Merge remote branch 'origin/7.8'
[mesa.git] / src / mesa / swrast / s_span.c
1 /*
2 * Mesa 3-D graphics library
3 * Version: 7.5
4 *
5 * Copyright (C) 1999-2008 Brian Paul All Rights Reserved.
6 * Copyright (C) 2009 VMware, Inc. All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included
16 * in all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
22 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
23 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26
27 /**
28 * \file swrast/s_span.c
29 * \brief Span processing functions used by all rasterization functions.
30 * This is where all the per-fragment tests are performed
31 * \author Brian Paul
32 */
33
34 #include "main/glheader.h"
35 #include "main/colormac.h"
36 #include "main/context.h"
37 #include "main/macros.h"
38 #include "main/imports.h"
39 #include "main/image.h"
40
41 #include "s_atifragshader.h"
42 #include "s_alpha.h"
43 #include "s_blend.h"
44 #include "s_context.h"
45 #include "s_depth.h"
46 #include "s_fog.h"
47 #include "s_logic.h"
48 #include "s_masking.h"
49 #include "s_fragprog.h"
50 #include "s_span.h"
51 #include "s_stencil.h"
52 #include "s_texcombine.h"
53
54
55 /**
56 * Set default fragment attributes for the span using the
57 * current raster values. Used prior to glDraw/CopyPixels
58 * and glBitmap.
59 */
60 void
61 _swrast_span_default_attribs(GLcontext *ctx, SWspan *span)
62 {
63 GLchan r, g, b, a;
64 /* Z*/
65 {
66 const GLfloat depthMax = ctx->DrawBuffer->_DepthMaxF;
67 if (ctx->DrawBuffer->Visual.depthBits <= 16)
68 span->z = FloatToFixed(ctx->Current.RasterPos[2] * depthMax + 0.5F);
69 else {
70 GLfloat tmpf = ctx->Current.RasterPos[2] * depthMax;
71 tmpf = MIN2(tmpf, depthMax);
72 span->z = (GLint)tmpf;
73 }
74 span->zStep = 0;
75 span->interpMask |= SPAN_Z;
76 }
77
78 /* W (for perspective correction) */
79 span->attrStart[FRAG_ATTRIB_WPOS][3] = 1.0;
80 span->attrStepX[FRAG_ATTRIB_WPOS][3] = 0.0;
81 span->attrStepY[FRAG_ATTRIB_WPOS][3] = 0.0;
82
83 /* primary color, or color index */
84 UNCLAMPED_FLOAT_TO_CHAN(r, ctx->Current.RasterColor[0]);
85 UNCLAMPED_FLOAT_TO_CHAN(g, ctx->Current.RasterColor[1]);
86 UNCLAMPED_FLOAT_TO_CHAN(b, ctx->Current.RasterColor[2]);
87 UNCLAMPED_FLOAT_TO_CHAN(a, ctx->Current.RasterColor[3]);
88 #if CHAN_TYPE == GL_FLOAT
89 span->red = r;
90 span->green = g;
91 span->blue = b;
92 span->alpha = a;
93 #else
94 span->red = IntToFixed(r);
95 span->green = IntToFixed(g);
96 span->blue = IntToFixed(b);
97 span->alpha = IntToFixed(a);
98 #endif
99 span->redStep = 0;
100 span->greenStep = 0;
101 span->blueStep = 0;
102 span->alphaStep = 0;
103 span->interpMask |= SPAN_RGBA;
104
105 COPY_4V(span->attrStart[FRAG_ATTRIB_COL0], ctx->Current.RasterColor);
106 ASSIGN_4V(span->attrStepX[FRAG_ATTRIB_COL0], 0.0, 0.0, 0.0, 0.0);
107 ASSIGN_4V(span->attrStepY[FRAG_ATTRIB_COL0], 0.0, 0.0, 0.0, 0.0);
108
109 /* Secondary color */
110 if (ctx->Light.Enabled || ctx->Fog.ColorSumEnabled)
111 {
112 COPY_4V(span->attrStart[FRAG_ATTRIB_COL1], ctx->Current.RasterSecondaryColor);
113 ASSIGN_4V(span->attrStepX[FRAG_ATTRIB_COL1], 0.0, 0.0, 0.0, 0.0);
114 ASSIGN_4V(span->attrStepY[FRAG_ATTRIB_COL1], 0.0, 0.0, 0.0, 0.0);
115 }
116
117 /* fog */
118 {
119 const SWcontext *swrast = SWRAST_CONTEXT(ctx);
120 GLfloat fogVal; /* a coord or a blend factor */
121 if (swrast->_PreferPixelFog) {
122 /* fog blend factors will be computed from fog coordinates per pixel */
123 fogVal = ctx->Current.RasterDistance;
124 }
125 else {
126 /* fog blend factor should be computed from fogcoord now */
127 fogVal = _swrast_z_to_fogfactor(ctx, ctx->Current.RasterDistance);
128 }
129 span->attrStart[FRAG_ATTRIB_FOGC][0] = fogVal;
130 span->attrStepX[FRAG_ATTRIB_FOGC][0] = 0.0;
131 span->attrStepY[FRAG_ATTRIB_FOGC][0] = 0.0;
132 }
133
134 /* texcoords */
135 {
136 GLuint i;
137 for (i = 0; i < ctx->Const.MaxTextureCoordUnits; i++) {
138 const GLuint attr = FRAG_ATTRIB_TEX0 + i;
139 const GLfloat *tc = ctx->Current.RasterTexCoords[i];
140 if (ctx->FragmentProgram._Current || ctx->ATIFragmentShader._Enabled) {
141 COPY_4V(span->attrStart[attr], tc);
142 }
143 else if (tc[3] > 0.0F) {
144 /* use (s/q, t/q, r/q, 1) */
145 span->attrStart[attr][0] = tc[0] / tc[3];
146 span->attrStart[attr][1] = tc[1] / tc[3];
147 span->attrStart[attr][2] = tc[2] / tc[3];
148 span->attrStart[attr][3] = 1.0;
149 }
150 else {
151 ASSIGN_4V(span->attrStart[attr], 0.0F, 0.0F, 0.0F, 1.0F);
152 }
153 ASSIGN_4V(span->attrStepX[attr], 0.0F, 0.0F, 0.0F, 0.0F);
154 ASSIGN_4V(span->attrStepY[attr], 0.0F, 0.0F, 0.0F, 0.0F);
155 }
156 }
157 }
158
159
160 /**
161 * Interpolate the active attributes (and'd with attrMask) to
162 * fill in span->array->attribs[].
163 * Perspective correction will be done. The point/line/triangle function
164 * should have computed attrStart/Step values for FRAG_ATTRIB_WPOS[3]!
165 */
166 static INLINE void
167 interpolate_active_attribs(GLcontext *ctx, SWspan *span, GLbitfield attrMask)
168 {
169 const SWcontext *swrast = SWRAST_CONTEXT(ctx);
170
171 /*
172 * Don't overwrite existing array values, such as colors that may have
173 * been produced by glDraw/CopyPixels.
