swrast: report data type in error message
[mesa.git] / src / mesa / swrast / s_span.c
1 /*
2 * Mesa 3-D graphics library
3 * Version: 7.5
4 *
5 * Copyright (C) 1999-2008 Brian Paul All Rights Reserved.
6 * Copyright (C) 2009 VMware, Inc. All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included
16 * in all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
22 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
23 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26
27 /**
28 * \file swrast/s_span.c
29 * \brief Span processing functions used by all rasterization functions.
30 * This is where all the per-fragment tests are performed
31 * \author Brian Paul
32 */
33
34 #include "main/glheader.h"
35 #include "main/colormac.h"
36 #include "main/macros.h"
37 #include "main/imports.h"
38 #include "main/image.h"
39
40 #include "s_atifragshader.h"
41 #include "s_alpha.h"
42 #include "s_blend.h"
43 #include "s_context.h"
44 #include "s_depth.h"
45 #include "s_fog.h"
46 #include "s_logic.h"
47 #include "s_masking.h"
48 #include "s_fragprog.h"
49 #include "s_span.h"
50 #include "s_stencil.h"
51 #include "s_texcombine.h"
52
53
54 /**
55 * Set default fragment attributes for the span using the
56 * current raster values. Used prior to glDraw/CopyPixels
57 * and glBitmap.
58 */
59 void
60 _swrast_span_default_attribs(struct gl_context *ctx, SWspan *span)
61 {
62 GLchan r, g, b, a;
63 /* Z*/
64 {
65 const GLfloat depthMax = ctx->DrawBuffer->_DepthMaxF;
66 if (ctx->DrawBuffer->Visual.depthBits <= 16)
67 span->z = FloatToFixed(ctx->Current.RasterPos[2] * depthMax + 0.5F);
68 else {
69 GLfloat tmpf = ctx->Current.RasterPos[2] * depthMax;
70 tmpf = MIN2(tmpf, depthMax);
71 span->z = (GLint)tmpf;
72 }
73 span->zStep = 0;
74 span->interpMask |= SPAN_Z;
75 }
76
77 /* W (for perspective correction) */
78 span->attrStart[FRAG_ATTRIB_WPOS][3] = 1.0;
79 span->attrStepX[FRAG_ATTRIB_WPOS][3] = 0.0;
80 span->attrStepY[FRAG_ATTRIB_WPOS][3] = 0.0;
81
82 /* primary color, or color index */
83 UNCLAMPED_FLOAT_TO_CHAN(r, ctx->Current.RasterColor[0]);
84 UNCLAMPED_FLOAT_TO_CHAN(g, ctx->Current.RasterColor[1]);
85 UNCLAMPED_FLOAT_TO_CHAN(b, ctx->Current.RasterColor[2]);
86 UNCLAMPED_FLOAT_TO_CHAN(a, ctx->Current.RasterColor[3]);
87 #if CHAN_TYPE == GL_FLOAT
88 span->red = r;
89 span->green = g;
90 span->blue = b;
91 span->alpha = a;
92 #else
93 span->red = IntToFixed(r);
94 span->green = IntToFixed(g);
95 span->blue = IntToFixed(b);
96 span->alpha = IntToFixed(a);
97 #endif
98 span->redStep = 0;
99 span->greenStep = 0;
100 span->blueStep = 0;
101 span->alphaStep = 0;
102 span->interpMask |= SPAN_RGBA;
103
104 COPY_4V(span->attrStart[FRAG_ATTRIB_COL0], ctx->Current.RasterColor);
105 ASSIGN_4V(span->attrStepX[FRAG_ATTRIB_COL0], 0.0, 0.0, 0.0, 0.0);
106 ASSIGN_4V(span->attrStepY[FRAG_ATTRIB_COL0], 0.0, 0.0, 0.0, 0.0);
107
108 /* Secondary color */
109 if (ctx->Light.Enabled || ctx->Fog.ColorSumEnabled)
110 {
111 COPY_4V(span->attrStart[FRAG_ATTRIB_COL1], ctx->Current.RasterSecondaryColor);
112 ASSIGN_4V(span->attrStepX[FRAG_ATTRIB_COL1], 0.0, 0.0, 0.0, 0.0);
113 ASSIGN_4V(span->attrStepY[FRAG_ATTRIB_COL1], 0.0, 0.0, 0.0, 0.0);
114 }
115
116 /* fog */
117 {
118 const SWcontext *swrast = SWRAST_CONTEXT(ctx);
119 GLfloat fogVal; /* a coord or a blend factor */
120 if (swrast->_PreferPixelFog) {
121 /* fog blend factors will be computed from fog coordinates per pixel */
122 fogVal = ctx->Current.RasterDistance;
123 }
124 else {
125 /* fog blend factor should be computed from fogcoord now */
126 fogVal = _swrast_z_to_fogfactor(ctx, ctx->Current.RasterDistance);
127 }
128 span->attrStart[FRAG_ATTRIB_FOGC][0] = fogVal;
129 span->attrStepX[FRAG_ATTRIB_FOGC][0] = 0.0;
130 span->attrStepY[FRAG_ATTRIB_FOGC][0] = 0.0;
131 }
132
133 /* texcoords */
134 {
135 GLuint i;
136 for (i = 0; i < ctx->Const.MaxTextureCoordUnits; i++) {
137 const GLuint attr = FRAG_ATTRIB_TEX0 + i;
138 const GLfloat *tc = ctx->Current.RasterTexCoords[i];
139 if (ctx->FragmentProgram._Current || ctx->ATIFragmentShader._Enabled) {
140 COPY_4V(span->attrStart[attr], tc);
141 }
142 else if (tc[3] > 0.0F) {
143 /* use (s/q, t/q, r/q, 1) */
144 span->attrStart[attr][0] = tc[0] / tc[3];
145 span->attrStart[attr][1] = tc[1] / tc[3];
146 span->attrStart[attr][2] = tc[2] / tc[3];
147 span->attrStart[attr][3] = 1.0;
148 }
149 else {
150 ASSIGN_4V(span->attrStart[attr], 0.0F, 0.0F, 0.0F, 1.0F);
151 }
152 ASSIGN_4V(span->attrStepX[attr], 0.0F, 0.0F, 0.0F, 0.0F);
153 ASSIGN_4V(span->attrStepY[attr], 0.0F, 0.0F, 0.0F, 0.0F);
154 }
155 }
156 }
157
158
159 /**
160 * Interpolate the active attributes (and'd with attrMask) to
161 * fill in span->array->attribs[].
162 * Perspective correction will be done. The point/line/triangle function
163 * should have computed attrStart/Step values for FRAG_ATTRIB_WPOS[3]!
164 */
165 static INLINE void
166 interpolate_active_attribs(struct gl_context *ctx, SWspan *span, GLbitfield attrMask)
167 {
168 const SWcontext *swrast = SWRAST_CONTEXT(ctx);
169
170 /*
171 * Don't overwrite existing array values, such as colors that may have
172 * been produced by glDraw/CopyPixels.
