replace _mesa_logbase2 with util_logbase2
[mesa.git] / src / mesa / state_tracker / st_mesa_to_tgsi.c
1 /**************************************************************************
2 *
3 * Copyright 2007-2008 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 /*
29 * \author
30 * Michal Krol,
31 * Keith Whitwell
32 */
33
34 #include "pipe/p_compiler.h"
35 #include "pipe/p_context.h"
36 #include "pipe/p_screen.h"
37 #include "pipe/p_shader_tokens.h"
38 #include "pipe/p_state.h"
39 #include "tgsi/tgsi_ureg.h"
40 #include "tgsi/tgsi_from_mesa.h"
41 #include "st_mesa_to_tgsi.h"
42 #include "st_context.h"
43 #include "program/prog_instruction.h"
44 #include "program/prog_parameter.h"
45 #include "util/u_debug.h"
46 #include "util/u_math.h"
47 #include "util/u_memory.h"
48 #include "st_glsl_to_tgsi.h" /* for _mesa_sysval_to_semantic */
49
50
51 #define PROGRAM_ANY_CONST ((1 << PROGRAM_STATE_VAR) | \
52 (1 << PROGRAM_CONSTANT) | \
53 (1 << PROGRAM_UNIFORM))
54
55 /**
56 * Intermediate state used during shader translation.
57 */
58 struct st_translate {
59 struct ureg_program *ureg;
60
61 struct ureg_dst temps[MAX_PROGRAM_TEMPS];
62 struct ureg_src *constants;
63 struct ureg_dst outputs[PIPE_MAX_SHADER_OUTPUTS];
64 struct ureg_src inputs[PIPE_MAX_SHADER_INPUTS];
65 struct ureg_dst address[1];
66 struct ureg_src samplers[PIPE_MAX_SAMPLERS];
67 struct ureg_src systemValues[SYSTEM_VALUE_MAX];
68
69 const ubyte *inputMapping;
70 const ubyte *outputMapping;
71
72 unsigned procType; /**< PIPE_SHADER_VERTEX/FRAGMENT */
73 };
74
75
76 /**
77 * Map a Mesa dst register to a TGSI ureg_dst register.
78 */
79 static struct ureg_dst
80 dst_register(struct st_translate *t, gl_register_file file, GLuint index)
81 {
82 switch(file) {
83 case PROGRAM_UNDEFINED:
84 return ureg_dst_undef();
85
86 case PROGRAM_TEMPORARY:
87 if (ureg_dst_is_undef(t->temps[index]))
88 t->temps[index] = ureg_DECL_temporary(t->ureg);
89
90 return t->temps[index];
91
92 case PROGRAM_OUTPUT:
93 if (t->procType == PIPE_SHADER_VERTEX)
94 assert(index < VARYING_SLOT_MAX);
95 else if (t->procType == PIPE_SHADER_FRAGMENT)
96 assert(index < FRAG_RESULT_MAX);
97 else
98 assert(index < VARYING_SLOT_MAX);
99
100 assert(t->outputMapping[index] < ARRAY_SIZE(t->outputs));
101
102 return t->outputs[t->outputMapping[index]];
103
104 case PROGRAM_ADDRESS:
105 return t->address[index];
106
107 default:
108 debug_assert(0);
109 return ureg_dst_undef();
110 }
111 }
112
113
114 /**
115 * Map a Mesa src register to a TGSI ureg_src register.
116 */
117 static struct ureg_src
118 src_register(struct st_translate *t,
119 gl_register_file file,
120 GLint index)
121 {
122 switch(file) {
123 case PROGRAM_UNDEFINED:
124 return ureg_src_undef();
125
126 case PROGRAM_TEMPORARY:
127 assert(index >= 0);
128 assert(index < ARRAY_SIZE(t->temps));
129 if (ureg_dst_is_undef(t->temps[index]))
130 t->temps[index] = ureg_DECL_temporary(t->ureg);
131 return ureg_src(t->temps[index]);
132
133 case PROGRAM_UNIFORM:
134 assert(index >= 0);
135 return t->constants[index];
136 case PROGRAM_STATE_VAR:
137 case PROGRAM_CONSTANT: /* ie, immediate */
138 if (index < 0)
139 return ureg_DECL_constant(t->ureg, 0);
140 else
141 return t->constants[index];
142
143 case PROGRAM_INPUT:
144 assert(t->inputMapping[index] < ARRAY_SIZE(t->inputs));
145 return t->inputs[t->inputMapping[index]];
146
147 case PROGRAM_OUTPUT:
148 assert(t->outputMapping[index] < ARRAY_SIZE(t->outputs));
149 return ureg_src(t->outputs[t->outputMapping[index]]); /* not needed? */
150
151 case PROGRAM_ADDRESS:
152 return ureg_src(t->address[index]);
153
154 case PROGRAM_SYSTEM_VALUE:
155 assert(index < ARRAY_SIZE(t->systemValues));
156 return t->systemValues[index];
157
158 default:
159 debug_assert(0);
160 return ureg_src_undef();
161 }
162 }
163
164
165 /**
166 * Map mesa texture target to TGSI texture target.