174 */
175 attrMask &= ~span->arrayAttribs;
176
177 ATTRIB_LOOP_BEGIN
178 if (attrMask & (1 << attr)) {
179 const GLfloat dwdx = span->attrStepX[FRAG_ATTRIB_WPOS][3];
180 GLfloat w = span->attrStart[FRAG_ATTRIB_WPOS][3];
181 const GLfloat dv0dx = span->attrStepX[attr][0];
182 const GLfloat dv1dx = span->attrStepX[attr][1];
183 const GLfloat dv2dx = span->attrStepX[attr][2];
184 const GLfloat dv3dx = span->attrStepX[attr][3];
185 GLfloat v0 = span->attrStart[attr][0] + span->leftClip * dv0dx;
186 GLfloat v1 = span->attrStart[attr][1] + span->leftClip * dv1dx;
187 GLfloat v2 = span->attrStart[attr][2] + span->leftClip * dv2dx;
188 GLfloat v3 = span->attrStart[attr][3] + span->leftClip * dv3dx;
189 GLuint k;
190 for (k = 0; k < span->end; k++) {
191 const GLfloat invW = 1.0f / w;
192 span->array->attribs[attr][k][0] = v0 * invW;
193 span->array->attribs[attr][k][1] = v1 * invW;
194 span->array->attribs[attr][k][2] = v2 * invW;
195 span->array->attribs[attr][k][3] = v3 * invW;
196 v0 += dv0dx;
197 v1 += dv1dx;
198 v2 += dv2dx;
199 v3 += dv3dx;
200 w += dwdx;
201 }
202 ASSERT((span->arrayAttribs & (1 << attr)) == 0);
203 span->arrayAttribs |= (1 << attr);
204 }
205 ATTRIB_LOOP_END
206 }
207
208
209 /**
210 * Interpolate primary colors to fill in the span->array->rgba8 (or rgb16)
211 * color array.
212 */
213 static INLINE void
214 interpolate_int_colors(GLcontext *ctx, SWspan *span)
215 {
216 const GLuint n = span->end;
217 GLuint i;
218
219 #if CHAN_BITS != 32
220 ASSERT(!(span->arrayMask & SPAN_RGBA));
221 #endif
222
223 switch (span->array->ChanType) {
224 #if CHAN_BITS != 32
225 case GL_UNSIGNED_BYTE:
226 {
227 GLubyte (*rgba)[4] = span->array->rgba8;
228 if (span->interpMask & SPAN_FLAT) {
229 GLubyte color[4];
230 color[RCOMP] = FixedToInt(span->red);
231 color[GCOMP] = FixedToInt(span->green);
232 color[BCOMP] = FixedToInt(span->blue);
233 color[ACOMP] = FixedToInt(span->alpha);
234 for (i = 0; i < n; i++) {
235 COPY_4UBV(rgba[i], color);
236 }
237 }
238 else {
239 GLfixed r = span->red;
240 GLfixed g = span->green;
241 GLfixed b = span->blue;
242 GLfixed a = span->alpha;
243 GLint dr = span->redStep;
244 GLint dg = span->greenStep;
245 GLint db = span->blueStep;
246 GLint da = span->alphaStep;
247 for (i = 0; i < n; i++) {
248 rgba[i][RCOMP] = FixedToChan(r);
249 rgba[i][GCOMP] = FixedToChan(g);
250 rgba[i][BCOMP] = FixedToChan(b);
251 rgba[i][ACOMP] = FixedToChan(a);
252 r += dr;
253 g += dg;
254 b += db;
255 a += da;
256 }
257 }
258 }
259 break;
260 case GL_UNSIGNED_SHORT:
261 {
262 GLushort (*rgba)[4] = span->array->rgba16;
263 if (span->interpMask & SPAN_FLAT) {
264 GLushort color[4];
265 color[RCOMP] = FixedToInt(span->red);
266 color[GCOMP] = FixedToInt(span->green);
267 color[BCOMP] = FixedToInt(span->blue);
268 color[ACOMP] = FixedToInt(span->alpha);
269 for (i = 0; i < n; i++) {
270 COPY_4V(rgba[i], color);
271 }
272 }
273 else {
274 GLushort (*rgba)[4] = span->array->rgba16;
275 GLfixed r, g, b, a;
276 GLint dr, dg, db, da;
277 r = span->red;
278 g = span->green;
279 b = span->blue;
280 a = span->alpha;
281 dr = span->redStep;
282 dg = span->greenStep;
283 db = span->blueStep;
284 da = span->alphaStep;
285 for (i = 0; i < n; i++) {
286 rgba[i][RCOMP] = FixedToChan(r);
287 rgba[i][GCOMP] = FixedToChan(g);
288 rgba[i][BCOMP] = FixedToChan(b);
289 rgba[i][ACOMP] = FixedToChan(a);
290 r += dr;
291 g += dg;
292 b += db;
293 a += da;
294 }
295 }
296 }
297 break;
298 #endif
299 case GL_FLOAT:
300 interpolate_active_attribs(ctx, span, FRAG_BIT_COL0);
301 break;
302 default:
303 _mesa_problem(NULL, "bad datatype in interpolate_int_colors");
304 }
305 span->arrayMask |= SPAN_RGBA;
306 }
307
308
309 /**
310 * Populate the FRAG_ATTRIB_COL0 array.
311 */
312 static INLINE void
313 interpolate_float_colors(SWspan *span)
314 {
315 GLfloat (*col0)[4] = span->array->attribs[FRAG_ATTRIB_COL0];
316 const GLuint n = span->end;
317 GLuint i;
318
319 assert(!(span->arrayAttribs & FRAG_BIT_COL0));
320
321 if (span->arrayMask & SPAN_RGBA) {
322 /* convert array of int colors */
323 for (i = 0; i < n; i++) {
324 col0[i][0] = UBYTE_TO_FLOAT(span->array->rgba8[i][0]);
325 col0[i][1] = UBYTE_TO_FLOAT(span->array->rgba8[i][1]);
326 col0[i][2] = UBYTE_TO_FLOAT(span->array->rgba8[i][2]);
327 col0[i][3] = UBYTE_TO_FLOAT(span->array->rgba8[i][3]);
328 }
329 }
330 else {
331 /* interpolate red/green/blue/alpha to get float colors */
332 ASSERT(span->interpMask & SPAN_RGBA);
333 if (span->interpMask & SPAN_FLAT) {
334 GLfloat r = FixedToFloat(span->red);
335 GLfloat g = FixedToFloat(span->green);
336 GLfloat b = FixedToFloat(span->blue);
337 GLfloat a = FixedToFloat(span->alpha);
338 for (i = 0; i < n; i++) {
339 ASSIGN_4V(col0[i], r, g, b, a);
340 }
341 }
342 else {
343 GLfloat r = FixedToFloat(span->red);
344 GLfloat g = FixedToFloat(span->green);
345 GLfloat b = FixedToFloat(span->blue);
346 GLfloat a = FixedToFloat(span->alpha);
347 GLfloat dr = FixedToFloat(span->redStep);
348 GLfloat dg = FixedToFloat(span->greenStep);
349 GLfloat db = FixedToFloat(span->blueStep);
350 GLfloat da = FixedToFloat(span->alphaStep);
351 for (i = 0; i < n; i++) {
352 col0[i][0] = r;
353 col0[i][1] = g;
354 col0[i][2] = b;
355 col0[i][3] = a;
356 r += dr;
357 g += dg;
358 b += db;
359 a += da;
360 }
361 }
362 }
363
364 span->arrayAttribs |= FRAG_BIT_COL0;
365 span->array->ChanType = GL_FLOAT;
366 }
367
368
369
370 /**
371 * Fill in the span.zArray array from the span->z, zStep values.