173 */
174 attrMask &= ~span->arrayAttribs;
175
176 ATTRIB_LOOP_BEGIN
177 if (attrMask & (1 << attr)) {
178 const GLfloat dwdx = span->attrStepX[FRAG_ATTRIB_WPOS][3];
179 GLfloat w = span->attrStart[FRAG_ATTRIB_WPOS][3];
180 const GLfloat dv0dx = span->attrStepX[attr][0];
181 const GLfloat dv1dx = span->attrStepX[attr][1];
182 const GLfloat dv2dx = span->attrStepX[attr][2];
183 const GLfloat dv3dx = span->attrStepX[attr][3];
184 GLfloat v0 = span->attrStart[attr][0] + span->leftClip * dv0dx;
185 GLfloat v1 = span->attrStart[attr][1] + span->leftClip * dv1dx;
186 GLfloat v2 = span->attrStart[attr][2] + span->leftClip * dv2dx;
187 GLfloat v3 = span->attrStart[attr][3] + span->leftClip * dv3dx;
188 GLuint k;
189 for (k = 0; k < span->end; k++) {
190 const GLfloat invW = 1.0f / w;
191 span->array->attribs[attr][k][0] = v0 * invW;
192 span->array->attribs[attr][k][1] = v1 * invW;
193 span->array->attribs[attr][k][2] = v2 * invW;
194 span->array->attribs[attr][k][3] = v3 * invW;
195 v0 += dv0dx;
196 v1 += dv1dx;
197 v2 += dv2dx;
198 v3 += dv3dx;
199 w += dwdx;
200 }
201 ASSERT((span->arrayAttribs & (1 << attr)) == 0);
202 span->arrayAttribs |= (1 << attr);
203 }
204 ATTRIB_LOOP_END
205 }
206
207
208 /**
209 * Interpolate primary colors to fill in the span->array->rgba8 (or rgb16)
210 * color array.
211 */
212 static INLINE void
213 interpolate_int_colors(struct gl_context *ctx, SWspan *span)
214 {
215 const GLuint n = span->end;
216 GLuint i;
217
218 #if CHAN_BITS != 32
219 ASSERT(!(span->arrayMask & SPAN_RGBA));
220 #endif
221
222 switch (span->array->ChanType) {
223 #if CHAN_BITS != 32
224 case GL_UNSIGNED_BYTE:
225 {
226 GLubyte (*rgba)[4] = span->array->rgba8;
227 if (span->interpMask & SPAN_FLAT) {
228 GLubyte color[4];
229 color[RCOMP] = FixedToInt(span->red);
230 color[GCOMP] = FixedToInt(span->green);
231 color[BCOMP] = FixedToInt(span->blue);
232 color[ACOMP] = FixedToInt(span->alpha);
233 for (i = 0; i < n; i++) {
234 COPY_4UBV(rgba[i], color);
235 }
236 }
237 else {
238 GLfixed r = span->red;
239 GLfixed g = span->green;
240 GLfixed b = span->blue;
241 GLfixed a = span->alpha;
242 GLint dr = span->redStep;
243 GLint dg = span->greenStep;
244 GLint db = span->blueStep;
245 GLint da = span->alphaStep;
246 for (i = 0; i < n; i++) {
247 rgba[i][RCOMP] = FixedToChan(r);
248 rgba[i][GCOMP] = FixedToChan(g);
249 rgba[i][BCOMP] = FixedToChan(b);
250 rgba[i][ACOMP] = FixedToChan(a);
251 r += dr;
252 g += dg;
253 b += db;
254 a += da;
255 }
256 }
257 }
258 break;
259 case GL_UNSIGNED_SHORT:
260 {
261 GLushort (*rgba)[4] = span->array->rgba16;
262 if (span->interpMask & SPAN_FLAT) {
263 GLushort color[4];
264 color[RCOMP] = FixedToInt(span->red);
265 color[GCOMP] = FixedToInt(span->green);
266 color[BCOMP] = FixedToInt(span->blue);
267 color[ACOMP] = FixedToInt(span->alpha);
268 for (i = 0; i < n; i++) {
269 COPY_4V(rgba[i], color);
270 }
271 }
272 else {
273 GLushort (*rgba)[4] = span->array->rgba16;
274 GLfixed r, g, b, a;
275 GLint dr, dg, db, da;
276 r = span->red;
277 g = span->green;
278 b = span->blue;
279 a = span->alpha;
280 dr = span->redStep;
281 dg = span->greenStep;
282 db = span->blueStep;
283 da = span->alphaStep;
284 for (i = 0; i < n; i++) {
285 rgba[i][RCOMP] = FixedToChan(r);
286 rgba[i][GCOMP] = FixedToChan(g);
287 rgba[i][BCOMP] = FixedToChan(b);
288 rgba[i][ACOMP] = FixedToChan(a);
289 r += dr;
290 g += dg;
291 b += db;
292 a += da;
293 }
294 }
295 }
296 break;
297 #endif
298 case GL_FLOAT:
299 interpolate_active_attribs(ctx, span, FRAG_BIT_COL0);
300 break;
301 default:
302 _mesa_problem(ctx, "bad datatype 0x%x in interpolate_int_colors",
303 span->array->ChanType);
304 }
305 span->arrayMask |= SPAN_RGBA;
306 }
307
308
309 /**
310 * Populate the FRAG_ATTRIB_COL0 array.
311 */
312 static INLINE void
313 interpolate_float_colors(SWspan *span)
314 {
315 GLfloat (*col0)[4] = span->array->attribs[FRAG_ATTRIB_COL0];
316 const GLuint n = span->end;
317 GLuint i;
318
319 assert(!(span->arrayAttribs & FRAG_BIT_COL0));
320
321 if (span->arrayMask & SPAN_RGBA) {
322 /* convert array of int colors */
323 for (i = 0; i < n; i++) {
324 col0[i][0] = UBYTE_TO_FLOAT(span->array->rgba8[i][0]);
325 col0[i][1] = UBYTE_TO_FLOAT(span->array->rgba8[i][1]);
326 col0[i][2] = UBYTE_TO_FLOAT(span->array->rgba8[i][2]);
327 col0[i][3] = UBYTE_TO_FLOAT(span->array->rgba8[i][3]);
328 }
329 }
330 else {
331 /* interpolate red/green/blue/alpha to get float colors */
332 ASSERT(span->interpMask & SPAN_RGBA);
333 if (span->interpMask & SPAN_FLAT) {
334 GLfloat r = FixedToFloat(span->red);
335 GLfloat g = FixedToFloat(span->green);
336 GLfloat b = FixedToFloat(span->blue);
337 GLfloat a = FixedToFloat(span->alpha);
338 for (i = 0; i < n; i++) {
339 ASSIGN_4V(col0[i], r, g, b, a);
340 }
341 }
342 else {
343 GLfloat r = FixedToFloat(span->red);
344 GLfloat g = FixedToFloat(span->green);
345 GLfloat b = FixedToFloat(span->blue);
346 GLfloat a = FixedToFloat(span->alpha);
347 GLfloat dr = FixedToFloat(span->redStep);
348 GLfloat dg = FixedToFloat(span->greenStep);
349 GLfloat db = FixedToFloat(span->blueStep);
350 GLfloat da = FixedToFloat(span->alphaStep);
351 for (i = 0; i < n; i++) {
352 col0[i][0] = r;
353 col0[i][1] = g;
354 col0[i][2] = b;
355 col0[i][3] = a;
356 r += dr;
357 g += dg;
358 b += db;
359 a += da;
360 }
361 }
362 }
363
364 span->arrayAttribs |= FRAG_BIT_COL0;
365 span->array->ChanType = GL_FLOAT;
366 }
367
368
369
370 /**
371 * Fill in the span.zArray array from the span->z, zStep values.
