORARY registers for dead code elimination.
3604 *
3605 * The glsl_to_tgsi_visitor lazily produces code assuming that this pass
3606 * will occur. As an example, a TXP production after copy propagation but
3607 * before this pass:
3608 *
3609 * 0: MOV TEMP[1], INPUT[4].xyyy;
3610 * 1: MOV TEMP[1].w, INPUT[4].wwww;
3611 * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
3612 *
3613 * and after this pass:
3614 *
3615 * 0: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
3616 *
3617 * FIXME: assumes that all functions are inlined (no support for BGNSUB/ENDSUB)
3618 * FIXME: doesn't eliminate all dead code inside of loops; it steps around them
3619 */
3620 void
3621 glsl_to_tgsi_visitor::eliminate_dead_code(void)
3622 {
3623 int i;
3624
3625 for (i=0; i < this->next_temp; i++) {
3626 int last_read = get_last_temp_read(i);
3627 int j = 0;
3628
3629 foreach_iter(exec_list_iterator, iter, this->instructions) {
3630 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3631
3632 if (inst->dst.file == PROGRAM_TEMPORARY && inst->dst.index == i &&
3633 j > last_read)
3634 {
3635 iter.remove();
3636 delete inst;
3637 }
3638
3639 j++;
3640 }
3641 }
3642 }
3643
3644 /*
3645 * On a basic block basis, tracks available PROGRAM_TEMPORARY registers for dead
3646 * code elimination. This is less primitive than eliminate_dead_code(), as it
3647 * is per-channel and can detect consecutive writes without a read between them
3648 * as dead code. However, there is some dead code that can be eliminated by
3649 * eliminate_dead_code() but not this function - for example, this function
3650 * cannot eliminate an instruction writing to a register that is never read and
3651 * is the only instruction writing to that register.
3652 *
3653 * The glsl_to_tgsi_visitor lazily produces code assuming that this pass
3654 * will occur.
3655 */
3656 int
3657 glsl_to_tgsi_visitor::eliminate_dead_code_advanced(void)
3658 {
3659 glsl_to_tgsi_instruction **writes = rzalloc_array(mem_ctx,
3660 glsl_to_tgsi_instruction *,
3661 this->next_temp * 4);
3662 int *write_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
3663 int level = 0;
3664 int removed = 0;
3665
3666 foreach_iter(exec_list_iterator, iter, this->instructions) {
3667 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3668
3669 assert(inst->dst.file != PROGRAM_TEMPORARY
3670 || inst->dst.index < this->next_temp);
3671
3672 switch (inst->op) {
3673 case TGSI_OPCODE_BGNLOOP:
3674 case TGSI_OPCODE_ENDLOOP:
3675 /* End of a basic block, clear the write array entirely.
3676 * FIXME: This keeps us from killing dead code when the writes are
3677 * on either side of a loop, even when the register isn't touched
3678 * inside the loop.
3679 */
3680 memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
3681 break;
3682
3683 case TGSI_OPCODE_ENDIF:
3684 --level;
3685 break;
3686
3687 case TGSI_OPCODE_ELSE:
3688 /* Clear all channels written inside the preceding if block from the
3689 * write array, but leave those that were not touched.
3690 *
3691 * FIXME: This destroys opportunities to remove dead code inside of
3692 * IF blocks that are followed by an ELSE block.
3693 */
3694 for (int r = 0; r < this->next_temp; r++) {
3695 for (int c = 0; c < 4; c++) {
3696 if (!writes[4 * r + c])
3697 continue;
3698
3699 if (write_level[4 * r + c] >= level)
3700 writes[4 * r + c] = NULL;
3701 }
3702 }
3703 break;
3704
3705 case TGSI_OPCODE_IF:
3706 ++level;
3707 /* fallthrough to default case to mark the condition as read */
3708
3709 default:
3710 /* Continuing the block, clear any channels from the write array that
3711 * are read by this instruction.
3712 */
3713 for (unsigned i = 0; i < Elements(inst->src); i++) {
3714 if (inst->src[i].file == PROGRAM_TEMPORARY && inst->src[i].reladdr){
3715 /* Any temporary might be read, so no dead code elimination
3716 * across this instruction.
3717 */
3718 memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
3719 } else if (inst->src[i].file == PROGRAM_TEMPORARY) {
3720 /* Clear where it's used as src. */
3721 int src_chans = 1 << GET_SWZ(inst->src[i].swizzle, 0);
3722 src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 1);
3723 src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 2);
3724 src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 3);
3725
3726 for (int c = 0; c < 4; c++) {
3727 if (src_chans & (1 << c)) {
3728 writes[4 * inst->src[i].index + c] = NULL;
3729 }
3730 }
3731 }
3732 }
3733 break;
3734 }
3735
3736 /* If this instruction writes to a temporary, add it to the write array.
3737 * If there is already an instruction in the write array for one or more
3738 * of the channels, flag that channel write as dead.
3739 */
3740 if (inst->dst.file == PROGRAM_TEMPORARY &&
3741 !inst->dst.reladdr &&
3742 !inst->saturate) {
3743 for (int c = 0; c < 4; c++) {
3744 if (inst->dst.writemask & (1 << c)) {
3745 if (writes[4 * inst->dst.index + c]) {
3746 if (write_level[4 * inst->dst.index + c] < level)
3747 continue;
3748 else
3749 writes[4 * inst->dst.index + c]->dead_mask |= (1 << c);
3750 }
3751 writes[4 * inst->dst.index + c] = inst;
3752 write_level[4 * inst->dst.index + c] = level;
3753 }
3754 }
3755 }
3756 }
3757
3758 /* Anything still in the write array at this point is dead code. */
3759 for (int r = 0; r < this->next_temp; r++) {
3760 for (int c = 0; c < 4; c++) {
3761 glsl_to_tgsi_instruction *inst = writes[4 * r + c];
3762 if (inst)
3763 inst->dead_mask |= (1 << c);
3764 }
3765 }
3766
3767 /* Now actually remove the instructions that are completely dead and update
3768 * the writemask of other instructions with dead channels.
3769 */
3770 foreach_iter(exec_list_iterator, iter, this->instructions) {
3771 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3772
3773 if (!inst->dead_mask || !inst->dst.writemask)
3774 continue;
3775 else if (inst->dead_mask == inst->dst.writemask) {
3776 iter.remove();
3777 delete inst;
3778 removed++;
3779 } else
3780 inst->dst.writemask &= ~(inst->dead_mask);
3781 }
3782
3783 ralloc_free(write_level);
3784 ralloc_free(writes);
3785
3786 return removed;
3787 }
3788
3789 /* Merges temporary registers together where possible to reduce the number of
3790 * registers needed to run a program.
3791 *
3792 * Produces optimal code only after copy propagation and dead code elimination
3793 * have been run. */
3794 void
3795 glsl_to_tgsi_visitor::merge_registers(void)
3796 {
3797 int *last_reads = rzalloc_array(mem_ctx, int, this->next_temp);
3798 int *first_writes = rzalloc_array(mem_ctx, int, this->next_temp);
3799 int i, j;
3800
3801 /* Read the indices of the last read and first write to each temp register
3802 * into an array so that we don't have to traverse the instruction list as
3803 * much. */
3804 for (i=0; i < this->next_temp; i++) {
3805 last_reads[i] = get_last_temp_read(i);
3806 first_writes[i] = get_first_temp_write(i);
3807 }
3808
3809 /* Start looking for registers with non-overlapping usages that can be
3810 * merged together. */
3811 for (i=0; i < this->next_temp; i++) {
3812 /* Don't touch unused registers. */
3813 if (last_reads[i] < 0 || first_writes[i] < 0) continue;
3814
3815 for (j=0; j < this->next_temp; j++) {
3816 /* Don't touch unused registers. */
3817 if (last_reads[j] < 0 || first_writes[j] < 0) continue;
3818
3819 /* We can merge the two registers if the first write to j is after or
3820 * in the same instruction as the last read from i. Note that the
3821 * register at index i will always be used earlier or at the same time
3822 * as the register at index j. */
3823 if (first_writes[i] <= first_writes[j] &&
3824 last_reads[i] <= first_writes[j])
3825 {
3826 rename_temp_register(j, i); /* Replace all references to j with i.*/
3827
3828 /* Update the first_writes and last_reads arrays with the new
3829 * values for the merged register index, and mark the newly unused
3830 * register index as such. */
3831 last_reads[i] = last_reads[j];
3832 first_writes[j] = -1;
3833 last_reads[j] = -1;
3834 }
3835 }
3836 }
3837
3838 ralloc_free(last_reads);
3839 ralloc_free(first_writes);
3840 }
3841
3842 /* Reassign indices to temporary registers by reusing unused indices created
3843 * by optimization passes. */
3844 void
3845 glsl_to_tgsi_visitor::renumber_registers(void)
3846 {
3847 int i = 0;
3848 int new_index = 0;
3849
3850 for (i=0; i < this->next_temp; i++) {
3851 if (get_first_temp_read(i) < 0) continue;
3852 if (i != new_index)
3853 rename_temp_register(i, new_index);
3854 new_index++;
3855 }
3856
3857 this->next_temp = new_index;
3858 }
3859
3860 /**
3861 * Returns a fragment program which implements the current pixel transfer ops.