372 */
373 void
374 _swrast_span_interpolate_z( const GLcontext *ctx, SWspan *span )
375 {
376 const GLuint n = span->end;
377 GLuint i;
378
379 ASSERT(!(span->arrayMask & SPAN_Z));
380
381 if (ctx->DrawBuffer->Visual.depthBits <= 16) {
382 GLfixed zval = span->z;
383 GLuint *z = span->array->z;
384 for (i = 0; i < n; i++) {
385 z[i] = FixedToInt(zval);
386 zval += span->zStep;
387 }
388 }
389 else {
390 /* Deep Z buffer, no fixed->int shift */
391 GLuint zval = span->z;
392 GLuint *z = span->array->z;
393 for (i = 0; i < n; i++) {
394 z[i] = zval;
395 zval += span->zStep;
396 }
397 }
398 span->interpMask &= ~SPAN_Z;
399 span->arrayMask |= SPAN_Z;
400 }
401
402
403 /**
404 * Compute mipmap LOD from partial derivatives.
405 * This the ideal solution, as given in the OpenGL spec.
406 */
407 GLfloat
408 _swrast_compute_lambda(GLfloat dsdx, GLfloat dsdy, GLfloat dtdx, GLfloat dtdy,
409 GLfloat dqdx, GLfloat dqdy, GLfloat texW, GLfloat texH,
410 GLfloat s, GLfloat t, GLfloat q, GLfloat invQ)
411 {
412 GLfloat dudx = texW * ((s + dsdx) / (q + dqdx) - s * invQ);
413 GLfloat dvdx = texH * ((t + dtdx) / (q + dqdx) - t * invQ);
414 GLfloat dudy = texW * ((s + dsdy) / (q + dqdy) - s * invQ);
415 GLfloat dvdy = texH * ((t + dtdy) / (q + dqdy) - t * invQ);
416 GLfloat x = SQRTF(dudx * dudx + dvdx * dvdx);
417 GLfloat y = SQRTF(dudy * dudy + dvdy * dvdy);
418 GLfloat rho = MAX2(x, y);
419 GLfloat lambda = LOG2(rho);
420 return lambda;
421 }
422
423
424 /**
425 * Compute mipmap LOD from partial derivatives.
426 * This is a faster approximation than above function.
427 */
428 #if 0
429 GLfloat
430 _swrast_compute_lambda(GLfloat dsdx, GLfloat dsdy, GLfloat dtdx, GLfloat dtdy,
431 GLfloat dqdx, GLfloat dqdy, GLfloat texW, GLfloat texH,
432 GLfloat s, GLfloat t, GLfloat q, GLfloat invQ)
433 {
434 GLfloat dsdx2 = (s + dsdx) / (q + dqdx) - s * invQ;
435 GLfloat dtdx2 = (t + dtdx) / (q + dqdx) - t * invQ;
436 GLfloat dsdy2 = (s + dsdy) / (q + dqdy) - s * invQ;
437 GLfloat dtdy2 = (t + dtdy) / (q + dqdy) - t * invQ;
438 GLfloat maxU, maxV, rho, lambda;
439 dsdx2 = FABSF(dsdx2);
440 dsdy2 = FABSF(dsdy2);
441 dtdx2 = FABSF(dtdx2);
442 dtdy2 = FABSF(dtdy2);
443 maxU = MAX2(dsdx2, dsdy2) * texW;
444 maxV = MAX2(dtdx2, dtdy2) * texH;
445 rho = MAX2(maxU, maxV);
446 lambda = LOG2(rho);
447 return lambda;
448 }
449 #endif
450
451
452 /**
453 * Fill in the span.array->attrib[FRAG_ATTRIB_TEXn] arrays from the
454 * using the attrStart/Step values.
455 *
456 * This function only used during fixed-function fragment processing.
457 *
458 * Note: in the places where we divide by Q (or mult by invQ) we're
459 * really doing two things: perspective correction and texcoord
460 * projection. Remember, for texcoord (s,t,r,q) we need to index
461 * texels with (s/q, t/q, r/q).
462 */
463 static void
464 interpolate_texcoords(GLcontext *ctx, SWspan *span)
465 {
466 const GLuint maxUnit
467 = (ctx->Texture._EnabledCoordUnits > 1) ? ctx->Const.MaxTextureUnits : 1;
468 GLuint u;
469
470 /* XXX CoordUnits vs. ImageUnits */
471 for (u = 0; u < maxUnit; u++) {
472 if (ctx->Texture._EnabledCoordUnits & (1 << u)) {
473 const GLuint attr = FRAG_ATTRIB_TEX0 + u;
474 const struct gl_texture_object *obj = ctx->Texture.Unit[u]._Current;
475 GLfloat texW, texH;
476 GLboolean needLambda;
477 GLfloat (*texcoord)[4] = span->array->attribs[attr];
478 GLfloat *lambda = span->array->lambda[u];
479 const GLfloat dsdx = span->attrStepX[attr][0];
480 const GLfloat dsdy = span->attrStepY[attr][0];
481 const GLfloat dtdx = span->attrStepX[attr][1];
482 const GLfloat dtdy = span->attrStepY[attr][1];
483 const GLfloat drdx = span->attrStepX[attr][2];
484 const GLfloat dqdx = span->attrStepX[attr][3];
485 const GLfloat dqdy = span->attrStepY[attr][3];
486 GLfloat s = span->attrStart[attr][0] + span->leftClip * dsdx;
487 GLfloat t = span->attrStart[attr][1] + span->leftClip * dtdx;
488 GLfloat r = span->attrStart[attr][2] + span->leftClip * drdx;
489 GLfloat q = span->attrStart[attr][3] + span->leftClip * dqdx;
490
491 if (obj) {
492 const struct gl_texture_image *img = obj->Image[0][obj->BaseLevel];
493 needLambda = (obj->MinFilter != obj->MagFilter)
494 || ctx->FragmentProgram._Current;
495 texW = img->WidthScale;
496 texH = img->HeightScale;
497 }
498 else {
499 /* using a fragment program */
500 texW = 1.0;
501 texH = 1.0;
502 needLambda = GL_FALSE;
503 }
504
505 if (needLambda) {
506 GLuint i;
507 if (ctx->FragmentProgram._Current
508 || ctx->ATIFragmentShader._Enabled) {
509 /* do perspective correction but don't divide s, t, r by q */
510 const GLfloat dwdx = span->attrStepX[FRAG_ATTRIB_WPOS][3];
511 GLfloat w = span->attrStart[FRAG_ATTRIB_WPOS][3] + span->leftClip * dwdx;
512 for (i = 0; i < span->end; i++) {
513 const GLfloat invW = 1.0F / w;
514 texcoord[i][0] = s * invW;
515 texcoord[i][1] = t * invW;
516 texcoord[i][2] = r * invW;
517 texcoord[i][3] = q * invW;
518 lambda[i] = _swrast_compute_lambda(dsdx, dsdy, dtdx, dtdy,
519 dqdx, dqdy, texW, texH,
520 s, t, q, invW);
521 s += dsdx;
522 t += dtdx;
523 r += drdx;
524 q += dqdx;
525 w += dwdx;
526 }
527 }
528 else {
529 for (i = 0; i < span->end; i++) {
530 const GLfloat invQ = (q == 0.0F) ? 1.0F : (1.0F / q);
531 texcoord[i][0] = s * invQ;
532 texcoord[i][1] = t * invQ;
533 texcoord[i][2] = r * invQ;
534 texcoord[i][3] = q;
535 lambda[i] = _swrast_compute_lambda(dsdx, dsdy, dtdx, dtdy,