372 */
373 void
374 _swrast_span_interpolate_z( const struct gl_context *ctx, SWspan *span )
375 {
376 const GLuint n = span->end;
377 GLuint i;
378
379 ASSERT(!(span->arrayMask & SPAN_Z));
380
381 if (ctx->DrawBuffer->Visual.depthBits <= 16) {
382 GLfixed zval = span->z;
383 GLuint *z = span->array->z;
384 for (i = 0; i < n; i++) {
385 z[i] = FixedToInt(zval);
386 zval += span->zStep;
387 }
388 }
389 else {
390 /* Deep Z buffer, no fixed->int shift */
391 GLuint zval = span->z;
392 GLuint *z = span->array->z;
393 for (i = 0; i < n; i++) {
394 z[i] = zval;
395 zval += span->zStep;
396 }
397 }
398 span->interpMask &= ~SPAN_Z;
399 span->arrayMask |= SPAN_Z;
400 }
401
402
403 /**
404 * Compute mipmap LOD from partial derivatives.
405 * This the ideal solution, as given in the OpenGL spec.
406 */
407 GLfloat
408 _swrast_compute_lambda(GLfloat dsdx, GLfloat dsdy, GLfloat dtdx, GLfloat dtdy,
409 GLfloat dqdx, GLfloat dqdy, GLfloat texW, GLfloat texH,
410 GLfloat s, GLfloat t, GLfloat q, GLfloat invQ)
411 {
412 GLfloat dudx = texW * ((s + dsdx) / (q + dqdx) - s * invQ);
413 GLfloat dvdx = texH * ((t + dtdx) / (q + dqdx) - t * invQ);
414 GLfloat dudy = texW * ((s + dsdy) / (q + dqdy) - s * invQ);
415 GLfloat dvdy = texH * ((t + dtdy) / (q + dqdy) - t * invQ);
416 GLfloat x = SQRTF(dudx * dudx + dvdx * dvdx);
417 GLfloat y = SQRTF(dudy * dudy + dvdy * dvdy);
418 GLfloat rho = MAX2(x, y);
419 GLfloat lambda = LOG2(rho);
420 return lambda;
421 }
422
423
424 /**
425 * Compute mipmap LOD from partial derivatives.
426 * This is a faster approximation than above function.
427 */
428 #if 0
429 GLfloat
430 _swrast_compute_lambda(GLfloat dsdx, GLfloat dsdy, GLfloat dtdx, GLfloat dtdy,
431 GLfloat dqdx, GLfloat dqdy, GLfloat texW, GLfloat texH,
432 GLfloat s, GLfloat t, GLfloat q, GLfloat invQ)
433 {
434 GLfloat dsdx2 = (s + dsdx) / (q + dqdx) - s * invQ;
435 GLfloat dtdx2 = (t + dtdx) / (q + dqdx) - t * invQ;
436 GLfloat dsdy2 = (s + dsdy) / (q + dqdy) - s * invQ;
437 GLfloat dtdy2 = (t + dtdy) / (q + dqdy) - t * invQ;
438 GLfloat maxU, maxV, rho, lambda;
439 dsdx2 = FABSF(dsdx2);
440 dsdy2 = FABSF(dsdy2);
441 dtdx2 = FABSF(dtdx2);
442 dtdy2 = FABSF(dtdy2);
443 maxU = MAX2(dsdx2, dsdy2) * texW;
444 maxV = MAX2(dtdx2, dtdy2) * texH;
445 rho = MAX2(maxU, maxV);
446 lambda = LOG2(rho);
447 return lambda;
448 }
449 #endif
450
451
452 /**
453 * Fill in the span.array->attrib[FRAG_ATTRIB_TEXn] arrays from the
454 * using the attrStart/Step values.
455 *
456 * This function only used during fixed-function fragment processing.
457 *
458 * Note: in the places where we divide by Q (or mult by invQ) we're
459 * really doing two things: perspective correction and texcoord
460 * projection. Remember, for texcoord (s,t,r,q) we need to index
461 * texels with (s/q, t/q, r/q).
462 */
463 static void
464 interpolate_texcoords(struct gl_context *ctx, SWspan *span)
465 {
466 const GLuint maxUnit
467 = (ctx->Texture._EnabledCoordUnits > 1) ? ctx->Const.MaxTextureUnits : 1;
468 GLuint u;
469
470 /* XXX CoordUnits vs. ImageUnits */
471 for (u = 0; u < maxUnit; u++) {
472 if (ctx->Texture._EnabledCoordUnits & (1 << u)) {
473 const GLuint attr = FRAG_ATTRIB_TEX0 + u;
474 const struct gl_texture_object *obj = ctx->Texture.Unit[u]._Current;
475 GLfloat texW, texH;
476 GLboolean needLambda;
477 GLfloat (*texcoord)[4] = span->array->attribs[attr];
478 GLfloat *lambda = span->array->lambda[u];
479 const GLfloat dsdx = span->attrStepX[attr][0];
480 const GLfloat dsdy = span->attrStepY[attr][0];
481 const GLfloat dtdx = span->attrStepX[attr][1];
482 const GLfloat dtdy = span->attrStepY[attr][1];
483 const GLfloat drdx = span->attrStepX[attr][2];
484 const GLfloat dqdx = span->attrStepX[attr][3];
485 const GLfloat dqdy = span->attrStepY[attr][3];
486 GLfloat s = span->attrStart[attr][0] + span->leftClip * dsdx;
487 GLfloat t = span->attrStart[attr][1] + span->leftClip * dtdx;
488 GLfloat r = span->attrStart[attr][2] + span->leftClip * drdx;
489 GLfloat q = span->attrStart[attr][3] + span->leftClip * dqdx;
490
491 if (obj) {
492 const struct gl_texture_image *img = obj->Image[0][obj->BaseLevel];
493 needLambda = (obj->MinFilter != obj->MagFilter)
494 || ctx->FragmentProgram._Current;
495 texW = img->WidthScale;
496 texH = img->HeightScale;
497 }
498 else {
499 /* using a fragment program */
500 texW = 1.0;
501 texH = 1.0;
502 needLambda = GL_FALSE;
503 }
504
505 if (needLambda) {
506 GLuint i;
507 if (ctx->FragmentProgram._Current
508 || ctx->ATIFragmentShader._Enabled) {
509 /* do perspective correction but don't divide s, t, r by q */
510 const GLfloat dwdx = span->attrStepX[FRAG_ATTRIB_WPOS][3];
511 GLfloat w = span->attrStart[FRAG_ATTRIB_WPOS][3] + span->leftClip * dwdx;
512 for (i = 0; i < span->end; i++) {
513 const GLfloat invW = 1.0F / w;
514 texcoord[i][0] = s * invW;
515 texcoord[i][1] = t * invW;
516 texcoord[i][2] = r * invW;
517 texcoord[i][3] = q * invW;
518 lambda[i] = _swrast_compute_lambda(dsdx, dsdy, dtdx, dtdy,
519 dqdx, dqdy, texW, texH,
520 s, t, q, invW);
521 s += dsdx;
522 t += dtdx;
523 r += drdx;
524 q += dqdx;
525 w += dwdx;
526 }
527 }
528 else {
529 for (i = 0; i < span->end; i++) {
530 const GLfloat invQ = (q == 0.0F) ? 1.0F : (1.0F / q);
531 texcoord[i][0] = s * invQ;
532 texcoord[i][1] = t * invQ;
533 texcoord[i][2] = r * invQ;
534 texcoord[i][3] = q;
535 lambda[i] = _swrast_compute_lambda(dsdx, dsdy, dtdx, dtdy,