3862 * Based on get_pixel_transfer_program in st_atom_pixeltransfer.c.
3863 */
3864 extern "C" void
3865 get_pixel_transfer_visitor(struct st_fragment_program *fp,
3866 glsl_to_tgsi_visitor *original,
3867 int scale_and_bias, int pixel_maps)
3868 {
3869 glsl_to_tgsi_visitor *v = new glsl_to_tgsi_visitor();
3870 struct st_context *st = st_context(original->ctx);
3871 struct gl_program *prog = &fp->Base.Base;
3872 struct gl_program_parameter_list *params = _mesa_new_parameter_list();
3873 st_src_reg coord, src0;
3874 st_dst_reg dst0;
3875 glsl_to_tgsi_instruction *inst;
3876
3877 /* Copy attributes of the glsl_to_tgsi_visitor in the original shader. */
3878 v->ctx = original->ctx;
3879 v->prog = prog;
3880 v->glsl_version = original->glsl_version;
3881 v->native_integers = original->native_integers;
3882 v->options = original->options;
3883 v->next_temp = original->next_temp;
3884 v->num_address_regs = original->num_address_regs;
3885 v->samplers_used = prog->SamplersUsed = original->samplers_used;
3886 v->indirect_addr_temps = original->indirect_addr_temps;
3887 v->indirect_addr_consts = original->indirect_addr_consts;
3888 memcpy(&v->immediates, &original->immediates, sizeof(v->immediates));
3889
3890 /*
3891 * Get initial pixel color from the texture.
3892 * TEX colorTemp, fragment.texcoord[0], texture[0], 2D;
3893 */
3894 coord = st_src_reg(PROGRAM_INPUT, FRAG_ATTRIB_TEX0, glsl_type::vec2_type);
3895 src0 = v->get_temp(glsl_type::vec4_type);
3896 dst0 = st_dst_reg(src0);
3897 inst = v->emit(NULL, TGSI_OPCODE_TEX, dst0, coord);
3898 inst->sampler = 0;
3899 inst->tex_target = TEXTURE_2D_INDEX;
3900
3901 prog->InputsRead |= (1 << FRAG_ATTRIB_TEX0);
3902 prog->SamplersUsed |= (1 << 0); /* mark sampler 0 as used */
3903 v->samplers_used |= (1 << 0);
3904
3905 if (scale_and_bias) {
3906 static const gl_state_index scale_state[STATE_LENGTH] =
3907 { STATE_INTERNAL, STATE_PT_SCALE,
3908 (gl_state_index) 0, (gl_state_index) 0, (gl_state_index) 0 };
3909 static const gl_state_index bias_state[STATE_LENGTH] =
3910 { STATE_INTERNAL, STATE_PT_BIAS,
3911 (gl_state_index) 0, (gl_state_index) 0, (gl_state_index) 0 };
3912 GLint scale_p, bias_p;
3913 st_src_reg scale, bias;
3914
3915 scale_p = _mesa_add_state_reference(params, scale_state);
3916 bias_p = _mesa_add_state_reference(params, bias_state);
3917
3918 /* MAD colorTemp, colorTemp, scale, bias; */
3919 scale = st_src_reg(PROGRAM_STATE_VAR, scale_p, GLSL_TYPE_FLOAT);
3920 bias = st_src_reg(PROGRAM_STATE_VAR, bias_p, GLSL_TYPE_FLOAT);
3921 inst = v->emit(NULL, TGSI_OPCODE_MAD, dst0, src0, scale, bias);
3922 }
3923
3924 if (pixel_maps) {
3925 st_src_reg temp = v->get_temp(glsl_type::vec4_type);
3926 st_dst_reg temp_dst = st_dst_reg(temp);
3927
3928 assert(st->pixel_xfer.pixelmap_texture);
3929
3930 /* With a little effort, we can do four pixel map look-ups with
3931 * two TEX instructions:
3932 */
3933
3934 /* TEX temp.rg, colorTemp.rgba, texture[1], 2D; */
3935 temp_dst.writemask = WRITEMASK_XY; /* write R,G */
3936 inst = v->emit(NULL, TGSI_OPCODE_TEX, temp_dst, src0);
3937 inst->sampler = 1;
3938 inst->tex_target = TEXTURE_2D_INDEX;
3939
3940 /* TEX temp.ba, colorTemp.baba, texture[1], 2D; */
3941 src0.swizzle = MAKE_SWIZZLE4(SWIZZLE_Z, SWIZZLE_W, SWIZZLE_Z, SWIZZLE_W);
3942 temp_dst.writemask = WRITEMASK_ZW; /* write B,A */
3943 inst = v->emit(NULL, TGSI_OPCODE_TEX, temp_dst, src0);
3944 inst->sampler = 1;
3945 inst->tex_target = TEXTURE_2D_INDEX;
3946
3947 prog->SamplersUsed |= (1 << 1); /* mark sampler 1 as used */
3948 v->samplers_used |= (1 << 1);
3949
3950 /* MOV colorTemp, temp; */
3951 inst = v->emit(NULL, TGSI_OPCODE_MOV, dst0, temp);
3952 }
3953
3954 /* Now copy the instructions from the original glsl_to_tgsi_visitor into the
3955 * new visitor. */
3956 foreach_iter(exec_list_iterator, iter, original->instructions) {
3957 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
3958 st_src_reg src_regs[3];
3959
3960 if (inst->dst.file == PROGRAM_OUTPUT)
3961 prog->OutputsWritten |= BITFIELD64_BIT(inst->dst.index);
3962
3963 for (int i=0; i<3; i++) {
3964 src_regs[i] = inst->src[i];
3965 if (src_regs[i].file == PROGRAM_INPUT &&
3966 src_regs[i].index == FRAG_ATTRIB_COL0)
3967 {
3968 src_regs[i].file = PROGRAM_TEMPORARY;
3969 src_regs[i].index = src0.index;
3970 }
3971 else if (src_regs[i].file == PROGRAM_INPUT)
3972 prog->InputsRead |= (1 << src_regs[i].index);
3973 }
3974
3975 v->emit(NULL, inst->op, inst->dst, src_regs[0], src_regs[1], src_regs[2]);
3976 }
3977
3978 /* Make modifications to fragment program info. */
3979 prog->Parameters = _mesa_combine_parameter_lists(params,
3980 original->prog->Parameters);
3981 _mesa_free_parameter_list(params);
3982 count_resources(v, prog);
3983 fp->glsl_to_tgsi = v;
3984 }
3985
3986 /**
3987 * Make fragment program for glBitmap:
3988 * Sample the texture and kill the fragment if the bit is 0.
3989 * This program will be combined with the user's fragment program.
3990 *
3991 * Based on make_bitmap_fragment_program in st_cb_bitmap.c.