536 dqdx, dqdy, texW, texH,
537 s, t, q, invQ);
538 s += dsdx;
539 t += dtdx;
540 r += drdx;
541 q += dqdx;
542 }
543 }
544 span->arrayMask |= SPAN_LAMBDA;
545 }
546 else {
547 GLuint i;
548 if (ctx->FragmentProgram._Current ||
549 ctx->ATIFragmentShader._Enabled) {
550 /* do perspective correction but don't divide s, t, r by q */
551 const GLfloat dwdx = span->attrStepX[FRAG_ATTRIB_WPOS][3];
552 GLfloat w = span->attrStart[FRAG_ATTRIB_WPOS][3] + span->leftClip * dwdx;
553 for (i = 0; i < span->end; i++) {
554 const GLfloat invW = 1.0F / w;
555 texcoord[i][0] = s * invW;
556 texcoord[i][1] = t * invW;
557 texcoord[i][2] = r * invW;
558 texcoord[i][3] = q * invW;
559 lambda[i] = 0.0;
560 s += dsdx;
561 t += dtdx;
562 r += drdx;
563 q += dqdx;
564 w += dwdx;
565 }
566 }
567 else if (dqdx == 0.0F) {
568 /* Ortho projection or polygon's parallel to window X axis */
569 const GLfloat invQ = (q == 0.0F) ? 1.0F : (1.0F / q);
570 for (i = 0; i < span->end; i++) {
571 texcoord[i][0] = s * invQ;
572 texcoord[i][1] = t * invQ;
573 texcoord[i][2] = r * invQ;
574 texcoord[i][3] = q;
575 lambda[i] = 0.0;
576 s += dsdx;
577 t += dtdx;
578 r += drdx;
579 }
580 }
581 else {
582 for (i = 0; i < span->end; i++) {
583 const GLfloat invQ = (q == 0.0F) ? 1.0F : (1.0F / q);
584 texcoord[i][0] = s * invQ;
585 texcoord[i][1] = t * invQ;
586 texcoord[i][2] = r * invQ;
587 texcoord[i][3] = q;
588 lambda[i] = 0.0;
589 s += dsdx;
590 t += dtdx;
591 r += drdx;
592 q += dqdx;
593 }
594 }
595 } /* lambda */
596 } /* if */
597 } /* for */
598 }
599
600
601 /**
602 * Fill in the arrays->attribs[FRAG_ATTRIB_WPOS] array.
603 */
604 static INLINE void
605 interpolate_wpos(GLcontext *ctx, SWspan *span)
606 {
607 GLfloat (*wpos)[4] = span->array->attribs[FRAG_ATTRIB_WPOS];
608 GLuint i;
609 const GLfloat zScale = 1.0F / ctx->DrawBuffer->_DepthMaxF;
610 GLfloat w, dw;
611
612 if (span->arrayMask & SPAN_XY) {
613 for (i = 0; i < span->end; i++) {
614 wpos[i][0] = (GLfloat) span->array->x[i];
615 wpos[i][1] = (GLfloat) span->array->y[i];
616 }
617 }
618 else {
619 for (i = 0; i < span->end; i++) {
620 wpos[i][0] = (GLfloat) span->x + i;
621 wpos[i][1] = (GLfloat) span->y;
622 }
623 }
624
625 dw = span->attrStepX[FRAG_ATTRIB_WPOS][3];
626 w = span->attrStart[FRAG_ATTRIB_WPOS][3] + span->leftClip * dw;
627 for (i = 0; i < span->end; i++) {
628 wpos[i][2] = (GLfloat) span->array->z[i] * zScale;
629 wpos[i][3] = w;
630 w += dw;
631 }
632 }
633
634
635 /**
636 * Apply the current polygon stipple pattern to a span of pixels.
637 */
638 static INLINE void
639 stipple_polygon_span(GLcontext *ctx, SWspan *span)
640 {
641 GLubyte *mask = span->array->mask;
642
643 ASSERT(ctx->Polygon.StippleFlag);
644
645 if (span->arrayMask & SPAN_XY) {
646 /* arrays of x/y pixel coords */
647 GLuint i;
648 for (i = 0; i < span->end; i++) {
649 const GLint col = span->array->x[i] % 32;
650 const GLint row = span->array->y[i] % 32;
651 const GLuint stipple = ctx->PolygonStipple[row];
652 if (((1 << col) & stipple) == 0) {
653 mask[i] = 0;
654 }
655 }
656 }
657 else {
658 /* horizontal span of pixels */
659 const GLuint highBit = 1 << 31;
660 const GLuint stipple = ctx->PolygonStipple[span->y % 32];
661 GLuint i, m = highBit >> (GLuint) (span->x % 32);
662 for (i = 0; i < span->end; i++) {
663 if ((m & stipple) == 0) {
664 mask[i] = 0;
665 }
666 m = m >> 1;
667 if (m == 0) {
668 m = highBit;
669 }
670 }
671 }
672 span->writeAll = GL_FALSE;
673 }
674
675
676 /**
677 * Clip a pixel span to the current buffer/window boundaries:
678 * DrawBuffer->_Xmin, _Xmax, _Ymin, _Ymax. This will accomplish
679 * window clipping and scissoring.
680 * Return: GL_TRUE some pixels still visible
681 * GL_FALSE nothing visible
682 */
683 static INLINE GLuint
684 clip_span( GLcontext *ctx, SWspan *span )
685 {
686 const GLint xmin = ctx->DrawBuffer->_Xmin;
687 const GLint xmax = ctx->DrawBuffer->_Xmax;
688 const GLint ymin = ctx->DrawBuffer->_Ymin;
689 const GLint ymax = ctx->DrawBuffer->_Ymax;
690
691 span->leftClip = 0;
692
693 if (span->arrayMask & SPAN_XY) {
694 /* arrays of x/y pixel coords */
695 const GLint *x = span->array->x;
696 const GLint *y = span->array->y;
697 const GLint n = span->end;
698 GLubyte *mask = span->array->mask;
699 GLint i;
700 if (span->arrayMask & SPAN_MASK) {
701 /* note: using & intead of && to reduce branches */
702 for (i = 0; i < n; i++) {
703 mask[i] &= (x[i] >= xmin) & (x[i] < xmax)
704 & (y[i] >= ymin) & (y[i] < ymax);
705 }
706 }
707 else {
708 /* note: using & intead of && to reduce branches */
709 for (i = 0; i < n; i++) {
710 mask[i] = (x[i] >= xmin) & (x[i] < xmax)
711 & (y[i] >= ymin) & (y[i] < ymax);
712 }
713 }
714 return GL_TRUE; /* some pixels visible */
715 }
716 else {
717 /* horizontal span of pixels */
718 const GLint x = span->x;
719 const GLint y = span->y;
720 GLint n = span->end;
721
722 /* Trivial rejection tests */
723 if (y < ymin || y >= ymax || x + n <= xmin || x >= xmax) {
724 span->end = 0;
725 return GL_FALSE; /* all pixels clipped */
726 }
727
728 /* Clip to right */
729 if (x + n > xmax) {
730 ASSERT(x < xmax);
731 n = span->end = xmax - x;
732 }
733
734 /* Clip to the left */
735 if (x < xmin) {
736 const GLint leftClip = xmin - x;
737 GLuint i;
738
739 ASSERT(leftClip > 0);
740 ASSERT(x + n > xmin);
741
742 /* Clip 'leftClip' pixels from the left side.