536 dqdx, dqdy, texW, texH,
537 s, t, q, invQ);
538 s += dsdx;
539 t += dtdx;
540 r += drdx;
541 q += dqdx;
542 }
543 }
544 span->arrayMask |= SPAN_LAMBDA;
545 }
546 else {
547 GLuint i;
548 if (ctx->FragmentProgram._Current ||
549 ctx->ATIFragmentShader._Enabled) {
550 /* do perspective correction but don't divide s, t, r by q */
551 const GLfloat dwdx = span->attrStepX[FRAG_ATTRIB_WPOS][3];
552 GLfloat w = span->attrStart[FRAG_ATTRIB_WPOS][3] + span->leftClip * dwdx;
553 for (i = 0; i < span->end; i++) {
554 const GLfloat invW = 1.0F / w;
555 texcoord[i][0] = s * invW;
556 texcoord[i][1] = t * invW;
557 texcoord[i][2] = r * invW;
558 texcoord[i][3] = q * invW;
559 lambda[i] = 0.0;
560 s += dsdx;
561 t += dtdx;
562 r += drdx;
563 q += dqdx;
564 w += dwdx;
565 }
566 }
567 else if (dqdx == 0.0F) {
568 /* Ortho projection or polygon's parallel to window X axis */
569 const GLfloat invQ = (q == 0.0F) ? 1.0F : (1.0F / q);
570 for (i = 0; i < span->end; i++) {
571 texcoord[i][0] = s * invQ;
572 texcoord[i][1] = t * invQ;
573 texcoord[i][2] = r * invQ;
574 texcoord[i][3] = q;
575 lambda[i] = 0.0;
576 s += dsdx;
577 t += dtdx;
578 r += drdx;
579 }
580 }
581 else {
582 for (i = 0; i < span->end; i++) {
583 const GLfloat invQ = (q == 0.0F) ? 1.0F : (1.0F / q);
584 texcoord[i][0] = s * invQ;
585 texcoord[i][1] = t * invQ;
586 texcoord[i][2] = r * invQ;
587 texcoord[i][3] = q;
588 lambda[i] = 0.0;
589 s += dsdx;
590 t += dtdx;
591 r += drdx;
592 q += dqdx;
593 }
594 }
595 } /* lambda */
596 } /* if */
597 } /* for */
598 }
599
600
601 /**
602 * Fill in the arrays->attribs[FRAG_ATTRIB_WPOS] array.
603 */
604 static INLINE void
605 interpolate_wpos(struct gl_context *ctx, SWspan *span)
606 {
607 GLfloat (*wpos)[4] = span->array->attribs[FRAG_ATTRIB_WPOS];
608 GLuint i;
609 const GLfloat zScale = 1.0F / ctx->DrawBuffer->_DepthMaxF;
610 GLfloat w, dw;
611
612 if (span->arrayMask & SPAN_XY) {
613 for (i = 0; i < span->end; i++) {
614 wpos[i][0] = (GLfloat) span->array->x[i];
615 wpos[i][1] = (GLfloat) span->array->y[i];
616 }
617 }
618 else {
619 for (i = 0; i < span->end; i++) {
620 wpos[i][0] = (GLfloat) span->x + i;
621 wpos[i][1] = (GLfloat) span->y;
622 }
623 }
624
625 dw = span->attrStepX[FRAG_ATTRIB_WPOS][3];
626 w = span->attrStart[FRAG_ATTRIB_WPOS][3] + span->leftClip * dw;
627 for (i = 0; i < span->end; i++) {
628 wpos[i][2] = (GLfloat) span->array->z[i] * zScale;
629 wpos[i][3] = w;
630 w += dw;
631 }
632 }
633
634
635 /**
636 * Apply the current polygon stipple pattern to a span of pixels.
637 */
638 static INLINE void
639 stipple_polygon_span(struct gl_context *ctx, SWspan *span)
640 {
641 GLubyte *mask = span->array->mask;
642
643 ASSERT(ctx->Polygon.StippleFlag);
644
645 if (span->arrayMask & SPAN_XY) {
646 /* arrays of x/y pixel coords */
647 GLuint i;
648 for (i = 0; i < span->end; i++) {
649 const GLint col = span->array->x[i] % 32;
650 const GLint row = span->array->y[i] % 32;
651 const GLuint stipple = ctx->PolygonStipple[row];
652 if (((1 << col) & stipple) == 0) {
653 mask[i] = 0;
654 }
655 }
656 }
657 else {
658 /* horizontal span of pixels */
659 const GLuint highBit = 1 << 31;
660 const GLuint stipple = ctx->PolygonStipple[span->y % 32];
661 GLuint i, m = highBit >> (GLuint) (span->x % 32);
662 for (i = 0; i < span->end; i++) {
663 if ((m & stipple) == 0) {
664 mask[i] = 0;
665 }
666 m = m >> 1;
667 if (m == 0) {
668 m = highBit;
669 }
670 }
671 }
672 span->writeAll = GL_FALSE;
673 }
674
675
676 /**
677 * Clip a pixel span to the current buffer/window boundaries:
678 * DrawBuffer->_Xmin, _Xmax, _Ymin, _Ymax. This will accomplish
679 * window clipping and scissoring.
680 * Return: GL_TRUE some pixels still visible
681 * GL_FALSE nothing visible
682 */
683 static INLINE GLuint
684 clip_span( struct gl_context *ctx, SWspan *span )
685 {
686 const GLint xmin = ctx->DrawBuffer->_Xmin;
687 const GLint xmax = ctx->DrawBuffer->_Xmax;
688 const GLint ymin = ctx->DrawBuffer->_Ymin;
689 const GLint ymax = ctx->DrawBuffer->_Ymax;
690
691 span->leftClip = 0;
692
693 if (span->arrayMask & SPAN_XY) {
694 /* arrays of x/y pixel coords */
695 const GLint *x = span->array->x;
696 const GLint *y = span->array->y;
697 const GLint n = span->end;
698 GLubyte *mask = span->array->mask;
699 GLint i;
700 if (span->arrayMask & SPAN_MASK) {
701 /* note: using & intead of && to reduce branches */
702 for (i = 0; i < n; i++) {
703 mask[i] &= (x[i] >= xmin) & (x[i] < xmax)
704 & (y[i] >= ymin) & (y[i] < ymax);
705 }
706 }
707 else {
708 /* note: using & intead of && to reduce branches */
709 for (i = 0; i < n; i++) {
710 mask[i] = (x[i] >= xmin) & (x[i] < xmax)
711 & (y[i] >= ymin) & (y[i] < ymax);
712 }
713 }
714 return GL_TRUE; /* some pixels visible */
715 }
716 else {
717 /* horizontal span of pixels */
718 const GLint x = span->x;
719 const GLint y = span->y;
720 GLint n = span->end;
721
722 /* Trivial rejection tests */
723 if (y < ymin || y >= ymax || x + n <= xmin || x >= xmax) {
724 span->end = 0;
725 return GL_FALSE; /* all pixels clipped */
726 }
727
728 /* Clip to right */
729 if (x + n > xmax) {
730 ASSERT(x < xmax);
731 n = span->end = xmax - x;
732 }
733
734 /* Clip to the left */
735 if (x < xmin) {
736 const GLint leftClip = xmin - x;
737 GLuint i;
738
739 ASSERT(leftClip > 0);
740 ASSERT(x + n > xmin);
741
742 /* Clip 'leftClip' pixels from the left side.