3992 */
3993 extern "C" void
3994 get_bitmap_visitor(struct st_fragment_program *fp,
3995 glsl_to_tgsi_visitor *original, int samplerIndex)
3996 {
3997 glsl_to_tgsi_visitor *v = new glsl_to_tgsi_visitor();
3998 struct st_context *st = st_context(original->ctx);
3999 struct gl_program *prog = &fp->Base.Base;
4000 st_src_reg coord, src0;
4001 st_dst_reg dst0;
4002 glsl_to_tgsi_instruction *inst;
4003
4004 /* Copy attributes of the glsl_to_tgsi_visitor in the original shader. */
4005 v->ctx = original->ctx;
4006 v->prog = prog;
4007 v->glsl_version = original->glsl_version;
4008 v->native_integers = original->native_integers;
4009 v->options = original->options;
4010 v->next_temp = original->next_temp;
4011 v->num_address_regs = original->num_address_regs;
4012 v->samplers_used = prog->SamplersUsed = original->samplers_used;
4013 v->indirect_addr_temps = original->indirect_addr_temps;
4014 v->indirect_addr_consts = original->indirect_addr_consts;
4015 memcpy(&v->immediates, &original->immediates, sizeof(v->immediates));
4016
4017 /* TEX tmp0, fragment.texcoord[0], texture[0], 2D; */
4018 coord = st_src_reg(PROGRAM_INPUT, FRAG_ATTRIB_TEX0, glsl_type::vec2_type);
4019 src0 = v->get_temp(glsl_type::vec4_type);
4020 dst0 = st_dst_reg(src0);
4021 inst = v->emit(NULL, TGSI_OPCODE_TEX, dst0, coord);
4022 inst->sampler = samplerIndex;
4023 inst->tex_target = TEXTURE_2D_INDEX;
4024
4025 prog->InputsRead |= (1 << FRAG_ATTRIB_TEX0);
4026 prog->SamplersUsed |= (1 << samplerIndex); /* mark sampler as used */
4027 v->samplers_used |= (1 << samplerIndex);
4028
4029 /* KIL if -tmp0 < 0 # texel=0 -> keep / texel=0 -> discard */
4030 src0.negate = NEGATE_XYZW;
4031 if (st->bitmap.tex_format == PIPE_FORMAT_L8_UNORM)
4032 src0.swizzle = SWIZZLE_XXXX;
4033 inst = v->emit(NULL, TGSI_OPCODE_KIL, undef_dst, src0);
4034
4035 /* Now copy the instructions from the original glsl_to_tgsi_visitor into the
4036 * new visitor. */
4037 foreach_iter(exec_list_iterator, iter, original->instructions) {
4038 glsl_to_tgsi_instruction *inst = (glsl_to_tgsi_instruction *)iter.get();
4039 st_src_reg src_regs[3];
4040
4041 if (inst->dst.file == PROGRAM_OUTPUT)
4042 prog->OutputsWritten |= BITFIELD64_BIT(inst->dst.index);
4043
4044 for (int i=0; i<3; i++) {
4045 src_regs[i] = inst->src[i];
4046 if (src_regs[i].file == PROGRAM_INPUT)
4047 prog->InputsRead |= (1 << src_regs[i].index);
4048 }
4049
4050 v->emit(NULL, inst->op, inst->dst, src_regs[0], src_regs[1], src_regs[2]);
4051 }
4052
4053 /* Make modifications to fragment program info. */
4054 prog->Parameters = _mesa_clone_parameter_list(original->prog->Parameters);
4055 count_resources(v, prog);
4056 fp->glsl_to_tgsi = v;
4057 }
4058
4059 /* ------------------------- TGSI conversion stuff -------------------------- */
4060 struct label {
4061 unsigned branch_target;
4062 unsigned token;
4063 };
4064
4065 /**
4066 * Intermediate state used during shader translation.
4067 */
4068 struct st_translate {
4069 struct ureg_program *ureg;
4070
4071 struct ureg_dst temps[MAX_TEMPS];
4072 struct ureg_src *constants;
4073 struct ureg_src *immediates;
4074 struct ureg_dst outputs[PIPE_MAX_SHADER_OUTPUTS];
4075 struct ureg_src inputs[PIPE_MAX_SHADER_INPUTS];
4076 struct ureg_dst address[1];
4077 struct ureg_src samplers[PIPE_MAX_SAMPLERS];
4078 struct ureg_src systemValues[SYSTEM_VALUE_MAX];
4079
4080 /* Extra info for handling point size clamping in vertex shader */
4081 struct ureg_dst pointSizeResult; /**< Actual point size output register */
4082 struct ureg_src pointSizeConst; /**< Point size range constant register */
4083 GLint pointSizeOutIndex; /**< Temp point size output register */
4084 GLboolean prevInstWrotePointSize;
4085
4086 const GLuint *inputMapping;
4087 const GLuint *outputMapping;
4088
4089 /* For every instruction that contains a label (eg CALL), keep
4090 * details so that we can go back afterwards and emit the correct
4091 * tgsi instruction number for each label.
4092 */
4093 struct label *labels;
4094 unsigned labels_size;
4095 unsigned labels_count;
4096
4097 /* Keep a record of the tgsi instruction number that each mesa
4098 * instruction starts at, will be used to fix up labels after
4099 * translation.
4100 */
4101 unsigned *insn;
4102 unsigned insn_size;
4103 unsigned insn_count;
4104
4105 unsigned procType; /**< TGSI_PROCESSOR_VERTEX/FRAGMENT */
4106
4107 boolean error;
4108 };
4109
4110 /** Map Mesa's SYSTEM_VALUE_x to TGSI_SEMANTIC_x */
4111 static unsigned mesa_sysval_to_semantic[SYSTEM_VALUE_MAX] = {
4112 TGSI_SEMANTIC_FACE,
4113 TGSI_SEMANTIC_INSTANCEID
4114 };
4115
4116 /**
4117 * Make note of a branch to a label in the TGSI code.
4118 * After we've emitted all instructions, we'll go over the list
4119 * of labels built here and patch the TGSI code with the actual
4120 * location of each label.
4121 */
4122 static unsigned *get_label(struct st_translate *t, unsigned branch_target)
4123 {
4124 unsigned i;
4125
4126 if (t->labels_count + 1 >= t->labels_size) {
4127 t->labels_size = 1 << (util_logbase2(t->labels_size) + 1);
4128 t->labels = (struct label *)realloc(t->labels,
4129 t->labels_size * sizeof(struct label));
4130 if (t->labels == NULL) {
4131 static unsigned dummy;
4132 t->error = TRUE;
4133 return &dummy;
4134 }
4135 }
4136
4137 i = t->labels_count++;
4138 t->labels[i].branch_target = branch_target;
4139 return &t->labels[i].token;
4140 }
4141
4142 /**
4143 * Called prior to emitting the TGSI code for each instruction.
4144 * Allocate additional space for instructions if needed.
4145 * Update the insn[] array so the next glsl_to_tgsi_instruction points to
4146 * the next TGSI instruction.
4147 */
4148 static void set_insn_start(struct st_translate *t, unsigned start)
4149 {
4150 if (t->insn_count + 1 >= t->insn_size) {
4151 t->insn_size = 1 << (util_logbase2(t->insn_size) + 1);
4152 t->insn = (unsigned *)realloc(t->insn, t->insn_size * sizeof(t->insn[0]));
4153 if (t->insn == NULL) {
4154 t->error = TRUE;
4155 return;
4156 }
4157 }
4158
4159 t->insn[t->insn_count++] = start;
4160 }
4161
4162 /**
4163 * Map a glsl_to_tgsi constant/immediate to a TGSI immediate.
4164 */
4165 static struct ureg_src
4166 emit_immediate(struct st_translate *t,
4167 gl_constant_value values[4],
4168 int type, int size)
4169 {
4170 struct ureg_program *ureg = t->ureg;
4171
4172 switch(type)
4173 {
4174 case GL_FLOAT:
4175 return ureg_DECL_immediate(ureg, &values[0].f, size);
4176 case GL_INT:
4177 return ureg_DECL_immediate_int(ureg, &values[0].i, size);
4178 case GL_UNSIGNED_INT:
4179 case GL_BOOL:
4180 return ureg_DECL_immediate_uint(ureg, &values[0].u, size);
4181 default:
4182 assert(!"should not get here - type must be float, int, uint, or bool");
4183 return ureg_src_undef();
4184 }
4185 }
4186
4187 /**
4188 * Map a glsl_to_tgsi dst register to a TGSI ureg_dst register.