743 * The span->leftClip field will be applied when we interpolate
744 * fragment attributes.
745 * For arrays of values, shift them left.
746 */
747 for (i = 0; i < FRAG_ATTRIB_MAX; i++) {
748 if (span->interpMask & (1 << i)) {
749 GLuint j;
750 for (j = 0; j < 4; j++) {
751 span->attrStart[i][j] += leftClip * span->attrStepX[i][j];
752 }
753 }
754 }
755
756 span->red += leftClip * span->redStep;
757 span->green += leftClip * span->greenStep;
758 span->blue += leftClip * span->blueStep;
759 span->alpha += leftClip * span->alphaStep;
760 span->index += leftClip * span->indexStep;
761 span->z += leftClip * span->zStep;
762 span->intTex[0] += leftClip * span->intTexStep[0];
763 span->intTex[1] += leftClip * span->intTexStep[1];
764
765 #define SHIFT_ARRAY(ARRAY, SHIFT, LEN) \
766 memcpy(ARRAY, ARRAY + (SHIFT), (LEN) * sizeof(ARRAY[0]))
767
768 for (i = 0; i < FRAG_ATTRIB_MAX; i++) {
769 if (span->arrayAttribs & (1 << i)) {
770 /* shift array elements left by 'leftClip' */
771 SHIFT_ARRAY(span->array->attribs[i], leftClip, n - leftClip);
772 }
773 }
774
775 SHIFT_ARRAY(span->array->mask, leftClip, n - leftClip);
776 SHIFT_ARRAY(span->array->rgba8, leftClip, n - leftClip);
777 SHIFT_ARRAY(span->array->rgba16, leftClip, n - leftClip);
778 SHIFT_ARRAY(span->array->x, leftClip, n - leftClip);
779 SHIFT_ARRAY(span->array->y, leftClip, n - leftClip);
780 SHIFT_ARRAY(span->array->z, leftClip, n - leftClip);
781 SHIFT_ARRAY(span->array->index, leftClip, n - leftClip);
782 for (i = 0; i < MAX_TEXTURE_COORD_UNITS; i++) {
783 SHIFT_ARRAY(span->array->lambda[i], leftClip, n - leftClip);
784 }
785 SHIFT_ARRAY(span->array->coverage, leftClip, n - leftClip);
786
787 #undef SHIFT_ARRAY
788
789 span->leftClip = leftClip;
790 span->x = xmin;
791 span->end -= leftClip;
792 span->writeAll = GL_FALSE;
793 }
794
795 ASSERT(span->x >= xmin);
796 ASSERT(span->x + span->end <= xmax);
797 ASSERT(span->y >= ymin);
798 ASSERT(span->y < ymax);
799
800 return GL_TRUE; /* some pixels visible */
801 }
802 }
803
804
805 /**
806 * Add specular colors to primary colors.
807 * Only called during fixed-function operation.
808 * Result is float color array (FRAG_ATTRIB_COL0).
809 */
810 static INLINE void
811 add_specular(GLcontext *ctx, SWspan *span)
812 {
813 const SWcontext *swrast = SWRAST_CONTEXT(ctx);
814 const GLubyte *mask = span->array->mask;
815 GLfloat (*col0)[4] = span->array->attribs[FRAG_ATTRIB_COL0];
816 GLfloat (*col1)[4] = span->array->attribs[FRAG_ATTRIB_COL1];
817 GLuint i;
818
819 ASSERT(!ctx->FragmentProgram._Current);
820 ASSERT(span->arrayMask & SPAN_RGBA);
821 ASSERT(swrast->_ActiveAttribMask & FRAG_BIT_COL1);
822 (void) swrast; /* silence warning */
823
824 if (span->array->ChanType == GL_FLOAT) {
825 if ((span->arrayAttribs & FRAG_BIT_COL0) == 0) {
826 interpolate_active_attribs(ctx, span, FRAG_BIT_COL0);
827 }
828 }
829 else {
830 /* need float colors */
831 if ((span->arrayAttribs & FRAG_BIT_COL0) == 0) {
832 interpolate_float_colors(span);
833 }
834 }
835
836 if ((span->arrayAttribs & FRAG_BIT_COL1) == 0) {
837 /* XXX could avoid this and interpolate COL1 in the loop below */
838 interpolate_active_attribs(ctx, span, FRAG_BIT_COL1);
839 }
840
841 ASSERT(span->arrayAttribs & FRAG_BIT_COL0);
842 ASSERT(span->arrayAttribs & FRAG_BIT_COL1);
843
844 for (i = 0; i < span->end; i++) {
845 if (mask[i]) {
846 col0[i][0] += col1[i][0];
847 col0[i][1] += col1[i][1];
848 col0[i][2] += col1[i][2];
849 }
850 }
851
852 span->array->ChanType = GL_FLOAT;
853 }
854
855
856 /**
857 * Apply antialiasing coverage value to alpha values.
858 */
859 static INLINE void
860 apply_aa_coverage(SWspan *span)
861 {
862 const GLfloat *coverage = span->array->coverage;
863 GLuint i;
864 if (span->array->ChanType == GL_UNSIGNED_BYTE) {
865 GLubyte (*rgba)[4] = span->array->rgba8;
866 for (i = 0; i < span->end; i++) {
867 const GLfloat a = rgba[i][ACOMP] * coverage[i];
868 rgba[i][ACOMP] = (GLubyte) CLAMP(a, 0.0, 255.0);
869 ASSERT(coverage[i] >= 0.0);
870 ASSERT(coverage[i] <= 1.0);
871 }
872 }
873 else if (span->array->ChanType == GL_UNSIGNED_SHORT) {
874 GLushort (*rgba)[4] = span->array->rgba16;
875 for (i = 0; i < span->end; i++) {
876 const GLfloat a = rgba[i][ACOMP] * coverage[i];
877 rgba[i][ACOMP] = (GLushort) CLAMP(a, 0.0, 65535.0);
878 }
879 }
880 else {
881 GLfloat (*rgba)[4] = span->array->attribs[FRAG_ATTRIB_COL0];
882 for (i = 0; i < span->end; i++) {
883 rgba[i][ACOMP] = rgba[i][ACOMP] * coverage[i];
884 /* clamp later */
885 }
886 }
887 }
888
889
890 /**
891 * Clamp span's float colors to [0,1]
892 */
893 static INLINE void
894 clamp_colors(SWspan *span)
895 {
896 GLfloat (*rgba)[4] = span->array->attribs[FRAG_ATTRIB_COL0];
897 GLuint i;
898 ASSERT(span->array->ChanType == GL_FLOAT);
899 for (i = 0; i < span->end; i++) {
900 rgba[i][RCOMP] = CLAMP(rgba[i][RCOMP], 0.0F, 1.0F);
901 rgba[i][GCOMP] = CLAMP(rgba[i][GCOMP], 0.0F, 1.0F);
902 rgba[i][BCOMP] = CLAMP(rgba[i][BCOMP], 0.0F, 1.0F);
903 rgba[i][ACOMP] = CLAMP(rgba[i][ACOMP], 0.0F, 1.0F);
904 }
905 }
906
907
908 /**
909 * Convert the span's color arrays to the given type.