167 */
168 enum tgsi_texture_type
169 st_translate_texture_target(gl_texture_index textarget, GLboolean shadow)
170 {
171 if (shadow) {
172 switch (textarget) {
173 case TEXTURE_1D_INDEX:
174 return TGSI_TEXTURE_SHADOW1D;
175 case TEXTURE_2D_INDEX:
176 return TGSI_TEXTURE_SHADOW2D;
177 case TEXTURE_RECT_INDEX:
178 return TGSI_TEXTURE_SHADOWRECT;
179 case TEXTURE_1D_ARRAY_INDEX:
180 return TGSI_TEXTURE_SHADOW1D_ARRAY;
181 case TEXTURE_2D_ARRAY_INDEX:
182 return TGSI_TEXTURE_SHADOW2D_ARRAY;
183 case TEXTURE_CUBE_INDEX:
184 return TGSI_TEXTURE_SHADOWCUBE;
185 case TEXTURE_CUBE_ARRAY_INDEX:
186 return TGSI_TEXTURE_SHADOWCUBE_ARRAY;
187 default:
188 break;
189 }
190 }
191
192 switch (textarget) {
193 case TEXTURE_2D_MULTISAMPLE_INDEX:
194 return TGSI_TEXTURE_2D_MSAA;
195 case TEXTURE_2D_MULTISAMPLE_ARRAY_INDEX:
196 return TGSI_TEXTURE_2D_ARRAY_MSAA;
197 case TEXTURE_BUFFER_INDEX:
198 return TGSI_TEXTURE_BUFFER;
199 case TEXTURE_1D_INDEX:
200 return TGSI_TEXTURE_1D;
201 case TEXTURE_2D_INDEX:
202 return TGSI_TEXTURE_2D;
203 case TEXTURE_3D_INDEX:
204 return TGSI_TEXTURE_3D;
205 case TEXTURE_CUBE_INDEX:
206 return TGSI_TEXTURE_CUBE;
207 case TEXTURE_CUBE_ARRAY_INDEX:
208 return TGSI_TEXTURE_CUBE_ARRAY;
209 case TEXTURE_RECT_INDEX:
210 return TGSI_TEXTURE_RECT;
211 case TEXTURE_1D_ARRAY_INDEX:
212 return TGSI_TEXTURE_1D_ARRAY;
213 case TEXTURE_2D_ARRAY_INDEX:
214 return TGSI_TEXTURE_2D_ARRAY;
215 case TEXTURE_EXTERNAL_INDEX:
216 return TGSI_TEXTURE_2D;
217 default:
218 debug_assert(!"unexpected texture target index");
219 return TGSI_TEXTURE_1D;
220 }
221 }
222
223
224 /**
225 * Map GLSL base type to TGSI return type.
226 */
227 enum tgsi_return_type
228 st_translate_texture_type(enum glsl_base_type type)
229 {
230 switch (type) {
231 case GLSL_TYPE_INT:
232 return TGSI_RETURN_TYPE_SINT;
233 case GLSL_TYPE_UINT:
234 return TGSI_RETURN_TYPE_UINT;
235 case GLSL_TYPE_FLOAT:
236 return TGSI_RETURN_TYPE_FLOAT;
237 default:
238 assert(!"unexpected texture type");
239 return TGSI_RETURN_TYPE_UNKNOWN;
240 }
241 }
242
243
244 /**
245 * Translate a (1 << TEXTURE_x_INDEX) bit into a TGSI_TEXTURE_x enum.
246 */
247 static unsigned
248 translate_texture_index(GLbitfield texBit, bool shadow)
249 {
250 int index = ffs(texBit);
251 assert(index > 0);
252 assert(index - 1 < NUM_TEXTURE_TARGETS);
253 return st_translate_texture_target(index - 1, shadow);
254 }
255
256
257 /**
258 * Create a TGSI ureg_dst register from a Mesa dest register.
259 */
260 static struct ureg_dst
261 translate_dst(struct st_translate *t,
262 const struct prog_dst_register *DstReg,
263 boolean saturate)
264 {
265 struct ureg_dst dst = dst_register(t, DstReg->File, DstReg->Index);
266
267 dst = ureg_writemask(dst, DstReg->WriteMask);
268
269 if (saturate)
270 dst = ureg_saturate(dst);
271
272 if (DstReg->RelAddr)
273 dst = ureg_dst_indirect(dst, ureg_src(t->address[0]));
274
275 return dst;
276 }
277
278
279 /**
280 * Create a TGSI ureg_src register from a Mesa src register.
281 */
282 static struct ureg_src
283 translate_src(struct st_translate *t,
284 const struct prog_src_register *SrcReg)
285 {
286 struct ureg_src src = src_register(t, SrcReg->File, SrcReg->Index);
287
288 src = ureg_swizzle(src,
289 GET_SWZ(SrcReg->Swizzle, 0) & 0x3,
290 GET_SWZ(SrcReg->Swizzle, 1) & 0x3,
291 GET_SWZ(SrcReg->Swizzle, 2) & 0x3,
292 GET_SWZ(SrcReg->Swizzle, 3) & 0x3);
293
294 if (SrcReg->Negate == NEGATE_XYZW)
295 src = ureg_negate(src);
296
297 if (SrcReg->RelAddr) {
298 src = ureg_src_indirect(src, ureg_src(t->address[0]));
299 if (SrcReg->File != PROGRAM_INPUT &&
300 SrcReg->File != PROGRAM_OUTPUT) {
301 /* If SrcReg->Index was negative, it was set to zero in
302 * src_register(). Reassign it now. But don't do this
303 * for input/output regs since they get remapped while
304 * const buffers don't.