743 * The span->leftClip field will be applied when we interpolate
744 * fragment attributes.
745 * For arrays of values, shift them left.
746 */
747 for (i = 0; i < FRAG_ATTRIB_MAX; i++) {
748 if (span->interpMask & (1 << i)) {
749 GLuint j;
750 for (j = 0; j < 4; j++) {
751 span->attrStart[i][j] += leftClip * span->attrStepX[i][j];
752 }
753 }
754 }
755
756 span->red += leftClip * span->redStep;
757 span->green += leftClip * span->greenStep;
758 span->blue += leftClip * span->blueStep;
759 span->alpha += leftClip * span->alphaStep;
760 span->index += leftClip * span->indexStep;
761 span->z += leftClip * span->zStep;
762 span->intTex[0] += leftClip * span->intTexStep[0];
763 span->intTex[1] += leftClip * span->intTexStep[1];
764
765 #define SHIFT_ARRAY(ARRAY, SHIFT, LEN) \
766 memcpy(ARRAY, ARRAY + (SHIFT), (LEN) * sizeof(ARRAY[0]))
767
768 for (i = 0; i < FRAG_ATTRIB_MAX; i++) {
769 if (span->arrayAttribs & (1 << i)) {
770 /* shift array elements left by 'leftClip' */
771 SHIFT_ARRAY(span->array->attribs[i], leftClip, n - leftClip);
772 }
773 }
774
775 SHIFT_ARRAY(span->array->mask, leftClip, n - leftClip);
776 SHIFT_ARRAY(span->array->rgba8, leftClip, n - leftClip);
777 SHIFT_ARRAY(span->array->rgba16, leftClip, n - leftClip);
778 SHIFT_ARRAY(span->array->x, leftClip, n - leftClip);
779 SHIFT_ARRAY(span->array->y, leftClip, n - leftClip);
780 SHIFT_ARRAY(span->array->z, leftClip, n - leftClip);
781 SHIFT_ARRAY(span->array->index, leftClip, n - leftClip);
782 for (i = 0; i < MAX_TEXTURE_COORD_UNITS; i++) {
783 SHIFT_ARRAY(span->array->lambda[i], leftClip, n - leftClip);
784 }
785 SHIFT_ARRAY(span->array->coverage, leftClip, n - leftClip);
786
787 #undef SHIFT_ARRAY
788
789 span->leftClip = leftClip;
790 span->x = xmin;
791 span->end -= leftClip;
792 span->writeAll = GL_FALSE;
793 }
794
795 ASSERT(span->x >= xmin);
796 ASSERT(span->x + span->end <= xmax);
797 ASSERT(span->y >= ymin);
798 ASSERT(span->y < ymax);
799
800 return GL_TRUE; /* some pixels visible */
801 }
802 }
803
804
805 /**
806 * Add specular colors to primary colors.
807 * Only called during fixed-function operation.
808 * Result is float color array (FRAG_ATTRIB_COL0).
809 */
810 static INLINE void
811 add_specular(struct gl_context *ctx, SWspan *span)
812 {
813 const SWcontext *swrast = SWRAST_CONTEXT(ctx);
814 const GLubyte *mask = span->array->mask;
815 GLfloat (*col0)[4] = span->array->attribs[FRAG_ATTRIB_COL0];
816 GLfloat (*col1)[4] = span->array->attribs[FRAG_ATTRIB_COL1];
817 GLuint i;
818
819 ASSERT(!ctx->FragmentProgram._Current);
820 ASSERT(span->arrayMask & SPAN_RGBA);
821 ASSERT(swrast->_ActiveAttribMask & FRAG_BIT_COL1);
822 (void) swrast; /* silence warning */
823
824 if (span->array->ChanType == GL_FLOAT) {
825 if ((span->arrayAttribs & FRAG_BIT_COL0) == 0) {
826 interpolate_active_attribs(ctx, span, FRAG_BIT_COL0);
827 }
828 }
829 else {
830 /* need float colors */
831 if ((span->arrayAttribs & FRAG_BIT_COL0) == 0) {
832 interpolate_float_colors(span);
833 }
834 }
835
836 if ((span->arrayAttribs & FRAG_BIT_COL1) == 0) {
837 /* XXX could avoid this and interpolate COL1 in the loop below */
838 interpolate_active_attribs(ctx, span, FRAG_BIT_COL1);
839 }
840
841 ASSERT(span->arrayAttribs & FRAG_BIT_COL0);
842 ASSERT(span->arrayAttribs & FRAG_BIT_COL1);
843
844 for (i = 0; i < span->end; i++) {
845 if (mask[i]) {
846 col0[i][0] += col1[i][0];
847 col0[i][1] += col1[i][1];
848 col0[i][2] += col1[i][2];
849 }
850 }
851
852 span->array->ChanType = GL_FLOAT;
853 }
854
855
856 /**
857 * Apply antialiasing coverage value to alpha values.
858 */
859 static INLINE void
860 apply_aa_coverage(SWspan *span)
861 {
862 const GLfloat *coverage = span->array->coverage;
863 GLuint i;
864 if (span->array->ChanType == GL_UNSIGNED_BYTE) {
865 GLubyte (*rgba)[4] = span->array->rgba8;
866 for (i = 0; i < span->end; i++) {
867 const GLfloat a = rgba[i][ACOMP] * coverage[i];
868 rgba[i][ACOMP] = (GLubyte) CLAMP(a, 0.0, 255.0);
869 ASSERT(coverage[i] >= 0.0);
870 ASSERT(coverage[i] <= 1.0);
871 }
872 }
873 else if (span->array->ChanType == GL_UNSIGNED_SHORT) {
874 GLushort (*rgba)[4] = span->array->rgba16;
875 for (i = 0; i < span->end; i++) {
876 const GLfloat a = rgba[i][ACOMP] * coverage[i];
877 rgba[i][ACOMP] = (GLushort) CLAMP(a, 0.0, 65535.0);
878 }
879 }
880 else {
881 GLfloat (*rgba)[4] = span->array->attribs[FRAG_ATTRIB_COL0];
882 for (i = 0; i < span->end; i++) {
883 rgba[i][ACOMP] = rgba[i][ACOMP] * coverage[i];
884 /* clamp later */
885 }
886 }
887 }
888
889
890 /**
891 * Clamp span's float colors to [0,1]
892 */
893 static INLINE void
894 clamp_colors(SWspan *span)
895 {
896 GLfloat (*rgba)[4] = span->array->attribs[FRAG_ATTRIB_COL0];
897 GLuint i;
898 ASSERT(span->array->ChanType == GL_FLOAT);
899 for (i = 0; i < span->end; i++) {
900 rgba[i][RCOMP] = CLAMP(rgba[i][RCOMP], 0.0F, 1.0F);
901 rgba[i][GCOMP] = CLAMP(rgba[i][GCOMP], 0.0F, 1.0F);
902 rgba[i][BCOMP] = CLAMP(rgba[i][BCOMP], 0.0F, 1.0F);
903 rgba[i][ACOMP] = CLAMP(rgba[i][ACOMP], 0.0F, 1.0F);
904 }
905 }
906
907
908 /**
909 * Convert the span's color arrays to the given type.