4189 */
4190 static struct ureg_dst
4191 dst_register(struct st_translate *t,
4192 gl_register_file file,
4193 GLuint index)
4194 {
4195 switch(file) {
4196 case PROGRAM_UNDEFINED:
4197 return ureg_dst_undef();
4198
4199 case PROGRAM_TEMPORARY:
4200 if (ureg_dst_is_undef(t->temps[index]))
4201 t->temps[index] = ureg_DECL_temporary(t->ureg);
4202
4203 return t->temps[index];
4204
4205 case PROGRAM_OUTPUT:
4206 if (t->procType == TGSI_PROCESSOR_VERTEX && index == VERT_RESULT_PSIZ)
4207 t->prevInstWrotePointSize = GL_TRUE;
4208
4209 if (t->procType == TGSI_PROCESSOR_VERTEX)
4210 assert(index < VERT_RESULT_MAX);
4211 else if (t->procType == TGSI_PROCESSOR_FRAGMENT)
4212 assert(index < FRAG_RESULT_MAX);
4213 else
4214 assert(index < GEOM_RESULT_MAX);
4215
4216 assert(t->outputMapping[index] < Elements(t->outputs));
4217
4218 return t->outputs[t->outputMapping[index]];
4219
4220 case PROGRAM_ADDRESS:
4221 return t->address[index];
4222
4223 default:
4224 assert(!"unknown dst register file");
4225 return ureg_dst_undef();
4226 }
4227 }
4228
4229 /**
4230 * Map a glsl_to_tgsi src register to a TGSI ureg_src register.
4231 */
4232 static struct ureg_src
4233 src_register(struct st_translate *t,
4234 gl_register_file file,
4235 GLuint index)
4236 {
4237 switch(file) {
4238 case PROGRAM_UNDEFINED:
4239 return ureg_src_undef();
4240
4241 case PROGRAM_TEMPORARY:
4242 assert(index >= 0);
4243 assert(index < Elements(t->temps));
4244 if (ureg_dst_is_undef(t->temps[index]))
4245 t->temps[index] = ureg_DECL_temporary(t->ureg);
4246 return ureg_src(t->temps[index]);
4247
4248 case PROGRAM_NAMED_PARAM:
4249 case PROGRAM_ENV_PARAM:
4250 case PROGRAM_LOCAL_PARAM:
4251 case PROGRAM_UNIFORM:
4252 assert(index >= 0);
4253 return t->constants[index];
4254 case PROGRAM_STATE_VAR:
4255 case PROGRAM_CONSTANT: /* ie, immediate */
4256 if (index < 0)
4257 return ureg_DECL_constant(t->ureg, 0);
4258 else
4259 return t->constants[index];
4260
4261 case PROGRAM_IMMEDIATE:
4262 return t->immediates[index];
4263
4264 case PROGRAM_INPUT:
4265 assert(t->inputMapping[index] < Elements(t->inputs));
4266 return t->inputs[t->inputMapping[index]];
4267
4268 case PROGRAM_OUTPUT:
4269 assert(t->outputMapping[index] < Elements(t->outputs));
4270 return ureg_src(t->outputs[t->outputMapping[index]]); /* not needed? */
4271
4272 case PROGRAM_ADDRESS:
4273 return ureg_src(t->address[index]);
4274
4275 case PROGRAM_SYSTEM_VALUE:
4276 assert(index < Elements(t->systemValues));
4277 return t->systemValues[index];
4278
4279 default:
4280 assert(!"unknown src register file");
4281 return ureg_src_undef();
4282 }
4283 }
4284
4285 /**
4286 * Create a TGSI ureg_dst register from an st_dst_reg.
4287 */
4288 static struct ureg_dst
4289 translate_dst(struct st_translate *t,
4290 const st_dst_reg *dst_reg,
4291 bool saturate)
4292 {
4293 struct ureg_dst dst = dst_register(t,
4294 dst_reg->file,
4295 dst_reg->index);
4296
4297 dst = ureg_writemask(dst, dst_reg->writemask);
4298
4299 if (saturate)
4300 dst = ureg_saturate(dst);
4301
4302 if (dst_reg->reladdr != NULL)
4303 dst = ureg_dst_indirect(dst, ureg_src(t->address[0]));
4304
4305 return dst;
4306 }
4307
4308 /**
4309 * Create a TGSI ureg_src register from an st_src_reg.
4310 */
4311 static struct ureg_src
4312 translate_src(struct st_translate *t, const st_src_reg *src_reg)
4313 {
4314 struct ureg_src src = src_register(t, src_reg->file, src_reg->index);
4315
4316 src = ureg_swizzle(src,
4317 GET_SWZ(src_reg->swizzle, 0) & 0x3,
4318 GET_SWZ(src_reg->swizzle, 1) & 0x3,
4319 GET_SWZ(src_reg->swizzle, 2) & 0x3,
4320 GET_SWZ(src_reg->swizzle, 3) & 0x3);
4321
4322 if ((src_reg->negate & 0xf) == NEGATE_XYZW)
4323 src = ureg_negate(src);
4324
4325 if (src_reg->reladdr != NULL) {
4326 /* Normally ureg_src_indirect() would be used here, but a stupid compiler
4327 * bug in g++ makes ureg_src_indirect (an inline C function) erroneously
4328 * set the bit for src.Negate. So we have to do the operation manually
4329 * here to work around the compiler's problems. */
4330 /*src = ureg_src_indirect(src, ureg_src(t->address[0]));*/
4331 struct ureg_src addr = ureg_src(t->address[0]);
4332 src.Indirect = 1;
4333 src.IndirectFile = addr.File;
4334 src.IndirectIndex = addr.Index;
4335 src.IndirectSwizzle = addr.SwizzleX;
4336
4337 if (src_reg->file != PROGRAM_INPUT &&
4338 src_reg->file != PROGRAM_OUTPUT) {
4339 /* If src_reg->index was negative, it was set to zero in
4340 * src_register(). Reassign it now. But don't do this
4341 * for input/output regs since they get remapped while
4342 * const buffers don't.
4343 */
4344 src.Index = src_reg->index;
4345 }
4346 }
4347
4348 return src;
4349 }
4350
4351 static struct tgsi_texture_offset
4352 translate_tex_offset(struct st_translate *t,
4353 const struct tgsi_texture_offset *in_offset)
4354 {
4355 struct tgsi_texture_offset offset;
4356
4357 assert(in_offset->File == PROGRAM_IMMEDIATE);
4358
4359 offset.File = TGSI_FILE_IMMEDIATE;
4360 offset.Index = in_offset->Index;
4361 offset.SwizzleX = in_offset->SwizzleX;
4362 offset.SwizzleY = in_offset->SwizzleY;
4363 offset.SwizzleZ = in_offset->SwizzleZ;
4364
4365 return offset;
4366 }
4367
4368 static void
4369 compile_tgsi_instruction(struct st_translate *t,
4370 const glsl_to_tgsi_instruction *inst)
4371 {
4372 struct ureg_program *ureg = t->ureg;
4373 GLuint i;
4374 struct ureg_dst dst[1];
4375 struct ureg_src src[4];
4376 struct tgsi_texture_offset texoffsets[MAX_GLSL_TEXTURE_OFFSET];
4377
4378 unsigned num_dst;
4379 unsigned num_src;
4380
4381 num_dst = num_inst_dst_regs(inst->op);
4382 num_src = num_inst_src_regs(inst->op);
4383
4384 if (num_dst)
4385 dst[0] = translate_dst(t,
4386 &inst->dst,
4387 inst->saturate);
4388
4389 for (i = 0; i < num_src; i++)
4390 src[i] = translate_src(t, &inst->src[i]);
4391
4392 switch(inst->op) {
4393 case TGSI_OPCODE_BGNLOOP:
4394 case TGSI_OPCODE_CAL:
4395 case TGSI_OPCODE_ELSE:
4396 case TGSI_OPCODE_ENDLOOP:
4397 case TGSI_OPCODE_IF:
4398 assert(num_dst == 0);
4399 ureg_label_insn(ureg,
4400 inst->op,
4401 src, num_src,
4402 get_label(t,
4403 inst->op == TGSI_OPCODE_CAL ? inst->function->sig_id : 0));
4404 return;
4405
4406 case TGSI_OPCODE_TEX:
4407 case TGSI_OPCODE_TXB:
4408 case TGSI_OPCODE_TXD:
4409 case TGSI_OPCODE_TXL:
4410 case TGSI_OPCODE_TXP:
4411 case TGSI_OPCODE_TXQ:
4412 case TGSI_OPCODE_TXF:
4413 src[num_src++] = t->samplers[inst->sampler];
4414 for (i = 0; i < inst->tex_offset_num_offset; i++) {
4415 texoffsets[i] = translate_tex_offset(t, &inst->tex_offsets[i]);
4416 }
4417 ureg_tex_insn(ureg,
4418 inst->op,
4419 dst, num_dst,
4420 translate_texture_target(inst->tex_target, inst->tex_shadow),
4421 texoffsets, inst->tex_offset_num_offset,
4422 src, num_src);
4423 return;
4424
4425 case TGSI_OPCODE_SCS:
4426 dst[0] = ureg_writemask(dst[0], TGSI_WRITEMASK_XY);
4427 ureg_insn(ureg, inst->op, dst, num_dst, src, num_src);
4428 break;
4429
4430 default:
4431 ureg_insn(ureg,
4432 inst->op,
4433 dst, num_dst,
4434 src, num_src);
4435 break;
4436 }
4437 }
4438
4439 /**
4440 * Emit the TGSI instructions to adjust the WPOS pixel center convention
4441 * Basically, add (adjX, adjY) to the fragment position.