305 */
306 src.Index = SrcReg->Index;
307 }
308 }
309
310 return src;
311 }
312
313
314 static struct ureg_src
315 swizzle_4v(struct ureg_src src, const unsigned *swz)
316 {
317 return ureg_swizzle(src, swz[0], swz[1], swz[2], swz[3]);
318 }
319
320
321 /**
322 * Translate a SWZ instruction into a MOV, MUL or MAD instruction. EG:
323 *
324 * SWZ dst, src.x-y10
325 *
326 * becomes:
327 *
328 * MAD dst {1,-1,0,0}, src.xyxx, {0,0,1,0}
329 */
330 static void
331 emit_swz(struct st_translate *t,
332 struct ureg_dst dst,
333 const struct prog_src_register *SrcReg)
334 {
335 struct ureg_program *ureg = t->ureg;
336 struct ureg_src src = src_register(t, SrcReg->File, SrcReg->Index);
337
338 unsigned negate_mask = SrcReg->Negate;
339
340 unsigned one_mask = ((GET_SWZ(SrcReg->Swizzle, 0) == SWIZZLE_ONE) << 0 |
341 (GET_SWZ(SrcReg->Swizzle, 1) == SWIZZLE_ONE) << 1 |
342 (GET_SWZ(SrcReg->Swizzle, 2) == SWIZZLE_ONE) << 2 |
343 (GET_SWZ(SrcReg->Swizzle, 3) == SWIZZLE_ONE) << 3);
344
345 unsigned zero_mask = ((GET_SWZ(SrcReg->Swizzle, 0) == SWIZZLE_ZERO) << 0 |
346 (GET_SWZ(SrcReg->Swizzle, 1) == SWIZZLE_ZERO) << 1 |
347 (GET_SWZ(SrcReg->Swizzle, 2) == SWIZZLE_ZERO) << 2 |
348 (GET_SWZ(SrcReg->Swizzle, 3) == SWIZZLE_ZERO) << 3);
349
350 unsigned negative_one_mask = one_mask & negate_mask;
351 unsigned positive_one_mask = one_mask & ~negate_mask;
352
353 struct ureg_src imm;
354 unsigned i;
355 unsigned mul_swizzle[4] = {0,0,0,0};
356 unsigned add_swizzle[4] = {0,0,0,0};
357 unsigned src_swizzle[4] = {0,0,0,0};
358 boolean need_add = FALSE;
359 boolean need_mul = FALSE;
360
361 if (dst.WriteMask == 0)
362 return;
363
364 /* Is this just a MOV?
365 */
366 if (zero_mask == 0 &&
367 one_mask == 0 &&
368 (negate_mask == 0 || negate_mask == TGSI_WRITEMASK_XYZW)) {
369 ureg_MOV(ureg, dst, translate_src(t, SrcReg));
370 return;
371 }
372
373 #define IMM_ZERO 0
374 #define IMM_ONE 1
375 #define IMM_NEG_ONE 2
376
377 imm = ureg_imm3f(ureg, 0, 1, -1);
378
379 for (i = 0; i < 4; i++) {
380 unsigned bit = 1 << i;
381
382 if (dst.WriteMask & bit) {
383 if (positive_one_mask & bit) {
384 mul_swizzle[i] = IMM_ZERO;
385 add_swizzle[i] = IMM_ONE;
386 need_add = TRUE;
387 }
388 else if (negative_one_mask & bit) {
389 mul_swizzle[i] = IMM_ZERO;
390 add_swizzle[i] = IMM_NEG_ONE;
391 need_add = TRUE;
392 }
393 else if (zero_mask & bit) {
394 mul_swizzle[i] = IMM_ZERO;
395 add_swizzle[i] = IMM_ZERO;
396 need_add = TRUE;
397 }
398 else {
399 add_swizzle[i] = IMM_ZERO;
400 src_swizzle[i] = GET_SWZ(SrcReg->Swizzle, i);
401 need_mul = TRUE;
402 if (negate_mask & bit) {
403 mul_swizzle[i] = IMM_NEG_ONE;
404 }
405 else {
406 mul_swizzle[i] = IMM_ONE;
407 }
408 }
409 }
410 }
411
412 if (need_mul && need_add) {
413 ureg_MAD(ureg,
414 dst,
415 swizzle_4v(src, src_swizzle),
416 swizzle_4v(imm, mul_swizzle),
417 swizzle_4v(imm, add_swizzle));
418 }
419 else if (need_mul) {
420 ureg_MUL(ureg,
421 dst,
422 swizzle_4v(src, src_swizzle),
423 swizzle_4v(imm, mul_swizzle));
424 }
425 else if (need_add) {
426 ureg_MOV(ureg,
427 dst,
428 swizzle_4v(imm, add_swizzle));
429 }
430 else {
431 debug_assert(0);
432 }
433
434 #undef IMM_ZERO
435 #undef IMM_ONE
436 #undef IMM_NEG_ONE
437 }
438
439
440 static unsigned
441 translate_opcode(unsigned op)
442 {
443 switch(op) {
444 case OPCODE_ARL:
445 return TGSI_OPCODE_ARL;
446 case OPCODE_ADD:
447 return TGSI_OPCODE_ADD;
448 case OPCODE_CMP:
449 return TGSI_OPCODE_CMP;
450 case OPCODE_COS:
451 return TGSI_OPCODE_COS;
452 case OPCODE_DP3:
453 return TGSI_OPCODE_DP3;
454 case OPCODE_DP4:
455 return TGSI_OPCODE_DP4;
456 case OPCODE_DST:
457 return TGSI_OPCODE_DST;
458 case OPCODE_EX2:
459 return TGSI_OPCODE_EX2;
460 case OPCODE_EXP:
461 return TGSI_OPCODE_EXP;
462 case OPCODE_FLR:
463 return TGSI_OPCODE_FLR;
464 case OPCODE_FRC:
465 return TGSI_OPCODE_FRC;
466 case OPCODE_KIL:
467 return TGSI_OPCODE_KILL_IF;
468 case OPCODE_LG2:
469 return TGSI_OPCODE_LG2;
470 case OPCODE_LOG:
471 return TGSI_OPCODE_LOG;
472 case OPCODE_LIT:
473 return TGSI_OPCODE_LIT;
474 case OPCODE_LRP:
475 return TGSI_OPCODE_LRP;
476 case OPCODE_MAD:
477 return TGSI_OPCODE_MAD;
478 case OPCODE_MAX:
479 return TGSI_OPCODE_MAX;
480 case OPCODE_MIN:
481 return TGSI_OPCODE_MIN;
482 case OPCODE_MOV:
483 return TGSI_OPCODE_MOV;
484 case OPCODE_MUL:
485 return TGSI_OPCODE_MUL;
486 case OPCODE_POW:
487 return TGSI_OPCODE_POW;
488 case OPCODE_RCP:
489 return TGSI_OPCODE_RCP;
490 case OPCODE_SGE:
491 return TGSI_OPCODE_SGE;
492 case OPCODE_SIN:
493 return TGSI_OPCODE_SIN;
494 case OPCODE_SLT:
495 return TGSI_OPCODE_SLT;
496 case OPCODE_TEX:
497 return TGSI_OPCODE_TEX;
498 case OPCODE_TXB:
499 return TGSI_OPCODE_TXB;
500 case OPCODE_TXP:
501 return TGSI_OPCODE_TXP;
502 case OPCODE_END:
503 return TGSI_OPCODE_END;
504 default:
505 debug_assert(0);
506 return TGSI_OPCODE_NOP;
507 }
508 }
509
510
511 static void
512 compile_instruction(struct gl_context *ctx,
513 struct st_translate *t,
514 const struct prog_instruction *inst)
515 {
516 struct ureg_program *ureg = t->ureg;
517 GLuint i;
518 struct ureg_dst dst[1] = { { 0 } };
519 struct ureg_src src[4];
520 unsigned num_dst;
521 unsigned num_src;
522
523 num_dst = _mesa_num_inst_dst_regs(inst->Opcode);
524 num_src = _mesa_num_inst_src_regs(inst->Opcode);
525
526 if (num_dst)
527 dst[0] = translate_dst(t, &inst->DstReg, inst->Saturate);
528
529 for (i = 0; i < num_src; i++)
530 src[i] = translate_src(t, &inst->SrcReg[i]);
531
532 switch(inst->Opcode) {
533 case OPCODE_SWZ:
534 emit_swz(t, dst[0], &inst->SrcReg[0]);
535 return;
536
537 case OPCODE_TEX:
538 case OPCODE_TXB:
539 case OPCODE_TXP:
540 src[num_src++] = t->samplers[inst->TexSrcUnit];
541 ureg_tex_insn(ureg,
542 translate_opcode(inst->Opcode),
543 dst, num_dst,
544 st_translate_texture_target(inst->TexSrcTarget,
545 inst->TexShadow),
546 TGSI_RETURN_TYPE_FLOAT,
547 NULL, 0,
548 src, num_src);
549 return;
550
551 case OPCODE_SCS:
552 ureg_COS(ureg, ureg_writemask(dst[0], TGSI_WRITEMASK_X),
553 ureg_scalar(src[0], TGSI_SWIZZLE_X));
554 ureg_SIN(ureg, ureg_writemask(dst[0], TGSI_WRITEMASK_Y),
555 ureg_scalar(src[0], TGSI_SWIZZLE_X));
556 break;
557
558 case OPCODE_XPD: {
559 struct ureg_dst tmp = ureg_DECL_temporary(ureg);
560
561 ureg_MUL(ureg, ureg_writemask(tmp, TGSI_WRITEMASK_XYZ),
562 ureg_swizzle(src[0], TGSI_SWIZZLE_Y, TGSI_SWIZZLE_Z,
563 TGSI_SWIZZLE_X, 0),
564 ureg_swizzle(src[1], TGSI_SWIZZLE_Z, TGSI_SWIZZLE_X,
565 TGSI_SWIZZLE_Y, 0));
566 ureg_MAD(ureg, ureg_writemask(dst[0], TGSI_WRITEMASK_XYZ),
567 ureg_swizzle(src[0], TGSI_SWIZZLE_Z, TGSI_SWIZZLE_X,
568 TGSI_SWIZZLE_Y, 0),
569 ureg_negate(ureg_swizzle(src[1], TGSI_SWIZZLE_Y,