910 * The only way 'output' can be greater than zero is when we have a fragment
911 * program that writes to gl_FragData[1] or higher.
912 * \param output which fragment program color output is being processed
913 */
914 static INLINE void
915 convert_color_type(SWspan *span, GLenum newType, GLuint output)
916 {
917 GLvoid *src, *dst;
918
919 if (output > 0 || span->array->ChanType == GL_FLOAT) {
920 src = span->array->attribs[FRAG_ATTRIB_COL0 + output];
921 span->array->ChanType = GL_FLOAT;
922 }
923 else if (span->array->ChanType == GL_UNSIGNED_BYTE) {
924 src = span->array->rgba8;
925 }
926 else {
927 ASSERT(span->array->ChanType == GL_UNSIGNED_SHORT);
928 src = span->array->rgba16;
929 }
930
931 if (newType == GL_UNSIGNED_BYTE) {
932 dst = span->array->rgba8;
933 }
934 else if (newType == GL_UNSIGNED_SHORT) {
935 dst = span->array->rgba16;
936 }
937 else {
938 dst = span->array->attribs[FRAG_ATTRIB_COL0];
939 }
940
941 _mesa_convert_colors(span->array->ChanType, src,
942 newType, dst,
943 span->end, span->array->mask);
944
945 span->array->ChanType = newType;
946 span->array->rgba = dst;
947 }
948
949
950
951 /**
952 * Apply fragment shader, fragment program or normal texturing to span.
953 */
954 static INLINE void
955 shade_texture_span(struct gl_context *ctx, SWspan *span)
956 {
957 GLbitfield inputsRead;
958
959 /* Determine which fragment attributes are actually needed */
960 if (ctx->FragmentProgram._Current) {
961 inputsRead = ctx->FragmentProgram._Current->Base.InputsRead;
962 }
963 else {
964 /* XXX we could be a bit smarter about this */
965 inputsRead = ~0;
966 }
967
968 if (ctx->FragmentProgram._Current ||
969 ctx->ATIFragmentShader._Enabled) {
970 /* programmable shading */
971 if (span->primitive == GL_BITMAP && span->array->ChanType != GL_FLOAT) {
972 convert_color_type(span, GL_FLOAT, 0);
973 }
974 else {
975 span->array->rgba = (void *) span->array->attribs[FRAG_ATTRIB_COL0];
976 }
977
978 if (span->primitive != GL_POINT ||
979 (span->interpMask & SPAN_RGBA) ||
980 ctx->Point.PointSprite) {
981 /* for single-pixel points, we populated the arrays already */
982 interpolate_active_attribs(ctx, span, ~0);
983 }
984 span->array->ChanType = GL_FLOAT;
985
986 if (!(span->arrayMask & SPAN_Z))
987 _swrast_span_interpolate_z (ctx, span);
988
989 #if 0
990 if (inputsRead & FRAG_BIT_WPOS)
991 #else
992 /* XXX always interpolate wpos so that DDX/DDY work */
993 #endif
994 interpolate_wpos(ctx, span);
995
996 /* Run fragment program/shader now */
997 if (ctx->FragmentProgram._Current) {
998 _swrast_exec_fragment_program(ctx, span);
999 }
1000 else {
1001 ASSERT(ctx->ATIFragmentShader._Enabled);
1002 _swrast_exec_fragment_shader(ctx, span);
1003 }
1004 }
1005 else if (ctx->Texture._EnabledCoordUnits) {
1006 /* conventional texturing */
1007
1008 #if CHAN_BITS == 32
1009 if ((span->arrayAttribs & FRAG_BIT_COL0) == 0) {
1010 interpolate_int_colors(ctx, span);
1011 }
1012 #else
1013 if (!(span->arrayMask & SPAN_RGBA))
1014 interpolate_int_colors(ctx, span);
1015 #endif
1016 if ((span->arrayAttribs & FRAG_BITS_TEX_ANY) == 0x0)
1017 interpolate_texcoords(ctx, span);
1018
1019 _swrast_texture_span(ctx, span);
1020 }
1021 }
1022
1023
1024
1025 /**
1026 * Apply all the per-fragment operations to a span.
1027 * This now includes texturing (_swrast_write_texture_span() is history).
1028 * This function may modify any of the array values in the span.
1029 * span->interpMask and span->arrayMask may be changed but will be restored
1030 * to their original values before returning.
1031 */
1032 void
1033 _swrast_write_rgba_span( struct gl_context *ctx, SWspan *span)
1034 {
1035 const SWcontext *swrast = SWRAST_CONTEXT(ctx);
1036 const GLuint *colorMask = (GLuint *) ctx->Color.ColorMask;
1037 const GLbitfield origInterpMask = span->interpMask;
1038 const GLbitfield origArrayMask = span->arrayMask;
1039 const GLbitfield origArrayAttribs = span->arrayAttribs;
1040 const GLenum origChanType = span->array->ChanType;
1041 void * const origRgba = span->array->rgba;
1042 const GLboolean shader = (ctx->FragmentProgram._Current
1043 || ctx->ATIFragmentShader._Enabled);
1044 const GLboolean shaderOrTexture = shader || ctx->Texture._EnabledCoordUnits;
1045 struct gl_framebuffer *fb = ctx->DrawBuffer;
1046
1047 /*
1048 printf("%s() interp 0x%x array 0x%x\n", __FUNCTION__,
1049 span->interpMask, span->arrayMask);
1050 */
1051
1052 ASSERT(span->primitive == GL_POINT ||
1053 span->primitive == GL_LINE ||
1054 span->primitive == GL_POLYGON ||
1055 span->primitive == GL_BITMAP);
1056
1057 /* Fragment write masks */
1058 if (span->arrayMask & SPAN_MASK) {
1059 /* mask was initialized by caller, probably glBitmap */
1060 span->writeAll = GL_FALSE;
1061 }
1062 else {
1063 memset(span->array->mask, 1, span->end);
1064 span->writeAll = GL_TRUE;
1065 }
1066
1067 /* Clip to window/scissor box */
1068 if (!clip_span(ctx, span)) {
1069 return;
1070 }
1071
1072 ASSERT(span->end <= MAX_WIDTH);
1073
1074 /* Depth bounds test */
1075 if (ctx->Depth.BoundsTest && fb->Visual.depthBits > 0) {
1076 if (!_swrast_depth_bounds_test(ctx, span)) {
1077 return;
1078 }
1079 }
1080
1081 #ifdef DEBUG
1082 /* Make sure all fragments are within window bounds */
1083 if (span->arrayMask & SPAN_XY) {
1084 /* array of pixel locations */
1085 GLuint i;
1086 for (i = 0; i < span->end; i++) {
1087 if (span->array->mask[i]) {
1088 assert(span->array->x[i] >= fb->_Xmin);
1089 assert(span->array->x[i] < fb->_Xmax);
1090 assert(span->array->y[i] >= fb->_Ymin);
1091 assert(span->array->y[i] < fb->_Ymax);
1092 }
1093 }
1094 }
1095 #endif
1096
1097 /* Polygon Stippling */
1098 if (ctx->Polygon.StippleFlag && span->primitive == GL_POLYGON) {
1099 stipple_polygon_span(ctx, span);
1100 }
1101
1102 /* This is the normal place to compute the fragment color/Z
1103 * from texturing or shading.