4442 */
4443 static void
4444 emit_adjusted_wpos(struct st_translate *t,
4445 const struct gl_program *program,
4446 float adjX, float adjY)
4447 {
4448 struct ureg_program *ureg = t->ureg;
4449 struct ureg_dst wpos_temp = ureg_DECL_temporary(ureg);
4450 struct ureg_src wpos_input = t->inputs[t->inputMapping[FRAG_ATTRIB_WPOS]];
4451
4452 /* Note that we bias X and Y and pass Z and W through unchanged.
4453 * The shader might also use gl_FragCoord.w and .z.
4454 */
4455 ureg_ADD(ureg, wpos_temp, wpos_input,
4456 ureg_imm4f(ureg, adjX, adjY, 0.0f, 0.0f));
4457
4458 t->inputs[t->inputMapping[FRAG_ATTRIB_WPOS]] = ureg_src(wpos_temp);
4459 }
4460
4461
4462 /**
4463 * Emit the TGSI instructions for inverting the WPOS y coordinate.
4464 * This code is unavoidable because it also depends on whether
4465 * a FBO is bound (STATE_FB_WPOS_Y_TRANSFORM).
4466 */
4467 static void
4468 emit_wpos_inversion(struct st_translate *t,
4469 const struct gl_program *program,
4470 bool invert)
4471 {
4472 struct ureg_program *ureg = t->ureg;
4473
4474 /* Fragment program uses fragment position input.
4475 * Need to replace instances of INPUT[WPOS] with temp T
4476 * where T = INPUT[WPOS] by y is inverted.
4477 */
4478 static const gl_state_index wposTransformState[STATE_LENGTH]
4479 = { STATE_INTERNAL, STATE_FB_WPOS_Y_TRANSFORM,
4480 (gl_state_index)0, (gl_state_index)0, (gl_state_index)0 };
4481
4482 /* XXX: note we are modifying the incoming shader here! Need to
4483 * do this before emitting the constant decls below, or this
4484 * will be missed:
4485 */
4486 unsigned wposTransConst = _mesa_add_state_reference(program->Parameters,
4487 wposTransformState);
4488
4489 struct ureg_src wpostrans = ureg_DECL_constant(ureg, wposTransConst);
4490 struct ureg_dst wpos_temp;
4491 struct ureg_src wpos_input = t->inputs[t->inputMapping[FRAG_ATTRIB_WPOS]];
4492
4493 /* MOV wpos_temp, input[wpos]
4494 */
4495 if (wpos_input.File == TGSI_FILE_TEMPORARY)
4496 wpos_temp = ureg_dst(wpos_input);
4497 else {
4498 wpos_temp = ureg_DECL_temporary(ureg);
4499 ureg_MOV(ureg, wpos_temp, wpos_input);
4500 }
4501
4502 if (invert) {
4503 /* MAD wpos_temp.y, wpos_input, wpostrans.xxxx, wpostrans.yyyy
4504 */
4505 ureg_MAD(ureg,
4506 ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y),
4507 wpos_input,
4508 ureg_scalar(wpostrans, 0),
4509 ureg_scalar(wpostrans, 1));
4510 } else {
4511 /* MAD wpos_temp.y, wpos_input, wpostrans.zzzz, wpostrans.wwww
4512 */
4513 ureg_MAD(ureg,
4514 ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y),
4515 wpos_input,
4516 ureg_scalar(wpostrans, 2),
4517 ureg_scalar(wpostrans, 3));
4518 }
4519
4520 /* Use wpos_temp as position input from here on:
4521 */
4522 t->inputs[t->inputMapping[FRAG_ATTRIB_WPOS]] = ureg_src(wpos_temp);
4523 }
4524
4525
4526 /**
4527 * Emit fragment position/ooordinate code.
4528 */
4529 static void
4530 emit_wpos(struct st_context *st,
4531 struct st_translate *t,
4532 const struct gl_program *program,
4533 struct ureg_program *ureg)
4534 {
4535 const struct gl_fragment_program *fp =
4536 (const struct gl_fragment_program *) program;
4537 struct pipe_screen *pscreen = st->pipe->screen;
4538 boolean invert = FALSE;
4539
4540 if (fp->OriginUpperLeft) {
4541 /* Fragment shader wants origin in upper-left */
4542 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT)) {
4543 /* the driver supports upper-left origin */
4544 }
4545 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT)) {
4546 /* the driver supports lower-left origin, need to invert Y */
4547 ureg_property_fs_coord_origin(ureg, TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
4548 invert = TRUE;
4549 }
4550 else
4551 assert(0);
4552 }
4553 else {
4554 /* Fragment shader wants origin in lower-left */
4555 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT))
4556 /* the driver supports lower-left origin */
4557 ureg_property_fs_coord_origin(ureg, TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
4558 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT))
4559 /* the driver supports upper-left origin, need to invert Y */
4560 invert = TRUE;
4561 else
4562 assert(0);
4563 }
4564
4565 if (fp->PixelCenterInteger) {
4566 /* Fragment shader wants pixel center integer */
4567 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER))
4568 /* the driver supports pixel center integer */
4569 ureg_property_fs_coord_pixel_center(ureg, TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
4570 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER))
4571 /* the driver supports pixel center half integer, need to bias X,Y */
4572 emit_adjusted_wpos(t, program, 0.5f, invert ? 0.5f : -0.5f);
4573 else
4574 assert(0);
4575 }
4576 else {
4577 /* Fragment shader wants pixel center half integer */
4578 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
4579 /* the driver supports pixel center half integer */
4580 }
4581 else if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
4582 /* the driver supports pixel center integer, need to bias X,Y */
4583 ureg_property_fs_coord_pixel_center(ureg, TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
4584 emit_adjusted_wpos(t, program, 0.5f, invert ? -0.5f : 0.5f);
4585 }
4586 else
4587 assert(0);
4588 }
4589
4590 /* we invert after adjustment so that we avoid the MOV to temporary,
4591 * and reuse the adjustment ADD instead */
4592 emit_wpos_inversion(t, program, invert);
4593 }
4594
4595 /**
4596 * OpenGL's fragment gl_FrontFace input is 1 for front-facing, 0 for back.
4597 * TGSI uses +1 for front, -1 for back.
4598 * This function converts the TGSI value to the GL value. Simply clamping/
4599 * saturating the value to [0,1] does the job.