570 TGSI_SWIZZLE_Z, TGSI_SWIZZLE_X, 0)),
571 ureg_src(tmp));
572 break;
573 }
574
575 case OPCODE_RSQ:
576 ureg_RSQ(ureg, dst[0], ureg_abs(src[0]));
577 break;
578
579 case OPCODE_ABS:
580 ureg_MOV(ureg, dst[0], ureg_abs(src[0]));
581 break;
582
583 case OPCODE_SUB:
584 ureg_ADD(ureg, dst[0], src[0], ureg_negate(src[1]));
585 break;
586
587 case OPCODE_DPH: {
588 struct ureg_dst temp = ureg_DECL_temporary(ureg);
589
590 /* DPH = DP4(src0, src1) where src0.w = 1. */
591 ureg_MOV(ureg, ureg_writemask(temp, TGSI_WRITEMASK_XYZ), src[0]);
592 ureg_MOV(ureg, ureg_writemask(temp, TGSI_WRITEMASK_W),
593 ureg_imm1f(ureg, 1));
594 ureg_DP4(ureg, dst[0], ureg_src(temp), src[1]);
595 break;
596 }
597
598 default:
599 ureg_insn(ureg,
600 translate_opcode(inst->Opcode),
601 dst, num_dst,
602 src, num_src, 0);
603 break;
604 }
605 }
606
607
608 /**
609 * Emit the TGSI instructions for inverting and adjusting WPOS.
610 * This code is unavoidable because it also depends on whether
611 * a FBO is bound (STATE_FB_WPOS_Y_TRANSFORM).
612 */
613 static void
614 emit_wpos_adjustment(struct gl_context *ctx,
615 struct st_translate *t,
616 const struct gl_program *program,
617 boolean invert,
618 GLfloat adjX, GLfloat adjY[2])
619 {
620 struct ureg_program *ureg = t->ureg;
621
622 /* Fragment program uses fragment position input.
623 * Need to replace instances of INPUT[WPOS] with temp T
624 * where T = INPUT[WPOS] by y is inverted.
625 */
626 static const gl_state_index16 wposTransformState[STATE_LENGTH]
627 = { STATE_INTERNAL, STATE_FB_WPOS_Y_TRANSFORM, 0, 0, 0 };
628
629 /* XXX: note we are modifying the incoming shader here! Need to
630 * do this before emitting the constant decls below, or this
631 * will be missed:
632 */
633 unsigned wposTransConst = _mesa_add_state_reference(program->Parameters,
634 wposTransformState);
635
636 struct ureg_src wpostrans = ureg_DECL_constant(ureg, wposTransConst);
637 struct ureg_dst wpos_temp = ureg_DECL_temporary(ureg);
638 struct ureg_src *wpos =
639 ctx->Const.GLSLFragCoordIsSysVal ?
640 &t->systemValues[SYSTEM_VALUE_FRAG_COORD] :
641 &t->inputs[t->inputMapping[VARYING_SLOT_POS]];
642 struct ureg_src wpos_input = *wpos;
643
644 /* First, apply the coordinate shift: */
645 if (adjX || adjY[0] || adjY[1]) {
646 if (adjY[0] != adjY[1]) {
647 /* Adjust the y coordinate by adjY[1] or adjY[0] respectively
648 * depending on whether inversion is actually going to be applied
649 * or not, which is determined by testing against the inversion
650 * state variable used below, which will be either +1 or -1.
651 */
652 struct ureg_dst adj_temp = ureg_DECL_temporary(ureg);
653
654 ureg_CMP(ureg, adj_temp,
655 ureg_scalar(wpostrans, invert ? 2 : 0),
656 ureg_imm4f(ureg, adjX, adjY[0], 0.0f, 0.0f),
657 ureg_imm4f(ureg, adjX, adjY[1], 0.0f, 0.0f));
658 ureg_ADD(ureg, wpos_temp, wpos_input, ureg_src(adj_temp));
659 } else {
660 ureg_ADD(ureg, wpos_temp, wpos_input,
661 ureg_imm4f(ureg, adjX, adjY[0], 0.0f, 0.0f));
662 }
663 wpos_input = ureg_src(wpos_temp);
664 } else {
665 /* MOV wpos_temp, input[wpos]
666 */
667 ureg_MOV(ureg, wpos_temp, wpos_input);
668 }
669
670 /* Now the conditional y flip: STATE_FB_WPOS_Y_TRANSFORM.xy/zw will be
671 * inversion/identity, or the other way around if we're drawing to an FBO.