910 * The only way 'output' can be greater than zero is when we have a fragment
911 * program that writes to gl_FragData[1] or higher.
912 * \param output which fragment program color output is being processed
913 */
914 static INLINE void
915 convert_color_type(SWspan *span, GLenum newType, GLuint output)
916 {
917 GLvoid *src, *dst;
918
919 if (output > 0 || span->array->ChanType == GL_FLOAT) {
920 src = span->array->attribs[FRAG_ATTRIB_COL0 + output];
921 span->array->ChanType = GL_FLOAT;
922 }
923 else if (span->array->ChanType == GL_UNSIGNED_BYTE) {
924 src = span->array->rgba8;
925 }
926 else {
927 ASSERT(span->array->ChanType == GL_UNSIGNED_SHORT);
928 src = span->array->rgba16;
929 }
930
931 if (newType == GL_UNSIGNED_BYTE) {
932 dst = span->array->rgba8;
933 }
934 else if (newType == GL_UNSIGNED_SHORT) {
935 dst = span->array->rgba16;
936 }
937 else {
938 dst = span->array->attribs[FRAG_ATTRIB_COL0];
939 }
940
941 _mesa_convert_colors(span->array->ChanType, src,
942 newType, dst,
943 span->end, span->array->mask);
944
945 span->array->ChanType = newType;
946 span->array->rgba = dst;
947 }
948
949
950
951 /**
952 * Apply fragment shader, fragment program or normal texturing to span.
953 */
954 static INLINE void
955 shade_texture_span(GLcontext *ctx, SWspan *span)
956 {
957 GLbitfield inputsRead;
958
959 /* Determine which fragment attributes are actually needed */
960 if (ctx->FragmentProgram._Current) {
961 inputsRead = ctx->FragmentProgram._Current->Base.InputsRead;
962 }
963 else {
964 /* XXX we could be a bit smarter about this */
965 inputsRead = ~0;
966 }
967
968 if (ctx->FragmentProgram._Current ||
969 ctx->ATIFragmentShader._Enabled) {
970 /* programmable shading */
971 if (span->primitive == GL_BITMAP && span->array->ChanType != GL_FLOAT) {
972 convert_color_type(span, GL_FLOAT, 0);
973 }
974 if (span->primitive != GL_POINT ||
975 (span->interpMask & SPAN_RGBA) ||
976 ctx->Point.PointSprite) {
977 /* for single-pixel points, we populated the arrays already */
978 interpolate_active_attribs(ctx, span, ~0);
979 }
980 span->array->ChanType = GL_FLOAT;
981
982 if (!(span->arrayMask & SPAN_Z))
983 _swrast_span_interpolate_z (ctx, span);
984
985 #if 0
986 if (inputsRead & FRAG_BIT_WPOS)
987 #else
988 /* XXX always interpolate wpos so that DDX/DDY work */
989 #endif
990 interpolate_wpos(ctx, span);
991
992 /* Run fragment program/shader now */
993 if (ctx->FragmentProgram._Current) {
994 _swrast_exec_fragment_program(ctx, span);
995 }
996 else {
997 ASSERT(ctx->ATIFragmentShader._Enabled);
998 _swrast_exec_fragment_shader(ctx, span);
999 }
1000 }
1001 else if (ctx->Texture._EnabledCoordUnits) {
1002 /* conventional texturing */
1003
1004 #if CHAN_BITS == 32
1005 if ((span->arrayAttribs & FRAG_BIT_COL0) == 0) {
1006 interpolate_int_colors(ctx, span);
1007 }
1008 #else
1009 if (!(span->arrayMask & SPAN_RGBA))
1010 interpolate_int_colors(ctx, span);
1011 #endif
1012 if ((span->arrayAttribs & FRAG_BITS_TEX_ANY) == 0x0)
1013 interpolate_texcoords(ctx, span);
1014
1015 _swrast_texture_span(ctx, span);
1016 }
1017 }
1018
1019
1020
1021 /**
1022 * Apply all the per-fragment operations to a span.
1023 * This now includes texturing (_swrast_write_texture_span() is history).
1024 * This function may modify any of the array values in the span.
1025 * span->interpMask and span->arrayMask may be changed but will be restored
1026 * to their original values before returning.
1027 */
1028 void
1029 _swrast_write_rgba_span( GLcontext *ctx, SWspan *span)
1030 {
1031 const SWcontext *swrast = SWRAST_CONTEXT(ctx);
1032 const GLuint *colorMask = (GLuint *) ctx->Color.ColorMask;
1033 const GLbitfield origInterpMask = span->interpMask;
1034 const GLbitfield origArrayMask = span->arrayMask;
1035 const GLbitfield origArrayAttribs = span->arrayAttribs;
1036 const GLenum origChanType = span->array->ChanType;
1037 void * const origRgba = span->array->rgba;
1038 const GLboolean shader = (ctx->FragmentProgram._Current
1039 || ctx->ATIFragmentShader._Enabled);
1040 const GLboolean shaderOrTexture = shader || ctx->Texture._EnabledCoordUnits;
1041 struct gl_framebuffer *fb = ctx->DrawBuffer;
1042
1043 /*
1044 printf("%s() interp 0x%x array 0x%x\n", __FUNCTION__,
1045 span->interpMask, span->arrayMask);
1046 */
1047
1048 ASSERT(span->primitive == GL_POINT ||
1049 span->primitive == GL_LINE ||
1050 span->primitive == GL_POLYGON ||
1051 span->primitive == GL_BITMAP);
1052
1053 /* Fragment write masks */
1054 if (span->arrayMask & SPAN_MASK) {
1055 /* mask was initialized by caller, probably glBitmap */
1056 span->writeAll = GL_FALSE;
1057 }
1058 else {
1059 memset(span->array->mask, 1, span->end);
1060 span->writeAll = GL_TRUE;
1061 }
1062
1063 /* Clip to window/scissor box */
1064 if (!clip_span(ctx, span)) {
1065 return;
1066 }
1067
1068 ASSERT(span->end <= MAX_WIDTH);
1069
1070 /* Depth bounds test */
1071 if (ctx->Depth.BoundsTest && fb->Visual.depthBits > 0) {
1072 if (!_swrast_depth_bounds_test(ctx, span)) {
1073 return;
1074 }
1075 }
1076
1077 #ifdef DEBUG
1078 /* Make sure all fragments are within window bounds */
1079 if (span->arrayMask & SPAN_XY) {
1080 /* array of pixel locations */
1081 GLuint i;
1082 for (i = 0; i < span->end; i++) {
1083 if (span->array->mask[i]) {
1084 assert(span->array->x[i] >= fb->_Xmin);
1085 assert(span->array->x[i] < fb->_Xmax);
1086 assert(span->array->y[i] >= fb->_Ymin);
1087 assert(span->array->y[i] < fb->_Ymax);
1088 }
1089 }
1090 }
1091 #endif
1092
1093 /* Polygon Stippling */
1094 if (ctx->Polygon.StippleFlag && span->primitive == GL_POLYGON) {
1095 stipple_polygon_span(ctx, span);
1096 }
1097
1098 /* This is the normal place to compute the fragment color/Z
1099 * from texturing or shading.