1104 */
1105 if (shaderOrTexture && !swrast->_DeferredTexture) {
1106 shade_texture_span(ctx, span);
1107 }
1108
1109 /* Do the alpha test */
1110 if (ctx->Color.AlphaEnabled) {
1111 if (!_swrast_alpha_test(ctx, span)) {
1112 /* all fragments failed test */
1113 goto end;
1114 }
1115 }
1116
1117 /* Stencil and Z testing */
1118 if (ctx->Stencil._Enabled || ctx->Depth.Test) {
1119 if (!(span->arrayMask & SPAN_Z))
1120 _swrast_span_interpolate_z(ctx, span);
1121
1122 if (ctx->Transform.DepthClamp)
1123 _swrast_depth_clamp_span(ctx, span);
1124
1125 if (ctx->Stencil._Enabled) {
1126 /* Combined Z/stencil tests */
1127 if (!_swrast_stencil_and_ztest_span(ctx, span)) {
1128 /* all fragments failed test */
1129 goto end;
1130 }
1131 }
1132 else if (fb->Visual.depthBits > 0) {
1133 /* Just regular depth testing */
1134 ASSERT(ctx->Depth.Test);
1135 ASSERT(span->arrayMask & SPAN_Z);
1136 if (!_swrast_depth_test_span(ctx, span)) {
1137 /* all fragments failed test */
1138 goto end;
1139 }
1140 }
1141 }
1142
1143 if (ctx->Query.CurrentOcclusionObject) {
1144 /* update count of 'passed' fragments */
1145 struct gl_query_object *q = ctx->Query.CurrentOcclusionObject;
1146 GLuint i;
1147 for (i = 0; i < span->end; i++)
1148 q->Result += span->array->mask[i];
1149 }
1150
1151 /* We had to wait until now to check for glColorMask(0,0,0,0) because of
1152 * the occlusion test.
1153 */
1154 if (fb->_NumColorDrawBuffers == 1 && colorMask[0] == 0x0) {
1155 /* no colors to write */
1156 goto end;
1157 }
1158
1159 /* If we were able to defer fragment color computation to now, there's
1160 * a good chance that many fragments will have already been killed by
1161 * Z/stencil testing.
1162 */
1163 if (shaderOrTexture && swrast->_DeferredTexture) {
1164 shade_texture_span(ctx, span);
1165 }
1166
1167 #if CHAN_BITS == 32
1168 if ((span->arrayAttribs & FRAG_BIT_COL0) == 0) {
1169 interpolate_active_attribs(ctx, span, FRAG_BIT_COL0);
1170 }
1171 #else
1172 if ((span->arrayMask & SPAN_RGBA) == 0) {
1173 interpolate_int_colors(ctx, span);
1174 }
1175 #endif
1176
1177 ASSERT(span->arrayMask & SPAN_RGBA);
1178
1179 if (span->primitive == GL_BITMAP || !swrast->SpecularVertexAdd) {
1180 /* Add primary and specular (diffuse + specular) colors */
1181 if (!shader) {
1182 if (ctx->Fog.ColorSumEnabled ||
1183 (ctx->Light.Enabled &&
1184 ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR)) {
1185 add_specular(ctx, span);
1186 }
1187 }
1188 }
1189
1190 /* Fog */
1191 if (swrast->_FogEnabled) {
1192 _swrast_fog_rgba_span(ctx, span);
1193 }
1194
1195 /* Antialias coverage application */
1196 if (span->arrayMask & SPAN_COVERAGE) {
1197 apply_aa_coverage(span);
1198 }
1199
1200 /* Clamp color/alpha values over the range [0.0, 1.0] before storage */
1201 if (ctx->Color.ClampFragmentColor == GL_TRUE &&
1202 span->array->ChanType == GL_FLOAT) {
1203 clamp_colors(span);
1204 }
1205
1206 /*
1207 * Write to renderbuffers.
1208 * Depending on glDrawBuffer() state and the which color outputs are
1209 * written by the fragment shader, we may either replicate one color to
1210 * all renderbuffers or write a different color to each renderbuffer.
1211 * multiFragOutputs=TRUE for the later case.
1212 */
1213 {
1214 const GLuint numBuffers = fb->_NumColorDrawBuffers;
1215 const struct gl_fragment_program *fp = ctx->FragmentProgram._Current;
1216 const GLboolean multiFragOutputs =
1217 (fp && fp->Base.OutputsWritten >= (1 << FRAG_RESULT_DATA0));
1218 GLuint buf;
1219
1220 for (buf = 0; buf < numBuffers; buf++) {
1221 struct gl_renderbuffer *rb = fb->_ColorDrawBuffers[buf];
1222
1223 /* color[fragOutput] will be written to buffer[buf] */
1224
1225 if (rb) {
1226 GLchan rgbaSave[MAX_WIDTH][4];
1227 const GLuint fragOutput = multiFragOutputs ? buf : 0;
1228
1229 /* set span->array->rgba to colors for render buffer's datatype */
1230 if (rb->DataType != span->array->ChanType || fragOutput > 0) {
1231 convert_color_type(span, rb->DataType, fragOutput);
1232 }
1233 else {
1234 if (rb->DataType == GL_UNSIGNED_BYTE) {
1235 span->array->rgba = span->array->rgba8;
1236 }
1237 else if (rb->DataType == GL_UNSIGNED_SHORT) {
1238 span->array->rgba = (void *) span->array->rgba16;
1239 }
1240 else {
1241 span->array->rgba = (void *)
1242 span->array->attribs[FRAG_ATTRIB_COL0];
1243 }
1244 }
1245
1246 if (!multiFragOutputs && numBuffers > 1) {
1247 /* save colors for second, third renderbuffer writes */
1248 memcpy(rgbaSave, span->array->rgba,
1249 4 * span->end * sizeof(GLchan));
1250 }
1251
1252 ASSERT(rb->_BaseFormat == GL_RGBA || rb->_BaseFormat == GL_RGB ||
1253 rb->_BaseFormat == GL_ALPHA);
1254
1255 if (ctx->Color._LogicOpEnabled) {
1256 _swrast_logicop_rgba_span(ctx, rb, span);
1257 }
1258 else if ((ctx->Color.BlendEnabled >> buf) & 1) {
1259 _swrast_blend_span(ctx, rb, span);
1260 }
1261
1262 if (colorMask[buf] != 0xffffffff) {
1263 _swrast_mask_rgba_span(ctx, rb, span, buf);
1264 }
1265
1266 if (span->arrayMask & SPAN_XY) {
1267 /* array of pixel coords */
1268 ASSERT(rb->PutValues);
1269 rb->PutValues(ctx, rb, span->end,
1270 span->array->x, span->array->y,
1271 span->array->rgba, span->array->mask);
1272 }
1273 else {
1274 /* horizontal run of pixels */
1275 ASSERT(rb->PutRow);
1276 rb->PutRow(ctx, rb, span->end, span->x, span->y,
1277 span->array->rgba,
1278 span->writeAll ? NULL: span->array->mask);
1279 }
1280
1281 if (!multiFragOutputs && numBuffers > 1) {
1282 /* restore original span values */
1283 memcpy(span->array->rgba, rgbaSave,
1284 4 * span->end * sizeof(GLchan));
1285 }
1286
1287 } /* if rb */
1288 } /* for buf */
1289 }
1290
1291 end:
1292 /* restore these values before returning */
1293 span->interpMask = origInterpMask;
1294 span->arrayMask = origArrayMask;
1295 span->arrayAttribs = origArrayAttribs;
1296 span->array->ChanType = origChanType;
1297 span->array->rgba = origRgba;
1298 }
1299
1300
1301 /**
1302 * Read RGBA pixels from a renderbuffer. Clipping will be done to prevent
1303 * reading ouside the buffer's boundaries.