672 */
673 if (invert) {
674 /* MAD wpos_temp.y, wpos_input, wpostrans.xxxx, wpostrans.yyyy
675 */
676 ureg_MAD(ureg,
677 ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y),
678 wpos_input,
679 ureg_scalar(wpostrans, 0),
680 ureg_scalar(wpostrans, 1));
681 } else {
682 /* MAD wpos_temp.y, wpos_input, wpostrans.zzzz, wpostrans.wwww
683 */
684 ureg_MAD(ureg,
685 ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y),
686 wpos_input,
687 ureg_scalar(wpostrans, 2),
688 ureg_scalar(wpostrans, 3));
689 }
690
691 /* Use wpos_temp as position input from here on:
692 */
693 *wpos = ureg_src(wpos_temp);
694 }
695
696
697 /**
698 * Emit fragment position/coordinate code.
699 */
700 static void
701 emit_wpos(struct st_context *st,
702 struct st_translate *t,
703 const struct gl_program *program,
704 struct ureg_program *ureg)
705 {
706 struct pipe_screen *pscreen = st->pipe->screen;
707 GLfloat adjX = 0.0f;
708 GLfloat adjY[2] = { 0.0f, 0.0f };
709 boolean invert = FALSE;
710
711 /* Query the pixel center conventions supported by the pipe driver and set
712 * adjX, adjY to help out if it cannot handle the requested one internally.
713 *
714 * The bias of the y-coordinate depends on whether y-inversion takes place
715 * (adjY[1]) or not (adjY[0]), which is in turn dependent on whether we are
716 * drawing to an FBO (causes additional inversion), and whether the pipe
717 * driver origin and the requested origin differ (the latter condition is
718 * stored in the 'invert' variable).
719 *
720 * For height = 100 (i = integer, h = half-integer, l = lower, u = upper):
721 *
722 * center shift only:
723 * i -> h: +0.5
724 * h -> i: -0.5
725 *
726 * inversion only:
727 * l,i -> u,i: ( 0.0 + 1.0) * -1 + 100 = 99
728 * l,h -> u,h: ( 0.5 + 0.0) * -1 + 100 = 99.5
729 * u,i -> l,i: (99.0 + 1.0) * -1 + 100 = 0
730 * u,h -> l,h: (99.5 + 0.0) * -1 + 100 = 0.5
731 *
732 * inversion and center shift:
733 * l,i -> u,h: ( 0.0 + 0.5) * -1 + 100 = 99.5
734 * l,h -> u,i: ( 0.5 + 0.5) * -1 + 100 = 99
735 * u,i -> l,h: (99.0 + 0.5) * -1 + 100 = 0.5
736 * u,h -> l,i: (99.5 + 0.5) * -1 + 100 = 0
737 */
738 if (program->info.fs.origin_upper_left) {
739 /* Fragment shader wants origin in upper-left */
740 if (pscreen->get_param(pscreen,
741 PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT)) {
742 /* the driver supports upper-left origin */
743 }
744 else if (pscreen->get_param(pscreen,
745 PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT)) {
746 /* the driver supports lower-left origin, need to invert Y */
747 ureg_property(ureg, TGSI_PROPERTY_FS_COORD_ORIGIN,
748 TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
749 invert = TRUE;
750 }
751 else
752 assert(0);
753 }
754 else {
755 /* Fragment shader wants origin in lower-left */
756 if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT))
757 /* the driver supports lower-left origin */
758 ureg_property(ureg, TGSI_PROPERTY_FS_COORD_ORIGIN,
759 TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
760 else if (pscreen->get_param(pscreen,
761 PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT))
762 /* the driver supports upper-left origin, need to invert Y */
763 invert = TRUE;
764 else
765 assert(0);
766 }
767
768 if (program->info.fs.pixel_center_integer) {
769 /* Fragment shader wants pixel center integer */
770 if (pscreen->get_param(pscreen,
771 PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
772 /* the driver supports pixel center integer */
773 adjY[1] = 1.0f;
774 ureg_property(ureg, TGSI_PROPERTY_FS_COORD_PIXEL_CENTER,
775 TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
776 }
777 else if (pscreen->get_param(pscreen,
778 PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
779 /* the driver supports pixel center half integer, need to bias X,Y */
780 adjX = -0.5f;
781 adjY[0] = -0.5f;
782 adjY[1] = 0.5f;
783 }
784 else
785 assert(0);
786 }
787 else {
788 /* Fragment shader wants pixel center half integer */
789 if (pscreen->get_param(pscreen,
790 PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
791 /* the driver supports pixel center half integer */
792 }
793 else if (pscreen->get_param(pscreen,
794 PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER)) {
795 /* the driver supports pixel center integer, need to bias X,Y */
796 adjX = adjY[0] = adjY[1] = 0.5f;
797 ureg_property(ureg, TGSI_PROPERTY_FS_COORD_PIXEL_CENTER,
798 TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
799 }
800 else
801 assert(0);
802 }
803
804 /* we invert after adjustment so that we avoid the MOV to temporary,
805 * and reuse the adjustment ADD instead */
806 emit_wpos_adjustment(st->ctx, t, program, invert, adjX, adjY);
807 }
808
809
810 /**
811 * Translate Mesa program to TGSI format.