4600 */
4601 static void
4602 emit_face_var(struct st_translate *t)
4603 {
4604 struct ureg_program *ureg = t->ureg;
4605 struct ureg_dst face_temp = ureg_DECL_temporary(ureg);
4606 struct ureg_src face_input = t->inputs[t->inputMapping[FRAG_ATTRIB_FACE]];
4607
4608 /* MOV_SAT face_temp, input[face] */
4609 face_temp = ureg_saturate(face_temp);
4610 ureg_MOV(ureg, face_temp, face_input);
4611
4612 /* Use face_temp as face input from here on: */
4613 t->inputs[t->inputMapping[FRAG_ATTRIB_FACE]] = ureg_src(face_temp);
4614 }
4615
4616 static void
4617 emit_edgeflags(struct st_translate *t)
4618 {
4619 struct ureg_program *ureg = t->ureg;
4620 struct ureg_dst edge_dst = t->outputs[t->outputMapping[VERT_RESULT_EDGE]];
4621 struct ureg_src edge_src = t->inputs[t->inputMapping[VERT_ATTRIB_EDGEFLAG]];
4622
4623 ureg_MOV(ureg, edge_dst, edge_src);
4624 }
4625
4626 /**
4627 * Translate intermediate IR (glsl_to_tgsi_instruction) to TGSI format.
4628 * \param program the program to translate
4629 * \param numInputs number of input registers used
4630 * \param inputMapping maps Mesa fragment program inputs to TGSI generic
4631 * input indexes
4632 * \param inputSemanticName the TGSI_SEMANTIC flag for each input
4633 * \param inputSemanticIndex the semantic index (ex: which texcoord) for
4634 * each input
4635 * \param interpMode the TGSI_INTERPOLATE_LINEAR/PERSP mode for each input
4636 * \param numOutputs number of output registers used
4637 * \param outputMapping maps Mesa fragment program outputs to TGSI
4638 * generic outputs
4639 * \param outputSemanticName the TGSI_SEMANTIC flag for each output
4640 * \param outputSemanticIndex the semantic index (ex: which texcoord) for
4641 * each output
4642 *
4643 * \return PIPE_OK or PIPE_ERROR_OUT_OF_MEMORY
4644 */
4645 extern "C" enum pipe_error
4646 st_translate_program(
4647 struct gl_context *ctx,
4648 uint procType,
4649 struct ureg_program *ureg,
4650 glsl_to_tgsi_visitor *program,
4651 const struct gl_program *proginfo,
4652 GLuint numInputs,
4653 const GLuint inputMapping[],
4654 const ubyte inputSemanticName[],
4655 const ubyte inputSemanticIndex[],
4656 const GLuint interpMode[],
4657 GLuint numOutputs,
4658 const GLuint outputMapping[],
4659 const ubyte outputSemanticName[],
4660 const ubyte outputSemanticIndex[],
4661 boolean passthrough_edgeflags)
4662 {
4663 struct st_translate translate, *t;
4664 unsigned i;
4665 enum pipe_error ret = PIPE_OK;
4666
4667 assert(numInputs <= Elements(t->inputs));
4668 assert(numOutputs <= Elements(t->outputs));
4669
4670 t = &translate;
4671 memset(t, 0, sizeof *t);
4672
4673 t->procType = procType;
4674 t->inputMapping = inputMapping;
4675 t->outputMapping = outputMapping;
4676 t->ureg = ureg;
4677 t->pointSizeOutIndex = -1;
4678 t->prevInstWrotePointSize = GL_FALSE;
4679
4680 /*
4681 * Declare input attributes.
4682 */
4683 if (procType == TGSI_PROCESSOR_FRAGMENT) {
4684 for (i = 0; i < numInputs; i++) {
4685 t->inputs[i] = ureg_DECL_fs_input(ureg,
4686 inputSemanticName[i],
4687 inputSemanticIndex[i],
4688 interpMode[i]);
4689 }
4690
4691 if (proginfo->InputsRead & FRAG_BIT_WPOS) {
4692 /* Must do this after setting up t->inputs, and before
4693 * emitting constant references, below:
4694 */
4695 emit_wpos(st_context(ctx), t, proginfo, ureg);
4696 }
4697
4698 if (proginfo->InputsRead & FRAG_BIT_FACE)
4699 emit_face_var(t);
4700
4701 /*
4702 * Declare output attributes.
4703 */
4704 for (i = 0; i < numOutputs; i++) {
4705 switch (outputSemanticName[i]) {
4706 case TGSI_SEMANTIC_POSITION:
4707 t->outputs[i] = ureg_DECL_output(ureg,
4708 TGSI_SEMANTIC_POSITION, /* Z/Depth */
4709 outputSemanticIndex[i]);
4710 t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_Z);
4711 break;
4712 case TGSI_SEMANTIC_STENCIL:
4713 t->outputs[i] = ureg_DECL_output(ureg,
4714 TGSI_SEMANTIC_STENCIL, /* Stencil */
4715 outputSemanticIndex[i]);
4716 t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_Y);
4717 break;
4718 case TGSI_SEMANTIC_COLOR:
4719 t->outputs[i] = ureg_DECL_output(ureg,
4720 TGSI_SEMANTIC_COLOR,
4721 outputSemanticIndex[i]);
4722 break;
4723 default:
4724 assert(!"fragment shader outputs must be POSITION/STENCIL/COLOR");
4725 return PIPE_ERROR_BAD_INPUT;
4726 }
4727 }
4728 }
4729 else if (procType == TGSI_PROCESSOR_GEOMETRY) {
4730 for (i = 0; i < numInputs; i++) {
4731 t->inputs[i] = ureg_DECL_gs_input(ureg,
4732 i,
4733 inputSemanticName[i],
4734 inputSemanticIndex[i]);
4735 }
4736
4737 for (i = 0; i < numOutputs; i++) {
4738 t->outputs[i] = ureg_DECL_output(ureg,
4739 outputSemanticName[i],
4740 outputSemanticIndex[i]);
4741 }
4742 }
4743 else {
4744 assert(procType == TGSI_PROCESSOR_VERTEX);
4745
4746 for (i = 0; i < numInputs; i++) {
4747 t->inputs[i] = ureg_DECL_vs_input(ureg, i);
4748 }
4749
4750 for (i = 0; i < numOutputs; i++) {
4751 t->outputs[i] = ureg_DECL_output(ureg,
4752 outputSemanticName[i],
4753 outputSemanticIndex[i]);
4754 if ((outputSemanticName[i] == TGSI_SEMANTIC_PSIZE) && proginfo->Id) {
4755 /* Writing to the point size result register requires special
4756 * handling to implement clamping.
4757 */
4758 static const gl_state_index pointSizeClampState[STATE_LENGTH]
4759 = { STATE_INTERNAL, STATE_POINT_SIZE_IMPL_CLAMP, (gl_state_index)0, (gl_state_index)0, (gl_state_index)0 };
4760 /* XXX: note we are modifying the incoming shader here! Need to
4761 * do this before emitting the constant decls below, or this
4762 * will be missed.
4763 */
4764 unsigned pointSizeClampConst =
4765 _mesa_add_state_reference(proginfo->Parameters,
4766 pointSizeClampState);
4767 struct ureg_dst psizregtemp = ureg_DECL_temporary(ureg);
4768 t->pointSizeConst = ureg_DECL_constant(ureg, pointSizeClampConst);
4769 t->pointSizeResult = t->outputs[i];
4770 t->pointSizeOutIndex = i;
4771 t->outputs[i] = psizregtemp;
4772 }
4773 }
4774 if (passthrough_edgeflags)
4775 emit_edgeflags(t);
4776 }
4777
4778 /* Declare address register.
4779 */
4780 if (program->num_address_regs > 0) {
4781 assert(program->num_address_regs == 1);
4782 t->address[0] = ureg_DECL_address(ureg);
4783 }
4784
4785 /* Declare misc input registers
4786 */
4787 {
4788 GLbitfield sysInputs = proginfo->SystemValuesRead;
4789 unsigned numSys = 0;
4790 for (i = 0; sysInputs; i++) {
4791 if (sysInputs & (1 << i)) {
4792 unsigned semName = mesa_sysval_to_semantic[i];
4793 t->systemValues[i] = ureg_DECL_system_value(ureg, numSys, semName, 0);
4794 numSys++;
4795 sysInputs &= ~(1 << i);
4796 }
4797 }
4798 }
4799
4800 if (program->indirect_addr_temps) {
4801 /* If temps are accessed with indirect addressing, declare temporaries
4802 * in sequential order. Else, we declare them on demand elsewhere.