1100 */
1101 if (shaderOrTexture && !swrast->_DeferredTexture) {
1102 shade_texture_span(ctx, span);
1103 }
1104
1105 /* Do the alpha test */
1106 if (ctx->Color.AlphaEnabled) {
1107 if (!_swrast_alpha_test(ctx, span)) {
1108 /* all fragments failed test */
1109 goto end;
1110 }
1111 }
1112
1113 /* Stencil and Z testing */
1114 if (ctx->Stencil._Enabled || ctx->Depth.Test) {
1115 if (!(span->arrayMask & SPAN_Z))
1116 _swrast_span_interpolate_z(ctx, span);
1117
1118 if (ctx->Transform.DepthClamp)
1119 _swrast_depth_clamp_span(ctx, span);
1120
1121 if (ctx->Stencil._Enabled) {
1122 /* Combined Z/stencil tests */
1123 if (!_swrast_stencil_and_ztest_span(ctx, span)) {
1124 /* all fragments failed test */
1125 goto end;
1126 }
1127 }
1128 else if (fb->Visual.depthBits > 0) {
1129 /* Just regular depth testing */
1130 ASSERT(ctx->Depth.Test);
1131 ASSERT(span->arrayMask & SPAN_Z);
1132 if (!_swrast_depth_test_span(ctx, span)) {
1133 /* all fragments failed test */
1134 goto end;
1135 }
1136 }
1137 }
1138
1139 if (ctx->Query.CurrentOcclusionObject) {
1140 /* update count of 'passed' fragments */
1141 struct gl_query_object *q = ctx->Query.CurrentOcclusionObject;
1142 GLuint i;
1143 for (i = 0; i < span->end; i++)
1144 q->Result += span->array->mask[i];
1145 }
1146
1147 /* We had to wait until now to check for glColorMask(0,0,0,0) because of
1148 * the occlusion test.
1149 */
1150 if (fb->_NumColorDrawBuffers == 1 && colorMask[0] == 0x0) {
1151 /* no colors to write */
1152 goto end;
1153 }
1154
1155 /* If we were able to defer fragment color computation to now, there's
1156 * a good chance that many fragments will have already been killed by
1157 * Z/stencil testing.
1158 */
1159 if (shaderOrTexture && swrast->_DeferredTexture) {
1160 shade_texture_span(ctx, span);
1161 }
1162
1163 #if CHAN_BITS == 32
1164 if ((span->arrayAttribs & FRAG_BIT_COL0) == 0) {
1165 interpolate_active_attribs(ctx, span, FRAG_BIT_COL0);
1166 }
1167 #else
1168 if ((span->arrayMask & SPAN_RGBA) == 0) {
1169 interpolate_int_colors(ctx, span);
1170 }
1171 #endif
1172
1173 ASSERT(span->arrayMask & SPAN_RGBA);
1174
1175 if (span->primitive == GL_BITMAP || !swrast->SpecularVertexAdd) {
1176 /* Add primary and specular (diffuse + specular) colors */
1177 if (!shader) {
1178 if (ctx->Fog.ColorSumEnabled ||
1179 (ctx->Light.Enabled &&
1180 ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR)) {
1181 add_specular(ctx, span);
1182 }
1183 }
1184 }
1185
1186 /* Fog */
1187 if (swrast->_FogEnabled) {
1188 _swrast_fog_rgba_span(ctx, span);
1189 }
1190
1191 /* Antialias coverage application */
1192 if (span->arrayMask & SPAN_COVERAGE) {
1193 apply_aa_coverage(span);
1194 }
1195
1196 /* Clamp color/alpha values over the range [0.0, 1.0] before storage */
1197 if (ctx->Color.ClampFragmentColor == GL_TRUE &&
1198 span->array->ChanType == GL_FLOAT) {
1199 clamp_colors(span);
1200 }
1201
1202 /*
1203 * Write to renderbuffers.
1204 * Depending on glDrawBuffer() state and the which color outputs are
1205 * written by the fragment shader, we may either replicate one color to
1206 * all renderbuffers or write a different color to each renderbuffer.
1207 * multiFragOutputs=TRUE for the later case.
1208 */
1209 {
1210 const GLuint numBuffers = fb->_NumColorDrawBuffers;
1211 const struct gl_fragment_program *fp = ctx->FragmentProgram._Current;
1212 const GLboolean multiFragOutputs =
1213 (fp && fp->Base.OutputsWritten >= (1 << FRAG_RESULT_DATA0));
1214 GLuint buf;
1215
1216 for (buf = 0; buf < numBuffers; buf++) {
1217 struct gl_renderbuffer *rb = fb->_ColorDrawBuffers[buf];
1218
1219 /* color[fragOutput] will be written to buffer[buf] */
1220
1221 if (rb) {
1222 GLchan rgbaSave[MAX_WIDTH][4];
1223 const GLuint fragOutput = multiFragOutputs ? buf : 0;
1224
1225 if (rb->DataType != span->array->ChanType || fragOutput > 0) {
1226 convert_color_type(span, rb->DataType, fragOutput);
1227 }
1228
1229 if (!multiFragOutputs && numBuffers > 1) {
1230 /* save colors for second, third renderbuffer writes */
1231 memcpy(rgbaSave, span->array->rgba,
1232 4 * span->end * sizeof(GLchan));
1233 }
1234
1235 ASSERT(rb->_BaseFormat == GL_RGBA || rb->_BaseFormat == GL_RGB);
1236
1237 if (ctx->Color._LogicOpEnabled) {
1238 _swrast_logicop_rgba_span(ctx, rb, span);
1239 }
1240 else if ((ctx->Color.BlendEnabled >> buf) & 1) {
1241 _swrast_blend_span(ctx, rb, span);
1242 }
1243
1244 if (colorMask[buf] != 0xffffffff) {
1245 _swrast_mask_rgba_span(ctx, rb, span, buf);
1246 }
1247
1248 if (span->arrayMask & SPAN_XY) {
1249 /* array of pixel coords */
1250 ASSERT(rb->PutValues);
1251 rb->PutValues(ctx, rb, span->end,
1252 span->array->x, span->array->y,
1253 span->array->rgba, span->array->mask);
1254 }
1255 else {
1256 /* horizontal run of pixels */
1257 ASSERT(rb->PutRow);
1258 rb->PutRow(ctx, rb, span->end, span->x, span->y,
1259 span->array->rgba,
1260 span->writeAll ? NULL: span->array->mask);
1261 }
1262
1263 if (!multiFragOutputs && numBuffers > 1) {
1264 /* restore original span values */
1265 memcpy(span->array->rgba, rgbaSave,
1266 4 * span->end * sizeof(GLchan));
1267 }
1268
1269 } /* if rb */
1270 } /* for buf */
1271 }
1272
1273 end:
1274 /* restore these values before returning */
1275 span->interpMask = origInterpMask;
1276 span->arrayMask = origArrayMask;
1277 span->arrayAttribs = origArrayAttribs;
1278 span->array->ChanType = origChanType;
1279 span->array->rgba = origRgba;
1280 }
1281
1282
1283 /**
1284 * Read RGBA pixels from a renderbuffer. Clipping will be done to prevent
1285 * reading ouside the buffer's boundaries.