812 * \param program the program to translate
813 * \param numInputs number of input registers used
814 * \param inputMapping maps Mesa fragment program inputs to TGSI generic
815 * input indexes
816 * \param inputSemanticName the TGSI_SEMANTIC flag for each input
817 * \param inputSemanticIndex the semantic index (ex: which texcoord) for
818 * each input
819 * \param interpMode the TGSI_INTERPOLATE_LINEAR/PERSP mode for each input
820 * \param numOutputs number of output registers used
821 * \param outputMapping maps Mesa fragment program outputs to TGSI
822 * generic outputs
823 * \param outputSemanticName the TGSI_SEMANTIC flag for each output
824 * \param outputSemanticIndex the semantic index (ex: which texcoord) for
825 * each output
826 *
827 * \return PIPE_OK or PIPE_ERROR_OUT_OF_MEMORY
828 */
829 enum pipe_error
830 st_translate_mesa_program(struct gl_context *ctx,
831 uint procType,
832 struct ureg_program *ureg,
833 const struct gl_program *program,
834 GLuint numInputs,
835 const ubyte inputMapping[],
836 const ubyte inputSemanticName[],
837 const ubyte inputSemanticIndex[],
838 const ubyte interpMode[],
839 GLuint numOutputs,
840 const ubyte outputMapping[],
841 const ubyte outputSemanticName[],
842 const ubyte outputSemanticIndex[])
843 {
844 struct st_translate translate, *t;
845 unsigned i;
846 enum pipe_error ret = PIPE_OK;
847
848 assert(numInputs <= ARRAY_SIZE(t->inputs));
849 assert(numOutputs <= ARRAY_SIZE(t->outputs));
850
851 t = &translate;
852 memset(t, 0, sizeof *t);
853
854 t->procType = procType;
855 t->inputMapping = inputMapping;
856 t->outputMapping = outputMapping;
857 t->ureg = ureg;
858
859 /*_mesa_print_program(program);*/
860
861 /*
862 * Declare input attributes.
863 */
864 if (procType == PIPE_SHADER_FRAGMENT) {
865 for (i = 0; i < numInputs; i++) {
866 t->inputs[i] = ureg_DECL_fs_input(ureg,
867 inputSemanticName[i],
868 inputSemanticIndex[i],
869 interpMode[i]);
870 }
871
872 if (program->info.inputs_read & VARYING_BIT_POS) {
873 /* Must do this after setting up t->inputs, and before
874 * emitting constant references, below:
875 */
876 emit_wpos(st_context(ctx), t, program, ureg);
877 }
878
879 /*
880 * Declare output attributes.
881 */
882 for (i = 0; i < numOutputs; i++) {
883 switch (outputSemanticName[i]) {
884 case TGSI_SEMANTIC_POSITION:
885 t->outputs[i] = ureg_DECL_output(ureg,
886 TGSI_SEMANTIC_POSITION, /* Z / Depth */
887 outputSemanticIndex[i]);
888
889 t->outputs[i] = ureg_writemask(t->outputs[i],
890 TGSI_WRITEMASK_Z);
891 break;
892 case TGSI_SEMANTIC_STENCIL:
893 t->outputs[i] = ureg_DECL_output(ureg,
894 TGSI_SEMANTIC_STENCIL, /* Stencil */
895 outputSemanticIndex[i]);
896 t->outputs[i] = ureg_writemask(t->outputs[i],
897 TGSI_WRITEMASK_Y);
898 break;
899 case TGSI_SEMANTIC_COLOR:
900 t->outputs[i] = ureg_DECL_output(ureg,
901 TGSI_SEMANTIC_COLOR,
902 outputSemanticIndex[i]);
903 break;
904 default:
905 debug_assert(0);
906 return 0;
907 }
908 }
909 }
910 else if (procType == PIPE_SHADER_GEOMETRY) {
911 for (i = 0; i < numInputs; i++) {
912 t->inputs[i] = ureg_DECL_input(ureg,
913 inputSemanticName[i],
914 inputSemanticIndex[i], 0, 1);
915 }
916
917 for (i = 0; i < numOutputs; i++) {
918 t->outputs[i] = ureg_DECL_output(ureg,
919 outputSemanticName[i],
920 outputSemanticIndex[i]);
921 }
922 }
923 else {
924 assert(procType == PIPE_SHADER_VERTEX);
925
926 for (i = 0; i < numInputs; i++) {
927 t->inputs[i] = ureg_DECL_vs_input(ureg, i);
928 }
929
930 for (i = 0; i < numOutputs; i++) {
931 t->outputs[i] = ureg_DECL_output(ureg,
932 outputSemanticName[i],
933 outputSemanticIndex[i]);
934 if (outputSemanticName[i] == TGSI_SEMANTIC_FOG) {
935 /* force register to contain a fog coordinate in the
936 * form (F, 0, 0, 1).
937 */
938 ureg_MOV(ureg,
939 ureg_writemask(t->outputs[i], TGSI_WRITEMASK_YZW),
940 ureg_imm4f(ureg, 0.0f, 0.0f, 0.0f, 1.0f));
941 t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_X);
942 }
943 }
944 }
945
946 /* Declare address register.