4803 * (Note: the number of temporaries is equal to program->next_temp)
4804 */
4805 for (i = 0; i < (unsigned)program->next_temp; i++) {
4806 /* XXX use TGSI_FILE_TEMPORARY_ARRAY when it's supported by ureg */
4807 t->temps[i] = ureg_DECL_temporary(t->ureg);
4808 }
4809 }
4810
4811 /* Emit constants and uniforms. TGSI uses a single index space for these,
4812 * so we put all the translated regs in t->constants.
4813 */
4814 if (proginfo->Parameters) {
4815 t->constants = (struct ureg_src *)CALLOC(proginfo->Parameters->NumParameters * sizeof(t->constants[0]));
4816 if (t->constants == NULL) {
4817 ret = PIPE_ERROR_OUT_OF_MEMORY;
4818 goto out;
4819 }
4820
4821 for (i = 0; i < proginfo->Parameters->NumParameters; i++) {
4822 switch (proginfo->Parameters->Parameters[i].Type) {
4823 case PROGRAM_ENV_PARAM:
4824 case PROGRAM_LOCAL_PARAM:
4825 case PROGRAM_STATE_VAR:
4826 case PROGRAM_NAMED_PARAM:
4827 case PROGRAM_UNIFORM:
4828 t->constants[i] = ureg_DECL_constant(ureg, i);
4829 break;
4830
4831 /* Emit immediates for PROGRAM_CONSTANT only when there's no indirect
4832 * addressing of the const buffer.
4833 * FIXME: Be smarter and recognize param arrays:
4834 * indirect addressing is only valid within the referenced
4835 * array.
4836 */
4837 case PROGRAM_CONSTANT:
4838 if (program->indirect_addr_consts)
4839 t->constants[i] = ureg_DECL_constant(ureg, i);
4840 else
4841 t->constants[i] = emit_immediate(t,
4842 proginfo->Parameters->ParameterValues[i],
4843 proginfo->Parameters->Parameters[i].DataType,
4844 4);
4845 break;
4846 default:
4847 break;
4848 }
4849 }
4850 }
4851
4852 /* Emit immediate values.
4853 */
4854 t->immediates = (struct ureg_src *)CALLOC(program->num_immediates * sizeof(struct ureg_src));
4855 if (t->immediates == NULL) {
4856 ret = PIPE_ERROR_OUT_OF_MEMORY;
4857 goto out;
4858 }
4859 i = 0;
4860 foreach_iter(exec_list_iterator, iter, program->immediates) {
4861 immediate_storage *imm = (immediate_storage *)iter.get();
4862 t->immediates[i++] = emit_immediate(t, imm->values, imm->type, imm->size);
4863 }
4864
4865 /* texture samplers */
4866 for (i = 0; i < ctx->Const.MaxTextureImageUnits; i++) {
4867 if (program->samplers_used & (1 << i)) {
4868 t->samplers[i] = ureg_DECL_sampler(ureg, i);
4869 }
4870 }
4871
4872 /* Emit each instruction in turn:
4873 */
4874 foreach_iter(exec_list_iterator, iter, program->instructions) {
4875 set_insn_start(t, ureg_get_instruction_number(ureg));
4876 compile_tgsi_instruction(t, (glsl_to_tgsi_instruction *)iter.get());
4877
4878 if (t->prevInstWrotePointSize && proginfo->Id) {
4879 /* The previous instruction wrote to the (fake) vertex point size
4880 * result register. Now we need to clamp that value to the min/max
4881 * point size range, putting the result into the real point size
4882 * register.
4883 * Note that we can't do this easily at the end of program due to
4884 * possible early return.
4885 */
4886 set_insn_start(t, ureg_get_instruction_number(ureg));
4887 ureg_MAX(t->ureg,
4888 ureg_writemask(t->outputs[t->pointSizeOutIndex], WRITEMASK_X),
4889 ureg_src(t->outputs[t->pointSizeOutIndex]),
4890 ureg_swizzle(t->pointSizeConst, 1,1,1,1));
4891 ureg_MIN(t->ureg, ureg_writemask(t->pointSizeResult, WRITEMASK_X),
4892 ureg_src(t->outputs[t->pointSizeOutIndex]),
4893 ureg_swizzle(t->pointSizeConst, 2,2,2,2));
4894 }
4895 t->prevInstWrotePointSize = GL_FALSE;
4896 }
4897
4898 /* Fix up all emitted labels:
4899 */
4900 for (i = 0; i < t->labels_count; i++) {
4901 ureg_fixup_label(ureg, t->labels[i].token,
4902 t->insn[t->labels[i].branch_target]);
4903 }
4904
4905 out:
4906 FREE(t->insn);
4907 FREE(t->labels);
4908 FREE(t->constants);
4909 FREE(t->immediates);
4910
4911 if (t->error) {
4912 debug_printf("%s: translate error flag set\n", __FUNCTION__);
4913 }
4914
4915 return ret;
4916 }
4917 /* ----------------------------- End TGSI code ------------------------------ */
4918
4919 /**
4920 * Convert a shader's GLSL IR into a Mesa gl_program, although without
4921 * generating Mesa IR.
4922 */
4923 static struct gl_program *
4924 get_mesa_program(struct gl_context *ctx,
4925 struct gl_shader_program *shader_program,
4926 struct gl_shader *shader)
4927 {
4928 glsl_to_tgsi_visitor* v = new glsl_to_tgsi_visitor();
4929 struct gl_program *prog;
4930 GLenum target;
4931 const char *target_string;
4932 bool progress;
4933 struct gl_shader_compiler_options *options =
4934 &ctx->ShaderCompilerOptions[_mesa_shader_type_to_index(shader->Type)];
4935
4936 switch (shader->Type) {
4937 case GL_VERTEX_SHADER:
4938 target = GL_VERTEX_PROGRAM_ARB;
4939 target_string = "vertex";
4940 break;
4941 case GL_FRAGMENT_SHADER:
4942 target = GL_FRAGMENT_PROGRAM_ARB;
4943 target_string = "fragment";
4944 break;
4945 case GL_GEOMETRY_SHADER:
4946 target = GL_GEOMETRY_PROGRAM_NV;
4947 target_string = "geometry";
4948 break;
4949 default:
4950 assert(!"should not be reached");
4951 return NULL;
4952 }
4953
4954 validate_ir_tree(shader->ir);
4955
4956 prog = ctx->Driver.NewProgram(ctx, target, shader_program->Name);
4957 if (!prog)
4958 return NULL;
4959 prog->Parameters = _mesa_new_parameter_list();
4960 v->ctx = ctx;
4961 v->prog = prog;
4962 v->shader_program = shader_program;
4963 v->options = options;
4964 v->glsl_version = ctx->Const.GLSLVersion;
4965 v->native_integers = ctx->Const.NativeIntegers;
4966
4967 add_uniforms_to_parameters_list(shader_program, shader, prog);
4968
4969 /* Emit intermediate IR for main(). */
4970 visit_exec_list(shader->ir, v);
4971
4972 /* Now emit bodies for any functions that were used. */
4973 do {
4974 progress = GL_FALSE;
4975
4976 foreach_iter(exec_list_iterator, iter, v->function_signatures) {
4977 function_entry *entry = (function_entry *)iter.get();
4978
4979 if (!entry->bgn_inst) {
4980 v->current_function = entry;
4981
4982 entry->bgn_inst = v->emit(NULL, TGSI_OPCODE_BGNSUB);
4983 entry->bgn_inst->function = entry;
4984
4985 visit_exec_list(&entry->sig->body, v);
4986
4987 glsl_to_tgsi_instruction *last;
4988 last = (glsl_to_tgsi_instruction *)v->instructions.get_tail();
4989 if (last->op != TGSI_OPCODE_RET)
4990 v->emit(NULL, TGSI_OPCODE_RET);
4991
4992 glsl_to_tgsi_instruction *end;
4993 end = v->emit(NULL, TGSI_OPCODE_ENDSUB);
4994 end->function = entry;
4995
4996 progress = GL_TRUE;
4997 }
4998 }
4999 } while (progress);
5000
5001 #if 0
5002 /* Print out some information (for debugging purposes) used by the
5003 * optimization passes. */
5004 for (i=0; i < v->next_temp; i++) {
5005 int fr = v->get_first_temp_read(i);
5006 int fw = v->get_first_temp_write(i);
5007 int lr = v->get_last_temp_read(i);
5008 int lw = v->get_last_temp_write(i);
5009
5010 printf("Temp %d: FR=%3d FW=%3d LR=%3d LW=%3d\n", i, fr, fw, lr, lw);
5011 assert(fw <= fr);
5012 }
5013 #endif
5014
5015 /* Remove reads to output registers, and to varyings in vertex shaders. */
5016 v->remove_output_reads(PROGRAM_OUTPUT);
5017 if (target == GL_VERTEX_PROGRAM_ARB)
5018 v->remove_output_reads(PROGRAM_VARYING);
5019
5020 /* Perform optimizations on the instructions in the glsl_to_tgsi_visitor. */
5021 v->simplify_cmp();
5022 v->copy_propagate();
5023 while (v->eliminate_dead_code_advanced());
5024
5025 /* FIXME: These passes to optimize temporary registers don't work when there
5026 * is indirect addressing of the temporary register space. We need proper
5027 * array support so that we don't have to give up these passes in every
5028 * shader that uses arrays.