1286 * \param dstType datatype for returned colors
1287 * \param rgba the returned colors
1288 */
1289 void
1290 _swrast_read_rgba_span( GLcontext *ctx, struct gl_renderbuffer *rb,
1291 GLuint n, GLint x, GLint y, GLenum dstType,
1292 GLvoid *rgba)
1293 {
1294 const GLint bufWidth = (GLint) rb->Width;
1295 const GLint bufHeight = (GLint) rb->Height;
1296
1297 if (y < 0 || y >= bufHeight || x + (GLint) n < 0 || x >= bufWidth) {
1298 /* completely above, below, or right */
1299 /* XXX maybe leave rgba values undefined? */
1300 memset(rgba, 0, 4 * n * sizeof(GLchan));
1301 }
1302 else {
1303 GLint skip, length;
1304 if (x < 0) {
1305 /* left edge clipping */
1306 skip = -x;
1307 length = (GLint) n - skip;
1308 if (length < 0) {
1309 /* completely left of window */
1310 return;
1311 }
1312 if (length > bufWidth) {
1313 length = bufWidth;
1314 }
1315 }
1316 else if ((GLint) (x + n) > bufWidth) {
1317 /* right edge clipping */
1318 skip = 0;
1319 length = bufWidth - x;
1320 if (length < 0) {
1321 /* completely to right of window */
1322 return;
1323 }
1324 }
1325 else {
1326 /* no clipping */
1327 skip = 0;
1328 length = (GLint) n;
1329 }
1330
1331 ASSERT(rb);
1332 ASSERT(rb->GetRow);
1333 ASSERT(rb->_BaseFormat == GL_RGB || rb->_BaseFormat == GL_RGBA);
1334
1335 if (rb->DataType == dstType) {
1336 rb->GetRow(ctx, rb, length, x + skip, y,
1337 (GLubyte *) rgba + skip * RGBA_PIXEL_SIZE(rb->DataType));
1338 }
1339 else {
1340 GLuint temp[MAX_WIDTH * 4];
1341 rb->GetRow(ctx, rb, length, x + skip, y, temp);
1342 _mesa_convert_colors(rb->DataType, temp,
1343 dstType, (GLubyte *) rgba + skip * RGBA_PIXEL_SIZE(dstType),
1344 length, NULL);
1345 }
1346 }
1347 }
1348
1349
1350 /**
1351 * Wrapper for gl_renderbuffer::GetValues() which does clipping to avoid
1352 * reading values outside the buffer bounds.
1353 * We can use this for reading any format/type of renderbuffer.
1354 * \param valueSize is the size in bytes of each value (pixel) put into the
1355 * values array.
1356 */
1357 void
1358 _swrast_get_values(GLcontext *ctx, struct gl_renderbuffer *rb,
1359 GLuint count, const GLint x[], const GLint y[],
1360 void *values, GLuint valueSize)
1361 {
1362 GLuint i, inCount = 0, inStart = 0;
1363
1364 for (i = 0; i < count; i++) {
1365 if (x[i] >= 0 && y[i] >= 0 &&
1366 x[i] < (GLint) rb->Width && y[i] < (GLint) rb->Height) {
1367 /* inside */
1368 if (inCount == 0)
1369 inStart = i;
1370 inCount++;
1371 }
1372 else {
1373 if (inCount > 0) {
1374 /* read [inStart, inStart + inCount) */
1375 rb->GetValues(ctx, rb, inCount, x + inStart, y + inStart,
1376 (GLubyte *) values + inStart * valueSize);
1377 inCount = 0;
1378 }
1379 }
1380 }
1381 if (inCount > 0) {
1382 /* read last values */
1383 rb->GetValues(ctx, rb, inCount, x + inStart, y + inStart,
1384 (GLubyte *) values + inStart * valueSize);
1385 }
1386 }
1387
1388
1389 /**
1390 * Wrapper for gl_renderbuffer::PutRow() which does clipping.
1391 * \param valueSize size of each value (pixel) in bytes
1392 */
1393 void
1394 _swrast_put_row(GLcontext *ctx, struct gl_renderbuffer *rb,
1395 GLuint count, GLint x, GLint y,
1396 const GLvoid *values, GLuint valueSize)
1397 {
1398 GLint skip = 0;
1399
1400 if (y < 0 || y >= (GLint) rb->Height)
1401 return; /* above or below */
1402
1403 if (x + (GLint) count <= 0 || x >= (GLint) rb->Width)
1404 return; /* entirely left or right */
1405
1406 if ((GLint) (x + count) > (GLint) rb->Width) {
1407 /* right clip */
1408 GLint clip = x + count - rb->Width;
1409 count -= clip;
1410 }
1411
1412 if (x < 0) {
1413 /* left clip */
1414 skip = -x;
1415 x = 0;
1416 count -= skip;
1417 }
1418
1419 rb->PutRow(ctx, rb, count, x, y,
1420 (const GLubyte *) values + skip * valueSize, NULL);
1421 }
1422
1423
1424 /**
1425 * Wrapper for gl_renderbuffer::GetRow() which does clipping.
1426 * \param valueSize size of each value (pixel) in bytes
1427 */
1428 void
1429 _swrast_get_row(GLcontext *ctx, struct gl_renderbuffer *rb,
1430 GLuint count, GLint x, GLint y,
1431 GLvoid *values, GLuint valueSize)
1432 {
1433 GLint skip = 0;
1434
1435 if (y < 0 || y >= (GLint) rb->Height)
1436 return; /* above or below */
1437
1438 if (x + (GLint) count <= 0 || x >= (GLint) rb->Width)
1439 return; /* entirely left or right */
1440
1441 if (x + count > rb->Width) {
1442 /* right clip */
1443 GLint clip = x + count - rb->Width;
1444 count -= clip;
1445 }
1446
1447 if (x < 0) {
1448 /* left clip */
1449 skip = -x;
1450 x = 0;
1451 count -= skip;
1452 }
1453
1454 rb->GetRow(ctx, rb, count, x, y, (GLubyte *) values + skip * valueSize);
1455 }
1456
1457
1458 /**
1459 * Get RGBA pixels from the given renderbuffer.
1460 * Used by blending, logicop and masking functions.
1461 * \return pointer to the colors we read.
1462 */
1463 void *
1464 _swrast_get_dest_rgba(GLcontext *ctx, struct gl_renderbuffer *rb,
1465 SWspan *span)
1466 {
1467 const GLuint pixelSize = RGBA_PIXEL_SIZE(span->array->ChanType);
1468 void *rbPixels;
1469
1470 /* Point rbPixels to a temporary space */
1471 rbPixels = span->array->attribs[FRAG_ATTRIB_MAX - 1];
1472
1473 /* Get destination values from renderbuffer */
1474 if (span->arrayMask & SPAN_XY) {
1475 _swrast_get_values(ctx, rb, span->end, span->array->x, span->array->y,
1476 rbPixels, pixelSize);
1477 }
1478 else {
1479 _swrast_get_row(ctx, rb, span->end, span->x, span->y,
1480 rbPixels, pixelSize);
1481 }
1482
1483 return rbPixels;
1484 }