1304 * \param dstType datatype for returned colors
1305 * \param rgba the returned colors
1306 */
1307 void
1308 _swrast_read_rgba_span( struct gl_context *ctx, struct gl_renderbuffer *rb,
1309 GLuint n, GLint x, GLint y, GLenum dstType,
1310 GLvoid *rgba)
1311 {
1312 const GLint bufWidth = (GLint) rb->Width;
1313 const GLint bufHeight = (GLint) rb->Height;
1314
1315 if (y < 0 || y >= bufHeight || x + (GLint) n < 0 || x >= bufWidth) {
1316 /* completely above, below, or right */
1317 /* XXX maybe leave rgba values undefined? */
1318 memset(rgba, 0, 4 * n * sizeof(GLchan));
1319 }
1320 else {
1321 GLint skip, length;
1322 if (x < 0) {
1323 /* left edge clipping */
1324 skip = -x;
1325 length = (GLint) n - skip;
1326 if (length < 0) {
1327 /* completely left of window */
1328 return;
1329 }
1330 if (length > bufWidth) {
1331 length = bufWidth;
1332 }
1333 }
1334 else if ((GLint) (x + n) > bufWidth) {
1335 /* right edge clipping */
1336 skip = 0;
1337 length = bufWidth - x;
1338 if (length < 0) {
1339 /* completely to right of window */
1340 return;
1341 }
1342 }
1343 else {
1344 /* no clipping */
1345 skip = 0;
1346 length = (GLint) n;
1347 }
1348
1349 ASSERT(rb);
1350 ASSERT(rb->GetRow);
1351 ASSERT(rb->_BaseFormat == GL_RGB || rb->_BaseFormat == GL_RGBA ||
1352 rb->_BaseFormat == GL_ALPHA);
1353
1354 if (rb->DataType == dstType) {
1355 rb->GetRow(ctx, rb, length, x + skip, y,
1356 (GLubyte *) rgba + skip * RGBA_PIXEL_SIZE(rb->DataType));
1357 }
1358 else {
1359 GLuint temp[MAX_WIDTH * 4];
1360 rb->GetRow(ctx, rb, length, x + skip, y, temp);
1361 _mesa_convert_colors(rb->DataType, temp,
1362 dstType, (GLubyte *) rgba + skip * RGBA_PIXEL_SIZE(dstType),
1363 length, NULL);
1364 }
1365 }
1366 }
1367
1368
1369 /**
1370 * Wrapper for gl_renderbuffer::GetValues() which does clipping to avoid
1371 * reading values outside the buffer bounds.
1372 * We can use this for reading any format/type of renderbuffer.
1373 * \param valueSize is the size in bytes of each value (pixel) put into the
1374 * values array.
1375 */
1376 void
1377 _swrast_get_values(struct gl_context *ctx, struct gl_renderbuffer *rb,
1378 GLuint count, const GLint x[], const GLint y[],
1379 void *values, GLuint valueSize)
1380 {
1381 GLuint i, inCount = 0, inStart = 0;
1382
1383 for (i = 0; i < count; i++) {
1384 if (x[i] >= 0 && y[i] >= 0 &&
1385 x[i] < (GLint) rb->Width && y[i] < (GLint) rb->Height) {
1386 /* inside */
1387 if (inCount == 0)
1388 inStart = i;
1389 inCount++;
1390 }
1391 else {
1392 if (inCount > 0) {
1393 /* read [inStart, inStart + inCount) */
1394 rb->GetValues(ctx, rb, inCount, x + inStart, y + inStart,
1395 (GLubyte *) values + inStart * valueSize);
1396 inCount = 0;
1397 }
1398 }
1399 }
1400 if (inCount > 0) {
1401 /* read last values */
1402 rb->GetValues(ctx, rb, inCount, x + inStart, y + inStart,
1403 (GLubyte *) values + inStart * valueSize);
1404 }
1405 }
1406
1407
1408 /**
1409 * Wrapper for gl_renderbuffer::PutRow() which does clipping.
1410 * \param valueSize size of each value (pixel) in bytes
1411 */
1412 void
1413 _swrast_put_row(struct gl_context *ctx, struct gl_renderbuffer *rb,
1414 GLuint count, GLint x, GLint y,
1415 const GLvoid *values, GLuint valueSize)
1416 {
1417 GLint skip = 0;
1418
1419 if (y < 0 || y >= (GLint) rb->Height)
1420 return; /* above or below */
1421
1422 if (x + (GLint) count <= 0 || x >= (GLint) rb->Width)
1423 return; /* entirely left or right */
1424
1425 if ((GLint) (x + count) > (GLint) rb->Width) {
1426 /* right clip */
1427 GLint clip = x + count - rb->Width;
1428 count -= clip;
1429 }
1430
1431 if (x < 0) {
1432 /* left clip */
1433 skip = -x;
1434 x = 0;
1435 count -= skip;
1436 }
1437
1438 rb->PutRow(ctx, rb, count, x, y,
1439 (const GLubyte *) values + skip * valueSize, NULL);
1440 }
1441
1442
1443 /**
1444 * Wrapper for gl_renderbuffer::GetRow() which does clipping.
1445 * \param valueSize size of each value (pixel) in bytes
1446 */
1447 void
1448 _swrast_get_row(struct gl_context *ctx, struct gl_renderbuffer *rb,
1449 GLuint count, GLint x, GLint y,
1450 GLvoid *values, GLuint valueSize)
1451 {
1452 GLint skip = 0;
1453
1454 if (y < 0 || y >= (GLint) rb->Height)
1455 return; /* above or below */
1456
1457 if (x + (GLint) count <= 0 || x >= (GLint) rb->Width)
1458 return; /* entirely left or right */
1459
1460 if (x + count > rb->Width) {
1461 /* right clip */
1462 GLint clip = x + count - rb->Width;
1463 count -= clip;
1464 }
1465
1466 if (x < 0) {
1467 /* left clip */
1468 skip = -x;
1469 x = 0;
1470 count -= skip;
1471 }
1472
1473 rb->GetRow(ctx, rb, count, x, y, (GLubyte *) values + skip * valueSize);
1474 }
1475
1476
1477 /**
1478 * Get RGBA pixels from the given renderbuffer.
1479 * Used by blending, logicop and masking functions.
1480 * \return pointer to the colors we read.
1481 */
1482 void *
1483 _swrast_get_dest_rgba(struct gl_context *ctx, struct gl_renderbuffer *rb,
1484 SWspan *span)
1485 {
1486 const GLuint pixelSize = RGBA_PIXEL_SIZE(span->array->ChanType);
1487 void *rbPixels;
1488
1489 /* Point rbPixels to a temporary space */
1490 rbPixels = span->array->attribs[FRAG_ATTRIB_MAX - 1];
1491
1492 /* Get destination values from renderbuffer */
1493 if (span->arrayMask & SPAN_XY) {
1494 _swrast_get_values(ctx, rb, span->end, span->array->x, span->array->y,
1495 rbPixels, pixelSize);
1496 }
1497 else {
1498 _swrast_get_row(ctx, rb, span->end, span->x, span->y,
1499 rbPixels, pixelSize);
1500 }
1501
1502 return rbPixels;
1503 }