947 */
948 if (program->arb.NumAddressRegs > 0) {
949 debug_assert(program->arb.NumAddressRegs == 1);
950 t->address[0] = ureg_DECL_address(ureg);
951 }
952
953 /* Declare misc input registers
954 */
955 GLbitfield64 sysInputs = program->info.system_values_read;
956 for (i = 0; sysInputs; i++) {
957 if (sysInputs & (1ull << i)) {
958 unsigned semName = tgsi_get_sysval_semantic(i);
959
960 t->systemValues[i] = ureg_DECL_system_value(ureg, semName, 0);
961
962 if (semName == TGSI_SEMANTIC_INSTANCEID ||
963 semName == TGSI_SEMANTIC_VERTEXID) {
964 /* From Gallium perspective, these system values are always
965 * integer, and require native integer support. However, if
966 * native integer is supported on the vertex stage but not the
967 * pixel stage (e.g, i915g + draw), Mesa will generate IR that
968 * assumes these system values are floats. To resolve the
969 * inconsistency, we insert a U2F.
970 */
971 struct st_context *st = st_context(ctx);
972 struct pipe_screen *pscreen = st->pipe->screen;
973 assert(procType == PIPE_SHADER_VERTEX);
974 assert(pscreen->get_shader_param(pscreen, PIPE_SHADER_VERTEX,
975 PIPE_SHADER_CAP_INTEGERS));
976 (void) pscreen; /* silence non-debug build warnings */
977 if (!ctx->Const.NativeIntegers) {
978 struct ureg_dst temp = ureg_DECL_local_temporary(t->ureg);
979 ureg_U2F(t->ureg, ureg_writemask(temp, TGSI_WRITEMASK_X),
980 t->systemValues[i]);
981 t->systemValues[i] = ureg_scalar(ureg_src(temp), 0);
982 }
983 }
984
985 if (procType == PIPE_SHADER_FRAGMENT &&
986 semName == TGSI_SEMANTIC_POSITION)
987 emit_wpos(st_context(ctx), t, program, ureg);
988
989 sysInputs &= ~(1ull << i);
990 }
991 }
992
993 if (program->arb.IndirectRegisterFiles & (1 << PROGRAM_TEMPORARY)) {
994 /* If temps are accessed with indirect addressing, declare temporaries
995 * in sequential order. Else, we declare them on demand elsewhere.
996 */
997 for (i = 0; i < program->arb.NumTemporaries; i++) {
998 /* XXX use TGSI_FILE_TEMPORARY_ARRAY when it's supported by ureg */
999 t->temps[i] = ureg_DECL_temporary(t->ureg);
1000 }
1001 }
1002
1003 /* Emit constants and immediates. Mesa uses a single index space
1004 * for these, so we put all the translated regs in t->constants.
1005 */
1006 if (program->Parameters) {
1007 t->constants = calloc(program->Parameters->NumParameters,
1008 sizeof t->constants[0]);
1009 if (t->constants == NULL) {
1010 ret = PIPE_ERROR_OUT_OF_MEMORY;
1011 goto out;
1012 }
1013
1014 for (i = 0; i < program->Parameters->NumParameters; i++) {
1015 unsigned pvo = program->Parameters->ParameterValueOffset[i];
1016
1017 switch (program->Parameters->Parameters[i].Type) {
1018 case PROGRAM_STATE_VAR:
1019 case PROGRAM_UNIFORM:
1020 t->constants[i] = ureg_DECL_constant(ureg, i);
1021 break;
1022
1023 /* Emit immediates only when there's no indirect addressing of
1024 * the const buffer.
1025 * FIXME: Be smarter and recognize param arrays:
1026 * indirect addressing is only valid within the referenced
1027 * array.
1028 */
1029 case PROGRAM_CONSTANT:
1030 if (program->arb.IndirectRegisterFiles & PROGRAM_ANY_CONST)
1031 t->constants[i] = ureg_DECL_constant( ureg, i );
1032 else
1033 t->constants[i] =
1034 ureg_DECL_immediate(ureg,
1035 (const float *)
1036 program->Parameters->ParameterValues + pvo,
1037 4);
1038 break;
1039 default:
1040 break;
1041 }
1042 }
1043 }
1044
1045 /* texture samplers */
1046 for (i = 0;
1047 i < ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxTextureImageUnits; i++) {
1048 if (program->SamplersUsed & (1u << i)) {
1049 unsigned target =
1050 translate_texture_index(program->TexturesUsed[i],
1051 !!(program->ShadowSamplers & (1 << i)));
1052 t->samplers[i] = ureg_DECL_sampler(ureg, i);
1053 ureg_DECL_sampler_view(ureg, i, target,
1054 TGSI_RETURN_TYPE_FLOAT,
1055 TGSI_RETURN_TYPE_FLOAT,
1056 TGSI_RETURN_TYPE_FLOAT,
1057 TGSI_RETURN_TYPE_FLOAT);
1058
1059 }
1060 }
1061
1062 /* Emit each instruction in turn:
1063 */
1064 for (i = 0; i < program->arb.NumInstructions; i++)
1065 compile_instruction(ctx, t, &program->arb.Instructions[i]);
1066
1067 out:
1068 free(t->constants);
1069 return ret;
1070 }