5029 */
5030 if (!v->indirect_addr_temps) {
5031 v->eliminate_dead_code();
5032 v->merge_registers();
5033 v->renumber_registers();
5034 }
5035
5036 /* Write the END instruction. */
5037 v->emit(NULL, TGSI_OPCODE_END);
5038
5039 if (ctx->Shader.Flags & GLSL_DUMP) {
5040 printf("\n");
5041 printf("GLSL IR for linked %s program %d:\n", target_string,
5042 shader_program->Name);
5043 _mesa_print_ir(shader->ir, NULL);
5044 printf("\n");
5045 printf("\n");
5046 }
5047
5048 prog->Instructions = NULL;
5049 prog->NumInstructions = 0;
5050
5051 do_set_program_inouts(shader->ir, prog);
5052 count_resources(v, prog);
5053
5054 check_resources(ctx, shader_program, v, prog);
5055
5056 _mesa_reference_program(ctx, &shader->Program, prog);
5057
5058 struct st_vertex_program *stvp;
5059 struct st_fragment_program *stfp;
5060 struct st_geometry_program *stgp;
5061
5062 switch (shader->Type) {
5063 case GL_VERTEX_SHADER:
5064 stvp = (struct st_vertex_program *)prog;
5065 stvp->glsl_to_tgsi = v;
5066 break;
5067 case GL_FRAGMENT_SHADER:
5068 stfp = (struct st_fragment_program *)prog;
5069 stfp->glsl_to_tgsi = v;
5070 break;
5071 case GL_GEOMETRY_SHADER:
5072 stgp = (struct st_geometry_program *)prog;
5073 stgp->glsl_to_tgsi = v;
5074 break;
5075 default:
5076 assert(!"should not be reached");
5077 return NULL;
5078 }
5079
5080 return prog;
5081 }
5082
5083 extern "C" {
5084
5085 struct gl_shader *
5086 st_new_shader(struct gl_context *ctx, GLuint name, GLuint type)
5087 {
5088 struct gl_shader *shader;
5089 assert(type == GL_FRAGMENT_SHADER || type == GL_VERTEX_SHADER ||
5090 type == GL_GEOMETRY_SHADER_ARB);
5091 shader = rzalloc(NULL, struct gl_shader);
5092 if (shader) {
5093 shader->Type = type;
5094 shader->Name = name;
5095 _mesa_init_shader(ctx, shader);
5096 }
5097 return shader;
5098 }
5099
5100 struct gl_shader_program *
5101 st_new_shader_program(struct gl_context *ctx, GLuint name)
5102 {
5103 struct gl_shader_program *shProg;
5104 shProg = rzalloc(NULL, struct gl_shader_program);
5105 if (shProg) {
5106 shProg->Name = name;
5107 _mesa_init_shader_program(ctx, shProg);
5108 }
5109 return shProg;
5110 }
5111
5112 /**
5113 * Link a shader.
5114 * Called via ctx->Driver.LinkShader()
5115 * This actually involves converting GLSL IR into an intermediate TGSI-like IR
5116 * with code lowering and other optimizations.
5117 */
5118 GLboolean
5119 st_link_shader(struct gl_context *ctx, struct gl_shader_program *prog)
5120 {
5121 assert(prog->LinkStatus);
5122
5123 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
5124 if (prog->_LinkedShaders[i] == NULL)
5125 continue;
5126
5127 bool progress;
5128 exec_list *ir = prog->_LinkedShaders[i]->ir;
5129 const struct gl_shader_compiler_options *options =
5130 &ctx->ShaderCompilerOptions[_mesa_shader_type_to_index(prog->_LinkedShaders[i]->Type)];
5131
5132 do {
5133 progress = false;
5134
5135 /* Lowering */
5136 do_mat_op_to_vec(ir);
5137 lower_instructions(ir, (MOD_TO_FRACT | DIV_TO_MUL_RCP | EXP_TO_EXP2
5138 | LOG_TO_LOG2 | INT_DIV_TO_MUL_RCP
5139 | ((options->EmitNoPow) ? POW_TO_EXP2 : 0)));
5140
5141 progress = do_lower_jumps(ir, true, true, options->EmitNoMainReturn, options->EmitNoCont, options->EmitNoLoops) || progress;
5142
5143 progress = do_common_optimization(ir, true, options->MaxUnrollIterations) || progress;
5144
5145 progress = lower_quadop_vector(ir, false) || progress;
5146
5147 if (options->MaxIfDepth == 0)
5148 progress = lower_discard(ir) || progress;
5149
5150 progress = lower_if_to_cond_assign(ir, options->MaxIfDepth) || progress;
5151
5152 if (options->EmitNoNoise)
5153 progress = lower_noise(ir) || progress;
5154
5155 /* If there are forms of indirect addressing that the driver
5156 * cannot handle, perform the lowering pass.
5157 */
5158 if (options->EmitNoIndirectInput || options->EmitNoIndirectOutput
5159 || options->EmitNoIndirectTemp || options->EmitNoIndirectUniform)
5160 progress =
5161 lower_variable_index_to_cond_assign(ir,
5162 options->EmitNoIndirectInput,
5163 options->EmitNoIndirectOutput,
5164 options->EmitNoIndirectTemp,
5165 options->EmitNoIndirectUniform)
5166 || progress;
5167
5168 progress = do_vec_index_to_cond_assign(ir) || progress;
5169 } while (progress);
5170
5171 validate_ir_tree(ir);
5172 }
5173
5174 for (unsigned i = 0; i < MESA_SHADER_TYPES; i++) {
5175 struct gl_program *linked_prog;
5176
5177 if (prog->_LinkedShaders[i] == NULL)
5178 continue;
5179
5180 linked_prog = get_mesa_program(ctx, prog, prog->_LinkedShaders[i]);
5181
5182 if (linked_prog) {
5183 static const GLenum targets[] = {
5184 GL_VERTEX_PROGRAM_ARB,
5185 GL_FRAGMENT_PROGRAM_ARB,
5186 GL_GEOMETRY_PROGRAM_NV
5187 };
5188
5189 _mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program,
5190 linked_prog);
5191 if (!ctx->Driver.ProgramStringNotify(ctx, targets[i], linked_prog)) {
5192 _mesa_reference_program(ctx, &prog->_LinkedShaders[i]->Program,
5193 NULL);
5194 _mesa_reference_program(ctx, &linked_prog, NULL);
5195 return GL_FALSE;
5196 }
5197 }
5198
5199 _mesa_reference_program(ctx, &linked_prog, NULL);
5200 }
5201
5202 return GL_TRUE;
5203 }
5204
5205 } /* extern "C" */